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Abstract: Malicious software utilizes HTTP protocol for communication purposes, creating network
traffic that is hard to identify as it blends into the traffic generated by benign applications. To this
aim, fingerprinting tools have been developed to help track and identify such traffic by providing a
short representation of malicious HTTP requests. However, currently existing tools do not analyze
all information included in the HTTP message or analyze it insufficiently. To address these issues, we
propose Hfinger, a novel malware HTTP request fingerprinting tool. It extracts information from the
parts of the request such as URI, protocol information, headers, and payload, providing a concise
request representation that preserves the extracted information in a form interpretable by a human
analyst. For the developed solution, we have performed an extensive experimental evaluation using
real-world data sets and we also compared Hfinger with the most related and popular existing tools
such as FATT, Mercury, and p0f. The conducted effectiveness analysis reveals that on average only
1.85% of requests fingerprinted by Hfinger collide between malware families, what is 8–34 times
lower than existing tools. Moreover, unlike these tools, in default mode, Hfinger does not introduce
collisions between malware and benign applications and achieves it by increasing the number of
fingerprints by at most 3 times. As a result, Hfinger can effectively track and hunt malware by
providing more unique fingerprints than other standard tools.

Keywords: fingerprinting; malware analysis; malicious network traffic analysis; HTTP protocol
analysis; pcap file analysis; malware tracking; malware identification

1. Introduction

Currently, malicious software (malware) developers use Hypertext Transfer Protocol
(HTTP) as one of the primary carriers for malicious communication. According to Miller
et al. [1], HTTP is the most common protocol used in the Command and Control (C&C)
traffic, more popular than Hypertext Transfer Protocol Secure (HTTPS). It is utilized by
malware, e.g., to connect to the C&C server to register or obtain commands, check the
infected machine’s IP address, or download additional modules. Moreover, it can be used
to perform DDoS (Distributed Denial of Service) attacks or to click on referral links, thus
creating revenue.

To identify and discern different malware communication activities, network traffic
fingerprinting methods can be applied. The notions of a fingerprint and fingerprinting as
the act of creating a fingerprint are similar to the notions of classic forensic work, where
the fingerprint is an impression of human fingers’ friction ridges. In the field of computer
science, a working definition of a fingerprint is a short representation of a larger object [2].
The most crucial property of fingerprinting is that two different objects have different
fingerprints, and the probability of a collision, i.e., an event when two different objects
have the same fingerprint, is low. File fingerprinting is one of the application examples,
where cryptographic hash functions, e.g., such as SHA-256, are used to create identification
tags for the fingerprinted files.
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However, it is not only files that can be fingerprinted. Network traffic can also
be used for this purpose. Various network protocols can be analyzed to represent the
exchanged data, which then, in turn, can be used for identification purposes. The process
of fingerprinting can be conducted in an active or passive mode. The former is performed
with a modification of the standard network traffic, for example, by sending carefully
crafted messages. In the latter, no changes are introduced, and network traffic is only
monitored. The most popular practical usage examples are passive Operating System
fingerprinting (as realized, e.g., in p0f https://lcamtuf.coredump.cx/p0f3, accessed on
26 March 2021), web browser fingerprinting (like in, e.g., privacy research and advocacy
service at https://panopticlick.eff.org/, accessed on 26 March 2021) or network service
discovery (as performed by, e.g., Nmap https://nmap.org/, accessed on 26 March 2021).
Network protocols can also be fingerprinted to identify, track, or detect malware. Until
now, several such examples of network traffic fingerprinting methods and tools exist, and
they are discussed in detail in Section 2.

From the variety of network protocols, HTTP fingerprinting is a promising approach
to provide identification and tracking of malware communications, which is crucial for
malware analysts in their daily work while defending networks. Currently, several tools
have been proposed that help fingerprinting HTTP traffic, such as FATT (https://github.
com/0x4D31/fatt, accessed on 26 March 2021), p0f (https://lcamtuf.coredump.cx/p0f3,
accessed on 26 March 2021), or Mercury (https://github.com/cisco/mercury, accessed
on 26 March 2021). However, they all share the same limitation. In our opinion, they do
not analyze all information included in the HTTP messages or analyze it insufficiently.
For example, the above-mentioned tools do not analyze the payload of the request, and
the URI analysis is at most limited to value encoding. Note that both these features have
already been proven to be useful for malware detection and identification purposes, for
example, as described by Li et al. [3] or Perdisci et al. [4]. Fingerprints created with such
an approach omit information that can potentially identify and discern various malware
families’ requests.

