
entropy

Article

Augmenting Paraphrase Generation with Syntax Information
Using Graph Convolutional Networks

Xiaoqiang Chi and Yang Xiang ∗

����������
�������

Citation: Chi, X.; Xiang, Y.

Augmenting Paraphrase Generation

with Syntax Information Using Graph

Convolutional Networks. Entropy

2021, 23, 566. https://doi.org/

10.3390/e23050566

Academic Editor: Zoran H. Peric

Received: 29 March 2021

Accepted: 29 April 2021

Published: 2 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

College of Electronics and Information Engineering, Tongji University, Shanghai 201804, China;
chixiaoqiang@tongji.edu.cn
* Correspondence: shxiangyang@tongji.edu.cn

Abstract: Paraphrase generation is an important yet challenging task in natural language processing.
Neural network-based approaches have achieved remarkable success in sequence-to-sequence learn-
ing. Previous paraphrase generation work generally ignores syntactic information regardless of its
availability, with the assumption that neural nets could learn such linguistic knowledge implicitly.
In this work, we make an endeavor to probe into the efficacy of explicit syntactic information for
the task of paraphrase generation. Syntactic information can appear in the form of dependency
trees, which could be easily acquired from off-the-shelf syntactic parsers. Such tree structures could
be conveniently encoded via graph convolutional networks to obtain more meaningful sentence
representations, which could improve generated paraphrases. Through extensive experiments on
four paraphrase datasets with different sizes and genres, we demonstrate the utility of syntactic
information in neural paraphrase generation under the framework of sequence-to-sequence model-
ing. Specifically, our graph convolutional network-enhanced models consistently outperform their
syntax-agnostic counterparts using multiple evaluation metrics.

Keywords: paraphrase generation; syntax information; graph convolutional network; sequence-to-
sequence

1. Introduction

Paraphrase generation is the task of restating a sentence with different wording
while keeping the same semantic meaning. Since variation is a characteristic of language,
paraphrase generation systems could be a key component in numerous natural language
processing tasks [1,2]. For instance, paraphrase generation could be used to expand patterns
in information extraction systems [3], reformulate queries for information retrieval [4,5],
and generate diverse text in question answering [6] and dialog systems. It also finds appli-
cations in semantic parsing [7], summarization [8] and sentence simplification [9,10]. More
generally, it could be employed as a data augmentation technique to improve the robust-
ness of natural language processing (NLP) models against language variation. Recent years
have witnessed great successes in neural machine translation (NMT) and related generation
tasks that could be formulated under the sequence-to-sequence learning framework. As a
result, the field of paraphrase generation is also gaining attention.

Previous work employs the sequence-to-sequence (seq2seq) model for the task of
paraphrase generation [11], where the authors stacked multiple long short-term memory
(LSTM) layers with residual connections. It is the first piece of work to explore neural
network-based models for paraphrase generation. One highlight of their model is the
introduction of residual connections between LSTM layers, which is crucial for efficient
training of deep networks, as already demonstrated in the vision community. Their model
outperformed multiple seq2seq baselines on three machine translation-oriented evalua-
tion metrics and a sentence similarity metric. Some adopt more complex architectures:
Cao et al. [12] assumed that there are two underlying writing modes in real-world para-
phrase datasets, and model each mode with a separate decoder. To choose between these

Entropy 2021, 23, 566. https://doi.org/10.3390/e23050566 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-8157-0424
https://orcid.org/0000-0002-4091-6422
https://www.mdpi.com/article/10.3390/e23050566?type=check_update&version=1
https://doi.org/10.3390/e23050566
https://doi.org/10.3390/e23050566
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23050566
https://www.mdpi.com/journal/entropy


Entropy 2021, 23, 566 2 of 14

two decoders, they conceived a mode predictor, which is formulated as a binary sequence
labeling task. Their model outperformed previous approaches in terms of both informa-
tiveness and language quality on two tasks: one-sentence abstractive summarization and
text simplification. However, they did not experiment with paraphrase datasets. Another
line of research resorts to NMT [13,14], where a source sentence is first translated into a
pivot language, then the translated sentence is back-translated into the same language
as the source sentence. One advantage of these methods is the availability of large-scale
bilingual corpora which, they could leverage. Mallinson et al. [13] reported performance
gains over phrase-based translation approaches, while Wieting and Gimpel [14] showed the
efficacy of their generated paraphrases in learning sentence representations for measuring
textual similarity.

None of the above approaches take linguistic knowledge into consideration. The authors
of [15,16] utilized lexical resources in the form of synonym dictionaries. Huang et al. [15]
made use of information from an off-the-shelf dictionary. Specifically, they extracted
appropriate word-level and phrase-level paraphrase pairs from the PPDB database while
taking the original sentence into account. Instead of naively replacing words in the source
sentence with their counterpart in the paraphrase pairs, they used these paraphrase pairs
to construct edit vectors. Edit vectors are responsible for deletion and insertion operations
in paraphrase generation. They achieved stronger performance over several baselines.
Lin et al. [16] also employed an off-the-shelf dictionary containing synonyms. In addition
to using these synonym pairs to guide the decision on whether to generate a new word
or replace it with a synonym as in [15], they integrated information of word location with
a positional encoding layer in Transformer [17]. An interesting part of their work is that
they formulated the locating of synonym candidates as a synonym labeling task, which is
trained independently in an early stage. Then, the synonym labeler and the paraphrase
generator are jointly trained to perform multi-task learning, where the two tasks share a
common encoder. They reported better performance over previous work on both English
and Chinese paraphrase datasets.

