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Abstract: We present novel data-processing inequalities relating the mutual information and the
directed information in systems with feedback. The internal deterministic blocks within such
systems are restricted only to be causal mappings, but are allowed to be non-linear and time varying,
and randomized by their own external random input, can yield any stochastic mapping. These
randomized blocks can for example represent source encoders, decoders, or even communication
channels. Moreover, the involved signals can be arbitrarily distributed. Our first main result relates
mutual and directed information and can be interpreted as a law of conservation of information
flow. Our second main result is a pair of data-processing inequalities (one the conditional version
of the other) between nested pairs of random sequences entirely within the closed loop. Our third
main result introduces and characterizes the notion of in-the-loop (ITL) transmission rate for channel
coding scenarios in which the messages are internal to the loop. Interestingly, in this case the
conventional notions of transmission rate associated with the entropy of the messages and of channel
capacity based on maximizing the mutual information between the messages and the output turn
out to be inadequate. Instead, as we show, the ITL transmission rate is the unique notion of rate for
which a channel code attains zero error probability if and only if such an ITL rate does not exceed
the corresponding directed information rate from messages to decoded messages. We apply our
data-processing inequalities to show that the supremum of achievable (in the usual channel coding
sense) ITL transmission rates is upper bounded by the supremum of the directed information rate
across the communication channel. Moreover, we present an example in which this upper bound is
attained. Finally, we further illustrate the applicability of our results by discussing how they make
possible the generalization of two fundamental inequalities known in networked control literature.

Keywords: data-processing inequality; directed information; mutual information; networked control;
feedback capacity

1. Introduction

The data-processing inequality states that if x, y, z are random variables such that x
and z become independent when conditioning upon y, then:

I(x; y) ≥ I(x; z) (1)

I(y; z) ≥ I(x; z), (2)

where I(x; y) denotes the mutual information between x and y [1] (p. 252) (a definition
of mutual information is provided in Section 2.2 below). Among its many uses, the data-
processing inequality plays a key role in the proof of the converse part (i.e., outer bounds)
in rate-distortion [1–5] (p. 317), channel capacity [1,6–8] (pp. 208, 217, 540 and 566), and
joint source-channel coding theorems [1,9–11] (p. 221), and has recently been extended to
von Newmann algebras, which have applications in quantum field theory (see [12] and the
references therein).
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It is well known that mutual information has an important limitation in systems with
feedback, such as the one shown in Figure 1a. In this system, p, q, r, s, e, u, x, and y
are random sequences, and the blocks S1, . . . ,S4 are deterministic causal mappings with
an added delay of at least one sample. These blocks, randomized by their exogenous
random inputs p, q, r, s, may yield any causal stochastic dynamic mappings. As pointed
out in [13], for sequences inside the loop, such as x and y, I(x; y) does not distinguish
the probabilistic interdependence produced by the effect x has on y from that stemming
from the influence of y on x. This limitation motivated the introduction of the directed
information in [13]. This notion assesses the amount of information that causally “flows”
from a given random and ordered sequence to another. For this reason, it has increasingly
found use in diverse applications, including characterizing the capacity of channels with
feedback [13–16], the rate distortion function under causality constraints [5], establishing
some of the fundamental limitations in networked control [17–23], determining causal
relationships in neural networks [24], and portfolio theory and hypothesis testing [25], to
name a few.
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Figure 1. (a): The general system considered in this work. (b): A special case of (a), corresponding to
the closed-loop system studied in [18].

The directed information from a randomsequence xk to a random sequence yk is
defined as:

I(xk → yk) ,
k

∑
i=1

I(y(i); xi | yi−1), (3)

where the notation xi represents the sequence x(1), x(2), . . . , x(i) and I(x; y | z) is the mutual
information between x and y conditioned on (or given) z (hereafter we use non-italic letters,
such as x, for random variables, denoting a particular realization by the corresponding italic
character, x). The causality inherent in this definition becomes evident when comparing it
with the mutual information between xk and yk, given by I(xk; yk) = ∑k

i=1 I(y(i); xk | yi−1).
In the latter sum, what matters is the amount of information about the entire sequence
xk present in y(i), given the past values yi−1. By contrast, in the conditional mutual
information in the sum of (3), only the past and current values of xk are considered, that is,
xi. Thus, I(xk → yk) represents the amount of information causally conveyed from xk to
yk. A related notion is the causally conditioned directed information introduced in [14],
defined as:

I(xk → yk ‖ qk) ,
k

∑
i=1

I(y(i); xi | yi−1, qi). (4)

In this paper, we derive inequalities involving directed and mutual information within
feedback systems. For this purpose, we consider the general feedback system shown in
Figure 1a. In this diagram, the blocks S1, . . . ,S4 represent possibly non-linear and time-
varying causal discrete-time systems such that the total delay of the loop is at least one
sample. These blocks can model, for example, source encoders, decoders or even communi-
cation channels. In the same figure, r, p, s, q are exogenous random signals (scalars, vectors,
or sequences), which could represent, for example, any combination of disturbances, noises,
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random initial states, or side information. We note that any of these exogenous signals, in
combination with their corresponding deterministic mapping Si, can also yield any desired
stochastic causal mapping (for example, a noisy communication channel, a zero-delay
source coder or decoder, or a causal dynamic system with disturbances and a random
initial state).

1.1. Main Contributions

1. Our first main contribution is the following theorem. It states a fundamental result,
which relates the directed information between two signals within a feedback loop,
say x and y, to the mutual information between an external set of signals and y:

Theorem 1. In the system shown in Figure 1a, it holds that:

I(xk → yk) = I(qk, rk, pk → yk)− I(qk, rk, pk → yk ‖ xk) ≤ I(pk, qk, rk ; yk), ∀k ∈ N, (5)

with equality achieved if s is independent of (p, q, r).

The proof is in Section 3. This fundamental result, which for the cases in which
s ⊥⊥ (p, q, r) can be understood as a law of conservation of information flow, is illustrated
in Figure 2. (Here, and in the sequel, we use the notation x ⊥⊥ y to mean “x is
independent of y”.) For such a cases, the information causally conveyed from x to y
equals the information flow from (q, r, p) to y. When (p, q, r) are not independent of
s, part of the mutual information between (p, q, r) and y (corresponding to the term
I(qk, rk, pk → yk ‖ xk)) can be thought of as being “leaked” through s, thus bypassing
the forward link from x to y. This provides an intuitive interpretation for (5).

r

S1

u

p

S2
e

q

S4 x
s

S3y

Figure 2. The flow of information between exogenous signals (p, q, r) and the internal signal y equals
the directed information from xk to yk when s ⊥⊥ (p, q, r).

Remark 1. Theorem 1 implies that I(xk → yk) is only a part of (or at most equal to) the
information “flow” between all the exogenous signals entering the loop outside the link x→ y
(namely (q, r, p)), and y. In particular, if (p, q, r) were deterministic, then I(xk → yk) = 0,
regardless of the blocks S1, . . . ,S4 and irrespective of the nature of s.

2. Our second main result is the following theorem, which relates directed information
involving four different sequences internal to the loop. The proof is in Appendix A
on page 19.

Theorem 2 (Full Closed-Loop Directed Data-Processing Inequality). Consider the
system shown in Figure 1a.