To address these issues, we propose the Hfinger tool that aims to fingerprint malware
HTTP requests more comprehensively. In more detail, Hfinger processes HTTP requests
and generates a fingerprint based on the URI, protocol version, the request method, headers
and their values, and the request’s payload. The tool’s main goal is to produce unique repre-
sentations of malware HTTP requests, thus providing a mechanism for the identification of
such requests in network traffic of various applications. The fingerprint created by Hfinger
represents a malware request in a short and concise form that can still be interpretable by a
human analyst. Hfinger was designed to be used with exact match searching mechanisms,
which provide means for direct fingerprint searching without using wildcard techniques.
Exact match searching is supported by, for example, many security monitoring and logging
tools. In this vein, it is intended to provide similar search functionality as malware sample
hashes such as SHA-256. Nevertheless, its overt nature can still help analysts by giving
basic information about the request or by finding patterns in the network traffic.

Hfinger does not provide direct identification of particular malware families or directly
detect malware per se. However, it can identify requests that can be labeled as malicious
using other information sources, such as Intrusion Detection Systems. The tool can also be
used in threat hunting to uncover unknown requests that were omitted by other security
solutions but that share fingerprint with those identified as malicious. The tool is open
source and has been published at https://github.com/CERT-Polska/hfinger, accessed
on 26 March 2021. The research presented in this paper is focused on HTTP requests of
Windows-based malware. The utilization of only HTTP requests is related to the fact that
the server responses may be unavailable in some of the fingerprinting tool usage scenarios.
For example, when analyzing an old malware sample for which C&C servers no longer
work, or server responses are unreliable because the malicious infrastructure was sinkholed
and the received messages are different from the original. From this perspective, using only
requests for fingerprinting purposes can be more reliable in analyzing malware’s actual

https://lcamtuf.coredump.cx/p0f3
https://panopticlick.eff.org/
https://nmap.org/
https://github.com/0x4D31/fatt
https://github.com/0x4D31/fatt
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behavior. Moreover, focusing on Windows-based malware is related to the fact that it is
still the most frequently attacked platform despite the constant increase in the number of
threats on mobile platforms. According to AV-TEST Institute in 2019, more than 75% of
malware targeted Windows operating system [5].

To prove the effectiveness of the proposed Hfinger tool we have conducted an ex-
tensive experimental study. To this aim, we based the performed evaluation on four
main metrics that measure fingerprint collision probability for various malware families
(separately and including benign software), the number of created fingerprints, and their
entropy. Moreover, to determine the performance of the proposed solution for malware
HTTP request fingerprinting, we use real-world malware and benign applications data sets
containing HTTP traffic. In more detail, the former consists of 121 popular malware fami-
lies represented using 401,566 HTTP requests, while the latter incorporates 248,657 HTTP
requests generated by popular Windows applications, including web browsers. Addi-
tionally, the effectiveness of the developed tool has been compared with the three exist-
ing, previously mentioned community-proven HTTP fingerprinting tools, i.e., FATT, p0f,
and Mercury.

Considering the above, the main contributions of this paper are as follows:

• Proposing Hfinger—a new malware HTTP request fingerprinting tool;
• Performing a review and analysis of popular HTTP fingerprinting tools;
• Providing an extensive experimental evaluation of the proposed approach and its

comparison with the popular, existing HTTP fingerprinting tools.

The rest of the paper is structured as follows. First, Section 2 describes the most
notable related work. Then, in Section 3, we present the proposed HTTP fingerprinting
tool. Next, Section 4 contains details on the chosen experimental methodology, while
in Section 5 obtained results are included and discussed. Section 6 showcases potential
practical usage scenarios for Hfinger and pinpoints its main limitations. Finally, Section 7
concludes our work and indicates potential future research directions.

