
entropy

Article

Improved Approach for the Maximum Entropy
Deconvolution Problem

Shay Shlisel † and Monika Pinchas *,†

����������
�������

Citation: Shlisel, S.; Pinchas, M.

Improved Approach for the

Maximum Entropy Deconvolution

Problem. Entropy 2021, 23, 547.

https://doi.org/10.3390/e23050547

Academic Editor: Gwanggil Jeon

Received: 29 March 2021

Accepted: 24 April 2021

Published: 28 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: c© 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electrical and Electronic Engineering, Ariel University, Ariel 40700, Israel; shayshlisel@gmail.com
* Correspondence: monika.pinchas@gmail.com or monikap@ariel.ac.il
† These authors contributed equally to this work.

Abstract: The probability density function (pdf) valid for the Gaussian case is often applied for
describing the convolutional noise pdf in the blind adaptive deconvolution problem, although it
is known that it can be applied only at the latter stages of the deconvolution process, where the
convolutional noise pdf tends to be approximately Gaussian. Recently, the deconvolutional noise
pdf was approximated with the Edgeworth Expansion and with the Maximum Entropy density
function for the 16 Quadrature Amplitude Modulation (QAM) input but no equalization perfor-
mance improvement was seen for the hard channel case with the equalization algorithm based on
the Maximum Entropy density function approach for the convolutional noise pdf compared with the
original Maximum Entropy algorithm, while for the Edgeworth Expansion approximation technique,
additional predefined parameters were needed in the algorithm. In this paper, the Generalized
Gaussian density (GGD) function and the Edgeworth Expansion are applied for approximating the
convolutional noise pdf for the 16 QAM input case, with no need for additional predefined param-
eters in the obtained equalization method. Simulation results indicate that improved equalization
performance is obtained from the convergence time point of view of approximately 15,000 symbols
for the hard channel case with our new proposed equalization method based on the new model for
the convolutional noise pdf compared to the original Maximum Entropy algorithm. By convergence
time, we mean the number of symbols required to reach a residual inter-symbol-interference (ISI) for
which reliable decisions can be made on the equalized output sequence.

Keywords: maximum entropy; deconvolution; blind equalization; edgeworth expansion; General-
ized Gaussian Distribution (GGD); Laplace integral

1. Introduction

In this paper, the blind adaptive deconvolution problem (blind adaptive equalizer)
is considered, where we observe the output of an unknown linear system (channel) from
which we want to recover its input, using an adaptive blind equalizer (adaptive linear
filter) [1–6]. The linear system (channel) is often modeled as a finite impulse response
(FIR) filter. Since the channel coefficients are unknown, the equalizer’s coefficients used in
the deconvolution process are only approximated values leading to an error signal that is
added to the source signal at the output of the deconvolution process. In the following, we
define this error signal throughout the paper as the convolutional noise. The Gaussian pdf
is often applied in the literature [1,7–11], for approximating the convolutional noise pdf in
calculating the conditional expectation of the source input given the equalized output se-
quence, based on Bayes rules. However, according to [8], the convolutional noise pdf tends
approximately to a Gaussian pdf only at the latter stages of the iterative deconvolution
process, where the equalizer has converged to a relative low residual ISI (where the convo-
lutional noise is relative low). In the early stages of the iterative deconvolution process, the
ISI is typically large with the result that the input sequence and the convolutional noise
sequence are strongly correlated and the convolutional noise pdf is more uniform than
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Gaussian [8,12]. Recently [3,4], the convolutional noise pdf was approximated with the
Maximum Entropy density approximation technique [1,2,13,14] with Lagrange multipliers
up to order four and with the Edgeworth Expansion series [15,16] up to order six, to obtain
the conditional expectation of the source signal (16 QAM input case), given the equalized
output via Bayes rules. However, as demonstrated in [3], the blind adaptive equalization
algorithm with the closed-form approximated expression for the conditional expectation
based on approximating the convolutional noise pdf with the Maximum Entropy den-
sity approximation technique, achieved for the hard channel case (named the channel4
case in [3]), the same equalization performance from the residual ISI and convergence
time point of view compared with the original blind adaptive equalization algorithm [1]
where the convolutional noise pdf was approximated with the Gaussian pdf to obtain
the closed-form approximated expression for the conditional expectation of the source
signal given the equalized output via Bayes rules. The equalization performance obtained
with the Edgeworth Expansion approach [4] was indeed improved compared with the
original blind adaptive equalization algorithm [1] where the convolutional noise pdf was
approximated with the Gaussian pdf to obtain the closed-form approximated expression
for the conditional expectation of the source signal given the equalized output via Bayes
rules. However, this equalization method [4] needed two additional predefined parameters
(additional to the predefined step-size parameter involved in the equalizer’s coefficients
update mechanism) in the algorithm. These two additional predefined parameters where
used in the approximation for the fourth and sixth moment of the convolutional noise.
Since the convolutional noise is channel dependent, the various moments of the convolu-
tional noise are also channel dependent which lead also to the two additional predefined
parameters in [4] to be channel dependent. As it was already implied earlier, the shape of
the convolutional noise pdf changes during the iterative deconvolution process. Thus, if we
could have an approximation for the convolutional pdf that is close to optimality, we could
have a closed-form approximated expression for the conditional expectation of the source
signal given the equalized output via Bayes rules that may lead to improved equalization
performance from the residual ISI and convergence time point of view compared to existing
methods based on the closed-form approximated conditional expectation expression [1,3,4].
According to [17–19], the GGD provides a flexible and suitable tool for data modeling and
simulation. The GGD [17,18] is based on a shape parameter that changes the pdf which may
have a Laplacian, or double exponential distribution, a Gaussian distribution or a uniform
distribution for a shape parameter equal to one, two and infinity respectively. The shape
of the convolutional noise pdf changes as a function of the residual ISI . Thus, in order to
apply the GGD for the convolutional noise pdf approximation task, the shape parameter
related to the GGD presentation must be a function of the residual ISI. Recently [20], the
shape parameter related to the GGD presentation [17,18] was given as a function of the
residual ISI.