Wang et al. [18] used semantic information, which is represented as PropBank [19]
style frame-semantic labels. In addition to a token encoder that is adopted in vanilla
semantic-agnostic seq2seq models, they introduced a role encoder and a frame encoder
which together represent semantic information produced by an off-the-shelf parser. They
obtained significant gains with this semantic augmentation. Iyyer et al. [20] exploited
linguistic knowledge at the syntactic level, where constituency parses are fed into their
models. The authors of [21,22] did not use explicit syntactic parses, but adopted an example
sentence whose underlying syntax is regarded as a syntactic exemplar. These syntax-guided
approaches aimed to generate paraphrases in a controllable fashion, which is less pertinent
to our work.

Another type of syntactic information is dependency trees which are concerned
with how words relate to other words (constituency parses deal with how words are
formed into larger units such as phrases) and contain arguably more information than
constituency parses. However, adding dependency parse information in a seq2seq model
to guide the generation of sentences is not trivial. Inspired by previous work employing
graph convolutional networks (GCNs) to encode dependency trees in learning sentence
representations, we attempt to integrate linguistic knowledge in the form of dependency
parses via GCNs into the process of paraphrase generation.

2. Background

In this section, we provide a brief description of two component models that are
necessary to understand the method proposed in this work.

2.1. Sequence-to-Sequence Models and Attention

NMT is typically conducted by building a neural network that takes a source sentence
as input and generates its corresponding sentence in the target language. The network is



Entropy 2021, 23, 566 3 of 14

made up of two component networks, namely the encoder and the decoder. An encoder–
decoder network is also called a seq2seq model [23].

Formally, a source sentence X = (x1, ..., xJ) is fed into the encoder to give a fixed-
length hidden vector, presumably encoding the “meaning” of the sentence. This hidden
vector is a continuous representation often referred to as the context vector. It is the last
hidden state in the case of the encoder being a recurrent neural network (RNN), which
is the most widely used network architecture. Then, the target sentence Y = (y1, ..., yI) is
produced one symbol at a time, conditioning on the context vector provided by the encoder,
where I is not necessarily equal to J. Essentially, the decoder is a conditional language
model: given the context vector c and previously predicted tokens y1:i−1, the decoder is
trained to generate the next token yi. In other words, the decoder models a distribution over
possible translation sentences that can decompose into a series of individual conditionals:

p(Y) =
I

∏
i=1

p(yi|y1:i−1, c)

Each conditional probability can be defined as

p(yi|y1:i−1, c) = g(yi−1, si, c)

where g is a nonlinear function and si is the hidden state for step i in RNN.
It is hard for the encoder to learn a fixed dimensional vector that contains the en-

tire “meaning” of the input sentence, whose length may vary wildly. This is where the
attention [24] mechanism comes into play. In their model, the context vector varies with
time i, hence the probability of yi is conditioned on a different context vector ci for each pre-
diction.

p(yi|y1:i−1, c) = g(yi−1, si, ci)

where
si = f (si−1, yi−1, ci)

The context vector ci is a weighted sum of all encoder hidden states, where each
weight αij is the amount of “attention” paid to the corresponding encoder state hj

ci =
J

∑
j=1

αijhj

where each weight αij is a normalized (over all steps) attention “energy” eij

αij =
exp(eij)

∑J
k=1 exp(eik)

where each attention energy is calculated with some function a (such as another linear
layer) using the last hidden state si−1 and that particular encoder output hj:

eij = a(si−1, hj)

2.2. Graph Convolutional Networks

For a given graph G = (V , E), V is a set of nodes (vertices) and E is a set of edges
(connections). Assume there are n nodes, each associated with a feature vector of dimen-
sionality d. As we are concerned with modeling sentences, the feature vectors are simply
word embeddings. Then, all node features could be represented by a matrix X ∈ Rd×n.
For the ith node u, the corresponding feature vector xu ∈ Rd is column i of matrix X.
A GCN network takes two representations as input:

• node representation: feature descriptions for all nodes summarized as the feature
matrix X; and



Entropy 2021, 23, 566 4 of 14

• graph structure representation: the topology of the graph, which is typically repre-
sented in the form of an adjacency matrix A.

In the first layer of a multi-layer GCN network, the node representations are computed as:

hv = f

 ∑
u∈N (v)

Wxu + b

 (1)

where W ∈ Rd×d is a weight matrix and b ∈ Rd is a bias vector. W is called filter or kernel
in convolution networks. Essentially, W and b together constitute a linear neural network.
f denotes an activation function such as ReLU. N (v) stands for the set of neighbor nodes of
v, which could be obtained via the adjacency matrix A.

Through one GCN layer, node representations can be updated by aggregating infor-
mation from immediate neighbors. By stacking GCN layers, we can allow information to
propagate through multiple hops. Computation of node representations becomes recursive;
for the kth layer, we have:

h(k)
v = f

 ∑
u∈N (v)

W(k)h(k−1)
u + b(k)

 (2)

for the first layer k = 1 and h(k−1)
u = h(0)

u = xu.

Syntactic GCNs

Dependency trees could be formulated as directed and labeled graphs. Marcheggiani
and Titov [25] generalized GCNs to take directionality and labels into account. For each
node v, there are three possible edge directions: incoming edges (e.g., u → v), outgoing
edges (e.g., v→ u) and self-loop (v→ v). By making weight matrices and bias vectors in a
GCN network label-specific, we have:

h(k)
v = f

 ∑
u∈N (v)

W(k)
lab(u,v)h

(k−1)
u + b(k)

lab(u,v)

 (3)

where lab(u, v) determines the weight matrix corresponding to each direction and la-
bel combination.

