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Abstract: Numerous methods in the extensive literature on magnetic resonance imaging (MRI)
reconstruction exploit temporal redundancy to accelerate cardiac cine. Some of them include motion
compensation, which involves high computational costs and long runtimes. In this work, we
proposed a method—elastic alignedSENSE (EAS)—for the direct reconstruction of a motion-free
image plus a set of nonrigid deformations to reconstruct a 2D cardiac sequence. The feasibility of
the proposed approach was tested in 2D Cartesian and golden radial multi-coil breath-hold cardiac
cine acquisitions. The proposed approach was compared against parallel imaging compressed sense
(sPICS) and group-wise motion corrected compressed sense (GWCS) reconstructions. EAS provides
better results on objective measures with considerable less runtime when an acceleration factor is
higher than 10×. Subjective assessment of an expert, however, invited proposing the combination of
EAS and GWCS as a preferable alternative to GWCS or EAS in isolation.

Keywords: non-rigid registration; elastic motion

1. Introduction

Motion is the main source of artifacts in MRI, especially in modalities with long scan
times or when imaging moving organs, as in the case of cardiac cine [1]. In this modality,
the cardiac cycle is divided into intervals of short duration, so-called cardiac phases, in
which motion can be considered negligible; the k-space is acquired sequentially, and every
profile is classified into the corresponding phase. To this end, navigator signals are required,
which can be simultaneously recorded (gated acquisitions) [2] or estimated directly from
the data (self-gated acquisitions) [3–7].

These approaches are commonly used in clinical practice; however, MRI is slow,
limiting the spatial resolution and coverage achieved with these methods. Numerous
methods have been proposed to accelerate cardiac cine acquisitions by exploiting temporal
redundancy along the different cardiac phases [8–10]. A complete review on accelerated
cardiac cine reconstruction approaches can be found in [1]. A common approach is to
incorporate motion information to regularize the reconstruction problem in order to pro-
mote signal sparsity and achieve higher acceleration factors (AFs), also known as reduction
factors (Rs) [11–16]. A different approach is based on including a motion model not di-
rectly in the data consistency term (as opposed to the regularization term) to improve
reconstruction [17,18]. In this work, we focused on the latter techniques.

Motion can be incorporated into the forward model of MR acquisition. The method
proposed in [17] is able to handle elastic motion models. It is assumed that a corrupted
image comes from a general matrix equation, the inversion of which provides the ideal
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image of the scanned object. This formulation can also be used to estimate motion using
only partial spectral information, as shown in the alignedSENSE approach [18], where the
authors reconstructed a static, multi-shot, 3D MRI brain volume subject to rigid motion
between shots. Estimated motion is incorporated into the reconstruction model in an
iterative manner to obtain a motion-free image. Their method does not assume any prior
model for the image to be reconstructed, does not make use of external sensors, and does
not require modifications in the acquisition sequence [18]. The downside is that only rigid
motion is tackled; this type of motion, however, is not suitable for deformable organs, such
as the heart. Nevertheless, this idea of creating a single motion-free image (say, a pattern
image) that is deformed to match the measured data may be of great interest to build a
cardiac cine reconstruction framework, as long as elastic motion is incorporated.

This work focused on the alignedSENSE formulation, which we extended to the
elastic case, and we employed the 2D cardiac cine MRI reconstruction problem as a proof
of concept.

2. Materials and Methods
2.1. Materials

We used 2D Cartesian data from fully sampled dynamic cine breath-hold (BH)
gated acquisitions performed on 7 healthy subjects in a 1.5 T Philips scanner with a
bSSFP sequence. Some relevant parameters of the acquisitions included flip-angle 60°,
TR/TE = 3/1.5 ms, spatial resolution 2 × 2 mm2, slice thickness 8 mm, 20 cardiac phases,
and FOV 320 × 320 mm2.

2D whole-heart single-breath-hold acquisitions with a golden radial trajectory and
32-element cardiac coil were performed on the same subjects on a 1.5 Philips scanner with
a bSSFP sequence. Some relevant parameters included TR/TE = 2.9 ms/1.44 ms, flip-angle
60°, spatial resolution 2 × 2 mm2, slice thickness 8 mm, and FOV 320 × 320 mm2. Twelve
short-axis slices were acquired in a single 9.23 s breath-hold scan.