In this paper, we deal with the 16QAM input case where we use the GGD presenta-
tion [17,18] with the results obtained from [20], to approximate the convolutional noise pdf
involved in the calculation of the closed-form approximated expression for the conditional
expectation of the source signal given the equalized output via Bayes rules. Since the shape
parameter related to the GGD presentation [17,18] may have also fractional values during
the iterative deconvolution process, the integral involved in the conditional expectation
calculation may not lead to a closed-form approximated expression. Thus, we use in this
work the Edgeworth Expansion series [15,16] up to order six for approximating the GGD
presentation applicable for the convolutional noise pdf where the fourth and sixth moments
of the convolutional noise sequence are approximated with the GGD technique [17,18].
By applying the GGD [17,18], the Edgeworth Expansion [15,16] and the results from [20]
(the relationship between the shape parameter and the residual ISI), a new closed-form
approximated expression is proposed for the conditional expectation of the source signal
given the equalized output via Bayes rules that has no need for additional predefined
parameters in the obtained equalization method as is the case in [4]. Simulation results
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indicate that with our new proposed equalization method based on the new model for the
convolutional noise pdf we have:

• Improved equalization performance from the convergence time point of view for the
easy [6] as well as for the hard channel case, compared to the original Maximum
Entropy algorithm [1]. The improvement in the convergence time for the hard channel
case is approximately of 15,000 symbols while for the easy channel case the improve-
ment in the convergence time is approximately of 250 symbols. In both cases we
may say that the improvement in the convergence time is approximately third of the
convergence time of the original Maximum Entropy algorithm [1].

• Based on [3], the blind adaptive equalization algorithm with the closed-form ap-
proximated expression for the conditional expectation based on approximating the
convolutional noise pdf with the Maximum Entropy density approximation tech-
nique, achieved for the hard channel case, the same equalization performance from the
residual ISI and convergence time point of view as was achieved with the original Max-
imum Entropy algorithm [1]. Thus, the improvement in the convergence time with
our new proposed method compared with the algorithm in [3] is also approximately
of 15,000 symbols for the hard channel case.

• The new proposed equalization method does not need additional predefined param-
eters (additional to the predefined step-size parameter involved in the equalizer’s
coefficients update mechanism) in the algorithm in order to get improved convergence
time compared to the original Maximum Entropy algorithm [1], as does the algo-
rithm in [4] where the convolutional noise pdf was approximated with the Edgeworth
Expansion series.

• For the easy channel case and SNR of 26 dB, the new proposed equalization method
has improved equalization performance from the residual ISI and convergence time
point of view compared to the recently proposed methods [2,5] which are versions of
the original Maximum Entropy algorithm [1]. From the residual ISI point of view, the
improvement is approximately 4 dB while the improvement in the convergence time
is approximately third of the convergence time achieved by the equalization methods
presented in [2,5].

The paper is organized as follows—after having described the system under con-
sideration in Section 2, the systematic way for obtaining the closed-form approximated
expression for the conditional expectation of the source signal given the equalized output
via Bayes rules based on the GGD and Edgeworth Expansion series is given in Section 3.
In Section 4 we introduce our simulation results. Finally, the conclusion is presented in
Section 5.

2. System Description

In the following (Figure 1), we recall the system under consideration used in [1,3,4],
where we apply the same assumptions made in [1,3,4]:

• The input sequence x[n] is a 16QAM source (a modulation using ± {1,3} levels for
in-phase and quadrature components) which can be written as x[n] = x1[n] + jx2[n]
where x1[n] and x2[n] are the real and imaginary parts of x[n], respectively. x1[n] and
x2[n] are independent and E[x[n]] = 0 (where E[·] denotes the expectation operator
on (·)).

• The unknown channel h[n] is a possibly non-minimum phase linear time-invariant fil-
ter in which the transfer function has no “deep zeros”; namely, the zeros lie sufficiently
far from the unit circle.

• The filter c[n] is a tap-delay line.
• The channel noise w[n] is an additive Gaussian white noise.
• The function T[·] is a memoryless nonlinear function that satisfies the additivity condition:

T[z1[n] + jz2[n]] = T[z1[n]] + jT[z2[n]], (1)
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where z1[n], z2[n] are the real and imaginary parts of the equalized output, respectively.

The input to the equalizer is given by:

y[n] = x[n] ∗ h[n] + w[n], (2)

where “∗” stands for the convolutional operation. Based on (2), the equalized output is
obtained via:

z[n] = y[n] ∗ c[n] = x[n] ∗ s̃[n] + w̃[n] = x[n] + p[n] + w̃[n], (3)

where
s̃[n] = c[n] ∗ h[n] = δ[n] + ξ[n]

p[n] = x[n] ∗ ξ[n],
(4)

where ξ[n] stands for the difference (error) between the ideal and the used value for
c[n] following (6), δ is the Kronecker delta function, w̃[n] = w[n] ∗ c[n] and p[n] is the
convolutional noise. The ISI is expressed by:

ISI = ∑m̃ |s̃[m̃]|2 − |s̃|2max
|s̃|2max

, (5)

where |s̃|max is the component of s̃, given in (4), having the maximal absolute value. The
function T[z[n]] is an estimation to x[n] where d[n] = T[z[n]]. The equalizer is updated
according to:

c[n + 1] = c[n] + µ(T[z[n]]− z[n]), y∗[n] (6)

where (·)∗ is the conjugate operation on (·), µ is the step size parameter and c[n] is the
equalizer vector, where the input vector is y[n] = [y[n]...y[n− N + 1]]T . The operator ()T

denotes the transpose of the function (), and N is the equalizer’s tap length.

Figure 1. A block diagram for baseband communication transmission.