(a) If (q, s) ⊥⊥ (r, p) and q ⊥⊥ s, or if (p, s) ⊥⊥ (r, q) and p ⊥⊥ s, then:

I(xk → yk) ≥ I(ek → uk). (6)

(b) If (q, s) ⊥⊥ (r, p) and qk
i+1 ↔ qi ↔ si for i = 1, 2, . . . , k− 1, then :

I(xk → yk ‖ qk) ≥ I(ek → uk). (7)
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(The Markov chain notation t↔ v↔ w means “t and w are independent when v is
given”.) To the best of our knowledge, Theorem 2 is the first result available in the
literature providing a lower bound to the gap between two instances of nested directed
information, involving four different signals inside the feedback loop. This result
can be seen as the first full extension of the open-loop (traditional) data-processing
inequality, to arbitrary closed-loop scenarios. (Notice that there is no need to consider
systems with more than four mappings, since all external signals entering the loop
between a given pair of internal signals can be regarded as exogenous inputs to a
single equivalent deterministic mapping.)

3. Our third main contribution is introducing the notion of in-the-loop (ITL) transmission
rate (in Section 6) for the (seldom considered) channel-coding scenario in which the
messages to be transmitted and the communication channel are internal to a feedback
loop. We show that the supremum of the directed information rate across such a
channel upper bounds the achievable ITL transmission rates. Moreover, we present
an example in which this upper bound is attainable. This gives further operational
meaning to the directed information rate in closed-loop scenarios.

4. Finally, we provide additional examples of the applicability of our results by dis-
cussing how they allow one to obtain the generalizations of two fundamental inequal-
ities known in networked control literature. The first one appears in [18] (Lemma 4.1)
and is written in (12) below. This generalization is a consequence of Theorem 4 and
is discussed in Remarks 3 and 5 below. The second generalization applies to [20]
(Theorem 4.1) and is described on page 6 below. It is an application of Theorem 2 that
has just been carried out by the authors in [26], which is all the more important since,
as we also reveal in that note, there is a flaw in the proof of [20] (Theorem 4.1).

A key ingredient in proving most of our theorems is provided by Lemma 1, stated in
Section 2.5. It allows one to rigorously establish some of the non-trivial conditional indepen-
dencies that arise in a feedback loop with several (possibly stochastic) dynamic systems.

Put together, the law of conservation of information flow from Theorem 1, our exten-
sion of the data processing inequality to general feedback systems from Theorem 2, and
our other results constitute both a conceptual framework and a toolbox for addressing in-
formation flow problems in feedback systems. We are convinced that this contribution will
be instrumental in establishing new results on, e.g., rate-distortion and channel capacity
problems with feedback.

The literature review presented next will allow the reader to further assess the novelty
and relevance of our results.

1.2. Existing Related Results

There exist several results characterizing the relationship between I(xk → yk) and
I(xk; yk). First, it is well known that I(xk → yk) ≤ I(xk; yk), with equality if and only if yk

is causally related to xk [13]. A conservation law of mutual and directed information has
been found in [27], which asserts that I(xk → yk) + I(0 ∗ yk−1 → xk) = I(xk; yk), where
0 ∗ yk−1 denotes the concatenation 0, y(1), . . . , yk−1.

Given its prominence in settings involving feedback, it is perhaps in these scenarios
where the directed information becomes most important. For instance, the directed infor-
mation has been instrumental in characterizing the capacity of channels with feedback (see,
e.g., [15,16,28] and the references therein), as well as the rate-distortion function in setups
involving feedback [5,20–22,29].

For the simple case in which all the systems {Si}4
i=1 are linear time invariant (LTI) and

stable, and assuming p, x, q = 0 (deterministically), it was shown in [30] that I(rk → ek)
does not depend on whether there is feedback from e to u or not.

Inequalities between mutual and directed information in a less restricted setup, shown
in Figure 1b, have been found in [18,19]. In that setting (a networked-control system), G is a
strictly causal LTI dynamic system having (vector) state sequence {x(i)}∞

i=0, with p , x(0)
being the random initial state in its state-space representation. The external signal r (which



Entropy 2021, 23, 533 5 of 23

could correspond to a disturbance) is statistically independent of s, the latter corresponding
to, for example, side information or channel noise. Both are also statistically independent
of p.

The blocks labeled E, D, and f correspond to an encoder, a decoder, and a channel,
respectively, all of which are causal. The channel f maps sk and xk to y(k) in a possibly
time-varying manner, i.e., y(k) = f (k, xk, sk). Similarly, the concatenation of the encoder,
the channel and the decoder, maps sk and wk to u(k) as a possibly time-dependent function
u(k) = ψ(k, wk, sk). Under these assumptions, the following fundamental result was shown
in [19] (Lemma 5.1):

I(rk, p ; uk) ≥ I(rk; uk) + I(p; ek). (8)

By further assuming in [19] that the decoder D in Figure 1b is deterministic, the following
Markov chain naturally holds,

(p, rk)←→ yk ←→ uk, (9)

leading directly to:

I(rk, p ; yk) ≥ I(rk; uk) + I(p; ek), (10)

which is found in the proof of [19] (Corollary 5.3). The deterministic nature of the decoder
D played a crucial role in the proof of this result, since otherwise the Markov chain (9) does
not hold, in general, due to the feedback from u to y.

Notice that both (8) and (10) provide lower bounds to mutual information as the sum
of two mutual information terms, each of them relating a signal external to the loop (such
as p, rk) to a signal internal to the loop (such as uk or yk). Instead, the inequality:

I(xk → yk) ≥ I(rk; yk), (11)

which holds for the system in Figure 1a and appears in [13] (Theorem 3) (and rediscovered
later in [17] (Lemma 4.8.1)), involves the directed information between two internal signals
and the mutual information between the second of these and an external sequence.

Remark 2. By using (22), I(pk, qk, rk; yk) = I(rk; yk) + I(pk, qk; yk | rk). Then, applying
Theorem 1, we recover (11), whenever s ⊥⊥ (q, r, p). Thus, [13,17] (Theorem 3) and (Lemma 4.8.1))
can be obtained as a corollary of Theorem 1.

A related bound, similar to (10) but involving information rates and with the leftmost
mutual information replaced by the directed information from xk to yk (which are two
signals internal to the loop), has been obtained in [18] (Lemma 4.1) for the networked
control system of Figure 1b:

Ī(x→ y) ≥ Ī(r; u) + lim
k→∞

I(p; ek)

k
, (12)

with Ī(x → y) , limk→∞
1
k I(xk → yk) and Ī(r; u) , limk→∞

1
k I(rk; uk), provided

supi≥0 E
[
x(i)Tx(i)

]
< ∞. This result relies on three assumptions: (a) that the channel

f is memory-less and satisfies a “conditional invertibility” property, (b) a finite-memory
condition, and (c) a fading-memory condition, the latter two related to the decoder D
(see Figure 1).

It is worth noting that, as defined in [18], these assumptions upon D exclude the use
of side information by the decoder and/or the possibility of D being affected by random
noise or having a random internal state that is non-observable (please see [18] for a detailed
description of these assumptions).
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Remark 3. In Section 4 we present Theorem 4, which yields (12) as a special case, but for the general
system of Figure 1a and with no other assumption than mutual independence between r, p, q, s.
Moreover, since with this independence condition Theorem 1 yields I(xk → uk) = I(rk, pk; uk),
the same happens with (8).

The inequality (11) has been extended in [16] (Theorem 1), for the case of discrete-
valued random variables and assuming s ⊥⊥ (r, p, q), as the following identity (written in
terms of the signals and setup shown in Figure 1a):

I(xk → yk) = I(pk, yk) + I(xk → yk |pk). (13)

Letting q = s in Figure 1a and with the additional assumption that (p, s) ⊥⊥ q, it was also
shown in [16] (Theorem 1) that:

I(xk → yk) = I(pk; yk) + I(qk−1; yk) + I(pk; qk−1 | yk), (14)

for the cases in which u(i) = y(i) + q(i) (i.e., when the concatenation of S4 and S1 corre-
sponds to a summing node). In [16], (13) and (14) play important roles in characterizing
the capacity of channels with noisy feedback.