Syntactic GCNs exploit the concept of gating for the graph edges. By modulating the
contribution of individual edges, it allows the model to differentiate between information
flowing along each edge: some edges could contain information more pertinent to the task,
while others could possibly represent erroneous predicted syntactic structure. Formally,
a scalar gate is calculated for each edge as follows:

g(k)u,v = σ
(

h(k−1)
u ŵ(k)

lab(u,v) + b̂(k)lab(u,v)

)
(4)

where σ is the logistic sigmoid function and ŵ(k)
lab(u,v) ∈ Rd and b̂(k)lab(u,v) ∈ R are training pa-

rameters for the gate. Putting it all together, the computation for Syntactic GCNs becomes:

h(k)
v = f

 ∑
u∈N (v)

g(k)u,v

(
W(k)

lab(u,v)h
(k−1)
u + b(k)

lab(u,v)

) (5)

3. Related Work
3.1. Linguistic Aware Methods for Paraphrase Generation

Various researchers exploit linguistic knowledge in a paraphrase generation model, be
it lexical, syntactic, or semantic knowledge. Huang et al. [15] made use of information from



Entropy 2021, 23, 566 5 of 14

an off-the-shelf dictionary. Specifically, they extracted appropriate word-level and phrase-
level paraphrase pairs from the PPDB database, while taking the original sentence into
account. Instead of naively replacing words in the source sentence with their counterpart
in the paraphrase pairs, they used these paraphrase pairs to construct edit vectors. Edit
vectors are responsible for deletion and insertion operations in paraphrase generation.

Lin et al. [16] also employed an off-the-shelf dictionary containing word-level para-
phrase pairs(synonyms). In addition to using these synonym pairs to guide the decision on
whether to generate a new word or replace it with a synonym as in [15], they integrated
information of word location with a positional encoding layer in Transformer. An inter-
esting part of their work is that they formulated the locating of synonym candidates as a
synonym labeling task, which is first trained independently. Then, the synonym labeler
and the paraphrase generator are trained simultaneously to perform multi-task learning,
where the two tasks share a common encoder.

Ma et al. [26] proposed to interact with distributed word representations instead of
the corresponding words per se. The hidden vector from a neural network is used as a
query. A dictionary is constructed, which is basically a word embedding lookup table
with its keys and values swapped. When the network is making predictions, a matching
score is computed between the query and the embedding keys, the key obtaining the
highest score is retrieved, and the associated value (word) is returned. Hence, the model
generates the words in a retrieval style. However, they did not experiment with standard
paraphrase generation but two closely related tasks: text simplification and short text
abstractive summarization.

Another line of research takes advantage of linguistic knowledge at the syntactic level.
Iyyer et al. [20] proposed to incorporate linearized constituency parses from paraphrase
pairs to control the syntax of generated paraphrases. In this way, their model learns the
syntactic transformations that naturally occur in paraphrase data. Samples produced by
the method could fool traditional paraphrase detection models due to syntactic variations.
Thus, such adversarial examples could be used to augment the training data for paraphrase
detection models to improve their robustness.

Chen et al. [21] adopted a syntactic exemplar sentence as an alternative to the explicit
target syntactic form used in [20]. The syntactic exemplar is composed such that its seman-
tics deviate from the input sentence to be paraphrased. The generated paraphrase following
the semantics of the first sentence and syntax of the second sentence(syntactic exemplar).

Similarly, Kumar et al. [22] also used a syntactic exemplar to conduct paraphrase gen-
eration with controlled syntax. Their model utilizes full exemplar syntactic tree information
and is capable of regulating the granularity level of syntactic control.

Wang et al. [18] added semantic information in their paraphrase generation model.
PropBank style semantic information is obtained through an off-the-shelf frame-semantic
parser. Each token in an input sentence is associated with a frame and a role label, resulting
in three input channels which are fed into three separate encoders. The results are then
aggregated with a linear layer and fed into the decoder to generate a paraphrase.

3.2. GCN for NLP

Graph Convolutional Networks has been applied in a range of NLP problems. Here,
we briefly overview some relevant works employing syntactic GCNs. Marcheggiani and
Titov [25] proposed to adopt syntactic GCNs for semantic role labeling. Word embeddings
are first fed into a bidirectional LSTM network to obtain hidden word representations.
Then, these hidden word vectors are re-encoded by the following GCN network. Finally,
the hidden vectors are passed to a classifier to predict a semantic label.

Vashishth et al. [27] employed syntactic GCNs to learn word embeddings. They
generalized the continuous-bag-of-words (CBOW) [28] model by substituting the sequential
context (words within a fixed window size) with a syntactic context (neighbor words in
a dependency tree). By exploiting syntax information in selecting and weighting context
words, their approach produced more meaningful word representations.



Entropy 2021, 23, 566 6 of 14

Bastings et al. [29] proposed to use syntactic GCNs for English–German and English–
Czech machine translation. They fixed the decoder as a recurrent network and explored
baseline models combined with GCN to compose the encoder. Specifically, the baselines
they examined are a bag-of-words encoder, a recurrent encoder, and a convolutional
encoder. When stacking a GCN network on each baseline encoder, significant performance
gains were observed for both translation tasks.

4. Methods

We focus on the case where dependency information on the source side is available and
hypothesize that by integrating syntax information with GCNs, the encoder would learn
more meaningful sentence representations. We assume that such enriched representations,
when fed into the decoder, would lead to improved quality in generated paraphrases.
For RNN networks, we employ Gated Recurrent Units (GRUs). Now, we describe the
encoder and the decoder, respectively.