2.2. Reconstruction Problem: Elastic AlignedSENSE

The alignedSENSE formulation for parallel multi-shot imaging can be written in
matrix form as follows [18]:{

m̃, Θ̃
}
= arg min

m,Θ
‖AFSUΘm− y‖2 (1)

where y denotes the acquired k-space data, m is the image to be reconstructed (both in
vector form), UΘ the rigid motion transformation matrix, S the coil sensitivity map, F
the Fourier transform, and A the sampling matrix. The proposed elastic alignedSENSE
(EAS) extends the approach in Equation (1) to consider nonrigid deformations, referred
to as TΘ. This is achieved by using a 2D free-form deformation (FFD) model based on B-
splines [19] to describe the N nonrigid deformations, with N the number of cardiac phases,
i.e., the number of frames. FFDs are based on a parametric model that deforms an object by
manipulating a mesh of control points {uk|1 ≤ k ≤ M}. Here, we considered the mesh of
control points common for all the frames. The transformation parameters are referred to as
Θ = {Θn|1 ≤ n ≤ N} with Θn =

{
θn,uk

}
, θn,uk ∈ R2. Control point positions are denoted

by pk = (pk,1, pk,2), 1 ≤ k ≤ M, and are uniformly spaced in coordinate system Xn ⊂ R2;
as indicated, the M control point positions will coincide for the N frames as well as their
coordinate spaces, i.e., Xn ≡X, 1 ≤ n ≤ N, although deformations of course differ. Point
x = (x1, x2) ∈X is transformed by the n-th transformation as:

xn = TΘn(x) = x + ∑
uk∈N(x)

[
2

∏
l=1

BE

(
xl − pk,l

∆l

)]
θn,uk (2)

with ∆l the spacing between two consecutive points along dimension l and BE representing
the uniform B-spline function of order E [20]. We chose E = 3, since those B-splines
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showed a good balance between smoothness and the support region [21,22]. Since B-spline
functions have compact support, only the control points uk within the neighborhood
N(x) of point x enter the summation. Notice that, in an abuse of notation, TΘ may have
different meanings depending on the context; in TΘm, TΘ represents the interpolation
coefficient matrix that allows us to obtain a set of N transformed images from image m;
complementarily, TΘ(x) represents a 2N component vector of the transformed positions of
point x from each of the N images. TΘn is used similarly for the n-th transformation. Finally,
when we need to highlight operations in the transformation temporal dimension, we
employ the notation TΘ(x, t), where t takes one temporal value {1, . . . , N}, as appropriate.

Thus, the proposed EAS reconstruction problem is formulated as follows:{
m̃, Θ̃

}
= arg min

m,Θ
‖AFSTΘm− y‖2 + λ‖∇xm‖2 +R1(Θ) (3a)

R1(Θ) =
N

∑
n=1

∑
x∈X

(
ω1

∣∣∣∣∂TΘ(x, t)
∂t

∣∣∣∣2
t=n

+ ω2

∣∣∣∣∂2TΘ(x, t)
∂t2

∣∣∣∣2
t=n

)
(3b)

where∇x denotes the spatial total variation (spTV), which promotes the removal of artifacts
in the pattern image, whereas the regularization term R1(Θ) favors smoothness in the
temporal trajectory, since reconstructions may present some tremor. In Equation (3b),
ω1 and ω2 are regularization parameters to be set, and derivatives are approximated by
temporal finite differences.

The joint problem in Equation (3a) is solved in an alternating fashion by iteratively
solving the two following subproblems:

m̃ = arg min
m

∥∥AFSTΘ̃m− y
∥∥2

+ λ‖∇xm‖2 (4a)

Θ̃ = arg min
Θ

‖AFSTΘm̃− y‖2 +R1(Θ) (4b)

The first subproblem (Equation (4a)) is referred to as the image subproblem—since its
solution is a new image pattern—whereas the second (Equation (4b)) is referred to as the
deformation subproblem, since its solution is a new set of deformations. The loop starts by
solving the image subproblem (Equation (4a)), considering that there is no transformation,
i.e., TΘ equals the identity, so that an initial pattern image m0 can be obtained. After
that, the deformation subproblem is fed with m0, and the loop can continue as expected
(see Figure 1).

The image subproblem (Equation (4a)) was solved by means of a conjugate gradient
algorithm [17] and the deformation subproblem (Equation (4b)) by means of a nonlinear
conjugate gradient algorithm with backtracking line search [23]. Note that the pattern
image arises as a result from the optimization subproblem in Equation (4a) and does not
necessarily correspond to any pre-selected cardiac phase.