2. Related Work

In this section, first we review the most important work related to the topic of this
paper and compare it to Hfinger. Then we describe existing popular tools used for HTTP
traffic fingerprinting and we discuss their limitations. Finally, we compare them to the
solution proposed in this paper.

An important distinction between the presented research solutions and tools must be
drawn. The former were created to provide an extensive research analysis of a particular
problem which, in some cases, resulted in creation of a tool or a system that solves the
stated problem. On the other hand, the latter were primarily focused on creation of a tool
that solves a specific technical (rather than a research) problem and the tool’s analysis is
typically quite limited.

2.1. Proposed Research Solutions

Research on web browser fingerprinting is directly related to HTTP malware fin-
gerprinting, and this topic has been extensively covered in the literature (cf. Laperdrix
et al. [6]). This type of fingerprinting is based on active and passive techniques in which
information about different features of the environment, web browser, and OS are extracted.
While for active fingerprinting different techniques are used, such as JavaScript to query
information about the canvas, a list of browser plugins, or screen resolution, passive finger-
printing techniques analyze requests sent by web browsers. Common techniques involve
checking the values of popular headers such as User-Agent, Accept, or Content-Encoding but
also headers’ order. Hfinger utilizes these passive fingerprinting techniques; however, they
are extended, for example, with URI and payload analysis.

Fingerprinting of HTTP network traffic can be used to create models of applications
present in a monitored network and used as a baseline for detecting unknown applications
that can be malicious. Bortolameotti et al. presented in [7] DECANTeR a system for
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detection of HTTP network traffic that is anomalous for analyzed host. It passively extracts
fingerprints of benign applications running on the host. This process involves extracting
information from clustered POST and GET requests in the form of Host header value,
constant header fields, average request size, User-Agent header value, Accept-Language
header value, and the size of outgoing information in the cluster.

Bortolameotti et al. presented in [8] a system for the detection of anomalous traffic.
Their system uses two models of header-value entropy and header sequence extracted
from multiple requests to create known applications’ fingerprints. After the training phase,
the system can evaluate if an unknown request is similar to already known applications or
it originates from a new application. Comparing these two approaches to Hfinger shows
they were designed with different objectives than the latter. Their goal is to provide a
model of application behavior based on multiple HTTP requests to create a baseline for
detecting outlying applications in a particular network, thus providing malware detection.
On the other hand, Hfinger is focused on the unique representation of malware HTTP
requests, providing a fingerprint for each separate request. Such an approach allows
analyzing network traffic without the baseline model creation stage and analyzing network
traffic with single requests, for example, when the infrastructure of analyzed malware is
not working anymore. Furthermore, while all these systems analyze similar parts of the
requests, Hfinger utilizes a broader set of features for fingerprint generation and analyzes
all requests, regardless of their method. In contrast, for example, DECANTeR fingerprints
clustered GET and POST requests only.

Various approaches have been proposed for fingerprinting other popular network
protocols. Many studies focus on HTTPS protocol, where the primary research objectives
are HTTPS network traffic presence identification or identification of services utilizing
HTTPS for communication (cf. [9]). SMTP network traffic fingerprinting can be used to
identify malware families as presented in [10,11]. SMTP messages, SMTP extensions, and
IMF fields are used to create different e-mail clients’ dialects, thus providing a method for
their identification. DNS protocol fingerprinting can be used as a method to detect DNS
amplification DDoS attacks [12], identify DNS servers [13], or for the detection of bots [14].
Segal et al. in [15] presented a white paper on fingerprinting of HTTP/2 protocol clients.
When used for malware network traffic fingerprinting, the presented approaches can be
applied to identify malware families but also to detect some specific operations, such as
sending spam messages or performing DDoS attacks.