4.1. Encoder

The encoder composes three modules: an embedding module, a bidirectional RNN
(BiRNN) module, and a GCN module. The embedding module is essentially a lookup
table that turns word indices into corresponding dense vectors. These word vectors are
then processed by BiRNN networks, obtaining a sentence representation. This sentence
vector is then refined by the GCN module that follows. The GCN network takes syntax
information in the form of an adjacency matrix as input. The adjacency matrix for each
sentence remains constant in the process of model training. Let xj denote the embedding
vector for word j; hidden vectors output by the forward GRU and backward GRU at time
step j are computed as:

−→
h j = GRU f (xj,

−→
h j−1)

←−
h j = GRUb(xj,

←−
h j+1)

where GRU f and GRUb denote the forward GRU and the backward GRU respectively.
Then, the two hidden vectors are concatenated as a single vector:

hj =
−→
h j ⊕

←−
h j

This is taken as input for the GCN module:

h̃j = GCN({hj}J
j=1, A)

where A represents the adjacency matrix determining the neighborhood of node j. Here,
we assume the length of source sentence is J, input hj is the hidden vector for word

j and {hj}J
j=1 stands for the set of hidden vectors each corresponds to a word in the

source sentence.

4.2. Decoder

For the decoder part, we also adopt a GRU network. Let si denote the hidden state
vector at time step i. A context vector is computed by an attention module, taking the set
of all encoder hidden states and the previous decoder hidden state:

ci = Attention({h̃j}J
j=1, si−1)

the context vector is concatenated with the previous target word vector yi−1 and fed into
a GRU:

si = GRU(si−1, ci ⊕ yi−1)



Entropy 2021, 23, 566 7 of 14

Finally, these three vectors are passed through a linear layer followed by a softmax
function to produce a probability for the next word:

p(yi) = Softmax(Linear(si ⊕ ci ⊕ yi−1))

At inference time, we use a greedy decoder, selecting the output token with the
highest probability at each time step. An overview of the model architecture is illustrated
in Figure 1.

How to stop smoking ?

advmod

aux xcomp

punct

<s> How do you quit smoking ?

Attention

Linear

Softmax

Output probabilities

word
embedding

GCN

GRU

Encoder Decoder

BiGRU

Figure 1. Model architecture. Vectors are depicted as colored rectangles, including word embeddings
and hidden vectors learned by neural nets. Arrows denote information flow. For the GCN part, we
also show the dependency relations for the example input sentence as dashed arrows. The specific
dependency types are annotated on the corresponding arrows.

5. Experiments

Experiments were performed with PyTorch(version 1.4.0). Its official website is
https://pytorch.org/ (accessed on 16 July 2020). We used torchtext (version 0.6.0), which
is shipped with PyTorch; it provides a range of convenient text processing utilities. We
employed spaCy (version 2.3.2) to perform tokenization and dependency parsing; the
spaCy model we used is en-core-web-sm-2.3.1. Encoder–decoder code is based on [30].
GCNs are also implemented with PyTorch. Source code for the GCN part is available at
https://github.com/chifish/SyntacticGCN (accessed on 2 March 2021).

5.1. Datasets

Following previous work on the task of paraphrase generation, we used two widely
investigated paraphrase datasets, namely Quora and ParaNMT [14]. The Quora dataset is
available at https://www.kaggle.com/c/quora-question-pairs (accessed on 11 December
2020). Released in January 2017, it is originally developed for classifying whether question
pairs have the same intent. Each line in the dataset consists of question numbers(IDs),
followed by the text of each question and a binary value given by human annotators

https://pytorch.org/
https://pytorch.org/
https://github.com/chifish/SyntacticGCN
https://github.com/chifish/SyntacticGCN
https://www.kaggle.com/c/quora-question-pairs


Entropy 2021, 23, 566 8 of 14

indicating whether the pair is considered duplicate or not. If the label is “1”, the question
pair is indeed paraphrases of each other. We further split the Quora dataset into three
datasets with increasing sizes: Quora50K, Quora100K, and Quora150K, where each dataset
is a subset of a larger dataset. There are actually 134K sentence pairs in Quora150K, and
we keep this naming to be consistent with previous work. The minimum frequency for
building vocabulary was set to 3 for these three Quora datasets.

The ParaNMT dataset was constructed by translating the Czech side of a large English–
Czech parallel corpus into English using NMT. A paraphrase is formed by pairing the
English translation with the corresponding reference sentence. The main purpose of
creating this large paraphrase corpus is to learn sentence representations whose superiority
is manifested in a semantic textual similarity task. However, it is also shown to be useful in
paraphrase generation tasks. A score is associated with each paraphrase pair indicating
the level of similarity. The scores are divided into five ranges. After manually checking
a random sample from the highest score range, we found that a large portion reveals a
remarkable level of lexical overlap between sentence pairs. We believe this phenomenon
is not desirable in generated paraphrases since generally (at least lexically) divergent
sentences are deemed more interesting and useful. Thus, we chose the second-highest
score range (0.6–0.8) for this work. The dataset exhibits a high level of noise in various
forms, so we filtered out noisy sentences. The script for this filtering step is available at
https://github.com/chifish/preprocess (accessed on 29 March 2021). Finally, we obtained
2.3 million sentence pairs. When building the vocabulary with the training set, we kept
those tokens that appear at least 10 times, resulting in a vocabulary size of about 50K.

Previous work truncates sentences in both datasets at the length of 15. This procedure
would result in incomplete graph structures for models utilizing GCNs. Thus, it is necessary
to keep whole sentences. Filtering out sentences with lengths beyond 15 would result in a
substantial loss in data volume. We decided to reserve those sentences whose lengths are
at most 30 for all four datasets. We randomly sampled 2K sentence pairs for development
and 10K for test, respectively.