The extension of EAS to radial trajectories is rather straightforward, since we only
needed to substitute the regular FFT for the non-uniform FFT (NUFFT) [24] in Equation (3a):{

m̃, Θ̃
}
= arg min

m,Θ
‖GTΘm− y‖2 + λ‖∇xm‖2 +R1(Θ) (5)

where the operator G includes sensitivity coil maps, as well as gridding, NUFFT, and
subsampling operations. NUFFT was computed by using the existing implementation for
a GPU in [25] (gpuNUFFT).
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Figure 1. The scheme of the EAS reconstruction as an alternating minimization approach. If the deformations TΘ are
assumed to be known, the best possible m in terms of fidelity to the measured data y can be obtained. Likewise, assuming
m to be known, the best possible TΘ can be obtained. The final image sequence is obtained by applying each of the
transformations TΘ̃ to the pattern image m̃. The input to the reconstruction method is the shaded circle. Outputs are
enclosed by a dashed line rectangle.

2.3. Methods Used for Performance Comparison

The proposed method was compared with a simple parallel imaging compressed
sense formulation (sPICS) [10]:

m̃ = arg min
m

‖AFSm− y‖2 + λ‖∇tm‖`1 (6)

where ∇t represents the temporal total variation (tTV) operator. The proposed EAS ap-
proach was also compared with the group-wise (GW) motion-compensated (MC) com-
pressed sense algorithm (GWCS) [16]:

m̃ = arg min
m

‖AFSm− y‖2 + λ‖m‖JTΘ
(7)

where ‖m‖JTΘ
is the Jacobian weighted tTV regularization term described in [16]; TΘ

stands for the GW-MC operator, which fosters sparsity in the temporal direction by map-
ping each frame in m to a common reference. Hence, we first performed a regular re-
construction solving Equation (6) from which the transformation was estimated. The
registration metric used was the sum of squared differences (SSD) between the images in
the sequence and the common reference; for the SSD, the optimum reference is known
to be the average of the registered images [26]. Therefore, transformation parameters are
obtained by:

Θ̃ = arg min
Θ

N

∑
n=1

∑
x∈Xcr

(
mn(TΘ(x, n))− 1

N

N

∑
k=1

mk(TΘ(x, k))

)2

+R2(Θ) (8)

where n and k represent frame indices and, as before, N is the number of frames; Xcr
denotes the coordinate space in which the common reference is defined, and mn(x) denotes
the n-th frame at point x. R2(Θ) is a regularization term that promotes the local invertibility
of the deformations, which can be expressed as follows:

R2(Θ) =
N

∑
n=1

∑
x∈Xcr

γ1

∥∥∥∇2
xTΘ(x, n)

∥∥∥2
+ γ2

∥∥∥∇2
t TΘ(x, n)

∥∥∥2
(9)
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where γ1 and γ2 are regularization parameters, the values of which were set as in [15].
Both Equations (6) and (7) were solved using NESTA [27].

Notice that the registrations in GWCS and EAS, although quite similar in conception
and notation, differ in two relevant elements:

1. Transformations are defined in opposite directions, as illustrated in Figure 2. In GWCS,
the coordinate space Xcr ⊂ R2 is defined in the common reference image, and each
frame mn (1 ≤ n ≤ N, N being the number of frames) is transformed so that it fits
into such Xcr, i.e., we calculated mn(TΘn(x)) with x ∈Xcr. Thus, in the optimization

problem described in Equation (8), we aimed to find that mp

(
TΘp(x)

)
∼= mq

(
TΘq(x)

)
,

with p 6= q. In the case of EAS, the coordinate space Xn ⊂ R2 is defined in each frame
mn—and coincides for all frames (Xn ≡ X, 1 ≤ n ≤ N)—so that each frame mn
is a deformed version of the pattern image m, i.e., mn = m(TΘn(x)). In summary,
the transformations have their origin in the space in which the coordinate system
is defined, and the direction is the opposite of what “common sense” dictates. The
reason for this is because the transformation defined in that way makes the underlying
interpolation process more convenient.

2. The common reference image in GWCS is the average of the registered images,
following [26], while in EAS, the reference arises as a result of the optimization
subproblem in Equation (4a), which is transformed to create the images of the final
sequence and does not necessarily correspond to any pre-selected cardiac phase.

