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Abstract: Decentralized partially observable Markov decision process (DEC-POMDP) models se-
quential decision making problems by a team of agents. Since the planning of DEC-POMDP can be
interpreted as the maximum likelihood estimation for the latent variable model, DEC-POMDP can
be solved by the EM algorithm. However, in EM for DEC-POMDP, the forward–backward algorithm
needs to be calculated up to the infinite horizon, which impairs the computational efficiency. In
this paper, we propose the Bellman EM algorithm (BEM) and the modified Bellman EM algorithm
(MBEM) by introducing the forward and backward Bellman equations into EM. BEM can be more
efficient than EM because BEM calculates the forward and backward Bellman equations instead of
the forward–backward algorithm up to the infinite horizon. However, BEM cannot always be more
efficient than EM when the size of problems is large because BEM calculates an inverse matrix. We
circumvent this shortcoming in MBEM by calculating the forward and backward Bellman equations
without the inverse matrix. Our numerical experiments demonstrate that the convergence of MBEM
is faster than that of EM.

Keywords: decision-making; planning; multiagent; uncertainty; decentralized partially observable
Markov decision process; control as inference

1. Introduction

Markov decision process (MDP) models sequential decision making problems and has
been used for planning and reinforcement learning [1–4]. MDP consists of an environment
and an agent. The agent observes the state of the environment and controls it by taking
actions. The planning of MDP is to find the optimal control policy maximizing the objective
function, which is typically solved by the Bellman equation-based algorithms such as value
iteration and policy iteration [1–4].

Decentralized partially observable MDP (DEC-POMDP) is an extension of MDP to
a multiagent and partially observable setting, which models sequential decision making
problems by a team of agents [5–7]. DEC-POMDP consists of an environment and multiple
agents, and the agents cannot observe the state of the environment and the actions of
the other agents completely. The agents infer the environmental state and the other
agents’ actions from their observation histories and control them by taking actions. The
planning of DEC-POMDP is to find not only the optimal control policy but also the optimal
inference policy for each agent, which maximize the objective function [5–7]. Applications
of DEC-POMDP include planetary exploration by a team of rovers [8], target tracking by
a team of sensors [9], and information transmission by a team of devices [10]. Since the
agents cannot observe the environmental state and the other agents’ actions completely,
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it is difficult to extend the Bellman equation-based algorithms for MDP to DEC-POMDP
straightforwardly [11–15].

DEC-POMDP can be solved using control as inference [16,17]. Control as inference is a
framework to interpret a control problem as an inference problem by introducing auxiliary
variables [18–22]. Although control as inference has several variants, Toussaint and Storkey
showed that the planning of MDP can be interpreted as the maximum likelihood estimation
for a latent variable model [18]. Thus, the planning of MDP can be solved by EM algorithm,
which is the typical algorithm for the maximum likelihood estimation of latent variable
models [23]. Since the EM algorithm is more general than the Bellman equation-based algo-
rithms, it can be straightforwardly extended to POMDP [24,25] and DEC-POMDP [16,17].
The computational efficiency of the EM algorithm for DEC-POMDP is comparable to that of
other algorithms for DEC-POMDP [16,17,26–28], and the extensions to the average reward
setting and to the reinforcement learning setting have been studied [29–31].

However, the EM algorithm for DEC-POMDP is not efficient enough to be applied
to real-world problems, which often have a large number of agents or a large size of an
environment. Therefore, there are several studies in which improvement of the compu-
tational efficiency of the EM algorithm for DEC-POMDP was attempted [26,27]. Because
these studies achieve improvements by restricting possible interactions between agents,
their applicability is limited. Therefore, it is desirable to have improvement in the efficiency
for more general DEC-POMDP problems.

In order to improve the computational efficiency of EM algorithm for general DEC-
POMDP problems, there are two problems that need to be resolved. The first problem
is the forward–backward algorithm up to the infinite horizon. The EM algorithm for
DEC-POMDP uses the forward–backward algorithm, which has also been used in EM
algorithm for hidden Markov models [23]. However, in the EM algorithm for DEC-POMDP,
the forward–backward algorithm needs to be calculated up to the infinite horizon, which
impairs the computational efficiency [32,33]. The second problem is the Bellman equation.
The EM algorithm for DEC-POMDP does not use the Bellman equation, which plays a
central role in the the planning and in the reinforcement learning for MDP [1–4]. Therefore,
the EM algorithm for DEC-POMDP cannot use the advanced techniques based on the
Bellman equation, which makes it possible to solve large-size problems [34–36].

In some previous studies, resolution of these problems was attempted by replacing the
forward–backward algorithm up to the infinite horizon with the Bellman equation [32,33].
However, in these studies, the computational efficiency could not be improved completely.
For example, Song et al. replaced the forward–backward algorithm with the Bellman
equation and showed that their algorithm is more efficient than EM and other DEC-POMDP
algorithms by the numerical experiments [32]. However, since a parameter dependency
is overlooked in [32], their algorithm may not find the optimal policy under a general
situation (see Appendix D for more details). Moreover, Kumar et al. showed that the
forward–backward algorithm can be replaced by linear programming with the Bellman
equation as a constraint [33]. However, their algorithm may be less efficient than the EM
algorithm when the size of problems is large. Therefore, previous studies have not yet
completely improved the computational efficiency of EM algorithm for DEC-POMDP.

In this paper, we propose more efficient algorithms for DEC-POMDP than EM algo-
rithm by introducing the forward and backward Bellman equations into it. The backward
Bellman equation corresponds to the traditional Bellman equation, which has been used
in previous studies [32,33]. In contrast, the forward Bellman equation has not yet been
used for the planning of DEC-POMDP explicitly. This equation is similar to that recently
proposed in the offline reinforcement learning of MDP [37–39]. In the offline reinforcement
learning of MDP, the forward Bellman equation is used to correct the difference between
the data sampling policy and the policy to be evaluated. In the planning of DEC-POMDP,
the forward Bellman equation plays the important role in inferring the environmental state.

We propose the Bellman EM algorithm (BEM) and the modified Bellman EM algorithm
(MBEM) by replacing the forward–backward algorithm with the forward and backward
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Bellman equations. They are different in terms of how to solve the forward and backward
Bellman equations. BEM solves the forward and backward Bellman equations by calculat-
ing an inverse matrix. BEM can be more efficient than EM because BEM does not calculate
the forward–backward algorithm up to the infinite horizon. However, since BEM calculates
the inverse matrix, it cannot always be more efficient than EM when the size of problems
is large, which is the same problem as [33]. Actually, BEM is essentially the same as [33].
In the linear programming problem of [33], the number of variables is equal to that of
constraints, which enables us to solve it only from the constraints without the optimization.
Therefore, the algorithm in [33] becomes equivalent to BEM, and they suffers from the
same problem as BEM.

This problem is addressed by MBEM. MBEM solves the forward and backward Bell-
man equations by applying the forward and backward Bellman operators to the arbitrary
initial functions infinite times. Although MBEM needs to calculate the forward and back-
ward Bellman operators infinite times, which is the same problem with EM, MBEM can
evaluate approximation errors more tightly owing to the contractibility of these operators.
It can also utilize the information of the previous iteration owing to the arbitrariness of the
initial functions. These properties enable MBEM to be more efficient than EM. Moreover,
MBEM resolves the drawback of BEM because MBEM does not calculate the inverse matrix.
Therefore, MBEM can be more efficient than EM even when the size of problems is large.
Our numerical experiments demonstrate that the convergence of MBEM is faster than that
of EM regardless of the size of problems.

The paper is organized as follows: In Section 2, DEC-POMDP is formulated. In
Section 3, the EM algorithm for DEC-POMDP, which was proposed in [16], is briefly
reviewed. In Section 4, the forward and backward Bellman equations are derived, and the
Bellman EM algorithm (BEM) is proposed. In Section 5, the forward and backward Bellman
operators are defined, and the modified Bellman EM algorithm (MBEM) is proposed.
In Section 6, EM, BEM, and MBEM are summarized and compared. In Section 7, the
performances of EM, BEM, and MBEM are compared through the numerical experiment.
In Section 8, this paper is concluded, and future works are discussed.