3. GGD Based Closed-Form Approximated Expression for the Conditional Expectation

In this section, we present a systematic approach for obtaining the conditional expec-
tation (E[x[n]|z[n]]) based on approximating the convolutional noise pdf with the GGD
[17,18] and Edgeworth Expansion [15,16] presentations. For simplicity, we use in the
following, x, y, p for x[n], y[n] and p[n], respectively.
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Theorem 1. For the noiseless and 16QAM input case, the closed-form approximated expression
for the conditional expectation (E[x|z]) is given by:

E[x|z] ' u1
f1
+ j u2

f2
,

where for i = 1, 2 K = 4 and k = 2, 4

ui = zi +
1
2

(
2(3T − 15V + 1)∑K

k=2 kzk−1
i λk −

(
12T
σ2

pi
− 90V

σ2
pi

)
zi+

(3T − 15V + 1)zi

((
∑K

k=2 kzk−1
i λk

)2
+ ∑K

k=2 kzk−2
i λk(k− 1)

))
(σ2
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xi
)+

1
8

(
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(
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k
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)3
+
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1
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i

(
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−
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−
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(7)
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where

T = (

Γ(1/β)

Γ2(3/β)
Γ(5/β)−3

4! ); V = (

Γ2(1/β)

Γ3(3/β)
Γ(7/β)−15 Γ(1/β)

Γ2(3/β)
Γ(5/β)+30

6! ), (8)

and where Γ is the Gamma function and β is given by [20]:

β ∼= −1. 1938× 10−5(ISIdB)
4 − 7. 3370× 10−4(ISIdB)

3−

0.0146(ISIdB)
2 − 0.0693(ISIdB) + 2.6266

ISIdB = 10log10(ISI).

(9)

In this work the ISI is expressed as:

ISI =
σ2

p1

σ2
x1

(10)

and the Lagrange multipliers for k = 2, 4 (λ2, λ4) are calculated according to [1]:

1 + 4λ2m2 + 8λ4m4 = 0
3m2 + 8λ4m6 + 4λ2m4 = 0,

(11)

where
mk = E

[
xk

1

]
. (12)

Proof of Theorem 1. For the two independent quadrature carrier case where the 16QAM
modulation is a special case of it, the conditional expectation (E[x|z]) can be given according
to [9] as:

E[x|z] = E[x1|z1] + jE[x2|z2]. (13)

Thus, real and imaginary parts of the data are to be estimated separately on the basis of the
real and imaginary parts of the equalizer’s output sequence. For the noiseless case, (3) may
be written as:

p = z− x. (14)

In the following, we denote p1 and p2 as the real and imaginary parts of p. Based on (14) and
under the assumption that the blind adaptive equalizer leaves the system with a relative
low residual ISI for which the input signal x and the convolutional noise signal p can be
considered as independent [8], we may write for the 16QAM modulation case:

σ2
p = σ2

z − σ2
x = 2σ2

p1
= 2σ2

p2
= 2σ2

z1
− 2σ2

x1
= 2σ2

z2
− 2σ2

x2

⇓

σ2
p1

= σ2
z1
− σ2

x1
.

(15)

Based on (3), the variance of the real part of the equalized output signal σ2
z1

can be written
for the noiseless case as:

σ2
z1
= σ2

x1 ∑̃
m
|s̃m̃[n]|2. (16)

Next, based on (16), (15) and (5) we may write:
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2σ2
p1

= 2σ2
x1 ∑m̃ |s̃m̃[n]|2 − 2σ2

x1
= 2σ2

x1

(
∑m̃ |s̃m̃[n]|2 − 1

)
⇓

2σ2
p1

= 2σ2
x1

ISI for |s̃|max = 1
⇓

σ2
p1

σ2
x1

= ISI for |s̃|max = 1.

(17)

Next, we show the systematic approach for calculating the conditional expectation E[x1|z1].
The conditional expectation E[x1|z1] is defined by:

E[x1|z1] =
∫ +∞
−∞ x1 fx1|z1

(x1|z1)dx1, (18)

where fx1|z1
(x1|z1) is the conditional pdf. Based on Bayes rules we may write:

fx1|z1
(x1|z1) =

fz1 |x1
(z1|x1) fx1 (x1)

fz1 (z1)
=

fz1 |x1
(z1|x1) fx1 (x1)∫ +∞

−∞ fz1 |x1
(z1|x1) fx1 (x1)dx1

.

(19)

Now, by substituting (19) into (18) we obtain:

E[x1|z1] =

∫ +∞
−∞ x1 fz1 |x1

(z1|x1) fx1 (x1)dx1∫ +∞
−∞ fz1 |x1

(z1|x1) fx1 (x1)dx1
. (20)

As was already mentioned earlier in this paper, we would like to use the GGD [17,18]
presentation for approximating the real part of the convolutional noise pdf. Thus, based on
the GGD [17,18] the real part of the convolutional noise pdf is approximately given by:

fp1(p1) '
1

2Γ
(

1 + 1
β

)
B(β, σ)

exp
(
−| p1

B(β, σ)
|β
)

, (21)

with

B(β, σ) =

σ2
p1

Γ
(

1
β

)
Γ
(

3
β

)


1
2

, (22)

where β is defined as the shape parameter of the pdf presentation. Thus, based on [17,18],
(21) and (14), the conditional pdf fz1|x1

(z1|x1) can be expressed by:

fz1|x1
(z1|x1) '

1

2Γ
(

1 + 1
β

)
B(β, σ)

exp
(
−| z1 − x1

B(β, σ)
|β
)

. (23)