Figure 2. The scheme of spatial transformations in GWCS (left) and EAS (right) for 2D cardiac cine
MRI. Left: points to be transformed x ∈Xcr ⊂ R2 are defined on the common reference coordinate
space. Right: points to be transformed x ∈ Xn ≡ X ⊂ R2, 1 ≤ n ≤ N are defined on each image
coordinate space, which coincides for all images.

2.4. Combination of Elastic AlignedSENSE and Group-Wise Motion-Compensated
Compressed Sensing

EAS may be a method on its own, but it may also be used as an initializer of methods
with ME/MC, such as the GWCS approach (Figure 3). Recall from Equations (3a) and (7)
that fewer parameters are estimated in the latter with respect to the former, so it is expected
that estimations may be stabler with EAS, as least in the first iterations. Therefore, a
combination of EAS with GWCS was proposed (referred as to MIX) in an attempt to benefit
from the advantages of each.
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Figure 3. The scheme of the MIX reconstruction method as a combination of, at least, two EAS phases
followed by a GWCS phase. The output of EAS, m̃ and TΘ̃, is fed to GWCS. Since EAS provides
directly a set of transformations TΘ̃ that maps the pattern image m0 to each cardiac state, there is no
need for the registering stage within GWCS. Thus, only the MC stage within GWCS is applied to
obtain the final reconstruction. The input to the whole reconstruction method is the shaded circle.
Outputs are enclosed by a dashed line rectangle.

2.5. Performance Analysis and Hyperparameter Selection

A high-frequency signal-to-error ratio (HFSER) [28] and the structural similarity
index (SSIM) [29] have been used for image quality assessment, taking the fully sampled
reconstruction as the reference, whenever possible. To measure the quality of motion, we
obtained displacement fields by registering the reconstructed sequence and the reference
sequence; specifically, the n + 1-th frame on the reconstructed sequence was registered to
the n-th frame on the reference, with N the number of frames (we assumed periodicity in
the cardiac cycle, so frame N + 1 coincides with Frame 1), to obtain the displacement field
Drec(n), which results from transformation Trec

Θn
, where the latter is calculated by using

the motion estimation procedure described above (see Figure 4). Similarly, each frame in
the reference sequence was registered to its previous frame in the reference (once again,
with periodic extension) to obtain the displacement field Dref (n). Finally, the RMSE value
between both reference and reconstruction displacement fields is calculated (Equation (10)).

RMSE =

√√√√√ N
∑

n=1

∥∥∥Drec(n)−Dref (n)
∥∥∥2

F

N
(10)

with ‖ · ‖F the Frobenius norm, considering Dref (n) a matrix with dimensions |X| × 2,
with X the set of reconstructed pixels and | · | the cardinality of a set.
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Figure 4. The scheme of the registrations performed for motion quality assessment. Note that a periodic extension is
considered (represented with dotted lines), so that the first frame is registered to the last one.

The temporal profiles along radial directions separated 45 degrees were concatenated
to form the image Incc (Figure 5). The normalized crossed correlation (NCC) between such
images from both the reconstructed and the reference datasets was also computed as a
quality measurement. NCC is defined as:

NCC =

∑
x∈X

(
Iref

ncc − Iref
ncc

)(
Increcc

ncc − Irec
ncc
)

√
∑

x∈X

(
Iref

ncc − Iref
ncc

)2

∑
x∈X

(
Irec

ncc − Irec
ncc
)2

(11)

where Iref
ncc and Irec

ncc stand for the Incc images obtained from the reference image and the

reconstruction, with spatial average values Iref
ncc and Irec

ncc, respectively. Since the temporal
evolution is accounted for in NCC, this parameter is also useful for motion quality assessment.

Figure 5. Temporal profiles along radial directions every 45 degrees (the center of which coincides
with the center of the left ventricle) are concatenated to form an image. The NCC between such
images is used to assess motion quality.

Regularization parameters λ from Equation (4a) and ω1 and ω2 from Equation (4b)
must be set. To this end, we used the method based on cross-validation described in [30].
This method is grounded on having K datasets for training/testing, as well as an IQM to
maximize. The procedure to tune the value of a single parameter µ consists of three stages:
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1. For each of the K datasets, the value of the parameter that maximizes the IQM is
determined by sweeping in a range of candidate values; let µds

k , 1 ≤ k ≤ K, denote
this value for the k-th dataset.