To the best of our knowledge, (8), (10), (11)–(14) are the only results available in the
literature that lower bound the difference between internal-to-internal directed information
and external-to-internal mutual information. There exist even fewer published results in
relation to inequalities between two directed information terms involving only signals
internal to the loop. To the best of our knowledge, the only inequality of this type in the
literature is the one found in the proof of Theorem 4.1 of [20]. The latter takes the form of a
(conditional) data-processing inequality for directed information in closed-loop systems,
and states that:

I(xk → yk ‖ qk) ≥ I(xk → uk), (15)

provided: q ⊥⊥ (r, p) and if S4 is such that yi is a function of (ui, qi) (i.e., if S4 is conditionally
invertible) ∀i.

Inequality (15) plays a crucial role in [20], since it allows [20] (Thm. 4.1) to lower
bound the average data rate across a digital error-free channel by a directed information.
The setup considered in that theorem is shown in Figure 3, where F is a plant, and E , D are
the (source) encoder and decoder, respectively. In this figure, the variables that have been
adapted to match those in Figure 4a (r, p, x correspond to disturbance, initial state, and
plant output, respectively). Assuming (r, p) ⊥⊥ (q, s) and a conditionally invertible decoder,
and letting R(i) be the expected length (in bits) necessary for a binary representation of
y(i) given qi, it states that 1

k ∑k
i=1 R(i) ≥ 1

k I(xk → uk), k = 1, 2, . . . . This is a key result,
because, combined with [20] (Equation (9)), it yields:

1
k

I(xk → uk) ≤ 1
k

k

∑
i=1

R(i) ≤ 1
k

I(xk → uk) + 1 [bits/sample], k = 1, 2, . . . . (16)

This result highlights the operational meaning of the directed information as a lower
bound (tight to within one bit) to the data rate of any given source code in a closed-loop
system. This fact has been a crucial ingredient in characterizing the best rate performance
achievable in Gaussian linear quadratic networked control [23,31], demonstrating the
relevance of directed data-processing inequalities.

Unfortunately, as we will reveal in [26], the proof of [20] (Theorem 4.1) turns out to be
invalid, since it relies upon [20] (Lemma 4.2), whose first claim does not hold. In [26] we
use Theorem 2 to prove Theorem 4.1 of [20] without requiring a conditionally invertible
decoder. This further illustrates the applicability of our results.
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Figure 3. The networked control system considered in [20] (Figure 2), slightly simplified. The
variables r, p, x, y correspond to d, xo, y, s in [20], respectively.

In [23] (Lemma 1) another data-processing inequality is stated, which for the system
in Figure 1a is equivalent to:

I(xk → yk ‖uk−1
+ ) ≥ I(xk → uk), k = 1, 2, . . . (17)

where: I(xk → yk ‖uk−1
+ ) , ∑k

i=1 I(xi; y(i)| yi−1, ui−1). However, in [23] the blocks S3, S4
are defined implicitly, writing instead their input–output relation as collections of stochastic
kernels P(y(i)| xi, yi−1), P(u(i)| yi, ui−1), i = 1, 2, . . .. The notation P(t|v, w) is to be under-
stood as the conditional distribution of t given (v, w). Crucially, this entails the implicit
assumption that given xi and yi−1, y(i) is independent of every other signal in the system
(and likewise for P(u(i)| yi, ui−1)). In the representation of Figure 1a, this corresponds to
assuming q ⊥⊥ s and (q, s) ⊥⊥ (r, p).

Remark 4. The conditioning on the side information q in both Theorem 2 and [20] (Theorem 4.1)
is motivated by the use of entropy coded subtractively dithered quantization (ECSDQ) in
obtaining the upper bound in (16). For such a scenario, the sequences q and s are identical and
correspond to the dither signal, which is independent of r, p. This satisfies the requirements of (6)
in Theorem 2 and of [20] (Theorem 4.1), but not the assumption that q ⊥⊥ s and (q, s) ⊥⊥ (r, p)
implicit in [23] (Lemma 1), which yields (17). In spite of this, Lemma 1 of [23] is used in that paper
to prove the lower bound in [23] (Equation (8)), an analogue of (16) which also considers the use of
ECSDQ for the rate term and its upper bound.

1.3. Outline of the Paper

The remainder of the paper continues with some preliminary definitions and results
in Section 2, the last of which is Lemma 2, a crucial tool for proving most of our theorems.
Then follows the proof of Theorem 1 in Section 3. Section 4 presents additional inequal-
ities relating mutual information between external–internal signal pairs, and directed
information from one internal signal to another internal signal. These results can be seen
as extensions or consequences of Theorem 1. Then we develop in Section 5 inequalities
between two nested directed information expressions. Such results are the precursors
of Theorem 2 and, as such, play a key role in its proof (which opens Appendix A). The
notions and results associated with in-the-loop channel coding are developed in Section 6.
The main conclusions of this work are presented in Section 7. Appendix A provides the
proofs that are not written right after their corresponding theorems.

An earlier version of this work was made publicly available on arxiv.org [32] and, as
such, it was cited in [23,31,33–35].

2. Preliminaries
2.1. Notation

The set of natural numbers is denoted N. Random variables are denoted using non-
italic characters, such as x. We write xi to represent the sequence x(1), x(2), . . . , x(i). We
write x ⊥⊥ y to express that x and y are independent. We use Pr{“outcome”} to denote
the probability of a specific outcome of one or more random variables. For example,
Pr{x = x, y ∈ Y} is the probability that x = 1 and y is in a given set Y . Likewise,
Pr{“outcome”|“outcome 2”} is the conditional probability of “outcome 1” given “out-
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come 2”. The Markov-chain notation x ↔ y ↔ z means Pr{x ∈ X , z ∈ Z| y ∈ Y} =
Pr{x ∈ X | y ∈ Y}Pr{z ∈ Z| y ∈ Y}, for every choice of the sets X , Y , Z in the event
spaces of x, y, and z, respectively. For two probability measures µ, ν on a common event
space U the notation µ� ν means that µ is absolutely continuous with respect to ν, i.e.,
that ∀U ∈ U : ν(U ) = 0⇒ µ(U ) = 0.

2.2. Mutual Information

Let (Ω,F , P) be a probability space, and (X ,FX ) and (Y ,FY ) be measurable spaces,
and consider the random variables x : Ω→ X , y : Ω→ Y . DefineM , FX ⊗FY , i.e, the
σ-algebra generated by the rectangles {A× B : A ∈ X , B ∈ Y}. Consider a probability
space (X ×Y ,M, m) where m is the (joint) distribution of (x, y), i.e, m = P ◦ (x, y)−1.

Denote the marginal probability distributions of x and y by µ and ν, respectively, where:

µ(A) = m(A×Y), A ∈ FX (18)

ν(B) = m(X × B), B ∈ FY (19)

Define the product measure π , µ× ν on (X ×Y ,M).

Definition 1. With the above definitions, the mutual information between x and y is defined as:

I(x; y) ,
∫

log
(

dm
dπ

)
dm, (20)

where dm
dπ is the Radon–Nikodym derivative of m with respect to π [36].

An ensemble of random variables has a standard alphabet if it takes values from a set
A in a standard measurable space (A,FA) [37] [Section 1.4] and its probability measure is
defined on FA. For our purposes, it suffices to say that standard alphabets include discrete
spaces, the real line, Euclidean vector spaces, and Polish spaces (i.e., complete separable
metric spaces) [38].