Following [1,3,4], we use the Maximum Entropy density approximation technique [13,14]
with Lagrange multipliers up to order four, for approximating the pdf of the real part
input sequence:

fx1(x1) ' A exp
(

λ2x2
1 + λ4x4

1

)
, (24)

where λ2 and λ4 are the Lagrange multipliers and A is a constant. Next, by substituting
(23) and (24) into (20), some problems are noticed in carrying out the integrals involved
in (20) for achieving a closed-form approximated expression for the conditional expectation
E[x1|z1] due to the fact that the shape parameter β is a changing parameter during the
iterative blind deconvolution process that may have also non integer values. Thus, to
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overcome the problem, we apply the Edgeworth Expansion series [15,16] up to order six
for approximating the real part of the convolutional noise pdf where the higher moments
of the convolutional noise sequence are calculated via the GGD [17,18] technique:

fp1(p1) '
exp

(
− p2

1
2σ2

p1

)
√

2πσp1

[
1 +

(
E[p4

1]−3
(

σ2
p1

)2

4!(σ2
p1)

2

)(
p4

1

(σ2
p1)

2 − 6p2
1

σ2
p1

+ 3
)
+

(
E[p6

1]−15σ2
p1

E[p4
1]+30

(
σ2

p1

)3

6!(σ2
p1)

3

)(
p6

1

(σ2
p1)

3 − 15p4
1

(σ2
p1)

2 +
45p2

1
σ2

p1
− 15

)]

with

E
[
p6

1
]
=

[
σ2

p1
Γ
(

1
β

)
Γ
(

3
β

)
]3

Γ
(

7
β

)
Γ
(

1
β

) ; E
[
p4

1
]
=

[
σ2

p1
Γ
(

1
β

)
Γ
(

3
β

)
]2

Γ
(

5
β

)
Γ
(

1
β

)
.

(25)

Thus, based on the Edgeworth Expansion series technique [15,16] and (25) we have:

fz1|x1
(z1|x1) '

exp

(
− (z1−x1)

2

2σ2
p1

)
√

2πσp1

[
1 +

(
E[p4

1]−3
(

σ2
p1

)2

4!(σ2
p1)

2

)(
(z1−x1)

4

(σ2
p1)

2 − 6(z1−x1)
2

σ2
p1

+ 3
)
+

(
E[p6

1]−15σ2
p1

E[p4
1]+30

(
σ2

p1

)3

6!(σ2
p1)

3

)(
(z1−x1)

6

(σ2
p1)

3 − 15(z1−x1)
4

(σ2
p1)

2 + 45(z1−x1)
2

σ2
p1

− 15
)] (26)

with E
[
p6

1
]

and E
[
p4

1
]

given in (25). Now, substituting (26) and (24) into (20) yields:

E[x1|z1] '
∫ ∞
−∞ g1(x1) exp(−Ψ(x1)/ρ)dx1∫ ∞
−∞ g(x1) exp(−Ψ(x1)/ρ)dx1

, (27)

where

ρ = 2σ2
p1

; Ψ(x1) = (z1 − x1)
2; g1(x1) = x1g(x1);

g(x1) = g̃(x1)

[
1 +

(
E[p4

1]−3
(

σ2
p1

)2

4!(σ2
p1)

2

)(
(z1−x1)

4

(σ2
p1)

2 − 6(z1−x1)
2

σ2
p1

+ 3
)
+

(
E[p6

1]−15σ2
p1

E[p4
1]+30

(
σ2

p1

)3

6!(σ2
p1)

3

)(
(z1−x1)

6

(σ2
p1)

3 − 15(z1−x1)
4

(σ2
p1)

2 + 45(z1−x1)
2

σ2
p1

− 15
)]

g̃(x1) = exp
(
λ2x2

1 + λ4x4
1
)
.

(28)

In order to obtain closed-form expressions for the integrals involved in (27), the Laplace’s
method [21] is applied as was also done in [1,3] and [4]. According to [21], the Laplace’s
method is a general technique for obtaining the asymptotic behavior as ρ→ 0 of integrals
in which the large parameter 1/ρ appears in the exponent. The main idea of Laplace’s
method is: if the continues function Ψ(x1) has its minimum at x0 which is between infinity
and minus infinity, then it is only the immediate neighborhood of x1 = x0 that contributes
to the full asymptotic expansion of the integral for large 1/ρ. Thus, according to [1,3,4,21]:
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∫ ∞
−∞ g(x1) exp(−Ψ(x1)/ρ)dx1'

exp
(
−Ψ(x0)

ρ

)√
2πρ

Ψ′′ (x0)

(
g(x0)+

g
′′
(x0)
2

ρ

Ψ′′ (x0)
+ g

′′′′
(x0)
8 ( ρ

Ψ′′ (x0)
)2+O( ρ

Ψ′′ (x0)
)3
)

,
(29)

∫ ∞
−∞ g1(x1) exp(−Ψ(x1)/ρ)dx1'

exp
(
−Ψ(x0)

ρ

)√
2πρ

Ψ′′ (x0)

(
g1(x0)+

g
′′
1 (x0)

2
ρ

Ψ′′ (x0)
+

g
′′′′
1 (x0)

8 ( ρ

Ψ′′ (x0)
)2+O( ρ

Ψ′′ (x0)
)3
)

,
(30)

where ()′′ and ()′′′′ stand for the second and fourth derivative of (), respectively, O(x) is
defined as limx→0O(x)/x = rconst and rconst is a constant. The expressions for Ψ

′′
(x0) and

x0 are given by:

Ψ
′
(x1) = −2(z1 − x1); Ψ

′′
(x1) = 2⇒ Ψ

′
(x0) = 2

Ψ
′
(x0) = −2(z1 − x0) = 0⇒ x0 = z1.

(31)

Now, by substituting (29) and (30) into (27), dividing both the numerator and denominator
by the function g̃(z1) given in (28) with z1 instead of x1, x0 = z1, Ψ

′
(x0) = 2 from (31),

ρ = 2σ2
p1

from (28) and σ2
p1

= σ2
z1
− σ2

x1
from (15) we obtain:

E[x1|z1] '
E[x1|z1]up

E[x1|z1]down
(32)

E[x1|z1]up = z1+(g
′′
1(z1)/2g̃(z1))(σ

2
z1
− σ2

x1
)+(g

′′′′
1 (z1)/8g̃(z1))(σ

2
z1
− σ2

x1
)2

E[x1|z1]down = 1 + 3T − 15V+(g
′′
(z1)/2g̃(z1))(σ

2
z1
− σ2

x1
)+(g

′′′′
(z1)/8g̃(z1))(σ

2
z1
− σ2

x1
)2.