2. The K datasets are split into P datasets for training and (K− P) for testing. Let ci be
the i-th training set and di its corresponding test set, 1 ≤ i ≤ (K

P). Let [ci]j denote
the index within the set {1, . . . , K} of the j-th element of ci, with 1 ≤ j ≤ P. The
purpose of this stage is to determine the optimum parameter for each ci. To this
end, we accumulated the IQM for all datasets within ci, but dataset [ci]j, using the
parameter µds

[ci ]j
from the previous stage. The optimal value is the one that provides

the maximum accumulated IQM out of the P accumulated quantities. Let µci denote
that value.

3. The final stage pursues finding which of the µci , 1 ≤ i ≤ (K
P), is the optimum. This is

accomplished by calculating the accumulated IQM in the datasets within di, using
µci ; the optimal parameter µopt is the value that maximizes this quantity out of the
(K

P) accumulated IQM values.

The procedure referred to above can be directly extended to Q-component vector
parameters by creating a grid of candidate points in the RQ space. For the proposed EAS
with variant regularization procedure Q = 3. HFSER was used as the IQM to select the
regularization parameters.

3. Experiments

In this section, we provide an overview of the experiments we conducted. Experimen-
tal results themselves are described in Section 4.

3.1. Experiment 1: Cartesian Acquisition

The 2D datasets were retrospectively subsampled using the procedure in [12] for
different values of the AF and reconstructed by using EAS and MIX. For comparisons,
they were also reconstructed using sPICS (Equation (6)) and GWCS (Equation (7)). Using
the fully sampled reconstruction as a reference, the HFSER, SSIM, and RMSE between
displacement fields, as well as the NCC were computed to measure the performance.

The EAS regularization parameters µ = (λ, ω1, ω2) were set by using the procedure
described in Section 2.5 with K = 7 and P = 4, as in [30]. As for the tentative values for λ, we
used six values ranging from 1 to 10−3 in logarithmic scale, and five values in logarithmic
scale from 1 to 10−4 for ωi (i = 1, 2). For sPICS, the regularization parameter was set as
in [31] and for GWCS as in [16]. The spacing between control points was set to 3 pixels in
both spatial dimensions.

3.2. Experiment 2: Radial Acquisition

The 2D golden radial datasets were retrospectively reconstructed by using EAS, with
16 cardiac phases including the maximum of the spokes available per frame, which resulted
in an equivalent temporal resolution of 46.4 ms. In this case, there was no availability of a
ground truth with which to compare. Thus, the regularization parameters in Equations (5)
and (3b) could not be set by applying the method described in Section 2.3. Therefore, some
parameter sweeps for λ and ωi (i = 1, 2) were performed. Specifically, the parameters
varied within the intervals λ ∈

[
10−7, 10−4], ω1 ∈

[
0, 5× 103] and ω2 ∈

[
0, 5× 104]. The

resulting reconstructions were visually inspected, and the parameters were set accordingly.
Furthermore, this parameter sweeping revealed that the component of R1(Θ) weighted
by ω1 (see Equation (3b)) had no perceptible effect in the reconstructions, and therefore, it
was discarded.

Finally, the datasets were also reconstructed with iGRASP [32], GWCS, and MIX for
comparison purposes. The regularization parameter for iGRASP was set as the authors
specified in [33]. For GWCS, the regularization parameter in the MC steps was set to 0.007
after performing some sweeps for λ in the range

[
10−3, 10−1]. For the MIX method, the
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parameters were the same for EAS and GWCS when they acted independently. The spacing
between control points was set to 5 pixels in both spatial dimensions.

4. Results
4.1. Results of Experiment 1

Figures 6 and 7 display the systole and diastole frames from two representative cases
of the 2D dataset reconstructed with EAS and MIX compared with sPICS and GWCS. Two
temporal profiles from vertical and horizontal lines are also provided in the two rightmost
columns. Both images and temporal profiles from the fully sampled reconstruction are
included as a reference in the top line.

Figure 6. Comparison of EAS and MIX reconstructions with other methods from the literature for
a representative case with R = 8. The fully sampled reconstruction is included in the top line as a
reference. Diastole and systole frames are shown in the two leftmost columns, respectively. Two
temporal profiles of the horizontal and vertical lines—marked in the reference image with white
lines—are shown in the rightmost columns for all the methods. Arrows point to significant locations.
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Figure 7. Comparison of EAS and MIX reconstructions with other methods from the literature for
a representative case with R = 8. The fully sampled reconstruction is included in the top line as a
reference. Diastole and systole frames are shown in the two leftmost columns, respectively. Two
temporal profiles of the horizontal and vertical lines—marked in the reference image with white
lines—are shown in the rightmost columns for all the methods. Arrows point to significant locations.