2. DEC-POMDP

DEC-POMDP consists of an environment and N agents (Figures 1 and 2a) [7,16].
xt ∈ X is the state of the environment at time t. yi

t ∈ Y i, zi
t ∈ Z i, and ai

t ∈ Ai are the
observation, the memory, and the action available to the agent i ∈ {1, ..., N}, respectively.
X , Y i, Z i, and Ai are finite sets. yt := (y1

t , .., yN
t ), zt := (z1

t , .., zN
t ), and at := (a1

t , .., aN
t ) are

the joint observation, the joint memory, and the joint action of the N agents, respectively.
The time evolution of the environmental state xt is given by the initial state probabil-

ity p(x0) and the state transition probability p(xt+1|xt, at). Thus, agents can control the
environmental state xt+1 by taking appropriate actions at. The agent i cannot observe the
environmental state xt and the joint action at−1 completely, and obtains the observation yi

t
instead of them. Thus, the observation yt obeys the observation probability p(yt|xt, at−1).
The agent i updates its memory from zi

t−1 to zi
t based on the observation yi

t. Thus, the mem-
ory zi

t obeys the initial memory probability νi(zi
0) and the memory transition probability

λi(zi
t|zi

t−1, yi
t). The agent i takes the action ai

t based on the memory zi
t by following the

action probability πi(ai
t|zi

t). The reward function r(xt, at) defines the amount of reward
that is obtained at each step depending on the state of the environment xt and the joint
action at taken by the agents.

The objective function in the planning of DEC-POMDP is given by the expected return,
which is the expected discounted cumulative reward:

J(θ) = Eθ

[
∞

∑
t=0

γtr(xt, at)

]
. (1)
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θ := (π, λ, ν) is the policy, where π := (π1, ..., πN), λ := (λ1, ..., λN), and ν := (ν1, ..., νN).
γ ∈ (0, 1) is the discount factor, which decreases the weight of the future reward. The
closer γ is to 1, the closer the weight of the future reward is to that of the current reward.

The planning of DEC-POMDP is to find the policy θ that maximizes the expected
return J(θ) as follows:

θ∗ := arg max
θ

J(θ). (2)

In other words, the planning of DEC-POMDP is to find how to take the action and how to
update the memory for each agent to maximize the expected return.

action
𝑎!"

state 𝑥!

observation
𝑦!"

memory 𝑧!"

action
𝑎!#

observation
𝑦!#

memory 𝑧!#

environment

agents

Figure 1. Schematic diagram of DEC-POMDP. DEC-POMDP consists of an environment and N
agents (N = 2 in this figure). xt is the state of the environment at time t. yi

t, zi
t, and ai

t are the
observation, the memory, and the action available to the agent i ∈ {1, ..., N}, respectively. The agents
update their memories based on their observations, and take their actions based on their memories
to control the environmental state. The planning of DEC-POMDP is to find their optimal memory
updates and action selections that maximize the objective function.
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Figure 2. Dynamic Bayesian networks of DEC-POMDP (a) and the latent variable model for the time horizon T ∈ {0, 1, 2, ...}
(b). xt is the state of the environment at time t. yi

t, zi
t, and ai

t are the observation, the memory, and the action available to
the agent i ∈ {1, ..., N}, respectively. (a) rt ∈ R is the reward, which is generated at each time. (b) o ∈ {0, 1} is the optimal
variable, which is generated only at the time horizon T.

3. EM Algorithm for DEC-POMDP

In this section, we explain the EM algorithm for DEC-POMDP, which was proposed
in [16].

3.1. Control as Inference

In this subsection, we show that the planning of DEC-POMDP can be interpreted as
the maximum likelihood estimation for a latent variable model (Figure 2b).
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We introduce two auxiliary random variables: the time horizon T ∈ {0, 1, 2, ...} and
the optimal variable o ∈ {0, 1}. These variables obey the following probabilities:

p(T) = (1− γ)γT , (3)

p(o = 1|xT , aT) = r̄(xT , aT) :=
r(xT , aT)− rmin

rmax − rmin
(4)

where rmax and rmin are the maximum and the minimum value of the reward function
r(x, a), respectively. Thus, r̄(x, a) ∈ [0, 1] is satisfied.

By introducing these variables, DEC-POMDP changes from Figure 2a to Figure 2b.
While Figure 2a considers the infinite time horizon, Figure 2b considers the finite time hori-
zon T, which obeys Equation (3). Moreover, while the reward rt := r(xt, at) is generated at
each time in Figure 2a, the optimal variable o is generated only at the time horizon T in
Figure 2b.

Theorem 1 ([16]). The expected return J(θ) in DEC-POMDP (Figure 2a) is linearly related
to the likelihood p(o = 1; θ) in the latent variable model (Figure 2b) as follows:

J(θ) = (1− γ)−1[(rmax − rmin)p(o = 1; θ) + rmin]. (5)

Note that o is the observable variable, and x0:T , y1:T , z0:T , a0:T , T are the latent variables.

Proof. See Appendix A.1.

Therefore, the planning of DEC-POMDP is equivalent to the maximum likelihood
estimation for the latent variable model as follows:

θ∗ = arg max
θ

p(o = 1; θ). (6)

Intuitively, while the planning of DEC-POMDP is to find the policy which maximizes the
reward, the maximum likelihood estimation for the latent variable model is to find the
policy which maximizes the probability of the optimal variable. Since the probability of the
optimal variable is proportional to the reward, the planning of DEC-POMDP is equivalent
to the maximum likelihood estimation for the latent variable model.

3.2. EM Algorithm

Since the planning of DEC-POMDP can be interpreted as the maximum likelihood
estimation for the latent variable model, it can be solved by the EM algorithm [16]. EM
algorithm is the typical algorithm for the maximum likelihood estimation of latent variable
models, which iterates two steps, E step and M step [23].

In the E step, we calculate the Q function, which is defined as follows:

Q(θ; θk) := Eθk
[ log p(o = 1, x0:T , y0:T , z0:T , a0:T , T; θ)|o = 1] (7)

where θk is the current estimator of the optimal policy.
In the M step, we update θk to θk+1 by maximizing the Q function as follows:

θk+1 := arg max
θ

Q(θ; θk). (8)

Since each iteration between the E step and the M step monotonically increases the
likelihood p(o = 1; θk), we can find θ∗ that locally maximizes the likelihood p(o = 1; θ).
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3.3. M Step
Proposition 1 ([16]). In the EM algorithm for DEC-POMDP, Equation (8) can be calculated
as follows:

πi
k+1(a|z) =

∑a−i ,z−i πk(a|z)∑x,x′ ,z′ p(x′, z′|x, z, a; λk)F(x, z; θk)(r̄(x, a) + γV(x, z; θk))

∑a,z πk(a|z)∑x,x′ ,z′ p(x′, z′|x, z, a; λk)F(x, z; θk)(r̄(x, a) + γV(x, z; θk))
, (9)

λi
k+1(z

′|z, y′) =
∑z−i′ ,z−i ,y−i′ λk(zi′ |zi, yi′ )∑x′ ,x p(x′, y′|x, z; πk)F(x, z; θk)V(x′, z′; θk)

∑z′ ,z,y′ λk(zi′ |zi, yi′ )∑x′ ,x p(x′, y′|x, z; πk)F(x, z; θk)V(x′, z′; θk)
, (10)

νi
k+1(z) =

∑z−i νk(z)∑x p0(x)V(x, z; θk)

∑z νk(z)∑x p0(x)V(x, z; θk)
. (11)

a−i := (a1, ..., ai−1, ai+1, ..., aN). y−i and z−i are defined in the same way. F(x, z; θ) and
V(x, z; θ) are defined as follows:

F(x, z; θ) :=
∞

∑
t=0

γt pt(x, z; θ), (12)

V(x, z; θ) :=
∞

∑
t=0

γt p0(o = 1|x, z, T = t; θ) (13)

where pt(x, z; θ) := p(xt = x, zt = z; θ), and p0(o = 1|x, z, T; θ) := p(o = 1|x0 = x, z0 =
z, T; θ).

Proof. See Appendix A.2.

F(x, z; θ) quantifies the frequency of the state x and the memory z, which is called
the frequency function in this paper. V(x, z; θ) quantifies the probability of o = 1 when
the initial state and memory are x and z, respectively. Since the probability of o = 1 is
proportional to the reward, V(x, z; θ) is called the value function in this paper. Actually,
V(x, z; θ) corresponds to the value function [33].

3.4. E Step

F(x, z; θk) and V(x, z; θk) need to be obtained to calculate Equations (9)–(11). In [16],
F(x, z; θk) and V(x, z; θk) are calculated by the forward–backward algorithm, which has
been used in EM algorithm for the hidden Markov model [23].