Lemma 1 (Chain Rule of Mutual Information from [37] (Corollary 7.14)). Suppose x, y, z
are random variables with standard alphabets and with joint distribution Px y z. Suppose also that
there exists a product distribution Mx y z = Mx ×My z such that Mx y z � Px y z. (This is true, for
example, if Px × Py z � Px y z.) Then:

I(x; y, z) = I(x; y) + I(x; z | y). (21)

From [37] (Lemma 7.4 and Equation 7.28), we have that I(x; y, z) < ∞⇒ Px × Py z �
Px y z, and thus (21) also holds if I(x; y, z) is finite.

The conditional version of the chain rule of mutual information [39] (see also [37]
(Corollary 2.5.1)) will be extensively utilized in the proofs of our results:

I(t, v; w|z) = I(v; w|z) + I(t; w|v, z). (22)

For discrete random variables x, y, taking values from the sets X ,Y , respectively, the
entropy of x is defined as:

H(x) , − ∑
x∈X

Pr{x = x} log(Pr{x = x}) (23)

and the conditional entropy of x given y is defined as:

H(x | y) , − ∑
x∈X ,y∈Y

Pr{x = x, y = y} log(Pr{x = x| y = y}) (24)
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The entropy satisfies the chain rule:

H(x, y) = H(x) + H(y | x) = H(y) + H(x | y) (25)

and is related to the mutual information as:

I(x; y) = H(x) + H(y)− H(x, y) = H(x)− H(x | y) = H(y)− H(y | x). (26)

2.3. System Description

We begin by providing a formal description of the systems labeled S1 . . . S4 in Figure 1a.
Their input–output relationships are given by the possibly-varying deterministic mappings
(For notational simplicity, we omit writing their time dependency explicitly):

e(i) = S1(ui−d1(i), ri), (27a)

x(i) = S2(ei−d2(i), pi), (27b)

y(i) = S3(xi−d3(i), si), (27c)

u(i) = S4(yi−d4(i), qi), (27d)

where r, p, s, q are exogenous random signals and the (possibly time-varying) delays
d1, d2, d3, d4 ∈ {0, 1, . . .} are such that:

d1(k) + d2(k) + d3(k) + d4(k) ≥ 1, ∀k ∈ N.

That is, the concatenation of S1, . . . ,S4 has a delay of at least one sample. For every
i ∈ {1, . . . , k}, r(i) ∈ Rnr(i), i.e., r(i) is a real random vector whose dimension is given by
some function nr : {1, . . . , k} → N. The other sequences (q, p, s, x, y, u) are defined likewise.

2.4. A Necessary Modification of the Definition of Directed Information

As stated in [13], the directed information (as defined in (3)) is a more meaningful
measure of the flow of information between xk and yk than the conventional mutual
information I(xk; yk) = ∑k

i=1 I(y(i); xk | yi−1) when there exists causal feedback from y
to x. In particular, if xk and yk are discrete-valued sequences, the input and output,
respectively, of a forward channel, and if there exists strictly causal perfect feedback, so that
x(i) = y(i− 1) (a scenario utilized in [13] as part of an argument in favor of the directed
information), then the mutual information becomes:

I(xk; yk) = H(yk)− H(yk | xk) = H(yk)− H(yk | yk−1) = H(yk)− H(y(k)| yk−1)

= H(yk−1).

Thus, when strictly causal feedback is present, I(xk; yk) fails to account for how
much information about xk has been conveyed to yk through the forward channel that lies
between them.

It is important to note that in [13] (as well as in many works concerned with communi-
cations), the forward channel is instantaneous, i.e., it has no delay. Therefore, if a feedback
channel is utilized, then this feedback channel must have a delay of at least one sample,
as in the example above. However, when studying the system in Figure 1a, we may need
to evaluate the directed information between signals xk and yk which are, respectively,
the input and output of a strictly casual forward channel (i.e., with a delay of at least one
sample), whose output is instantaneously fed back to its input. In such a case, if one further
assumes perfect feedback and sets x(i) = y(i), then, in the same spirit as before,

I(xk → yk) =
k

∑
i=1

I(y(i); xi | yi−1) =
k

∑
i=1

[
H(y(i)| yi−1)− H(y(i)| xi, yi−1)

]
= H(yk).
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As one can see, Massey’s definition of directed information ceases to be meaningful if
instantaneous feedback is utilized.

It is natural to solve this problem by recalling that, in the latter example, the forward
channel had a delay, say d, greater than one sample. Therefore, if we are interested in
measuring how much of the information in y(i), not present in yi−1, was conveyed from xi

through the forward channel, we should look at the mutual information I(y(i); xi−d | yi−1),
because only the input samples xi−d can have an influence on y(i). For this reason, we
introduce the following, modified notion of directed information.

Definition 2 (Directed Information with Forward Delay). In this paper, the directed infor-
mation from xk to yk through a forward channel with a non-negative time varying delay of dxy(i)
samples is defined as:

I(xk → yk) ,
k

∑
i=1

I(y(i); xi−dxy(i) | yi−1). (28)

For a zero-delay forward channel, the latter definition coincides with Massey’s [13].
Likewise, we adapt the definition of causally-conditioned directed information to

the definition:

I(xk → yk ‖ ek) ,
k

∑
i=1

I(y(i); xi−dxy(i) | yi−1, ei).

where, as before, dxy(i) is the delay from x to y(i).

2.5. A Fundamental Lemma

The following result is an essential ingredient in the proof of most of our theorems:

Lemma 2. In the system shown in Figure 4, the exogenous signals r, q are mutually independent
and S1,S2 are deterministic (possibly time-varying) causal measurable functions characterized by
yi = S1(ri, ui), ui = S2(qi, yi−1), ∀i ∈ {1, . . .}, with y0 = y0 (deterministic). For this system,
and for every 0 ≤ j ≤ i ≤ k such that i− j ≤ 1 and i ≥ 1, the following Markov chain holds:

rk ←→ (ui, yj)←→ qk, ∀k ∈ N. (29)

S1r
u

S2 q
y

Figure 4. Two arbitrary causal systems S1,S2 interconnected in a feedback loop. The exogenous
signals r, q are mutually independent.

Proof. Let R, Q, U , Y be the event spaces of rk, qk, ui, yj, respectively. Since yj = S1(rj, uj)
and ui = S2(qi, yi−1) are deterministic measurable functions, it follows that for every
possible pair of events U ∈ U , Y ∈ Y , the preimage setsRU ,Y , {rk : S1(rj, uj) ∈ Y , ui ∈
U} and QU ,Y , {qk : S2(qi, yi−1) ∈ U , yj ∈ Y} are also deterministic and belong to R and
Q, respectively. Thus, (ui, yj) ∈ U × Y ⇐⇒ (rk ∈ RU ,Y , qk ∈ QU ,Y ). This means that for
every pair of events R ∈ R, Q ∈ Q,
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Pr{rk ∈ R, qk ∈ Q| yj ∈ Y , ui ∈ U}
(a)
= Pr{rk ∈ R, qk ∈ Q| rk ∈ RU ,Y , qk ∈ QU ,Y}
(b)
=

Pr{rk ∈ R ∩RU ,Y , qk ∈ Q ∩QU ,Y}
Pr{rk ∈ RU ,Y , qk ∈ QU ,Y}

(c)
=

Pr{rk ∈ R ∩RU ,Y}
Pr{rk ∈ RU ,Y}

· Pr{qk ∈ Q ∩QU ,Y}
Pr{qk ∈ QU ,Y}

=
Pr{rk ∈ R ∩RU ,Y}Pr{qk ∈ QU ,Y}

Pr{rk ∈ RU ,Y}Pr{qk ∈ QU ,Y}
· Pr{qk ∈ Q ∩QU ,Y}Pr{rk ∈ RU ,Y}

Pr{qk ∈ QU ,Y}Pr{rk ∈ RU ,Y}
(d)
=

Pr{rk ∈ R ∩RU ,Y , qk ∈ QU ,Y}
Pr{rk ∈ RU ,Y , qk ∈ QU ,Y}

· Pr{qk ∈ Q ∩QU ,Y , rk ∈ RU ,Y}
Pr{qk ∈ QU ,Y , rk ∈ RU ,Y}

(e)
= Pr{rk ∈ R | rk ∈ RU ,Y , qk ∈ QU ,Y} · Pr{qk ∈ Q | qkQU ,Y , rk ∈ RU ,Y}
( f )
= Pr{rk ∈ R | yj ∈ Y , ui ∈ U} · Pr{qk ∈ Q | yj ∈ Y , ui ∈ U}

where (a) and ( f ) follow because of the equivalence between the events (yj ∈ Y , ui ∈ U )
and (rk ∈ RU ,Y , qk ∈ QU ,Y ), (b) and (e) follow from Bayes rule, and (c) and (d) are true
because rk ⊥⊥ qk. This completes the proof.