(33)

Next, in order to reduce the computational complexity, we notice that the denominator
of (32) (E[x1|z1]down from (33)) can be approximated by:

E[x1|z1]down ' 1+(g̃
′′
(z1)/2g̃(z1))(σ

2
z1
− σ2

x1
)+(g̃

′′′′
(z1)/8g̃(z1))(σ

2
z1
− σ2

x1
)2, (34)

where g̃
′′
(z1) and g̃

′′′′
(z1) are the second and fourth derivative of g̃(z1) respectively. Please

note that (34) is valid for the Gaussian convolutional noise pdf case. By using (32) with
E[x1|z1]down and E[x1|z1]up from (34) and (33) respectively and the following derivatives:

k = 2, 4; K = 4

g̃
′
(z1) = g̃(z1)∑K

k=2 kzk−1
1 λk

g̃
′′
(z1) = g̃(z1)(∑K

k=2 kzk−1
1 λk)

2 + g̃(z1)∑K
k=2 kzk−2

1 λk(k− 1)

g̃
′′′
(z1) = g̃(z1)

(
∑K

k=2 kzk−1
1 λk

)3
+ g̃(z1)3 ∑K

k=2 kzk−2
1 λk(k− 1)∑K

k=2 kzk−1
1 λk

g̃(z1)∑K
k=2 kzk−3

1 λk(k− 1)(k− 2)

g̃
′′′′
(z1) = 3g̃(z1)

(
∑K

k=2 kzk−2
1 λk(k− 1)

)2
+ 6g̃(z1)∑K

k=2 kzk−2
1 λk(k− 1)

(
∑K

k=2 kzk−1
1 λk

)2
+

g̃(z1)
(

∑K
k=2 kzk−1

1 λk

)4
+ 4g̃(z1)∑K

k=2 kzk−3
1 λk(k− 1)(k− 2)∑K

k=2 kzk−1
1 λk+

g̃(z1)∑K
k=2 kzk−4

1 λk(k− 1)(k− 2)(k− 3)

(35)
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g1
′′
(z1) = 2g̃

′
(z1)(3T − 15V + 1) + z1 g̃

′′
(z1)(3T − 15V + 1)− z1 g̃(z1)

(
12T
σ2

p1
− 90V

σ2
p1

)

g1
′′′′
(z1) = 4g̃

′′′
(z1)(3T − 15V + 1)− 12g̃

′
(z1)

(
12T
σ2

p1
− 90V

σ2
p1

)
+

z1 g̃(z1)

(
24T
σ4

p1
− 360V

σ4
p1

)
+ z1 g̃

′′′′
(z1)(3T − 15V + 1)− 6z1 g̃

′′
(z1)

(
12T
σ2

p1
− 90V

σ2
p1

)
,

(36)

the expression of u1
f1

from (7) is obtained. Now, by using (13), the expression from (7) is
obtained.

4. Simulation

In this section, we use the 16QAM input case with two different channels to show
via simulation results the usefulness of our new proposed model for the convolutional
noise pdf based on the GDD [17,18] and Edgeworth Expansion [15,16] compared to the
Gaussian case. For equalization performance comparison, we use the MaxEnt algorithm [1],
where the conditional expectation is derived by assuming the Gaussian model for the
convolutional noise pdf and the source pdf is approximated with the Maximum Entropy
density approximation technique [13,14] as it is done with our new proposed equalization
method. Thus, the difference between the two approximated expressions for the conditional
expectation ([1] and (7)) is only due to the different model used for the convolutional noise
pdf. In addition, we use for the equalization performance comparison also two additional
equalization methods [2,5] which we name as MaxEntBNEW and MaxEntANEW respectively.
These methods ([2,5]) are versions of the original MaxEnt algorithm [1] where also the
convolutional noise pdf was approximated with the Gaussian model.

The equalizer’s taps for the Maximum Entropy algorithm (MaxEnt) [1] were updated
according to:

cl [n + 1] = cl [n]− µmeWy∗[n− l], (37)

with:

W =

E[x1|z1]

 (z1[n]E[x1|z1])〈
(z1)

2
〉

n

+ jE[x2|z2]

 (z2[n]E[x2|z2])〈
(z2)

2
〉

n

− z[n]

, (38)

where µme is a positive step-size parameter and

E[x1|z1] =
z1+

ĝ′′1 (z1)
2ĝ(z1)

(
σ2

x1
−σ2

z1

)
+

ĝ(4)1 (z1)
8ĝ(z1)

(
σ2

x1
−σ2

z1

)2

1+ ĝ′′(z1)
2ĝ(z1)

(σ2
x1−σ2

z1)+
ĝ(4)(z1)
8ĝ(z1)

(σ2
x1−σ2

z1)
2

E[x2|z2] =
z2+

ĝ′′1 (z2)
2ĝ(z2)

(
σ2

x2
−σ2

z2

)
+

ĝ(4)1 (z2)
8ĝ(z2)

(
σ2

x2
+σ2

z2

)2

1+ ĝ′′(z2)
2ĝ(z2)

(σ2
x2−σ2

z2)+
ĝ(4)(z2)
8ĝ(z2)