In [16], the forward probability αt(x, z) and the backward probability βt(x, z) are
defined as follows:

αt(x, z; θk) := pt(x, z; θk), (14)

βt(x, z; θk) := p0(o = 1|x, z, T = t; θk). (15)

It is easy to calculate α0(x, z; θk) and β0(x, z; θk) as follows:

α0(x, z; θk) = p0(x, z; νk) := p0(x)νk(z), (16)

β0(x, z; θk) = r̄(x, z; πk) := ∑
a

πk(a|z)r̄(x, a). (17)

Moreover, αt+1(x, z; θk) and βt+1(x, z; θk) are easily calculated from αt(x, z; θk) and βt(x, z; θk):

αt+1(x, z; θk) = ∑
x′ ,z′

p(x, z|x′, z′; θk)αt(x′, z′; θk), (18)

βt+1(x, z; θk) = ∑
x′ ,z′

βt(x′, z′; θk)p(x′, z′|x, z; θk) (19)
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where

p(x′, z′|x, z; θk) = ∑
y′ ,a

λk(z
′|z, y′)p(y′|x′, a)p(x′|x, a)πk(a|z). (20)

Equations (18) and (19) are called the forward and backward equations, respectively. Using
Equations (16)–(19), αt(x, z; θk) and βt(x, z; θk) can be efficiently calculated from t = 0 to
t = ∞, which is called the forward–backward algorithm [23].

By calculating the forward–backward algorithm from t = 0 to t = ∞, F(x, z; θk) and
V(x, z; θk) can be obtained as follows [16]:

F(x, z; θk) =
∞

∑
t=0

γtαt(x, z; θk), (21)

V(x, z; θk) =
∞

∑
t=0

γtβt(x, z; θk). (22)

However, F(x, z; θk) and V(x, z; θk) cannot be calculated exactly by this approach because
it is practically impossible to calculate the forward–backward algorithm until t = ∞.
Therefore, the forward–backward algorithm needs to be terminated at t = Tmax, where
Tmax is finite. In this case, F(x, z; θk) and V(x, z; θk) are approximated as follows:

F(x, z; θk) =
∞

∑
t=0

γtαt(x, z; θk) ≈
Tmax

∑
t=0

γtαt(x, z; θk), (23)

V(x, z; θk) =
∞

∑
t=0

γtβt(x, z; θk) ≈
Tmax

∑
t=0

γtβt(x, z; θk). (24)

Tmax needs to be large enough to reduce the approximation errors. In the previous study, a
heuristic termination condition was proposed as follows [16]:

γTmax p(o = 1|Tmax; θk)�
Tmax−1

∑
T=0

γT p(o = 1|T; θk). (25)

p(o = 1|T; θk) = ∑x,z αT′(x, z; θk)βT′′(x, z; θk) where T = T′ + T′′. However, the relation
between Tmax and the approximation errors is unclear in Equation (25). We propose a new
termination condition to guarantee the approximation errors as follows:

Proposition 2. We set an acceptable error bound ε > 0. If

Tmax >
log(1− γ)ε

log γ
− 1 (26)

is satisfied, then ∥∥∥∥∥F(x, z; θk)−
Tmax

∑
t=0

γtαt(x, z; θk)

∥∥∥∥∥
∞

< ε, (27)∥∥∥∥∥V(x, z; θk)−
Tmax

∑
t=0

γtβt(x, z; θk)

∥∥∥∥∥
∞

< ε (28)

are satisfied.

Proof. See Appendix A.3.
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3.5. Summary

In summary, the EM algorithm for DEC-POMDP is given by Algorithm 1. In the E step,
we calculate αt(x, z; θk) and βt(x, z; θk) from t = 0 to t = Tmax by the forward–backward
algorithm. In M step, we update θk to θk+1 using Equations (9)–(11). The time complexities
of the E step and the M step are O((|X ||Z|)2Tmax) and O((|X ||Z|)2|Y||A|), respectively.
Note that A := ⊗N

i=1Ai, and Y and Z are defined in the same way. The EM algorithm for
DEC-POMDP is less efficient when the discount factor γ is closer to 1 or the acceptable
error bound ε is smaller because Tmax needs to be larger in these cases.

Algorithm 1 EM algorithm for DEC-POMDP

k← 0, Initialize θk.
Tmax ← d(log(1− γ)ε)/ log γ− 1e
while θk or J(θk) do not converge do

Calculate p(x′, z′|x, z; θk) by Equation (20).
//—E step—//
α0(x, z; θk)← p0(x, z; νk)
β0(x, z; θk)← r̄(x, z; πk)
for t = 1, 2, ..., Tmax do

αt(x, z; θk)← ∑x′ ,z′ p(x, z|x′, z′; θk)αt−1(x′, z′; θk)
βt(x, z; θk)← ∑x′ ,z′ βt−1(x′, z′; θk)p(x′, z′|x, z; θk)

end for
F(x, z; θk)← ∑Tmax

t=0 γtαt(x, z; θk)

V(x, z; θk)← ∑Tmax
t=0 γtβt(x, z; θk)

//—M step—//
Update θk to θk+1 by Equations (9)–(11).
k← k + 1

end while
return θk

4. Bellman EM Algorithm

In the EM algorithm for DEC-POMDP, αt(x, z; θk) and βt(x, z; θk) are calculated from
t = 0 to t = Tmax to obtain F(x, z; θk) and V(x, z; θk). However, Tmax needs to be large to
reduce the approximation errors of F(x, z; θk) and V(x, z; θk), which impairs the computa-
tional efficiency of the EM algorithm for DEC-POMDP [32,33]. In this section, we calculate
F(x, z; θk) and V(x, z; θk) directly without calculating αt(x, z; θk) and βt(x, z; θk) to resolve
the drawback of EM.

4.1. Forward and Backward Bellman Equations

The following equations are useful to obtain F(x, z; θk) and V(x, z; θk) directly:

Theorem 2. F(x, z; θ) and V(x, z; θ) satisfy the following equations:

F(x, z; θ) =p0(x, z; ν) + γ ∑
x′ ,z′

p(x, z|x′, z′; θ)F(x′, z′; θ), (29)

V(x, z; θ) =r̄(x, z; π) + γ ∑
x′ ,z′

p(x′, z′|x, z; θ)V(x′, z′; θ). (30)

Equations (29) and (30) are called the forward Bellman equation and the backward Bellman
equation, respectively.

Proof. See Appendix B.

Note that the direction of time is different between Equations (29) and (30). In Equa-
tion (29), x′ and z′ are earlier state and memory than x and z, respectively. In Equation (30),
x′ and z′ are later state and memory than x and z, respectively.
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The backward Bellman Equation (30) corresponds to the traditional Bellman equation,
which has been used in other algorithms for DEC-POMDP [11–14]. In contrast, the forward
Bellman equation, which is introduced in this paper, is similar to that recently proposed in
the offline reinforcement learning [37–39].

Since the forward and backward Bellman equations are linear equations, they can be
solved exactly as follows:

F(θ) = (I − γP(θ))−1 p(ν), (31)

V(θ) = ((I − γP(θ))−1)Tr(π) (32)

where

Fi(θ) := F((x, z) = i; θ), Vi(θ) := V((x, z) = i; θ)

Pij(θ) := p((x′, z′) = i|(x, z) = j; θ)

pi(ν) := p0((x, z) = i; ν), ri(π) := r̄((x, z) = i; π)

Therefore, we can obtain F(x, z; θk) and V(x, z; θk) from the forward and backward Bell-
man equations.

4.2. Bellman EM Algorithm (BEM)

The forward–backward algorithm from t = 0 to t = Tmax in the EM algorithm for
DEC-POMDP can be replaced by the forward and backward Bellman equations. In this
paper, the EM algorithm for DEC-POMDP that uses the forward and backward Bellman
equations instead of the forward–backward algorithm from t = 0 to t = Tmax is called the
Bellman EM algorithm (BEM).

4.3. Comparison of EM and BEM

BEM is summarized as Algorithm 2. The M step in Algorithm 2 is almost the same as
that in Algorithm 1—only the E step is different. While the time complexity of the E step in
EM is O((|X ||Z|)2Tmax), that in BEM is O((|X ||Z|)3).