3. Proof of Theorem 1

It is clear from Figure 1a and from (27) that the relationship between r, p, q, s, x, and y
can be represented by the diagram shown in Figure 5.

qi
pi

ri
θi

si

y(i)

xi−1+d1+d2+d4
i+1−d3 xi−d3

yi−1

Figure 5. Representation of the system of Figure 1b highlighting the dependency between p, q, r, s, x,
and y. The dependency on i of the delays d1(i), . . . , d4(i) is omitted for clarity.

From this diagram and Lemma 2 it follows that if s is independent of (r, p, q), then
the following Markov chain holds:

y(i)←→ (xi−d3(i), yi−1)←→ (pi, qi, ri). (30)

Denoting the triad of exogenous signals pk, qk, rk by:

θk , (pk, qk, rk), (31)

we have the following:
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I(xk → yi) =
k

∑
i=1

I(y(i); xi−d3(i) | yi−1)

(22)
=

k

∑
i=1

[
I(θi, xi−d3(i); y(i)| yi−1)− I(θi; y(i)| xi−d3(i), yi−1)

]
(a)
=

k

∑
i=1

[
I(θi; y(i)| yi−1)− I(θi; y(i)| xi−d3(i), yi−1)

]
(32a)

(b)
≤

k

∑
i=1

I(θi; y(i)| yi−1)
(c)
≤

k

∑
i=1

I(θk; y(i)| yi−1) (32b)

= I(θk; yk). (32c)

In the above, (a) follows from the fact that, if yi−1 is known, and then xi−d3(i) is a
deterministic function of θi. The resulting sums on the right-hand side of (32a) correspond
to I(qk, rk, pk → yk)− I(qk, rk, pk → yk ‖ xk), thereby proving the first part of the theorem,
i.e., the equality in (5). In turn, (b) stems from the non-negativity of mutual information
turn into equality if s ⊥⊥ (r, p, q), as a direct consequence of the Markov chain in (30).
Finally, equality holds in (c) if s ⊥⊥ (q, r, p), since y depends causally upon θ. This shows
that equality in (5) is achieved if s ⊥⊥ (q, r, p), completing the proof.

4. Relationships between Mutual and Directed Information

The following result provides an inequality relating I(xk → yk) with the separate
flows of information I(rk; yk) and I(pk, qk ; yk).

Theorem 3. For the system shown in Figure 1a, if s ⊥⊥ (p, q, r) and rk ⊥⊥ (pk, qk), then:

I(xk → yk) ≥ I(rk; yk) + I(pk, qk ; yk). (33)

with equality if and only if the Markov chain (pk, qk)↔ yk ↔ rk holds.

Theorem 3 shows that, provided (p, q, r) ⊥⊥ s, I(xk → yk) is lower bounded by the
sum of the individual flows from all the subsets in any given partition of (pk, qk, rk), to yk,
provided these subsets are mutually independent. Indeed, both Theorems 1 and 3 can be
generalized for any appropriate choice of external and internal signals. More precisely, let
Θ be the set of all external signals in a feedback system. Let α and β be two internal signals
in the loop. Define Θα,β ⊂ Θ as the set of exogenous signals that are introduced to the loop
at every subsystem Si that lies in the path going from α to β. Thus, for any ρ ∈ Θ \Θα,β, if
Θα,β ⊥⊥ Θ \Θα,β, we have that (5) and (33) become:

I(α→ β) = I(Θ \ {Θα,β}; β), (34)

I(α→ β)− I(ρ; β) ≥ I(Θ \ {ρ ∪Θα,β}; β), (35)

respectively.
To finish this section, we present a stronger, non-asymptotic version of inequality (12):

Theorem 4. In the system shown in Figure 1a, if (r, p, q, s) are mutually independent, then:

I(xk → yk) = I(rk; uk) + I(pk; ek) + I(qk; yk) + I(pk; uk | ek) + I(rk, pk; yk |uk). (36)

Remark 5. As anticipated, Theorem 4 can be seen as an extension of (12) to the more general
setup shown in Figure 1a, where the assumptions made in [18] (Lemma 4.1) do not need to hold.
In particular, letting the decoder D and p in Figure 1b correspond to S4 and pk in Figure 1a,
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respectively, we see that inequality (12) holds even if the channel f has memory or D and E have
independent initial states, or if the internal state of D is not observable [40].

Theorem 4 also admits an interpretation in terms of information flows. This can be
appreciated in the diagram shown in Figure 6, which depicts the individual full-turn flows
(around the entire feedback loop) stemming from q, r, and p. Theorem 4 states that the
sum of these individual flows is a lower bound for the directed information from x to y,
provided q, r, p, s are independent.

r

S1

u

p

S2
e

q

S4 x
s

S3y

Figure 6. A representation of the three first information flows on the right-hand side of (36).

5. Relationships between Nested Directed Information

This section presents three closed-loop versions of the data-processing inequality
relating two directed information terms, both between pairs of signals internal to the loop. As
already mentioned in Section 1, to the best of our knowledge, the first inequality of this
type to appear in the literature is the one in Theorem 4.1 in [20] (see (15)). Recall that the
latter result stated that I(xk → yk ‖ qk) ≥ I(xk → uk), requiring S4 to be such that yi is a
deterministic function of (ui, qi) and that q ⊥⊥ (r, p). The following result presents another
inequality that also relates two nested directed information terms, namely, I(xk → yk) and
I(ek → yk), but requiring only that s ⊥⊥ (q, r, p).

Theorem 5. For the closed-loop system in Figure 1b, if (q, r, p) ⊥⊥ s, then:

I(xk → yk) ≥ I(ek → yk). (37)

Notice that Theorem 5 does not require p to be independent of r or q. This may seem
counterintuitive upon noting that p enters the loop between the link from e to x.

The following theorem is an identity between two directed information terms involv-
ing only internal signals. It can also be seen as a complement to Theorem 5, since it can be
directly applied to establish the relationship between I(ek → yk) and I(ek → uk).

Theorem 6. For the system shown in Figure 1a, if s ⊥⊥ (q, r, p), then:

I(xk → yk) ≥ I(xk → uk) + I(qk ; yk) + I(rk, pk; yk |uk) + I(qk; rk |uk, yk), (38)

with equality if, in addition, q ⊥⊥ (r, p). In the latter case, it holds that:

I(xk → yk) = I(xk → uk) + I(qk ; yk) + I(rk, pk; yk |uk). (39)

Notice that by requiring additional independence conditions upon the exogenous
signals (specifically, q ⊥⊥ s), Theorem 6 (and, in particular, (39)) yields:

I(xk → yk) ≥ I(xk → uk), (40)

which strengthens the inequality in [20] (Theorem 4.1) (stated above in (15)). More pre-
cisely, (40) does not require conditioning one of the directed information terms and holds
irrespective of the invertibility of the mappings in the loop.
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6. Giving Operational Meaning to the Directed Information: In-the-Loop
Channel Coding

In this section we introduce the notions of in-the-loop transmission rate and capac-
ity and show that they are related by the directed information rate across the channel
in the same feedback loop. This provides another example to illustrate the applicabil-
ity of Theorems 1 and 2 and also provides further operational meaning to the directed
information rate.