(σ2
x2−σ2

z2)
2

,

(39)

where:

k = 2, 4; K = 4

s = 1, 2; ĝ(zs) =
{

exp
(

∑k=K
k=2 λkxk

s

)}
xs=zs

ĝ′′(zs) =
{

d2

dx2
s

[
exp

(
∑k=K

k=2 λkxk
s

)]}
xs=zs

; ĝ(4)(zs) =
{

d4

dx4
s

[
exp

(
∑k=K

k=2 λkxk
s

)]}
xs=zs

ĝ′′1 (zs) =
{

d2

dx2
s

[
xs exp

(
∑k=K

k=2 λkxk
s

)]}
xs=zs

; ĝ(4)1 (zs) =
{

d4

dx4
s

[
xs exp

(
∑k=K

k=2 λkxk
s

)]}
xs=zs

(40)
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and σ2
x1

,σ2
x2

are the variances of the real and imaginary parts of the source signal respectively.
The variances of the real and imaginary parts of the equalized output are defined as σ2

z1

and σ2
z2

respectively and estimated by [1]:〈
z2

s

〉
= (1− βme)

〈
z2

s

〉
n−1

+ βme(zs)
2
n, (41)

where 〈〉 stands for the estimated expectation,
〈
z2

s
〉

0 > 0, l stands for the l-th tap of the
equalizer and βme is a positive step size parameter. The Lagrange multipliers λk from (40)
are given in (11). According to [1] the equalizer’s taps are updated only if N̂s > ε, where

ε is a small positive parameter and N̂s = 1 + ĝ′′(z1)
2ĝ(z1)

(
σ2

xs − σ2
zs

)
+ ĝ(4)(z1)

8ĝ(z1)

(
σ2

xs − σ2
zs

)2. In the
following we denote our new proposed equalization method based on the GDD [17,18] as
GDD were the equalizer’s taps are updated according to:

cl [n + 1] = cl [n]− µWy∗[n− l], (42)

where µ is a positive step size parameter and W is given in (38) with:

E[x1|z1] =
u1

f1
; E[x2|z2] =

u2

f2
, (43)

where u1
f1

and u2
f2

are given in (7). The variances of the real and imaginary parts of the

convolutional noise (σ2
p1

and σ2
p2

) are given by:

s = 1, 2

σ2
ps = σ2

zs − σ2
xs〈

z2
s
〉
= (1− β)

〈
z2

s
〉

n−1 + β(zs)
2
n,

(44)

where β is a positive step size parameter. It should be pointed out that the equalizer’s
taps related to the GGD algorithm are updated only when f1 > ε and f2 > ε similar to
the MaxEnt algorithm. The equalizer’s taps related to the MaxEntANEW algorithm are
updated according to [5]:

c̃l [n + 1] = cl [n]− µANEWWy∗[n− l], (45)

where µANEW is a positive step size parameter and W is given in (38) with:

E[x1|z1] '
(

1 + (ε1
0 + ε1

2z2
1 + ε1

4z4
1) +

1
2 (ε

1
0 + ε1

2z2
1 + ε1

4z4
1)

2
)(

z1 +
σ2

p1
2

g
′′
1 (z1)
g(z1)

+

(
σ2

p1

)2

8
g
′′′′
1 (z1)
g(z1)

)

E[x2|z2] '
(

1 + (ε2
0 + ε2

2z2
2 + ε2

4z4
2) +

1
2 (ε

2
0 + ε2

2z2
2 + ε2

4z4
2)

2
)(

z2 +
σ2

p2
2

g
′′
1 (z2)
g(z2)

+

(
σ2

p2

)2

8
g
′′′′
1 (z2)
g(z2)

)
,

where :

s = 1, 2

g
′′
1 (zs)
g(zs)

= 2zs
(
8z6

s λ2
4 + 8z4

s λ2λ4 + 2z2
s λ2

2 + 10z2
s λ4 + 3λ2

)
g
′′′′
1 (zs)
g(zs)

= 4zs
(
64z12

s λ4
4 + 128z10

s λ2λ3
4 + 96z8

s λ2
2λ2

4 + 352z8
s λ3

4 + 32z6
s λ3

2λ4 + 432z6
s λ2λ2

4+

4z4
s λ4

2 + 168z4
s λ2

2λ4 + 348z4
s λ2

4 + 20z2
s λ3

2 + 180z2
s λ2λ4 + 15λ2

2 + 30λ4
)

σ2
ps = σ2

zs − σ2
xs

(46)
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and
σ2

xs = E[x2
s ]. (47)

According to [5]:
σ2

zs = E[z2
s ] (48)

and given by: 〈
z2

s

〉
= (1− βANEW)

〈
z2

s

〉
n−1

+ βANEW(zs)
2
n, (49)

where
〈
z2

s
〉

0 > 0, βANEW and µANEW are positive step size parameters. εs
0, εs

2, εs
4, λ2 and λ4

were set according to [5] as

εs
0 = −2λ2σ2

ps ; εs
2 = −σ2

ps

(
4λ2

2 + 12λ4
)
; εs

4 = −16λ2λ4σ2
ps (50)

λ2 ' 1
40m̄2(20 736m̄2

4+1280m̄2m̄6)

(
41472m̄2

4 + 2560m̄2m̄6 − 144m̄4
(
480m̄2

2 + 288m̄4
))

λ4 ' 1
20 736m̄2

4+1280m̄2m̄6

(
480m̄2

2 + 288m̄4
)
,

(51)

where
E[xG

1 ] = m̄G. (52)

In order to get equalization gain of one, the following gain control was used according
to [5]:

cl [n] =
c̃l√

∑l |c̃l |2
, (53)

where cl [n] is the vector of taps after iteration and cl [0] is some reasonable initial guess.
The equalizer’s taps related to the MaxEntBNEW algorithm are updated according to [2]:

c̃l [n + 1] = cl [n]− µBNEWWy∗[n− l], (54)

where µBNEW is a positive step size parameter and W is given in (38) with:

E[x1|z1] =
z1+

ĝ′′1 (z1)
2ĝ(z1)

σ2
p1

1+ ĝ′′(z1)
2ĝ(z1)

σ2
p1

E[x2|z2] =
z2+

ĝ′′1 (z2)
2ĝ(z2)