Algorithm 2 Bellman EM algorithm (BEM)

k← 0, Initialize θk.
while θk or J(θk) do not converge do

Calculate p(x′, z′|x, z; θk) by Equation (20).
//—E step—//
F(θk)← (I − γP(θk))

−1 p(νk)
V(θk)← ((I − γP(θk))

−1)Tr(πk)
//—M step—//
Update θk to θk+1 by Equations (9)–(11).
k← k + 1

end while
return θk

BEM can calculate F(x, z; θk) and V(x, z; θk) exactly. Moreover, BEM can be more
efficient than EM when the discount factor γ is close to 1 or the acceptable error bound
ε is small because Tmax needs to be large enough in these cases. However, when the
size of the state space |X | or that of the joint memory space |Z| is large, BEM cannot
always be more efficient than EM because BEM needs to calculate the inverse matrix
(I−γP(θk))

−1. To circumvent this shortcoming, we propose a new algorithm, the modified
Bellman EM algorithm (MBEM), to obtain F(x, z; θk) and V(x, z; θk) without calculating
the inverse matrix.
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5. Modified Bellman EM Algorithm
5.1. Forward and Backward Bellman Operators

We define the forward and backward Bellman operators as follows:

Aθ f (x, z) :=p0(x, z; ν) + γ ∑
x′ ,z′

p(x, z|x′, z′; θ) f (x′, z′), (33)

Bθv(x, z) :=r̄(x, z; π) + γ ∑
x′ ,z′

p(x′, z′|x, z; θ)v(x′, z′) (34)

where ∀ f , v : X ×Z → R. From the forward and backward Bellman equations, Aθ and Bθ
satisfy the following equations:

F(x, z; θ) = AθF(x, z; θ), (35)

V(x, z; θ) = BθV(x, z; θ). (36)

Thus, F(x, z; θk) and V(x, z; θk) are the fixed points of Aθ and Bθ, respectively. Aθ and Bθ
have the following useful property:

Proposition 3. Aθ and Bθ are contractive operators as follows:

‖Aθ f − Aθg‖1 ≤ γ‖ f − g‖1, (37)

‖Bθu− Bθv‖∞ ≤ γ‖u− v‖∞ (38)

where ∀ f , g, u, v : X ×Z → R.

Proof. See Appendix C.1.

Note that the norm is different between Equations (37) and (38). It is caused by the
difference of the time direction between Aθ and Bθ. While x′ and z′ are earlier state and
memory than x and z, respectively, in the forward Bellman operator Aθ, x′ and z′ are later
state and memory than x and z, respectively, in the backward Bellman operator Bθ.

We obtain F(x, z; θk) and V(x, z; θk) using Equations (35)–(38), as follows:

Proposition 4.

lim
L→∞

AL
θ f (x, z) = F(x, z; θ), (39)

lim
L→∞

BL
θv(x, z) = V(x, z; θ) (40)

where ∀ f , v : X ×Z → R.

Proof. See Appendix C.2.

Therefore, it is shown that F(x, z; θk) and V(x, z; θk) can be calculated by applying the
forward and backward Bellman operators, Aθ and Bθ, to arbitrary initial functions, f (x, z)
and v(x, z), infinite times.

5.2. Modified Bellman EM Algorithm (MBEM)

The calculation of the forward and backward Bellman equations in BEM can be
replaced by that of the forward and backward Bellman operators. In this paper, BEM that
uses the forward and backward Bellman operators instead of the forward and backward
Bellman equations is called modified Bellman EM algorithm (MBEM).
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5.3. Comparison of EM, BEM, and MBEM

Since MBEM does not need the inverse matrix, MBEM can be more efficient than BEM
when the size of the state space |X | and that of the joint memory space |Z| are large. Thus,
MBEM resolves the drawback of BEM.

On the other hand, MBEM has the same problem as EM. MBEM calculates Aθk
and

Bθk
infinite times to obtain F(x, z; θk) and V(x, z; θk). However, since it is practically

impossible to calculate Aθk
and Bθk

infinite times, the calculation of Aθk
and Bθk

needs to
be terminated after Lmax times, where Lmax is finite. In this case, F(x, z; θk) and V(x, z; θk)
are approximated as follows:

F(x, z; θk) =A∞
θk

f (x, z) ≈ ALmax
θk

f (x, z), (41)

V(x, z; θk) =B∞
θk

v(x, z) ≈ BLmax
θk

v(x, z). (42)

Lmax needs to be large enough to reduce the approximation errors of F(x, z; θk) and
V(x, z; θk), which impairs the computational efficiency of MBEM. Thus, MBEM can po-
tentially suffer from the same problem as EM. However, we can theoretically show that
MBEM is more efficient than EM by comparing Tmax and Lmax under the condition that
the approximation errors of F(x, z; θk) and V(x, z; θk) are smaller than the acceptable error
bound ε.

When f (x, z) = p0(x, z; νk) and v(x, z) = r̄(x, z; πk), Equations (41) and (42) can be
calculated as follows:

ALmax
θk

f (x, z) =
Lmax

∑
t=0

γt pt(x, z; θ), (43)

BLmax
θk

v(x, z) =
Lmax

∑
t=0

γt p0(o = 1|x, z, T = t; θ) (44)

which are the same with Equations (23) and (24), respectively. Thus, in this case, Lmax = Tmax,
and the computational efficiency of MBEM is the same as that of EM. However, MBEM has
two useful properties that EM does not have, and therefore, MBEM can be more efficient
than EM. In the following, we explain these properties in more detail.

The first property of MBEM is the contractibility of the forward and backward Bell-
man operators, Aθk

and Bθk
. From the contractibility of the Bellman operators, Lmax is

determined adaptively as follows:

Proposition 5. We set an acceptable error bound ε > 0. If∥∥∥AL
θk

f − AL−1
θk

f
∥∥∥

1
<

1− γ

γ
ε, (45)∥∥∥BL

θk
v− BL−1

θk
v
∥∥∥

∞
<

1− γ

γ
ε (46)

are satisfied, then ∥∥∥F(x, z; θk)− AL
θk

f (x, z; θk)
∥∥∥

∞
< ε, (47)∥∥∥V(x, z; θk)− BL

θk
v(x, z; θk)

∥∥∥
∞
< ε (48)

are satisfied.
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Proof. See Appendix C.3.

Tmax is always constant for every E step, Tmax = d(log(1− γ)ε)/ log γ− 1e. Thus,
even if the approximation errors of F(x, z; θk) and V(x, z; θk) are smaller than ε when
t� Tmax, the forward–backward algorithm cannot be terminated until t = Tmax because
the approximation errors of F(x, z; θk) and V(x, z; θk) cannot be evaluated in the forward–
backward algorithm.

Lmax is adaptively determined depending on AL
θk

f (x, z) and BL
θk

v(x, z). Thus, if

AL
θk

f (x, z) and BL
θk

v(x, z) are close enough to F(x, z; θk) and V(x, z; θk), the E step of

MBEM can be terminated because the approximation errors of F(x, z; θk) and V(x, z; θk) can
be evaluated owing to the contractibility of the forward and backward Bellman operators.

Indeed, when f (x, z) = p0(x, z; νk) and v(x, z) = r̄(x, z; πk), MBEM is more efficient
than EM as follows:

Proposition 6. When f (x, z) = p0(x, z; νk) and v(x, z) = r̄(x, z; πk), Lmax ≤ Tmax is satisfied.

Proof. See Appendix C.4.

The second property of MBEM is the arbitrariness of the initial functions, f (x, z) and
v(x, z). In MBEM, the initial functions, f (x, z) and v(x, z), converge to the fixed points,
F(x, z; θk) and V(x, z; θk), by applying the forward and backward Bellman operators, Aθk
and Bθk

, Lmax times. Therefore, if the initial functions, f (x, z) and v(x, z), are close to the
fixed points, F(x, z; θk) and V(x, z; θk), Lmax can be reduced. Then, the problem is what
kind of the initial functions are close to the fixed points.

We suggest that F(x, z; θk−1) and V(x, z; θk−1) are set as the initial functions, f (x, z)
and v(x, z). In most cases, θk−1 is close to θk. When θk−1 is close to θk, it is expected that
F(x, z; θk−1) and V(x, z; θk−1) are close to F(x, z; θk) and V(x, z; θk). Therefore, by setting
F(x, z; θk−1) and V(x, z; θk−1) as the initial functions f (x, z) and v(x, z), respectively, Lmax
is expected to be reduced. Hence, MBEM can be more efficient than EM because MBEM
can utilize the results of the previous iteration, F(x, z; θk−1) and V(x, z; θk−1), by this
arbitrariness of the initial functions.