5.2. Training Configuration

We used the Adam optimizer [31] with an initial learning rate of 0.001. We utilized
early-stopping [32] to monitor training and mitigate overfitting on training data. The model
with the highest validation BLEU was saved for testing. Word embedding size was set to
256; hidden size was set to 128, and batch size was set to 128. Sentences of similar length
were bucketed together to minimize padding and hence increase training efficiency. This
bucketing procedure was realized through torchtext. Between layers, we applied dropout
with a probability of 0.2. In experiments with GCNs, we also used the value of 0.2 for
edge dropout. These dropout rates were tuned on the validation set. To mitigate the effect
of randomness on model performance, we ran each model five times, each time with a
random seed chosen from 42 to 46. The performance scores were averaged across five
runs. Considering the wide gap between the sizes of the Quora dataset and the ParaNMT
dataset, we adopted different configurations in several aspects, which we introduce below
in detail.

• For the three Quora datasets, evaluation was performed on the validation set at
the end of each epoch. The learning rate was halved if the validation loss did not
decrease for two consecutive evaluations. The stopping criterion was the BLEU score,
and the tolerance number was set to 5, so training was terminated if BLEU scores
on 5 consecutive evaluations on the development set did not improve. Since the
Quora datasets are relatively small, we used one layer in both encoder (bidirectional)
and decoder.

• For the ParaNMT dataset, we evaluated the model every 2000 training steps. The cri-
terion adopted for early-stopping was BLEU, and the tolerance number was set to 10,
which is the minimum to cover an entire epoch. The layer depths of both encoder and
decoder were set to 2, where the encoder is again bidirectional.

https://github.com/chifish/preprocess
https://github.com/chifish/preprocess


Entropy 2021, 23, 566 9 of 14

5.3. Evaluation Metrics

As opposed to NMT, there is no consensus on what metrics should be used for
evaluating paraphrase generation models. As a result, measurements adopted by different
works vary. In this work, we report model performance on multiple metrics to provide a
more comprehensive understanding.

• BLEU [33] counts the overlap of sentence fragments in reference translations and the
candidate translation output by NMT systems. Assume there are two reference trans-
lations and a candidate translation. For each word type in the candidate, the number
of times it occurs in both reference sentences are computed, and the maximum of
these two counts is taken as an upper bound. Then, the total count of each candidate
word is clipped by this upper bound. Next, these clipped counts are summed up.
Finally, this sum is divided by the total (unclipped) number of candidate words. This
is the case for single words or unigrams. The score for other n-grams is computed
similarly. Typically, n ranges from 1 to 4.

• METEOR [34] calculates unigram matching in a generalized fashion. For unigrams,
BLEU only takes surface form into account. In contrast, METEOR also matches stem,
synonym, and paraphrase between candidate and reference.

• ROUGE [35] is commonly employed in the evaluation of automatically generated
summaries. However, it is also used to assess paraphrases. There are four types of
ROUGE, among which ROUGE-n that deals with n-grams is most pertinent to para-
phrase evaluation. Assume there are two reference sentences. For each n-gram in each
of the two reference sentences, the number of times the n-gram occurs in the candidate
is calculated. The maximum of these two counts is kept. Then, the maximum counts
for each n-gram are summed, which is then divided by the total number of counts
of n-grams in the references. We also report results with another type of ROUGE:
ROUGE-L. It operates on longest common subsequence. The ROUGE scores presented
in this work are F-measure values, which is a trade-off between precision and recall.

6. Results and Discussion

Now, we report the experiment results on all four datasets.

6.1. Prediction Scores

We evaluated paraphrases generated by our models given test set source sentences
as input. Scores were computed between prediction sentence and ground-truth pairs on
the corpus level. We present the average scores across five random runs for each model
and dataset combination. The set of random seeds was repeated for each combination.
Standard deviations are shown in parentheses that follow. Significance test was performed
against RNN.

Performance detailed in Table 1 shows that our GCN-enhanced models almost uni-
formly outperform the RNN baseline models at a significance level of p < 0.01. The only
exception is the BLEU score for Quora150K.



Entropy 2021, 23, 566 10 of 14

Table 1. Test performance in five metrics. We use the dagger symbol (“†”) to denote significance levels, where “†” indicates
significantly better than RNN (p < 0.05) and “††” indicates significantly better than RNN (p < 0.01).

Dataset Model BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

Quora50K
RNN 20.57 (±0.12) 47.3 (±0.14) 48.63 (±0.15) 28.12 (±0.15) 46.84 (±0.13)

RNN + GCN 21.09 (±0.07) †† 48.41 (±0.1) †† 49.84 (±0.1) †† 28.93 (±0.09) †† 48.0 (±0.1) ††

Quora100K
RNN 22.38 (±0.08) 49.85 (±0.07) 51.64 (±0.12) 30.57 (±0.08) 49.56 (±0.09)

RNN + GCN 22.74 (±0.1) †† 50.59 (±0.1) †† 52.72 (±0.09) †† 31.42 (±0.09) †† 50.67 (±0.11) ††

Quora150K
RNN 23.19 (±0.06) 50.89 (±0.05) 52.86 (±0.07) 31.71 (±0.02) 50.7 (±0.06)

RNN + GCN 23.4 (±0.13) † 51.4 (±0.19) †† 53.68 (±0.11) †† 32.31 (±0.16) †† 51.53 (±0.11) ††

ParaNMT
RNN 16.15 (±0.37) 43.32 (±0.49) 46.66 (±0.34) 22.58 (±0.35) 43.48 (±0.33)

RNN + GCN 17.09 (±0.15) †† 44.52 (±0.27) †† 47.65 (±0.19) †† 23.5 (±0.18) †† 44.49 (±0.2) ††

6.2. Models for Comparison

We also compared our models with previous work on the Quora150K dataset. Since
previous work truncated sentences beyond length 15, for a fairer comparison, we filtered
out test sentences with length over 15 (reducing the test set from 10K to 8.6K) and calculated
METEOR and BLEU scores for our models on this smaller dataset. The results are illustrated
in Table 2.