σ2
p2

1+ ĝ′′(z2)
2ĝ(z2)

σ2
p2

,

where :

s = 1, 2

ĝ
′′
1 (zs)

2ĝ(zs)
= zs

(
8z6

s λ2
4 + 8z4

s λ2λ4 + 2z2
s λ2

2 + 10z2
s λ4 + 3λ2

)
ĝ
′′
(zs)

2ĝ(zs)
= 8z6

s λ2
4 + 8z4

s λ2λ4 + 2z2
s λ2

2 + 6z2
s λ4 + λ2

σ2
ps = σ2

zs − σ2
xs

(55)
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λ2 = 1
4m̂2(64m̂2

4−64m̂2m̂6)

(
64m̂2m̂6 − 64m̂2

4 + 8m̂4
(
8m̂4 − 24m̂2

2
))

λ4 = − 1
64m̂2

4−64m̂2m̂6

(
8m̂4 − 24m̂2

2
)

with

m̂2 = m̄2

(
1 + 1

SNR ∑R−1
k=0 |hk |2

)

m̂4 = m̄2
2

(
3

(SNR ∑R−1
k=0 |hk |2)

2 +
6

SNR ∑R−1
k=0 |hk |2

+ m̄4
m̄2

2

)

m̂6 = m̄3
2

(
15

(SNR ∑R−1
k=0 |hk |2)

3 +
45

(SNR ∑R−1
k=0 |hk |2)

2 +
15

SNR ∑R−1
k=0 |hk |2

m̄4
m̄2

2
+ m̄6

m̄3
2

)
,

(56)

where
SNR =

m̄2

σ2
wr

. (57)

σ2
zs was estimated by 〈

z2
s

〉
= (1− βBNEW)

〈
z2

s

〉
n−1

+ βBNEW(zs)
2
n, (58)

where
〈
z2

s
〉

0 > 0, βBNEW and µBNEW are positive step size parameters. The equalizer’s taps
in (54) were updated only if N̂s > ε1, where ε1 is a small positive parameter and

N̂s = 1 +
ĝ′′(zs)

2ĝ(zs)
σ2

ps . (59)

In addition, the gain control was applied according to (53).
Two different channels were considered:

• Easy channel case, Channel1 (initial ISI = 0.44): The channel parameters were deter-
mined according to [6]: hn =

{
0 for n < 0;−0.4 for n = 0; 0.84× 0.4n−1 for n > 0

}
• Hard channel case, Channel2 (initial ISI = 1.402): The channel parameters were taken

according to [22]: hn =
(
0.2258, 0.5161, 0.6452, 0.5161

)
For Channel1 and Channel4, we used an equalizer with 13 and 21 taps respectively.

In the simulation, the equalizers were initialized by setting the center tap equal to one
and all others to zero [1]. The step size parameters µ, β, µme and βme, were chosen for
fast convergence with low steady state ISI, where the values for µme and βme were taken
from [1]. Figure 2 shows the simulated ISI as a function of the iteration number of our new
proposed algorithm (GGD), compared to the MaxEnt method [1], for the 16QAM input
and Channel1 case for signal-to noise-ratio (SNR) of 26dB according to [1].
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Figure 2. Equalization performance comparison between the GGD and MaxEnt methods for a
16QAM input going through channel1. The averaged result were obtained in 100 Monte Carlo
trials for a SNR of 26dB. The step size parameters were set to: µ = 6× 10−4, β = 1× 10−4, µme =

3× 10−4, βme = 2× 10−4. In addition we set: ε = 0.

Please note that the main purpose of a blind adaptive equalizer is to be as fast as
possible, a residual ISI that is low enough for sending the equalized output sequence to
the decision device to get reliable decisions on that input data. Reliable decisions can
be done on the equalized output sequence when the equalizer leaves the system with a
residual ISI that is lower than −16 dB. According to Figure 2, the new algorithm (GGD)
achieves the residual ISI of −16 dB faster than the MaxEnt algorithm [1]. Thus, the GGD
has a faster convergence rate compared to the MaxEnt [1] method, which means that
the equalized output sequence can be send earlier to the decision device with the GGD
algorithm compared with the MaxEnt method [1]. Figure 3 shows the simulated ISI as a
function of the iteration number of our new proposed algorithm (GGD), compared to the
MaxEnt method [1], for the 16QAM input and Channel4 case for SNR of 30 dB according
to [1].

According to Figure 3, the GGD algorithm reaches the residual ISI of −16 dB faster by
approximately of 15,000 symbols than the MaxEnt [1] algorithm does while leaving the
system with approximately the same residual ISI at the convergence state compared with
the MaxEnt [1] method.

It should be pointed out that the equalization performance obtained with the GDD
algorithm are very similar to those obtained in [4] where the Edgeworth Expansion up
to order six was used for approximating the convolutional noise pdf. However, in [4],
two additional step parameters were needed in the deconvolution process. Those step
size parameters are channel dependent which are not needed in the GDD algorithm.
Thus, the GDD algorithm is preferable over the algorithm proposed in [4]. The GDD
algorithm has also improved equalization performance for the hard channel case (Channel2)
compared to the equalization method proposed in [3] where the Maximum Entropy density
approximation technique [13,14] was used for approximating the convolutional noise pdf
with Lagrange multipliers up to order four. Please note that according to [3], the MaxEnt
method [1] and the equalization algorithm proposed in [3] have the same equalization
performance for the hard channel case (Channel2). Figure 4 shows the simulated ISI as a
function of the iteration number of our new proposed algorithm (GGD), compared to the
MaxEnt method [1], to the MaxEntANEW method [5] and to the MaxEntBNEW method [2]
for the 16QAM input and Channel1 case for SNR of 26 dB. According to Figure 4, the GGD
algorithm has improved equalization performance from the residual ISI and convergence

Figure 2. Equalization performance comparison between the GGD and MaxEnt methods for a
16QAM input going through channel1. The averaged result were obtained in 100 Monte Carlo
trials for a SNR of 26dB. The step size parameters were set to: µ = 6× 10−4, β = 1× 10−4, µme =

3× 10−4, βme = 2× 10−4. In addition we set: ε = 0.