Consider the scheme shown in Figure 7, and suppose C is a noisy communication
channel. Let E and D be the channel encoder and decoder, respectively, with r and p being
side information sequences causally and independently available to each of them such that
(r, p) ⊥⊥ (s, q). This means that, for k = 1, 2, . . . , n,

(pn
1 , rn

k+1)↔ rk
1 ↔ (wk+1

1 , xk
1, yk

0). (41)

pn
k+1 ↔ pk

1 ↔ rk
1 (42)

pn
k+1 ↔ pk

1 ↔ (wk+1
1 , xk

1, yk
0). (43)

E C D

S

x y

y

w v

r s p

q

Figure 7. A communication feedback system in which the messages and the channel output are
within the loop.

A crucial aspect of this scenario is the fact that the messages wn
1 , w2n

n+1, . . . to be
encoded are contained in the sequence w, a signal internal to the loop; they can be regarded
as a corrupted version of the decoded messages, which comprise the sequence v. This is a
key difference with respect to the available literature on feedback capacity, where, to the
best of the authors’ knowledge, the messages are exogenous and the feedback signal only
helps in the encoding task (exceptions can be found in some papers on networked control
which consider in-the-loop channel coding, such as, e.g., [41,42]). In Figure 7, the latter
standard scenario corresponds to encoding the sequence r.

The fact that the messages to be encoded bear information from the decoded message
symbols requires one to redefine the notion of information transmission rate commonly
used in the standard scenario. To see this, let w(k) ∈ W , k = 1, 2, . . ., for some finite
alphabetW of cardinality |W|, and notice that the transmission rate definitions log(|W|)
and H(wn

1 )/n are unsatisfactory if w(k) = y(k− 1), k = 1, 2, . . ., i.e., if the messages to be
transmitted are already available at the decoder (more generally, if there is no randomness
in the feedback path). This suggests that a suitable notion of transmission rate for this
scenario should exclude information that is already known by the receiver .

In view of the above, we propose the following notion of transmission rate for the
case in which the messages to be transmitted are in the loop:

Definition 3. For the system described in Figure 1, the in-the-loop (ITL) transmission rate is
defined as:

Rn
ITL ,

1
n

n

∑
k=1

H(w(k)|wk−1
1 , yk−1

0 , pk
1). (44)

The meaning of the ITL transmission rate is further elucidated by considering the
following scenarios:
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1. If the feedback channel is deterministic, then w(k) is a deterministic function of yk−1
0

and thus Rn
ITL = 0, as desired.

2. If the (forward) communication channel is noiseless, then at each time k− 1, we have
yk−1

1 = wk−1
1 . Therefore Rn

ITL = H(wn
1 | y0, pn

1 )/n. Again, if the feedback channel is
deterministic, the ITL transmission rate is zero.

3. In the absence of feedback, Rn
ITL = 1

n H(wn
1 ), recovering the notion of transmission

rate of the case in which the messages are exogenous to the loop.

Thus, Rn
ITL can be interpreted as the sum of the information the encoder attempts to transmit

at each sample time (expressed by the conditional entropy H(w(k)|wk−1
1 , yk−1

0 , pk
1)) that is

novel for the transmitter (because of the conditioning on wk−1
1 ) and novel for the receiver

(due to the conditioning on yk−1
0 , pk

1).

Theorem 7. Consider the setup depicted in Figure 7, where E and D are the channel encoder
and decoder, respectively, and C is the communication channel. Suppose the message and side-
information samples w(k) ∈ W , r(k) ∈ R, k = 1, 2, . . ., respectively, whereW andR are finite
alphabets. Define the binary random variable en to equal 1 if vn

1 6= wn
1 and 0 otherwise. Then, for

every n ∈ N,

Rn
ITL ≥ I(wn

1 → yn
0 ‖pn

1 ), (45)

with equality if and only if H(wn
1 | yn

0 , pn
1 ) = 0. Moreover,

Pr{en = 1} =
Rn

ITL −
1
n I(wn

1 → yn
0 ‖pn

1 )−
1
n H(en | yn

0 , pn
1 )

1
n H(wn

1 | yn
0 , pn

1 , en = 1)
(46)

≥
Rn

ITL −
1
n I(wn

1 → yn
0 ‖pn

1 )− 1/n
log2(|W|)

(47)

Proof. Recall that:

I(wn
1 → yn

0 ‖pn
1 ) =

n

∑
k=1

I(wk
1; y(k)| yk−1

0 , pk
1) =

n

∑
k=1

H(wk
1 | yk−1

0 , pk
1)−

n

∑
k=1

H(wk
1 | yk

0, pk
1) (48)

On the other hand,

nRn
ITL =

n

∑
k=1

H(w(k)|wk−1
1 , yk−1

0 , pk
1)

(cr)
=

n

∑
k=1

H(wk
1 | yk−1

0 , pk
1)−

n

∑
k=2

H(wk−1
1 | yk−1

0 , pk
1) (49)

(48)
=

n

∑
k=1

H(wk
1 | yk

0, pk
1)−

n

∑
k=2

H(wk−1
1 | yk−1

0 , pk
1) + I(wn

1 → yn
0 ‖pn

1 ) (50)

(43)
= H(wn

1 | yn
0 , pn

1 ) + I(wn
1 → yn

0 ‖pn
1 ), (51)

where the equality (cr) follows from the chain rule of entropy. This proves the first part of
the theorem.

Let us now re-derive the first steps leading to Fano’s inequality, to include the side-
information pn

1 and to verify that it is not affected by the fact that w and y are within
the loop.

H(wn
1 | yn

0 , pn
1 )

(cr)
= H(wn

1 , en | yn
0 , pn

1 )− H(en | yn
0 , pn

1 , wn
1 ) (52)

(a)
= H(en | yn

0 , pn
1 ) + H(wn

1 | yn
0 , pn

1 , en) (53)
(b)
= H(en | yn

0 , pn
1 ) + H(wn

1 | yn
0 , pn

1 , en = 1)Pr{en = 1}, (54)
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where the equality (cr) follows from the chain rule of entropy and (a) holds because
H(en | yn

0 , pn
1 , wn

1 ) = 0 and from the chain rule, while (b) is because H(wn
1 | yn

0 , pn
1 , en =

0) = 0.
Substituting this into (51),

nRn
ITL = H(en | yn

0 , pn
1 ) + H(wn

1 | yn
0 , pn

1 , en = 1)Pr{en = 1}+ I(wn
1 → yn

0 ‖pn
1 ). (55)

Noting that H(en | yn
0 , pn

1 ) ≤ 1 and H(wn
1 | yn

0 , pn
1 , en = 1) ≤ n log(|W|) leads directly

to (46), comparing the proof.