Table 2. Comparison with previous work on Quora150K. BLEU-2 and BLEU-4 scores of the method
marked with a “*” are taken from Kazemnejad et al. [36]. The other scores in the first four rows are
taken from the corresponding papers.

Model METEOR BLEU BLEU-1 BLEU-2 BLEU-3 BLEU-4

Residual LSTM [11] * 28.9 27.4 - 38.52 - 24.56
FSET [36] 38.57 - - 51.03 - 33.46
KEPN [16] 30.4 29.2 - - - -

VAE-SVG-eq [37] 33.6 38.3 - - - -
RNN(ours) 50.88 23.14 49.0 27.78 17.72 11.89

RNN+GCN(ours) 51.39 23.34 49.04 28.13 17.95 11.99

Previous work for comparison are as follows:

• Residual LSTM [11] is the first seq2seq model proposed for paraphrase generation.
• FSET [36] is a retrieval-based method for paraphrase generation that paraphrases an

input sequence by editing it using an edit vector which is composed of the extracted
relations between a retrieved sentence pair.

• KEPN [16] employs an off-the-shelf dictionary containing word-level paraphrase
pairs(synonyms). In addition to using these synonym pairs to guide the decision on
whether to generate a new word or replace it with a synonym, it integrates information
of word location with a positional encoding layer in Transformer.

• VAE-SVG-eq [37] is a variational autoencoder (VAE) based on neural networks that
conditions both the encoder and decoder of VAE on the input sentence.

As can be seen in the table above, our models produce higher scores in METEOR but
lower scores in the BLEU metrics. These two metrics differ in that METEOR takes synonym
information into account, so that when a word in the generated sentence is different from
a word in the reference sentence in surface form but they are synonyms to each other,
they would be still deemed a match by METEOR but not by BLEU(see Section 5.3 for
detailed descriptions of these two metrics). As a result, these synonyms would contribute
to the METEOR score. We hypothesize that GCN-enhanced models are better at capturing
synonym information, yet the reason behind this phenomenon needs further study.



Entropy 2021, 23, 566 11 of 14

6.3. Effect of Sentence Length

We expect that GCN networks would show a larger advantage for longer sentences
since they contain long-distance syntactic dependencies that would be challenging for
RNNs to model but can be easily captured via syntactic connections encoded by GCNs.
To verify this hypothesis, we split the sentences predicted by models trained on each Quora
dataset into six buckets and compute BLEU scores for each separate bucket. Figure 2a
shows that GCNs do outperform syntax-agnostic RNN models by a larger margin for
longer sentences on the Quora50K dataset. For Quora100K, the advantage of GCN models
is relatively uniform. For Quora150K, the distinction between two models is marginal
when sentence length goes to two extremes. One explanation is data sparsity for those
two length ranges. As shown in Figure 2b, most sentences fall into two buckets (6–10 and
11–15), which account for 53% and 31%, respectively, for all three datasets. Sentences that
contain no more than five words take up a share of only 2.4%, and sentences that fall into
the longest bucket are most scarce, with a low proportion of less than 1%. We also draw
the standard deviation of each performance score; the variation for buckets at both ends is
indeed much higher.

<=5 6-10 11-15 16-20 21-25 26-30
Sentence length

17

19

21

23

25

BL
EU

RNN(50K)
RNN+GCN(50K)
RNN(100K)
RNN+GCN(100K)
RNN(150K)
RNN+GCN(150K)

(a) Validation BLEU per sentence length.

0 5 10 15 20 25 30
Sentence length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pr
op

or
tio

n

(b) Length distribution
Figure 2. Effect of sentence length for Quora datasets. (a) The relationship between BLEU score and sentence length on
three Quora datasets. Dataset sizes are given in parentheses. (b) Distribution of sentence length for Quora50K, where the
patterns for the two larger Quora datasets are similar.

6.4. Discussion

Splitting the Quora dataset into different sizes allows us to study another dimension
of GCNs: the effect of dataset size on model performance. A close look at Figure 2a tells
us that, as the dataset grows, the performance gains of GCN models over baseline RNNs
declines. This aspect can also be deduced from the results in Table 1, where smaller datasets
show a higher level of significance difference between the two model architectures. To be
specific, the p-values (lower values signify higher significance levels) for the three datasets
are in the order of magnitude of 10−5, 10−4, and 10−2, respectively. We hypothesize that,
when given sufficient data, RNNs could model some aspects of syntactic structure; hence
the advantage of GCN-based models gradually disappears. This is presumably the case
for the Quora dataset, which mainly contains questions with simple syntactic patterns.
Bastings et al. [29] considered datasets of differing sizes. Specifically, for the English–
German machine translation task, they investigated two dataset sizes: 226K and 4.5M.
The BLEU1 score gain they monitored dropped from 2.3 to 1.6, and the gain in BLEU4
dropped from 1.2 to 0.6.

We expected GCN models to outperform RNNs by a narrower margin as the dataset
size rises to the order of millions. Surprisingly, the BLEU score margin for GCN models in-



Entropy 2021, 23, 566 12 of 14

creases to nearly one point on the ParaNMT dataset with over two million training samples.
This again testifies the efficacy of GCN-based models for encoding syntax information.