However, it is unclear how small Lmax can be compared to Tmax by setting F(x, z; θk−1)
and V(x, z; θk−1) as the initial functions f (x, z) and v(x, z). Therefore, numerical eval-
uations are needed. Moreover, in the first iteration, we cannot use the results of the
previous iteration, F(x, z; θk−1) and V(x, z; θk−1). Therefore, in the first iteration, we set
f (x, z) = p0(x, z; νk) and v(x, z) = r̄(x, z; πk) because these initial functions guarantee
Lmax ≤ Tmax from Proposition 6.

MBEM is summarized as Algorithm 3. The M step of Algorithm 3 is exactly the same
as that of Algorithms 1 and 2, and only the E step is different. The time complexity of
the E step in MBEM is O((|X ||Z|)2Lmax). MBEM does not use the inverse matrix, which
resolves the drawback of BEM. Moreover, MBEM can reduce Lmax by the contractibility of
the Bellman operators and the arbitrariness of the initial functions, which can resolve the
drawback of EM.
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Algorithm 3 Modified Bellman EM algorithm (MBEM)

k← 0, Initialize θk.
F(x, z; θk−1)← p0(x, z; νk)
V(x, z; θk−1)← r̄(x, z; πk)
while θk or J(θk) do not converge do

Calculate p(x′, z′|x, z; θk) by Equation (20).
//—E step—//
F0(x, z)← F(x, z; θk−1)
V0(x, z)← F(x, z; θk−1)
L← 0
repeat

FL+1(x, z)← Aθk
FL(x, z)

VL+1(x, z)← Bθk
VL(x, z)

L← L + 1
until max{‖FL − FL−1‖1, ‖VL −VL−1‖∞} < 1−γ

γ ε

//—M step—//
Update θk to θk+1 by Equations (9)–(11).
k← k + 1

end while
return θk

6. Summary of EM, BEM, and MBEM

EM, BEM, and MBEM are summarized as in Table 1. The M step is exactly the same
among these algorithms, and only the E step is different:

• EM obtains F(x, z; θk) and V(x, z; θk) by calculating the forward–backward algorithm
up to Tmax. Tmax needs to be large enough to reduce the approximation errors of
F(x, z; θk) and V(x, z; θk), which impairs the computational efficiency.

• BEM obtains F(x, z; θk) and V(x, z; θk) by solving the forward and backward Bellman
equations. BEM can be more efficient than EM because BEM calculates the forward
and backward Bellman equations instead of the forward–backward algorithm up to
Tmax. However, BEM cannot always be more efficient than EM when the size of the
state |X | or that of the memory |Z| is large because BEM calculates an inverse matrix
to solve the forward and backward Bellman equations.

• MBEM obtains F(x, z; θk) and V(x, z; θk) by applying the forward and backward
Bellman operators, Aθk

and Bθk
, to the initial functions, f (x, z) and v(x, z), Lmax

times. Since MBEM does not need to calculate the inverse matrix, MBEM may be more
efficient than EM even when the size of problems is large, which resolves the drawback
of BEM. Although Lmax needs to be large enough to reduce the approximation errors
of F(x, z; θk) and V(x, z; θk), which is the same problem as EM, MBEM can evaluate
the approximation errors more tightly owing to the contractibility of Aθk

and Bθk
,

and can utilize the results of the previous iteration, F(x, z; θk−1) and V(x, z; θk−1), as
the initial functions, f (x, z) and v(x, z). These properties enable MBEM to be more
efficient than EM.

Table 1. Summary of EM, BEM, and MBEM.

EM Bellman EM (BEM) Modified Bellman EM (MBEM)

E step

forward–backward algorithm
F(x, z; θk) ≈ ∑Tmax

t=0 γtαt(x, z; θk)

V(x, z; θk) ≈ ∑Tmax
t=0 γtβt(x, z; θk)

O((|X ||Z|)2Tmax)

forward and backward Bellman equations
F(θk) = (I − γP(θk))

−1 p(νk)
V(θk) = ((I − γP(θk))

−1)Tr(πk)
O((|X ||Z|)3)

forward and backward Bellman operators
F(x, z; θk) ≈ ALmax

θk
f (x, z)

V(x, z; θk) ≈ BLmax
θk

v(x, z)

O((|X ||Z|)2Lmax)

M step Equations (9)–(11)
O((|X ||Z|)2|Y||A|)

Equations (9)–(11)
O((|X ||Z|)2|Y||A|)

Equations (9)–(11)
O((|X ||Z|)2|Y||A|)
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7. Numerical Experiment

In this section, we compare the performance of EM, BEM, and MBEM using numerical
experiments of four benchmarks for DEC-POMDP: broadcast [40], recycling robot [15],
wireless network [27], and box pushing [41]. Detailed settings such as the state transition
probability, the observation probability, and the reward function are described at http:
//masplan.org/problem_domains, accessed on 22 June 2020. We implement EM, BEM,
and MBEM in C++.

Figure 3 shows the experimental results. In all the experiments, we set the number
of agent N = 2, the discount factor γ = 0.99, the upper bound of the approximation error
ε = 0.1, and the size of the memory available to the ith agent |Z i| = 2. The size of the
state |X |, the action |Ai|, and the observation |Y i| are different for each problem, which
are shown on each panel. We note that the size of the state |X | is small in the broadcast
(a,e,i) and the recycling robot (b,f,j), whereas it is large in the wireless network (c,g,k) and
the box pushing (d,h,l).
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Figure 3. Experimental results of four benchmarks for DEC-POMDP: (a,e,i) broadcast; (b,f,j) recycling robot; (c,g,k) wireless
network; (d,h,l) box pushing. (a–d) The expected return J(θk) as a function of the computational time. (e–h) The expected
return J(θk) as a function of the iteration k. (i–l) Tmax and Lmax as functions of the iteration k. In all the experiments, we set
the number of agent N = 2, the discount factor γ = 0.99, the upper bound of the approximation error ε = 0.1, and the size
of the memory available to the ith agent |Z i| = 2. The size of the state |X |, the action |Ai|, and the observation |Y i| are
different for each problem, which are shown on each panel.

While the expected return J(θk) with respect to the computational time is different
between the algorithms (a–d), that with respect to the iteration k is almost the same (e–h).
This is because the M step of these algorithms is exactly the same. Therefore, the difference
of the computational time is caused by the computational time of the E step.

The convergence of BEM is faster than that of EM in the small state size problems, i.e.,
Figure 3a,b. This is because EM calculates the forward–backward algorithm from t = 0 to
t = Tmax, where Tmax is large. On the other hand, the convergence of BEM is slower than
that of EM in the large state size problems, i.e., Figure 3c,d. This is because BEM calculates
the inverse matrix.

http://masplan.org/problem_domains
http://masplan.org/problem_domains
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The convergence of MBEM is faster than that of EM in all the experiments in
Figure 3a–d. This is because Lmax is smaller than Tmax as shown in Figure 3i–l. While EM
requires about 1000 calculations of the forward–backward algorithm to guarantee that the
approximation error of F(x, z; θk) and V(x, z; θk) is smaller than ε, MBEM requires only
about 10 calculations of the forward and backward Bellman operators. Thus, MBEM is
more efficient than EM. The reason why Lmax is smaller than Tmax is that MBEM can utilize
the results of the previous iteration, F(x, z; θk−1) and V(x, z; θk−1), as the initial functions,
f (x, z) and v(x, z). It is shown from Lmax and Tmax in the first iteration. In the first iteration
k = 0, Lmax is almost the same with Tmax because F(x, z; θk−1) and V(x, z; θk−1) cannot be
used as the initial functions f (x, z) and v(x, z) in the first iteration. On the other hand, in
the subsequent iterations k ≥ 1, Lmax is much smaller than Tmax because MBEM can utilize
the results of the previous iteration, F(x, z; θk−1) and V(x, z; θk−1), the initial functions
f (x, z) and v(x, z).

8. Conclusions and Future Works

In this paper, we propose the Bellman EM algorithm (BEM) and the modified Bellman
EM algorithm (MBEM) by introducing the forward and backward Bellman equations into
the EM algorithm for DEC-POMDP. BEM can be more efficient than EM because BEM
does not calculate the forward–backward algorithm up to the infinite horizon. However,
BEM cannot always be more efficient than EM when the size of the state or that of the
memory is large because BEM calculates the inverse matrix. MBEM can be more efficient
than EM regardless of the size of problems because MBEM does not calculate the inverse
matrix. Although MBEM needs to calculate the forward and backward Bellman operators
infinite times, MBEM can evaluate the approximation errors more tightly owing to the
contractibility of these operators, and can utilize the results of the previous iteration owing
to the arbitrariness of initial functions, which enables MBEM to be more efficient than EM.
We verified this theoretical evaluation by the numerical experiment, which demonstrates
that the convergence of MBEM is much faster than that of EM regardless of the size
of problems.