Other approaches for network traffic fingerprinting with more generic methods exist,
too. For example, Holland et al. in [16] proposed nPrint—a system for standard representa-
tion of network traffic. For every analyzed packet, its representation is created that maps
all packet bytes to a feature vector representing all possible headers of a particular protocol.
The authors claim that their system can generate data suitable as input for machine learning
algorithms in classification problems. Unfortunately, when fingerprinting HTTP network
traffic, nPrint needs to be configured with appropriate rules, defining which parts of the
messages should be extracted. Therefore, it does not provide ready-made methods for
HTTP fingerprinting.

Table 1 introduces the classification of the existing fingerprinting research based on its
application scenario. It also shows that these approaches utilize fingerprinting for various
purposes—some provide identification of benign services or applications, while the other
uncover malicious activities and software.

Although the research solutions described above provide fingerprinting mechanisms
of various network protocols, they differ from Hfinger in several aspects. Browser finger-
printing methods use, mainly, active analysis techniques and are focused on one type of
HTTP clients. Hfinger utilizes only passive analysis techniques, and, despite the focus
on malware requests, its design and performance analysis considered the presence of
benign HTTP clients. DECANTeR and HeadPrint systems utilize multiple HTTP requests
to create a baseline model of the observed network to identify requests that do not fit the
created model, thus detecting unknown applications. Hfinger is focused on the unique
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representation of single malware HTTP requests, which is a different research goal. nPrint
provides generic fingerprints of various network protocols and requires the creation of
configuration to produce HTTP request fingerprints. The configuration is not provided by
the authors, so research into optimal HTTP representation is needed. Conversely, Hfinger is
focused only on HTTP, for which a complete optimization has been performed. Segal et al.
analyze HTTP in version 2 that is different than previous protocol versions in data transfer
and representation techniques. Thus their analysis techniques cannot be directly compared
to Hfinger. Other reviewed research solutions analyze protocols different than HTTP.

Table 1. Classification of the reviewed fingerprinting research solutions based on their applica-
tion scenario.

Usage of Fingerprinting Examples of Research Solution

Client application or user identification Laperdrix et al. [6], Segal et al. [15]
Detection of unknown applications Bortolameotti et al. [7,8]

Service or server identification Shbair et al. [9], Kim et al. [13]
Malware family identification Stringhini et al. [10], Bazydło et al. [11]

Malware detection Blaise et al. [14]
Attack detection Fachkha et al. [12]

Generic protocol fingerprinting Holland et al. [16]

2.2. Existing HTTP Fingerprinting Tools

In this subsection, HTTP fingerprinting tools similar to the Hfinger are described.
Three tools (FATT, Mercury, and p0f) have been selected based on capability of passive,
pcap file based analysis of HTTP requests without any major code modification. Source
code and documentation of these three applications are public, and they are well known in
professional network security community.

Other tools fingerprinting HTTP do exist, but they use active fingerprinting for web
browser identification (e.g., FingerprintJS—https://github.com/fingerprintjs/fingerprintjs,
accessed on 26 March 2021) or they perform only server fingerprinting (httprecon—https:
//www.computec.ch/projekte/httprecon/, accessed on 26 March 2021, httprint—https://
net-square.com/httprint.html, accessed on 26 March 2021, or nmap—https://nmap.org/,
accessed on 26 March 2021). As such, they cannot be compared to the same extent to
Hfinger as FATT, Mercury, or p0f.

When using the classification of fingerprinting research solutions presented in Table 1
the three reviewed tools, with some extensions, can be classified into groups providing
identification of client applications, unknown applications, or malware families. All these
tools produce fingerprints that, after the labeling process, can be used for searching the
application defined by the labeled fingerprint. Conversely, if the created fingerprint does
not fit a list of known applications, it can be used to identify an unknown application.

The three presented tools will be further analyzed and compared with Hfinger in
Section 5. Details about their source code and configuration used in the analysis are
presented in Section 4.3.