7. Conclusions

In this paper, we propose to encode syntax information for paraphrase generation via
graph convolutional networks. GCNs allow us to encode sentences via dependency trees.
By stacking GCNs on top of recurrent networks on the encoder side of our paraphrasing
model, we achieved significantly better results on four paraphrase datasets of varying sizes
and genres. We hypothesize that dependency relations contain rich syntactic information
that is valuable in learning sentence representation. Besides, convolutional operations in
GCNs have complementary power to recurrent connections in RNNs. Through analyzing
the experiment results using multiple evaluation metrics on a range of paraphrase datasets,
we demonstrated the efficacy of our approach. We also studied the effects sentence length
and size of training data have on model performance and found that recurrent networks
enhanced by GCNs are more effective for smaller datasets when the dependency patterns
are less diverse. However, for sentences that are either too short or too long, it becomes
challenging for GCNs to learn more meaningful representations. This is mainly due to data
sparsity. We plan to apply GCNs in other text generation tasks such as question answering
and dialog systems in future work.

Author Contributions: Conceptualization, Y.X. and X.C.; methodology, X.C.; software, X.C.; valida-
tion, X.C.; writing—original draft preparation, X.C.; writing—review and editing, X.C.; visualization,
X.C.; supervision, Y.X.; project administration, Y.X.; and funding acquisition, Y.X. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the General Program of National Natural Science Foundation
of China under Grant No. 72071145.

Data Availability Statement: The datasets investigated in this work are publicly available at https:
//www.kaggle.com/c/quora-question-pairs (accessed on 11 December 2020) and https://drive.
google.com/file/d/1rbF3daJjCsa1-fu2GANeJd2FBXos1ugD/view (accessed on 18 May 2019).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

NLP Natural Language Processing

GCN Graph Convolutional Network

RNN Recurrent Neural Network

BiRNN Bidirectional Recurrent Neural Network

GRU Gated Recurrent Unit

LSTM Long Short-Term Memory

NMT Neural Machine Translation

CBOW continuous-bag-of-words

References
1. Androutsopoulos, I.; Malakasiotis, P. A survey of paraphrasing and textual entailment methods. J. Artif. Intell. Res. 2010,

38, 135–187. [CrossRef]
2. Madnani, N.; Dorr, B.J. Generating phrasal and sentential paraphrases: A survey of data-driven methods. Comput. Linguist. 2010,

36, 341–387. [CrossRef]
3. Shinyama, Y.; Sekine, S. Paraphrase Acquisition for Information Extraction. In Proceedings of the Second International Workshop

on Paraphrasing, Sapporo, Japan, 11 July 2003; pp. 65–71.
4. Wallis, P. Information Retrieval Based on Paraphrase. Proceedings of PACLING Conference. Citeseer. 1993. Available online:

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.11.8885&rep=rep1&type=pdf (accessed on 30 January 2021).

https://www.kaggle.com/c/quora-question-pairs
https://www.kaggle.com/c/quora-question-pairs
https://drive.google.com/file/d/1rbF3daJjCsa1-fu2GANeJd2FBXos1ugD/view
https://drive.google.com/file/d/1rbF3daJjCsa1-fu2GANeJd2FBXos1ugD/view
http://doi.org/10.1613/jair.2985
http://dx.doi.org/10.1162/coli_a_00002
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.11.8885&rep=rep1&type=pdf


Entropy 2021, 23, 566 13 of 14

5. Yan, Z.; Duan, N.; Bao, J.; Chen, P.; Zhou, M.; Li, Z.; Zhou, J. Docchat: An information retrieval approach for chatbot engines
using unstructured documents. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Berlin, Germany, 7–12 August 2016; pp. 516–525.

6. Fader, A.; Zettlemoyer, L.; Etzioni, O. Open question answering over curated and extracted knowledge bases. In Proceedings of
the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August
2014; pp. 1156–1165.

7. Berant, J.; Liang, P. Semantic Parsing via Paraphrasing. In Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), Baltimore, MD, USA, 22–27 June 2014; pp. 1415–1425.

8. Zhang, C.; Sah, S.; Nguyen, T.; Peri, D.; Loui, A.; Salvaggio, C.; Ptucha, R. Semantic sentence embeddings for paraphrasing
and text summarization. In Proceedings of the 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP),
Montreal, QC, Canada, 14–16 November 2017; pp. 705–709.

9. Zhao, S.; Meng, R.; He, D.; Andi, S.; Bambang, P. Integrating transformer and paraphrase rules for sentence simplification. arXiv
2018, arXiv:1810.11193.

10. Guo, H.; Pasunuru, R.; Bansal, M. Dynamic Multi-Level Multi-Task Learning for Sentence Simplification. In Proceedings of the
27th International Conference on Computational Linguistics, Santa Fe, NM, USA, 20–26 August 2018; pp. 462–476.

11. Prakash, A.; Hasan, S.A.; Lee, K.; Datla, V.; Qadir, A.; Liu, J.; Farri, O. Neural Paraphrase Generation with Stacked Residual LSTM
Networks. In Proceedings of the COLING 2016, the 26th International Conference on Computational Linguistics: Technical
Papers, Osaka, Japan, 13–16 December 2016; pp. 2923–2934.

12. Cao, Z.; Luo, C.; Li, W.; Li, S. Joint copying and restricted generation for paraphrase. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, San Francisco, CA, USA, 4–10 February 2017.

13. Mallinson, J.; Sennrich, R.; Lapata, M. Paraphrasing Revisited with Neural Machine Translation. In Proceedings of the 15th
Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, Valencia, Spain,
3–7 April 2017; pp. 881–893.