Our algorithms still leave room for further improvements that deal with the real-world
problems, which often have a large discrete or continuous state space. Some of them may
be addressed by the advanced techniques of the Bellman equations [1–4]. For example,
MBEM may be accelerated by the Gauss–Seidel method [2]. The convergence rate of the E
step of MBEM is given by the discount factor γ, which is the same as that of EM. However,
the Gauss–Seidel method modifies the Bellman operators, which allows the convergence
rate of MBEM to be smaller than the discount factor γ. Therefore, even if F(x, z; θk−1)
and V(x, z; θk−1) are not close to F(x, z; θk) and V(x, z; θk), MBEM may be more efficient
than EM by the Gauss–Seidel method. Moreover, in DEC-POMDP with a large discrete
or continuous state space, F(x, z; θk) and V(x, z; θk) cannot be expressed exactly because
it requires a large space complexity. This problem may be resolved by the value function
approximation [34–36]. The value function approximation approximates F(x, z; θk) and
V(x, z; θk) using parametric models such as neural networks. The problem is how to find
the optimal approximate parameters. The value function approximation finds them by the
Bellman equation. Therefore, the potential extensions of our algorithms may lead to the
applications to the real-world DEC-POMDP problems.
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Appendix A. Proof in Section 3

Appendix A.1. Proof of Theorem 1

J(θ) can be calculated as follows:

J(θ) :=Eθ

[
∞

∑
t=0

γtr(xt, at)

]

= ∑
x0:∞ ,a0:∞

p(x0:∞, a0:∞; θ)
∞

∑
t=0

γtr(xt, at) =
∞

∑
t=0

γt ∑
xt ,at

p(xt, at; θ)r(xt, at)

=(1− γ)−1
∞

∑
T=0

p(T) ∑
xT ,aT

p(xT , aT ; θ)[(rmax − rmin)p(o = 1|xT , aT) + rmin]

=(1− γ)−1[(rmax − rmin)p(o = 1; θ) + rmin] (A1)

where x0:∞ := {x0, ..., x∞} and a0:∞ := {a0, ..., a∞}.

Appendix A.2. Proof of Proposition 1

In order to prove Proposition 1, we calculate Q(θ; θk). It can be calculated as follows:
Q(θ; θk) :=Eθk

[ log p(o = 1, x0:T , y0:T , z0:T , a0:T , T; θ)|o = 1]

=Eθk

[
N

∑
i=1

{
T

∑
t=0

log πi(ai
t|zi

t) +
T

∑
t=1

log λi(zi
t|zi

t−1, yi
t) + log νi(zi

0)

}∣∣∣∣∣o = 1

]
+ C

=
N

∑
i=1

(
Q(πi; θk) + Q(λi; θk) + Q(νi; θk)

)
+ C, (A2)

where

Q(πi; θk) := Eθk

[
T

∑
t=0

log πi(ai
t|zi

t)

∣∣∣∣∣o = 1

]
, (A3)

Q(λi; θk) := Eθk

[
T

∑
t=1

log λi(zi
t|zi

t−1, yi
t)

∣∣∣∣∣o = 1

]
, (A4)

Q(νi; θk) := Eθk

[
log νi(zi

0)
∣∣∣o = 1

]
. (A5)

C is a constant independent of θ.

Proposition A1 ([16]). Q(πi; θk), Q(λi; θk), and Q(νi; θk) are calculated as follows:

Q(πi; θk) ∝ ∑
a,z

πk(a|z) log πi(ai|zi) ∑
x,x′ ,z′

p(x′, z′|x, z, a; λk)F(x, z; θk)(r̄(x, a) + γV(x′, z′; θk)), (A6)

Q(λi; θk) ∝ ∑
z′ ,z,y′

λk(z
′|z, y′) log λi(zi′ |zi, yi′) ∑

x′ ,x
p(x′, y′|x, z; πk)F(x, z; θk)V(x′, z′; θk), (A7)

Q(νi; θk) ∝ ∑
z

p0(z; νn) log νi(zi)∑
x

p0(x)V(x, z; θk). (A8)

F(x, z; θk) and V(x, z; θk) are defined by Equations (12) and (13).

Proof. Firstly, we prove Equation (A6). Q(πi; θk) can be calculated as follows:
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Q(πi; θk) :=Eθk

[
T

∑
t=0

log πi(ai
t|zi

t)

∣∣∣∣∣o = 1

]

=
1

p(o = 1; θk)

∞

∑
T=0

∑
x0:T ,y0:T ,z0:T ,a0:T

p(o = 1, x0:T , y0:T , z0:T , a0:T , T; θk)
T

∑
t=0

log πi(ai
t|zi

t)

=
1

p(o = 1; θk)

∞

∑
T=0

T

∑
t=0

∑
xt ,zt ,at

p(o = 1, xt, zt, at, T; θk) log πi(ai
t|zi

t)

=
1

p(o = 1; θk)

∞

∑
T=0

T

∑
t=0

∑
xt ,zt ,at

p(T)pt(xt, zt; θk)πk(at|zt)pt(o = 1|xt, zt, at, T; θk) log πi(ai
t|zi

t)

=
1

p(o = 1; θk)

∞

∑
T=0

T

∑
t=0

∑
x,z,a

p(T)pt(x, z; θk)πk(a|z)pt(o = 1|x, z, a, T; θk) log πi(ai|zi)

=
1

p(o = 1; θk)
∑

x,z,a
πk(a|z) log πi(ai|zi)

∞

∑
T=0

p(T)
T

∑
t=0

pt(x, z; θk)pt(o = 1|x, z, a, T; θk). (A9)

Since ∑∞
T=0 ∑T

t=0 ... = ∑T
t=0 ∑∞

T=t ..., we have

Q(πi; θk) =
1

p(o = 1; θk)
∑

x,z,a
πk(a|z) log πi(ai|zi)

∞

∑
t=0

pt(x, z; θk)
∞

∑
T=t

p(T)pt(o = 1|x, z, a, T; θk)

=
1− γ

p(o = 1; θk)
∑

x,z,a
πk(a|z) log πi(ai|zi)

∞

∑
t=0

pt(x, z; θk)
∞

∑
T=t

γT pt(o = 1|x, z, a, T; θk). (A10)

Since pt(o = 1|x, z, a, T; θk) = p0(o = 1|x, z, a, T − t; θk),

Q(πi; θk) =
1− γ

p(o = 1; θk)
∑

x,z,a
πk(a|z) log πi(ai|zi)

∞

∑
t=0

pt(x, z; θk)
∞

∑
T=t

γT p0(o = 1|x, z, a, T − t; θk)

=
1− γ

p(o = 1; θk)
∑

x,z,a
πk(a|z) log πi(ai|zi)

∞

∑
t=0

γt pt(x, z; θk)
∞

∑
T=0

γT p0(o = 1|x, z, a, T; θk)

=
1− γ

p(o = 1; θk)
∑

x,z,a
πk(a|z) log πi(ai|zi)F(x, z; θk)

∞

∑
T=0

γT p0(o = 1|x, z, a, T; θk). (A11)

∑∞
T=0 γT p0(o = 1|x, z, a, T; θk) can be calculated as follows:

∞

∑
T=0

γT p0(o = 1|x, z, a, T; θk) =r̄(x, a) +
∞

∑
T=1

γT p0(o = 1|x, z, a, T; θk)

=r̄(x, a) +
∞

∑
T=1

γT ∑
x′ ,z′

p1(o = 1|x′, z′, T; θk)p(x′, z′|x, z, a; λk)

=r̄(x, a) + γ ∑
x′ ,z′

p(x′, z′|x, z, a; λk)
∞

∑
T=0

γT p0(o = 1|x′, z′, T; θk)

=r̄(x, a) + γ ∑
x′ ,z′

p(x′, z′|x, z, a; λk)V(x′, z′; θk). (A12)

From Equations (A11) and (A12), we obtain

Q(πi; θk) =
1− γ

p(o = 1; θk)
∑
a,z

πk(a|z) log πi(ai|zi) ∑
x,x′ ,z′

p(x′, z′|x, z, a; λk)F(x, z; θk)(r̄(x, a) + γV(x′, z′; θk)). (A13)

Therefore, Equation (A6) is proved.