For performance quantification, Figure 8 shows the HFSER (a), SSIM (b), NCC (c), and
RMSE (d) averaged across all slices and volunteers, parameterized by R, for sPICS, GWCS,
EAS, and MIX. The average time needed for reconstructing one slice is also provided
in Figure 8e. Figure 9 displays the distribution of these metrics according to the 17-segment
AHA model for R = 8.
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Figure 8. Results for EAS and MIX reconstructions. The average values across slices and volunteers for the HFSER (a), SSIM
(b), NCC (c), and RMSE (d) and the average time needed to reconstruct one slice (e) are provided for different values of R.
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Figure 9. Results for EAS and MIX reconstructions distributed according to the 17-segment AHA model. The average
values across volunteers are provided for R = 8.

Additionally, a cardiologist—Dr. David Filgueiras-Rama, from the Centro Nacional de
Investigaciones Cardiovasculares (CNIC), Spain—was consulted by means of a question-
naire, consisting of 21 videos. Each video displayed a composition of cine reconstructions
of the same slice, volunteer, and AF level by applying the different methods to be com-
pared, randomly sorted. The fully sampled image was also included as a reference, and the
selected levels of the AF were R = 8, R = 10, and R = 14. The expert was asked to sort the
reconstructions in each video according to his perceived quality, giving a score of six to the
reconstruction with the best quality and a score of one to the reconstruction with the worst
quality. The mean value ± the standard deviation of the scores given by the expert to each
reconstruction method are collected in Table 1.

Table 1. The mean value± the standard deviation of the scores given by the expert to each reconstruc-
tion method. The scores vary in the range [1, 6], 6 being the method that provides reconstructions
with the highest image quality.

R = 8 R = 10 R = 14

sPICS 5.14± 0.69 4.86± 0.69 3.43± 1.72
GWCS 5.00± 1.83 5.71± 0.49 4.86± 1.68
EAS 2.57± 1.13 2.57± 0.79 3.29± 1.38

4.2. Results of Experiment 2

Figure 10 illustrates 2D golden radial reconstructions using EAS in comparison with
iGRASP and GWCS for a representative case. The reconstruction using the MIX method is
also included. In the two leftmost columns, diastole and systole frames are shown, and
in the two rightmost columns, the temporal profiles of both horizontal and vertical lines
(marked with white lines in the top left image) are represented. Table 2 shows the average
running time needed to reconstruct one slice. The equivalent AF for this example is 19.33.
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Figure 10. EAS radial reconstructions in comparison with iGRASP and GWCS (R = 19.33). Recon-
structions from the MIX method are also included. Arrows point to significant locations.

Table 2. Mean values of the execution times for reconstructing one slice using the EAS and MIX
radial approaches in comparison with iGRASP and GWCS.

Mean Running Time (min)

iGRASP 1.9513
GWCS 6.4263
EAS 2.2940
MIX 3.7792

5. Discussion

In terms of image quality, the EAS reconstructions tended to have less subsampling
artifacts (Figure 6, green arrows), but they may show some more pronounced blurring,
due to the spatial regularization that it is applied in the EAS image subproblem (Figure 7,
red arrows). In terms of motion, EAS reconstructions seemed smoother, whereas in the
other methods, motion was perceived with sharper transitions, mostly when the AF
increased. Nevertheless, in some of the EAS reconstructions, residual fluctuations may also
be perceived in the images, as if they were immersed in liquid. This effect probably arises
as a consequence of using a B-spline deformation model and sub-optimal regularization
parameter tuning.

In addition, EAS tended to show difficulties in homogeneous areas, where registration
is known to show worse performance. Since EAS is essentially model based (as opposed
to the other methods, which are data driven), the resulting reconstructions had a slight
trend of being more static than expected, specifically those in the lateral and basal anterior
areas, as revealed by Figure 9, which may lead to a hypokinesia misdiagnosis. An example
of this effect is presented in Figure 7. The corresponding EAS reconstruction showed
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more static inferior/inferior-lateral segments compared to the reference image. This fact
manifested itself in the images of the temporal profile of the vertical line (rightmost column
of from Figure 7) by a subdued fluctuation in the intensity line due to the contraction of
the myocardium (marked with red arrow), which is also supported by Figure 9.