14. Wieting, J.; Gimpel, K. ParaNMT-50M: Pushing the Limits of Paraphrastic Sentence Embeddings with Millions of Machine
Translations. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), Melbourne, Australia, 15–20 July 2018; pp. 451–462.

15. Huang, S.; Wu, Y.; Wei, F.; Luan, Z. Dictionary-guided editing networks for paraphrase generation. In Proceedings of the AAAI
Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 6546–6553.

16. Lin, Z.; Li, Z.; Ding, N.; Zheng, H.T.; Shen, Y.; Wang, W.; Zhao, C.Z. Integrating Linguistic Knowledge to Sentence Paraphrase
Generation. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34,
pp. 8368–8375.

17. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need.
In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9
December 2017; pp. 6000–6010.

18. Wang, S.; Gupta, R.; Chang, N.; Baldridge, J. A task in a suit and a tie: Paraphrase generation with semantic augmentation. In
Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33,
pp. 7176–7183.

19. Palmer, M.; Gildea, D.; Kingsbury, P. The proposition bank: An annotated corpus of semantic roles. Comput. Linguist. 2005,
31, 71–106. [CrossRef]

20. Iyyer, M.; Wieting, J.; Gimpel, K.; Zettlemoyer, L. Adversarial Example Generation with Syntactically Controlled Paraphrase
Networks. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers), New Orleans, LA, USA, 1–6 June 2018; pp. 1875–1885.

21. Chen, M.; Tang, Q.; Wiseman, S.; Gimpel, K. Controllable Paraphrase Generation with a Syntactic Exemplar. In Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; pp. 5972–5984.

22. Kumar, A.; Ahuja, K.; Vadapalli, R.; Talukdar, P. Syntax-Guided Controlled Generation of Paraphrases. Trans. Assoc. Comput.
Linguist. 2020, 8, 330–345. [CrossRef]

23. Sutskever, I. Sequence to Sequence Learning with Neural Networks. In Proceedings of the 27th Conference on Neural Information
Processing Systems (NIPS 2014), Montreal, QC, Canada, 8–11 December 2014; pp. 1–9.

24. Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. In Proceedings of the
3rd International Conference on Learning Representations (ICLR 2015), San Diego, CA, USA, 7–9 May 2015; pp. 1–15.

25. Marcheggiani, D.; Titov, I. Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling. In Proceedings of
the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 1–6 June 2017; pp. 1506–1515.

26. Ma, S.; Sun, X.; Li, W.; Li, S.; Li, W.; Ren, X. Query and Output: Generating Words by Querying Distributed Word Representations
for Paraphrase Generation. In Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), New Orleans, LA, USA, 1–6 June 2018;
pp. 196–206.

27. Vashishth, S.; Bhandari, M.; Yadav, P.; Rai, P.; Bhattacharyya, C.; Talukdar, P. Incorporating Syntactic and Semantic Information in
Word Embeddings using Graph Convolutional Networks. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, Florence, Italy, 28 July–2 August 2019; pp. 3308–3318.

http://dx.doi.org/10.1162/0891201053630264
http://dx.doi.org/10.1162/tacl_a_00318


Entropy 2021, 23, 566 14 of 14

28. Mikolov, T.; Corrado, G.; Kai, C.; Dean, J. Efficient Estimation of Word Representations in Vector Space. In Proceedings of the
International Conference on Learning Representations (ICLR 2013), Scottsdale, AZ, USA, 2–4 May 2013.

29. Bastings, J.; Titov, I.; Aziz, W.; Marcheggiani, D.; Sima’an, K. Graph Convolutional Encoders for Syntax-aware Neural Machine
Translation. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen,
Denmark, 1–6 June 2017; pp. 1957–1967.

30. Bastings, J. The Annotated Encoder-Decoder with Attention, 2018. Available online: https://bastings.github.io/annotated_
encoder_decoder/ (accessed on 4 January 2021).

31. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning
Representations (ICLR 2015), San Diego, CA, USA, 7–9 May 2015.

32. Caruana, R.; Lawrence, S.; Giles, C.L. Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping. In
Advances in Neural Information Processing Systems, Proceedings of the 2000 Conference, Vancouver, BC, Canada, 3–8 December 2001; The
MIT Press: Cambridge, MA, USA; London, UK, 2001; pp. 402–408.

33. Papineni, K.; Roukos, S.; Ward, T.; Zhu, W.J. BLEU: A method for automatic evaluation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, PA, USA, 6–12 July 2002; pp. 311–318.

34. Banerjee, S.; Lavie, A. METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments. In
Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization,
Ann Arbor, MI, USA, 29 June 2005; pp. 65–72.

35. Lin, C.Y. ROUGE: A Package for Automatic Evaluation of Summaries. In Proceedings of the Text Summarization Branches Out,
Barcelona, Spain, 25–26 July 2004; pp. 74–81.

36. Kazemnejad, A.; Salehi, M.; Soleymani Baghshah, M. Paraphrase Generation by Learning How to Edit from Samples. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 6010–6021.

37. Gupta, A.; Agarwal, A.; Singh, P.; Rai, P. A deep generative framework for paraphrase generation. In Proceedings of the 32nd
AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32.

https://bastings.github.io/annotated_encoder_decoder/
https://bastings.github.io/annotated_encoder_decoder/

	Introduction
	Background
	Sequence-to-Sequence Models and Attention
	Graph Convolutional Networks

	Related Work
	Linguistic Aware Methods for Paraphrase Generation
	GCN for NLP

	Methods
	Encoder
	Decoder

	Experiments
	Datasets
	Training Configuration
	Evaluation Metrics

	Results and Discussion
	Prediction Scores
	Models for Comparison
	Effect of Sentence Length
	Discussion

	Conclusions
	References