Secondly, we prove Equation (A7). Q(λi; θk) can be calculated as follows:
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Q(λi; θk) :=Eθk

[
T

∑
t=1

log λi(zi
t|zi

t−1, yi
t)

∣∣∣∣∣o = 1

]

=
1

p(o = 1; θk)

∞

∑
T=1

∑
x0:T ,y0:T ,z0:T ,a0:T

p(o = 1, x0:T , y0:T , z0:T , a0:T , T; θk)
T

∑
t=1

log λi(zi
t|zi

t−1, yi
t)

=
1

p(o = 1; θk)

∞

∑
T=1

T

∑
t=1

∑
xt−1:t ,yt ,zt−1:t

p(o = 1, xt−1:t, yt, zt−1:t, T; θk) log λi(zi
t|zi

t−1, yi
t)

=
1

p(o = 1; θk)

∞

∑
T=1

T

∑
t=1

∑
xt−1:t ,yt ,zt−1:t

p(T)pt−1(xt−1, zt−1; θk)p(xt, yt|xt−1, zt−1; πk)

× λk(zt|zt−1, yt)pt(o = 1|xt, zt, T; θk) log λi(zi
t|zi

t−1, yi
t)

=
1

p(o = 1; θk)
∑

x,x′ ,y′ ,z,z′
λk(z

′|z, y′) log λi(zi′ |zi, yi′)p(x′, y′|x, z; πk)

×
∞

∑
T=1

p(T)
T

∑
t=1

pt−1(x, z; θk)pt(o = 1|x′, z′, T; θk). (A14)

Since ∑∞
T=1 ∑T

t=1 ... = ∑∞
t=1 ∑∞

T=t ..., we have

Q(λi; θk) =
1

p(o = 1; θk)
∑

x,x′ ,y′ ,z,z′
λk(z

′|z, y′) log λi(zi′ |zi, yi′)p(x′, y′|x, z; πk)

×
∞

∑
t=1

pt−1(x, z; θk)
∞

∑
T=t

p(T)pt(o = 1|x′, z′, T; θk)

=
1− γ

p(o = 1; θk)
∑

x,x′ ,y′ ,z,z′
λk(z

′|z, y′) log λi(zi′ |zi, yi′)p(x′, y′|x, z; πk)

×
∞

∑
t=1

pt−1(x, z; θk)
∞

∑
T=t

γT pt(o = 1|x′, z′, T; θk). (A15)

Since pt(o = 1, x, z, T; θk) = p0(o = 1|x, z, T − t; θk),

Q(λi; θk) =
1− γ

p(o = 1; θk)
∑

x,x′ ,y′ ,z,z′
λk(z

′|z, y′) log λi(zi′ |zi, yi′)p(x′, y′|x, z; πk)

×
∞

∑
t=1

pt−1(x, z; θk)
∞

∑
T=t

γT p0(o = 1|x′, z′, T − t; θk)

=
(1− γ)γ

p(o = 1; θk)
∑

x,x′ ,y′ ,z,z′
λk(z

′|z, y′) log λi(zi′ |zi, yi′)p(x′, y′|x, z; πk)

×
∞

∑
t=0

γt pt(x, z; θk)
∞

∑
T=0

γT p0(o = 1|x′, z′, T; θk)

=
(1− γ)γ

p(o = 1; θk)
∑

x,x′ ,y′ ,z,z′
λk(z

′|z, y′) log λi(zi′ |zi, yi′)p(x′, y′|x, z; πk)F(x, z; θk)V(x′, z′; θk). (A16)

Therefore, Equation (A7) is proved.

Finally, we prove Equation (A8). Q(νi; θk) can be calculated as follows:
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Q(νi; θk) :=Eθk

[
log νi(zi

0)
∣∣∣o = 1

]
=

1
p(o = 1; θk)

∞

∑
T=0

∑
x0:T ,y0:T ,z0:T ,a0:T

p(o = 1, x0:T , y0:T , z0:T , a0:T , T; θk) log νi(zi
0)

=
1

p(o = 1; θk)

∞

∑
T=0

∑
x0,z0

p(o = 1, x0, z0, T; θk) log νi(zi
0)

=
1

p(o = 1; θk)

∞

∑
T=0

∑
x0,z0

p(T)p0(x0)νk(z0)p0(o = 1|x0, z0, T; θk) log νi(zi
0)

=
1

p(o = 1; θk)

∞

∑
T=0

∑
x,z

p(T)p0(x)νk(z)p0(o = 1|x, z, T; θk) log νi(zi)

=
1

p(o = 1; θk)
∑
z

νk(z) log νi(zi)∑
x

p0(x)
∞

∑
T=0

p(T)p0(o = 1|x, z, T; θk)

=
1− γ

p(o = 1; θk)
∑
z

νk(z) log νi(zi)∑
x

p0(x)V(x, z; θk). (A17)

Therefore, Equation (A8) is proved.

Equations (9)–(11) can be calculated from Equations (A6)–(A8) using the Lagrange
multiplier method [16]. Therefore, Proposition 1 is proved.

Appendix A.3. Proof of Proposition 2
The left-hand side of Equation (27) can be calculated as follows:∥∥∥∥∥F(x, z; θk)−

Tmax

∑
t=0

γtαt(x, z; θk)

∥∥∥∥∥
∞

=

∥∥∥∥∥ ∞

∑
t=Tmax+1

γtαt(x, z; θk)

∥∥∥∥∥
∞

≤
∞

∑
t=Tmax+1

γt‖αt(x, z; θk)‖∞ =
∞

∑
t=Tmax+1

γt =
γTmax+1

1− γ
. (A18)

Therefore, if

γTmax+1

1− γ
< ε (A19)

is satisfied, Equation (27) is satisfied. From Equation (A19), we obtain Equation (26).
Therefore, Equation (26)⇒Equation (27) is proved. Equation (26)⇒Equation (28) can be
proved in the same way.

Appendix B. Proof in Section 4

Proof of Theorem 2

F(x, z; θ) can be calculated as follows:

F(x, z; θ) :=
∞

∑
t=0

γt pt(x, z; θ)

=p0(x, z; ν) +
∞

∑
t=1

γt pt(x, z; θ)

=p0(x, z; ν) +
∞

∑
t=1

γt ∑
x′ ,z′

p(x, z|x′, z′; θ)pt−1(x′, z′; θ)

=p0(x, z; ν) + γ ∑
x′ ,z′

p(x, z|x′, z′; θ)
∞

∑
t=1

γt−1 pt−1(x′, z′; θ)
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=p0(x, z; ν) + γ ∑
x′ ,z′

p(x, z|x′, z′; θ)F(x′, z′; θ). (A20)

Therefore, Equation (29) is proved. Equation (30) can be proved in the same way.

Appendix C. Proof in Section 5

Appendix C.1. Proof of Proposition 3

The left-hand side of Equation (37) can be calculated as follows:

‖Aθ f − Aθg‖1 = γ‖P(θ) f − P(θ)g‖1

≤ γ‖P(θ)‖1‖ f − g‖1

= γ‖ f − g‖1. (A21)

where Pij(θ) := p((x′, z′) = i|(x, z) = j; θ), fi := f ((x, z) = i), and gi := g((x, z) = i).
Equation (38) can be proved in the same way.

Appendix C.2. Proof of Proposition 4

We prove Equation (39) by showing limL→∞ ‖F(θ)− AL
θ f ‖1 = 0. Since F(x, z; θ) is

the fixed point of Aθ,

‖F(θ)− AL
θ f ‖1 = ‖AL

θF− AL
θ f ‖1. (A22)

From the contractibility of Aθ,

‖AL
θF(θ)− AL

θ f ‖1 ≤ γL‖F(θ)− f ‖1. (A23)

Since ‖F(θ)− f ‖1 is finite, the right-hand side is 0 when L→ ∞. Hence,

lim
L→∞

‖F(θ)− AL
θ f ‖1 = 0 (A24)

is satisfied, and Equation (39) is proved. Equation (40) can be proved in the same way.