Figure 8 shows that EAS gave rise to values of the metrics more closely related to
intensity quality (HFSER, SSIM, and NCC) lower than those provided by the other methods
for an AF of less than eight. From this AF value, the metrics began to be approximated, and
from R = 10, EAS gave rise to slightly higher values than the other ones, GWCS and sPICS.

According to the expert, all the images were useful for diagnosis. He reported the
great difficulty of executing the task, since all the images were quite similar and the
differences between them were very subtle. He also reported that a homogeneous decision
criterion for the entire sample was very difficult to set, since different subtle details had
to be accounted for, such us sharpness in trabeculae or papillary muscles, among other
structures, depending on the image in every case.

As can be inferred from the results in Table 1, GWCS received, generally speaking,
the highest scores. EAS, however, gave rise to motion patterns that the expert was not
comfortable with, despite Figure 8 indicating that EAS provided better figures for R ≥ 10.
As stated above, the model-based character of EAS seemed to reduce the degrees of freedom
in the reconstruction to an extent that other data-driven methods were preferable to the
expert eye in terms of motion quality (but not necessarily in terms of image quality). A
B-spline parameterization with periodic extension of the FFD, as in [34], would provide
an implicit temporal smoothness and enable the use of the B-spline temporal derivative
instead of finite differences. However, whether this would be beneficial or would further
highlight the model-based character of our solution requires further experimentation.

Hence, due to the fact that the motion provided by GWCS was the preferred expert
option, but EAS provided slightly better results with considerably less runtime when
R ≥ 10, according to Figure 8, both methods—EAS as an initializer of GWCS—could
benefit from their combination, since better motion reconstructions could be achieved with
GWCS but at EAS-comparable runtimes. Indeed, this seemed to be supported by Figure 8.
MIX values were comparable with those provided by GWCS for lower values of the AF,
but they separated when the AF increased, with MIX providing values higher than those
from the other methods, including EAS. As far as runtime is concerned, MIX strategies
took much less time than GWCS, about two or three times less, reaching the same level
as EAS. Therefore, the MIX strategy arose as a competitive reconstruction method to take
into account.

Regarding radial trajectories, the iGRASP method provided the most blurred images;
the borders of the myocardium were not as defined as in the other methods. In addition,
the contraction motion of the heart was reduced, which could be perceived by the smooth
intensity waves in the temporal profiles (see the blue arrows in Figure 10). On the con-
trary, GWCS seemed to reflect heart motion more faithfully, compared to the Cartesian
reconstructions from the previous experiments.

EAS also preserved motion, although there was a slight loss of the motion components.
This effect could be observed in the intensity fluctuations due to myocardial contraction in
the temporal profiles, which were perceived not as prominent as in GWCS. In addition,
the torsion motion was not captured by the deformations of EAS, although this torsion
was maintained in the Cartesian reconstruction. This was probably due to the fact that the
regularization term in the radial EAS deformation subproblem filtered out some motion
components, so that a finer tuning of the parameters might be necessary. Despite this,
EAS still introduced some residual vibrations in the image sequences, as a consequence
of the B-spline model used for deformations. This can be seen in the temporal profiles
of Figure 10 as tiny waves in some intensity bands (green arrows). Finally, EAS introduced
a non-realistic deformation in the right ventricle (Figure 10, yellow arrows). MIX, on the
contrary, managed to capture the torsion motion, and the general motion was perceived as
the same quality as GWCS, but with slightly sharper details and less subsampling artifacts.
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As far as runtime is concerned, the fastest method was iGRASP, followed by EAS, by
about 20 more seconds. The MIX approach reached an intermediate level and took half
of the time needed by GWCS, which was the slowest approach, taking almost 6.5 min
per slice.

6. Conclusions

In this work, we presented the EAS reconstruction method for cardiac cine MRI
reconstruction for both Cartesian and radial sampling. This reconstruction method provides
a motion-free pattern image together with a set of nonrigid deformations, in which the
pattern image is deformed to generate the cardiac cine series. EAS provided slightly better
results with considerable less runtime when the AF was higher then 10x. However, the
model-based character of the proposal introduced a kind of motion with which experts did
not feel comfortable.

The combination of EAS and GWCS as a complete reconstruction method provided
images with a better quality in both intensity and motion, or with comparable quality and
less computational load, compared to other methods from the literature.
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