2.2.1. FATT

FATT—fingerprint all the things (https://github.com/0x4D31/fatt/, accessed on 26
March 2021)—is a tool for fingerprinting protocols such as SSL/TLS, SSH, RDP, HTTP,
gQUIC. For HTTP, it provides means for fingerprinting headers of requests and responses
by extracting header names into a list and computing MD5 hash from it. Depending on
the chosen reporting format, the tool outputs additional contextual information, such as
request URI, request full URI, request method and protocol version, and User-Agent value.
However, these components are not used as a part of the fingerprint.

https://github.com/fingerprintjs/fingerprintjs
https://www.computec.ch/projekte/httprecon/
https://www.computec.ch/projekte/httprecon/
https://net-square.com/httprint.html
https://net-square.com/httprint.html
https://nmap.org/
https://github.com/0x4D31/fatt/
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2.2.2. p0f

p0f—passive OS fingerprinting (https://lcamtuf.coredump.cx/p0f3/, accessed on 26
March 2021)—is a tool mainly known for its capabilities of OS fingerprinting. In version 3 of
the tool, additional functionality of the HTTP fingerprinting was added. It can fingerprint
client requests but also server responses. However, the request support is limited only to
GET and HEAD methods, which in the authors’ opinion is a huge drawback. The request
fingerprint provides information about protocol version, order-preserving list of headers
present in the request, absent headers, and User-Agent header value. When creating a list
of headers, headers defined as optional are marked with a question mark “?”, values of
Host and User-Agent headers are skipped. For other headers, their values are provided,
creating a list of header name and value pairs. If any of the headers User-Agent, Host,
Connection, Accept, Accept-Encoding, Accept-Language, Accept-Charset or Keep-Alive is absent,
such information is provided by the fingerprinter. Note that Hfinger, proposed in this
paper, also provides an order-preserving list of headers, but header values are provided in
a separate part of the fingerprint and only for popular headers.

p0f provides information about automatic fingerprint generation. The tool can also
handle user-provided fingerprints and search in pcap files for such fingerprints. The
search can identify requests even when some other headers occur between those present
in the fingerprint or when some of the headers are missing—those that are marked as
optional, providing that p0f can detect mismatches between the identified fingerprint and
the declared User-Agent value. The Hfinger does not offer this functionality.

2.2.3. Mercury

Mercury is a network metadata capture and analysis framework (https://github.com/
cisco/mercury, accessed on 26 March 2021). It provides fingerprinting capabilities for
protocols such as TLS, DTLS, SSH, HTTP, and TCP. Additionally, it can perform application
identification using the created fingerprints. The HTTP fingerprinting can be performed
on both requests and responses. Note that the description presented below covers only
request fingerprinting.

The tool analyzes the HTTP request to extract information about request method,
protocol version, and a list of present headers, if they are on a predefined list of popular
headers, including Accept-Charset, Accept-Language, Cache-Control, Host, and User-Agent.
Some of the headers are presented with their values, for example Accept, Accept-Encoding,
or Connection. All these features are represented using their hexadecimal values, forming
the actual fingerprint. Beside the fingerprint, the tool provides contextual information that
presents in a clear form URI and values of headers such as: User-Agent, Host, X-Forwarded-
For, and Via.

2.2.4. Limitations of Current Tools

The described tools use a limited set of features for HTTP request fingerprinting, and
the performed analysis is limited. FATT neglects URI, method, protocol version, payload,
and headers’ values during the fingerprint generation process. p0f does not analyze URI,
payload, and method of request. Mercury does not process the payload, and URI analysis
is limited to simple encoding that is even not added to the fingerprint. In both p0f and
Mercury, the list of popular headers included in fingerprint creation can be improved as
well as the list of headers whose values are added to the fingerprint.

The described tools’ analysis is insufficient to achieve a satisfactory level of malware
HTTP request fingerprinting uniqueness and can be improved. This paper will try to
prove this statement by comparing the results of these three tools with the proposed
approach. Moreover, to the authors’ best knowledge, there is no extensive academic
study that systematically analyzes the effectiveness of FATT, p0f, or Mercury for malware
HTTP fingerprinting.

https://lcamtuf.coredump.cx/p0f3/
https://github.com/cisco/mercury
https://github.com/cisco/mercury
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3. Hfinger

In this section, Hfinger functioning is presented in detail, along with request fea-
tures that the tool investigates. Moreover, the process of the fingerprint generation is
thoroughly explained.