Please note that the main purpose of a blind adaptive equalizer is to be as fast as
possible, a residual ISI that is low enough for sending the equalized output sequence to
the decision device to get reliable decisions on that input data. Reliable decisions can
be done on the equalized output sequence when the equalizer leaves the system with a
residual ISI that is lower than −16 dB. According to Figure 2, the new algorithm (GGD)
achieves the residual ISI of −16 dB faster than the MaxEnt algorithm [1]. Thus, the GGD
has a faster convergence rate compared to the MaxEnt [1] method, which means that
the equalized output sequence can be send earlier to the decision device with the GGD
algorithm compared with the MaxEnt method [1]. Figure 3 shows the simulated ISI as a
function of the iteration number of our new proposed algorithm (GGD), compared to the
MaxEnt method [1], for the 16QAM input and Channel4 case for SNR of 30 dB according
to [1].

According to Figure 3, the GGD algorithm reaches the residual ISI of −16 dB faster by
approximately of 15,000 symbols than the MaxEnt [1] algorithm does while leaving the
system with approximately the same residual ISI at the convergence state compared with
the MaxEnt [1] method.

It should be pointed out that the equalization performance obtained with the GDD
algorithm are very similar to those obtained in [4] where the Edgeworth Expansion up
to order six was used for approximating the convolutional noise pdf. However, in [4],
two additional step parameters were needed in the deconvolution process. Those step
size parameters are channel dependent which are not needed in the GDD algorithm.
Thus, the GDD algorithm is preferable over the algorithm proposed in [4]. The GDD
algorithm has also improved equalization performance for the hard channel case (Channel2)
compared to the equalization method proposed in [3] where the Maximum Entropy density
approximation technique [13,14] was used for approximating the convolutional noise pdf
with Lagrange multipliers up to order four. Please note that according to [3], the MaxEnt
method [1] and the equalization algorithm proposed in [3] have the same equalization
performance for the hard channel case (Channel2). Figure 4 shows the simulated ISI as a
function of the iteration number of our new proposed algorithm (GGD), compared to the
MaxEnt method [1], to the MaxEntANEW method [5] and to the MaxEntBNEW method [2]
for the 16QAM input and Channel1 case for SNR of 26 dB. According to Figure 4, the GGD
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algorithm has improved equalization performance from the residual ISI and convergence
time point of view compared to the MaxEntANEW [5] and MaxEntBNEW [2] methods.
From the residual ISI point of view, the improvement is approximately 4 dB while the
improvement in the convergence time is approximately third of the convergence time
achieved by the equalization methods presented in [2,5].
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Figure 3. Equalization performance comparison between the GGD and MaxEnt methods for a
16QAM input going through channel4. The averaged result were obtained in 50 Monte Carlo
trials for a SNR of 30dB. The step size parameters were set to: µ = 3× 10−4, β = 2× 10−6, µme =

2× 10−4, βme = 2× 10−6. In addition we set: ε = 0.5.
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Figure 4. Equalization performance comparison between the GGD, MaxEnt, MaxEntANEW and
MaxEntBNEW methods for a 16QAM input going through channel1. The averaged result were
obtained in 100 Monte Carlo trials for a SNR of 26dB. The step size parameters were set to:
µ = 6 × 10−4, β = 1 × 10−4, µme = 3 × 10−4, βme = 2 × 10−4, µANEW = 3 × 10−4, βANEW =

2× 10−5, µBNEW = 3× 10−4, βBNEW = 2× 10−4. In addition we set: ε = 0, ε1 = 0.5.

Although the GGD algorithm was obtained for the 16QAM constellation input, it
can be extended to other two independent quadrature carrier inputs with Lagrange mul-
tiplier up to order four, by having just another function for β (9) that fits the new input
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constellation case. In addition, if more Lagrange multipliers are needed than only four for
approximating properly the input sequence pdf, (7) should be used with k = 2, 4, 6, ...K and
the Lagrange multipliers should be calculated as given in [1] for the general order case.

5. Conclusions

In this paper, the blind adaptive deconvolution problem was considered, where the
GGD function and the Edgeworth Expansion up to order six were applied for approx-
imating the convolutional noise pdf for the 16 QAM input case. A new closed-form
approximated expression was derived for the conditional expectation that led to a new
blind adaptive equalization method. This new proposed algorithm does not need addi-
tional predefined parameters that are channel dependent like the literature known blind
adaptive equalization method based on the conditional expectation expression where the
convolutional noise pdf was approximated with the Edgeworth Expansion up to order six.
Simulation results demonstrated that improved equalization performance is obtained with
our new proposed equalization method based on the new model for the convolutional
noise pdf compared to the original Maximum Entropy algorithm and to the two recently
obtained versions of the original Maximum Entropy algorithm for the easy channel and
high SNR case. Since the original Maximum Entropy algorithm has the same equalization
performance for the hard channel case as the equalization method based on the conditional
expectation expression where the convolutional noise pdf was approximated with the
Maximum Entropy density technique, the new proposed method has also improved equal-
ization performance for the hard channel case compared with this equalization method.
This paper demonstrated that improved equalization performance can be obtained if a
proper approximation is applied for the convolutional noise pdf in the calculation for the
expression of the conditional expectation via Bayes rules. The new proposed algorithm is
valid only for the high SNR case due to the fact that the noise was not taken into account
in our derivations. Please note that the original Maximum Entropy algorithm and the
two equalization methods based on the conditional expectation via Bayes rules, where the
convolutional noise pdf was approximated with the Maximum Entropy density technique
and with the Edgeworth Expansion approach, are valid also only for the high SNR case.
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