Appendix C.3. Proof of Proposition 5

From the definition of the norm,∥∥∥F(θk)− AL
θk

f
∥∥∥

∞
≤
∥∥∥F(θk)− AL

θk
f
∥∥∥

1
. (A25)

The right-hand side can be calculated as follows:∥∥∥F(θk)− AL
θk

f
∥∥∥

1
≤
∥∥∥F(θk)− AL+1

θk
f
∥∥∥

1
+
∥∥∥AL+1

θk
f − AL

θk
f
∥∥∥

1

=
∥∥∥Aθk

F(θk)− AL+1
θk

f
∥∥∥

1
+
∥∥∥AL+1

θk
f − AL

θk
f
∥∥∥

1

≤γ
∥∥∥F(θk)− AL

θk
f
∥∥∥

1
+ γ

∥∥∥AL
θk

f − AL−1
θk

f
∥∥∥

1
. (A26)

From this inequality, we have∥∥∥F(θk)− AL
θk

f
∥∥∥

1
≤ γ

1− γ

∥∥∥AL
θk

f − AL−1
θk

f
∥∥∥

1
. (A27)

Therefore, if ‖AL
θk

f − AL−1
θk

f ‖1 < (1− γ)γ−1ε is satisfied,∥∥∥F(θk)− AL
θk

f
∥∥∥

∞
< ε (A28)

holds. Equation (48) is proved in the same way.
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Appendix C.4. Proof of Proposition 6

When f (x, z) = p0(x, z; νk) and v(x, z) = r̄(x, z; πk), the termination conditions of
MBEM can be calculated as follows:∥∥∥AL

θk
f − AL−1

θk
f
∥∥∥

1
≤ γL−1

∥∥∥Aθk
f − f

∥∥∥
1
= γL−1‖γP(θk)p(νk)‖1 ≤ γL‖P(θk)‖1‖p(νk)‖1 = γL, (A29)∥∥∥BL

θk
v− BL−1

θk
v
∥∥∥

∞
≤ γL. (A30)

The calculation of ‖BL
θk

v− BL−1
θk

v‖∞ is omitted because it is the same as that of ‖AL
θk

f −
AL−1

θk
f ‖1. If

γL <
1− γ

γ
ε

(
⇒ L >

log(1− γ)ε

log γ
− 1
)

(A31)

is satisfied,

‖AL
θk

f − AL−1
θk

f ‖1 < (1− γ)γ−1ε, (A32)

‖BL
θk

v− BL−1
θk

v‖∞ < (1− γ)γ−1ε (A33)

holds. Thus, Lmax satisfies

Lmax ≤
⌈

log(1− γ)ε

log γ
− 1
⌉

. (A34)

d·e : R → Z is defined by dxe := min{n ∈ Z|n > x}. From Proposition 2, the minimum
Tmax is given by the following equation:

Tmax =

⌈
log(1− γ)ε

log γ
− 1
⌉

. (A35)

Therefore, Lmax ≤ Tmax holds.

Appendix D. A Note on the Algorithm Proposed by Song et al.

In this section, we show that a parameter dependency is overlooked in the algorithm
of [32]. We outline the derivation of the algorithm in [32] and discuss the parameter
dependency. Since we use the notation in this paper, it is recommended to read the full
paper before reading this section.

Firstly, we calculate the expected return J(θ) to derive the algorithm in [32]. Since [32]
considers the case where ν(z) = δz,z0 , we also consider the same case in this section. The
expected return J(θ) can be calculated as follows:

J(θ) :=Eθ

[
∞

∑
t=0

γtr(xt, at)

]

= ∑
x0,a0

p(x0)π(a0|z0)

r(x0, a0) + γ ∑
x1,y1,z1

p(x1|x0, a0)p(y1|x1, a0)λ(z1|z0, y1)V(x1, z1; θ)

. (A36)

V(x, z; θ) is the value function, which is defined as follows:

V(x, z; θ) := Eθ

[
∞

∑
t=0

γtr(xt, at)

∣∣∣∣∣x0 = x, z0 = z

]
. (A37)
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Equation (A36) can be rewritten as:

J(θ) =∑
ai

0

πi(ai
0|zi

0)r̃(z
i
0, ai

0; π−i) + ∑
ai

0,yi
1,zi

1

πi(ai
0|zi

0)λ
i(zi

1|zi
0, yi

1)Ṽ(zi
0, ai

0, yi
1, zi

1; θ) (A38)

where

r̃(zi
0, ai

0; π−i) := ∑
x0,a−i

0

p(x0)π
−i(a−i

0 |z
−i
0 )r(x0, a0), (A39)

Ṽ(zi
0, ai

0, yi
1, zi

1; θ)

:= γ ∑
x0,a−i

0 ,x1,y−i
1 ,z−i

1

p(x0)π
−i(a−i

0 |z
−i
0 )p(x1|x0, a0)p(y1|x1, a0)λ

−i(z−i
1 |z

−i
0 , y−i

1 )V(x1, z1; θ). (A40)

Maximizing J(θ) is equivalent to maximizing log J(θ), and log J(θ) can be calculated as
follows:

log J(θ) = log

∑
ai

0

η(zi
0, ai

0; θk)
πi(ai

0|zi
0)r̃(z

i
0, ai

0; π−i)

η(zi
0, ai

0; θk)

+ ∑
ai

0,yi
1,zi

1

ρ(zi
0, ai

0, yi
1, zi

1; θk)
πi(ai

0|zi
0)λ

i(zi
1|zi

0, yi
1)Ṽ(zi

0, ai
0, yi

1, zi
1; θ)

ρ(zi
0, ai

0, yi
1, zi

1; θk)

 (A41)

where

η(zi
0, ai

0; θk) =
πi

k(ai
0|zi

0)r̃(z
i
0, ai

0; π−i
k )

ξ(zi
0; θk)

, (A42)

ρ(zi
0, ai

0, yi
1, zi

1; θk) =
πi

k(ai
0|zi

0)λ
i
k(z

i
1|zi

0, yi
1)Ṽ(zi

0, ai
0, yi

1, zi
1; θk)

ξ(zi
0; θk)

, (A43)

ξ(zi
0; θk) = ∑

ai
0

πi
k(ai

0|zi
0)r̃(z

i
0, ai

0; π−i
k ) + ∑

ai
0,yi

1,zi
1

πi
k(ai

0|zi
0)λ

i
k(z

i
1|zi

0, yi
1)Ṽ(zi

0, ai
0, yi

1, zi
1; θk). (A44)

By the Jensen’s inequality, Equation (A41) can be calculated as follows:

log J(θ) ≥∑
ai

0

η(zi
0, ai

0; θk) log

{
πi(ai

0|zi
0)r̃(z

i
0, ai

0; π−i)

η(zi
0, ai

0; θk)

}

+ ∑
ai

0,yi
1,zi

1

ρ(zi
0, ai

0, yi
1, zi

1; θk) log

{
πi(ai

0|zi
0)λ

i(zi
1|zi

0, yi
1)Ṽ(zi

0, ai
0, yi

1, zi
1; θ)

ρ(zi
0, ai

0, yi
1, zi

1; θk)

}
=: Q(θ; θk). (A45)

log J(θ) = Q(θ; θk) is satisfied when θ = θk.
Then, θk+1 is defined as follows:

θk+1 := arg max
θ

Q(θ; θk) (A46)

In this case, the following proposition holds:

Proposition A2 ([32]). log J(θk+1) ≥ log J(θk).

Proof. From Equation (A45), log J(θk+1) ≥ Q(θk+1; θk). From Equation (A46), Q(θk+1; θk) ≥
Q(θk; θk) = log J(θk). Therefore, log J(θk+1) ≥ log J(θk) is satisfied.

Therefore, since Equation (A46) monotonically increases J(θ), we can find θ∗, which
locally maximizes J(θ). This is the algorithm in [32].
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Then, the problem is how to calculate Equation (A46). It cannot be calculated an-
alytically because θ dependency of Ṽ(zi

0, ai
0, yi

1, zi
1; θ) is too complex. However, ref. [32]

overlooked the parameter dependency of r̃(zi
0, ai

0; π−i) and Ṽ(zi
0, ai

0, yi
1, zi

1; θ), and there-
fore, it calculated Equation (A46) as follows:

πi
k+1(ai

0|zi
0) =

η(zi
0, ai

0; θk) + ∑yi
1,zi

1
ρ(zi

0, ai
0, yi

1, zi
1; θk)

∑ai
0

[
η(zi

0, ai
0; θk) + ∑yi

1,zi
1

ρ(zi
0, ai

0, yi
1, zi

1; θk)
] , (A47)

λi
k+1(z

i
1|zi

0, yi
1) =

∑ai
0

ρ(zi
0, ai

0, yi
1, zi

1; θk)

∑ai
0,zi

1
ρ(zi

0, ai
0, yi

1, zi
1; θk)

. (A48)

However, Equations (A47) and (A48) do not correspond to Equation (A46), and therefore,
the algorithm as a whole may not always provide the optimal policy.
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