Theorem 7 allows one to draw an additional interpretation of the ITL transmission
rate. We extend first the identity of [27] to include causal conditioning by pn

1 :

I(wn
1 ; yn

0 , pn
1 ) = I(wn

1 ; yn | y
n−1
0 , pn

1 ) + I(wn; yn−1
0 |wn−1

1 , pn
1 ) + I(wn−1

1 ; yn−1
0 , pn−1

1 ) (56)

=
n

∑
k=1

I(wk
1; y(k)| yk−1

0 , pk
1) +

n

∑
k=1

I(w(k); yk−1
0 |wk−1

1 , pk
1) = I(wn

1 → yn
0 ‖pn

1 ) + I(yn−1
0 → wn

1 ‖pn
1 ), (57)

where:

I(yn−1
0 → wn

1 ‖pn
1 ) ,

n

∑
k=1

I(w(k); yk−1
0 |wk−1

1 , pk
1). (58)

It readily follows from (56) that:

H(wn
1 )− I(yn−1

0 → wn
1 ‖pn

1 ) = I(wn
1 → yn

0 ‖pn
1 ) + H(wn

1 | yn
0 , pn

1 )
(51)
= nRn

ITL. (59)

Thus, the ITL transmission rate corresponds to the entropy rate of the messages having
extracted from it the information flowing from the decoder input to the messages.

The main result of this section is the following theorem, which asserts that the supre-
mum of achievable ITL transmission rates is upper bounded by the directed information
across the communication channel.

Theorem 8. Consider the setup depicted in Figure 7, where E and D are the channel encoder and
decoder, respectively, and C is the communication channel. Then the supremum of achievable ITL
transmission rates is upper bounded by the supremum of the directed information rate from x to y
causally conditioned by pn

1 .

Proof. The result follows directly from Theorems 2 and 7.

Thus, the supremum of limn→∞ I(xn
1 → yn

1 ‖pn
1 ) is an outer bound to the capacity

region of ITL transmission rates.
In the following example, this bound is reachable.

Example 1. Consider the case in which the forward channel C in Figure 7 is transparent, i.e.,
y(k) = x(k) for k = 0, 1, . . ., as shown in Figure 8. Let y(k) ∈ {0, 1, 2, 3}, k = 0, 1, . . .. Let
q(0) = 1 (deterministically) and q(1), q(2), . . . be binary and i.i.d. with Pr{q(k) = 1} = α = 0.9.
The feedback channel S is defined by the following recursion:

w(k) =

{
q(k) , if q(k− 1) = (y(k− 1) mod 2)
(y(k− 1) mod 2) , if q(k− 1) 6= (y(k− 1) mod 2)

, k = 1, 2, . . . (60)

Thus, S outputs a new sample of q iff the previous sample of q is matched by the previous sample
mod 2 of y. Otherwise, it lets y(k− 1) mod 2 pass through.
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E1 D1

S

y

y

w v

r

q

(a)

E2 D2

S

y

y

w v

q

(b)

Figure 8. The feedback communication system considered in Example 1. In (a), encoder/decoder
pair 1 yields a large mutual information between w and v by adding a backward information flow
(in red) to the forward information flow (in green). The latter is only part of thee entropy rate of q. In
(b), encoder/decoder pair 2 yields a smaller mutual information between w and v, but it corresponds
to the greatest possible forward information flow, which coincides with the entropy rate of q. Thus, it
is capacity achieving with respect to the ITL transmission rate.

Consider first the following encoder–decoder pair, designed with the aim of achieving zero-error
communication while maximizing H(wn

1 )/n = I(wn
1 ; vn

1 ).
Encoder E1: Let the side-information sequence r be binary i.i.d. and independent of q, with

Pr{r(k) = 1} = β, and:

y(0) = r(0) (61)

y(k) =

{
r(k) , if w(k) = (y(k− 1) mod 2)
r(k) + 2 , if w(k) 6= (y(k− 1) mod 2)

, k = 1, 2, . . . (62)

Decoder D1:

v(k) =

{
y(k− 1) mod 2 , if y(k) ≤ 1
(y(k− 1) mod 2)⊕ 1 , if y(k) > 1

(63)

where ⊕ is the exclusive–or binary operator. With this choice, v(k) = w(k) for k = 1, 2, . . ..
In addition,

w(k) =

{
q(k) , if r(k− 1) = q(k− 1)
r(k− 1) , if r(k− 1) 6= q(k− 1)

, k = 1, 2, . . . (64)

Therefore,

Pr{w(1) = 1} = αβ. (65)

and, for k ≥ 2,

Pr{w(k) = 1} = (α2 + (1− α)2)β + α(1− α) (66)

Thus, and since α = 0.9, the entropy of each w(k) is maximized by β = 0.5055. However, encoder
E1 makes the samples of w interdependent, so finding the value of β that maximizes H(wn

1 )/n (and
thus I(wn

1 ; vn
1 ) as well) is more involved, and that value does not need to be the same. We have

found numerically that (for n = 22) the maximum of H(xn
1 )/n = I(wn

1 ; vn
1 )/n is (approximately)

0.9941 [bits/sample], attained with β = 0.503, very close to the β which maximizes H(wn
1 )/n.

For later comparison, we also calculate the value of Rn
ITL yielded by this choice of encoder:

Rn
ITL

(a)
= I(wn

1 → yn
1 )

Thm. 1
= I(qn

0 ; yn
0 ) =

n

∑
k=0

(H(q(k)| qk−1
0 )− H(q(k)| qk−1

0 , yn
0 )), (67)
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where (a) holds from Theorem 7 because H(wn
1 | yn

0 ) = 0. Defining the binary random variables
t(k) , 1 when (y(k) mod 2) = q(k) and 0 otherwise, we obtain:

H(q(k)| qk−1
0 , yn

0 ) = H(q(k)| qk−1
0 , yn

0 , t(k− 1)) (68)

= H(q(k)| qk−1
0 , yn

0 , t(k− 1) = 0)Pr{t(k− 1) = 0}+ H(q(k)| qk−1
0 , yn

0 , t(k− 1) = 1)Pr{t(k− 1) = 1}
(64)
= H(q(k))Pr{t(k− 1) = 0}+ 0 · Pr{t(k− 1) = 1} (69)

Thus,

Rn
ITL = H(q(k))(1− Pr{t(k− 1) = 0}) = H(q(k))(α(1− β) + (1− α)β) (70)

= 0.469× 0.4976 = 0.2334 [bits/sample], (71)

using β = 0.503.
The second encoder/decoder pair is set to maximize Rn

ITL, and is defined as follows:
Encoder E2:

y(k) =

{
1 , if k = 0
w(k) , if k ≥ 1

(72)

Thus, zero-error communication is trivially attained with the simple decoding rule:
Decoder D2:

v(k) = y(k), k ≥ 1. (73)

In addition, encoder E2 yields w(k) = q(k), for k ≥ 1 . Therefore,

1
n

I(wn
1 → yn

0 )
Thm. 7
= Rn

ITL =
1
n

H(qn
1 ) = 0.469 [bits/sample] (74)

As expected, encoder E2 yields a higher Rn
ITL than encoder E1. More significant is the fact that

encoder/decoder pair 2 achieves the in-the-loop capacity for this channel, since:

1
n

I(wn
1 → yn

0 )
(a)
= I(qn

1 ; yn
0 ) ≤ H(qn

1 ) (75)

The previous example illustrates an important fact that is closely related with the
motivation behind the definition of Rn

ITL: maximizing the mutual information between the
messages to be transmitted and the decoded messages (a leitmotif in traditional channel
coding, wherein messages are generated outside the loop) is not suitable when messages
are in the loop.

Indeed, (56) provides a mathematically precise meaning to the above observation. It re-
veals why maximizing I(wn

1 ; yn
0 , pn

1 ) does not necessarily mean maximizing I(wn
1 → yn

0 ‖pn
1 ),

since the former is the sum of backward and forward information flows (represented in
green and red in Figure 8, respectively).

Finally, Theorems 7 and 8 imply that in the design of any encoder for in-the-loop
messages, aiming to yield the joint probability distribution of channel input and output
sequences that maximizes the directed information is of practical importance: it is necessary
for achieving the highest “useful” transmission rate while minimizing the probability
of error.

7. Concluding Remarks

The widely used data processing inequality does not hold for systems with feedback.
In this work, we provided a very general directed information data processing inequality
that is applicable to feedback systems. A key insight to be gained from this new inequality
is that, for nested pairs of sequences, the further apart the signals in the feedback system are
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from each other, the lower is the directed information between them (measuring distance
from starting to finishing sequence and in the direction of cause and effect). Thus, post
processing signals within a feedback loop cannot increase the information, which is similar
to the open loop case. In order to obtain these results, we considered arbitrary causal
systems that are interconnected in a feedback loop, with arbitrarily distributed signals.
We were able to overcome the generally non-trivial dependencies between the signals
in such a scenario by establishing a family of useful Markov chains that conditionally
decouple the sequences in the system. These Markov chains are useful by themselves for
studies involving interconnected systems. We further used the Markov chains to derive
a number of fundamental information inequalities that are applicable to signals that are
entirely within feedback loops or where some signals are inside and others outside the
loop. With the use of these inequalities, we were able to show that the conventional notion
of channel capacity is not adequate for in-the-loop communications. Instead, we provided
the new notion of in-the-loop channel capacity, and described a special case where it was
achievable. As an additional application of our results, we discussed how they allow one
to generalize two known fundamental inequalities in networked control involving directed
information. We are confident that our analysis provides useful insights to understand
and think about information flows in single-loop feedback systems, and that our results
will serve as a toolbox for research in, e.g., networked control systems or communications
within a feedback loop.

There are several future research directions stemming from this work, from which we
outline the following three:

1. Establishing whether (and under which conditions, if any) in the system of Figure 1,
each of the following inequalities is true or false:

I(rk; ek) ≥ I(rk; xk) ≥ I(rk; yk) ≥ I(rk; uk). (76)

2. Extending Theorems 1 and 2 to scenarios with more than one feedback loop.
3. Exploring if tree codes [43] can be tailored to maximize the ITL data rate instead of the

conventional data rate within a feedback loop. If such adaptation is possible, it would
be interesting to assess how close to the ITL channel capacity such codes can perform.
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Appendix A. Proofs

Proof of Theorem 2. If (q, s) ⊥⊥ (r, p) and q ⊥⊥ s, then (6) follows by applying Theorem 5
and then Theorem 6. If (p, s) ⊥⊥ (r, q) and p ⊥⊥ s, then one arrives at (6) by applying
Theorem 6 followed by Theorem 5.

To prove the second part, notice that:

I(xk → yk ‖ qk) = I(xk → yk | qk) (A1)

which follows since xi−d3(i), yi are deterministic functions of (rk, pk, si, qi) and qk
i+1 ↔

qi ↔ (rk, pk, si), a Markov chain that results from combining qk
i+1 ↔ qi ↔ si with

(qk, sk) ⊥⊥ (rk, pk).
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On the other hand, the fact that (rk, pk) ⊥⊥ (qk, sk) allows one to obtain from
Theorem 1 that:

I(xk → yk | qk) = I(rk, pk; yk | qk). (A2)

But:

I(rk, pk; yk | qk)
(22)
= I(rk, pk ; uk, yk | qk)− I(rk, pk; uk | qk, yk)

(a)
= I(rk, pk ; uk, yk | qk)

(22)
= I(rk, pk ; uk, yk, qk)− I(rk, pk ; qk)

(b)
= I(rk, pk ; uk, yk, qk)

(22)
= I(rk, pk ; uk) + I(rk, pk; yk, qk |uk) (A3)

where (a) is due to the fact that uk is a deterministic function of qk, yk. Equality (b) holds if
and only if (r, p) ⊥⊥ q. The fact that (rk, pk) ⊥⊥ (qk, sk) allows one to obtain from Theorem 1
that I(xk → uk) = I(rk, pk; uk). Substituting this into (A3) and then into (A2) and the latter
into (A1), we obtain I(xk → yk ‖ qk) ≥ I(xk → uk), which combined with Theorem 5
yields (7). This completes the proof.

Proof of Theorem 3. Apply the chain-rule identity (22) to the right-hand side (RHS) of (5)
to obtain:

I(θk; yk) = I(pk, qk, rk; yk) = I(pk, qk; yk | rk) + I(rk; yk). (A4)

Now, applying (22) twice, one can express the term I(pk, qk; yk | rk) as follows:

I(pk, qk; yk | rk) = I(pk, qk ; yk, rk)− I(pk, qk; rk) = I(pk, qk ; yk, rk)

= I(pk, qk; yk) + I(pk, qk; rk | yk),
(A5)

where the second equality follows since (pk, qk) ⊥⊥ rk. The result then follows directly by
combining (A5) with (A4) and (5).

Proof of Theorem 4. Since q ⊥⊥ (r, p, s),

I(xk → yk)
(a)
= I(xk → uk) + I(qk; yk) + I(rk, pk; yk |uk) (A6)
(b)
= I(rk, pk; uk) + I(qk; yk) + I(rk, pk; yk |uk) (A7)
(c)
= I(rk; uk) + I(pk; uk | rk) + I(qk; yk) + I(rk, pk; yk |uk), (A8)

where (a) is due to Theorem 6, (b) follows from Theorem 1 and the fact that (s, q) ⊥⊥ (r, p),
and (c) follows from the chain rule of mutual information. For the second term on the RHS
of the last equation, we have:



Entropy 2021, 23, 533 21 of 23

I(pk; uk | rk)
(a)
= I(pk; uk | rk) + I(pk; rk) = I(pk; rk, uk) (A9)
(b)
= I(pk; rk, uk, ek)− I(pk; ek | rk, uk) (A10)
(c)
= I(pk; rk, uk, ek) (A11)
(d)
= I(pk; ek) + I(pk; rk, uk | ek) (A12)
(e)
= I(pk; ek) + I(pk; uk | ek) + I(pk; rk |uk, ek) (A13)
( f )
= I(pk; ek) + I(pk; uk | ek), (A14)

where (a) holds since r ⊥⊥ p, (b), (d), and (e) stem from the chain rule of mutual informa-
tion (22), and (c) is a consequence of the fact that ek = S1(uk−d1(k), rk). Finally, ( f ) is due to
the Markov chain rk ↔ (uk, ek)↔ pk, which holds because r ⊥⊥ (p, s, q) as a consequence
of Lemma 2 in the Appendix (see also Figure 1a). Substitution of (A14) into (A8) yields (36),
thereby completing the proof.

Proof of Theorem 5. Since (p, q, r) ⊥⊥ s, we can apply (11) (where now (q, r) plays the role
of r), and obtain

I(xk → yk) ≥ I(qk, rk; yk). (A15)

Now, we apply Theorem 1, which gives

I(qk, rk; yk) ≥ I(ek → yk), (A16)

completing the proof.

Proof of Theorem 6. We have that:

I(xk → yk)
(a)
= I(rk, pk, qk ; yk)

(22)
= I(qk ; yk) + I(rk, pk ; yk | qk) (A17)

(A3)
= I(rk, pk ; uk) + I(rk, pk; yk, qk |uk)

(22)
= I(qk ; yk) + I(rk, pk ; uk) + I(rk, pk; yk |uk) + I(rk, pk; qk |uk, yk) (A18)
(b)
≥ I(qk ; yk) + I(xk → uk) + I(rk, pk; yk |uk) + I(rk, pk; qk |uk, yk) (A19)
(c)
≥ I(qk ; yk) + I(xk → uk) + I(rk, pk; yk |uk), (A20)

where (a) follows from Theorem 1 and the assumption (r, p, q) ⊥⊥ s, (b) is from Theorem 1,
with equality iff (q, s) ⊥⊥ (r, p), and from Lemma 2 (in the Appendix), (c) turns into equality
if q ⊥⊥ (r, p, s). This completes the proof.
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