3.1. Hfinger’s Workflow

Hfinger has been created using Python3 language and additionally it utilizes TShark
(https://www.wireshark.org, accessed on 26 March 2021, minimum version 2.2.0) to
reassemble TCP segments into HTTP requests. An overview of the tool’s workflow is
presented in Figure 1.

PCAP
PCAP file and
environment

checks

PCAP analysis in
Tshark

Feature analysis

JSON

JSON parsing and
request extraction

Fingerprint
representation

JSON

$>_

Terminal

Figure 1. Hfinger’s data workflow.

The tool firstly checks the execution environment to determine whether minimal
criteria for running are met (e.g., Tshark binary is present) and if the input file is a valid
PCAP file. If successful, the tool calls Tshark binary and feeds the analyzed PCAP file
into it. TShark is configured to output a JSON file covering only HTTP requests. Then,
the output JSON file is parsed by Hfinger and the requests are extracted. In the next step,
the extracted requests are analyzed to generate the feature values. In the final step the
feature values are joined together with a “|” (pipe) in a particular order, forming the HTTP
request fingerprint. Depending on the users’ choice, the results in the JSON format are
either printed to the terminal or written to a file. The JSON output consists of the basic
network information about each request: request timestamp, IP addresses, utilized ports,
and the actual request fingerprint. Features analyzed by Hfinger are described in detail in
the next section.

3.2. Analyzed Features

In this section, the features analyzed by Hfinger are presented and discussed. The
chosen feature set utilized by the developed tool relies on the authors’ previous work [17],
previously published research (see [18] for URI features), and the authors’ own malware
analysis experience. In general, extracted features can be divided into three groups de-
pending on the part of the request that they refer to: URI, headers, and payload.

3.2.1. URI Features

These features are used to extract information from the URI part of a request. They
include:

• Length of the URI, represented as a logarithm with base 10 of the actual URI length
(provided as a floating-point number rounded to one decimal place or rounded to
an integer);

• Number of directory levels in the URI, represented as an integer;

https://www.wireshark.org
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• Average length of the directory, represented as a logarithm with base 10 of the actual
average length of the directory (provided as a floating-point number rounded to one
decimal place or rounded to an integer);

• Extension of the file requested in the URI, if applicable. The extension is extracted
only if it is present on a defined list of popular extensions to prevent extracting
nonsensical values;

• Length of the variable part of the URI, where the URI parameters are stored, represented
as a logarithm with base 10 of the length (provided as a floating-point number to
rounded one decimal place or rounded to an integer);

• Number of variables in the URI, represented as an integer;
• Average value length, represented as a logarithm with base 10 of the actual average

value length (provided as a floating-point number rounded to one decimal place or
rounded to an integer).

3.2.2. Header Structure Features

They provide information about headers, their values, extended with information
about the request method, and HTTP version. The analyzed features consist of (in the order
used in the fingerprint):

• Request method, presented as the first two characters of the method name;
• HTTP version, expressed as a single number, depending on the first digit after the dot

in the protocol definition, for example, “1” for “1.1” version and “9” if no protocol
version is defined;

• Representation of header order in the analyzed request, where the headers are expressed
by the chosen encoding scheme. This scheme provides a list of popular headers for
which encoding is provided to shorten the fingerprint length. However, if the header
is not on the list, its name is hashed using the 32-bit Fowler–Noll–Vo hash function
in version 1a (FNV1a) [19], and the hexadecimal representation of the hash is used
as the name. If the header name does not begin with an upper case letter (or any
first letter of the parts of a compound header name, for example, Accept-Encoding), an
exclamation mark ! is prepended to the header representation;

• Representation of popular header’s values—the following headers are analyzed to extract
their value:

– Connection,
– Accept-Encoding,
– Content-Encoding,
– Cache-Control,
– TE,
– Accept-Charset,
– Content-Type,
– Accept,
– Accept-Language,
– User-Agent.

If the value is present on a list of popular values, it is encoded with a chosen short
encoding representation. If it is not on the list, the values are hashed using FNV1a.
The representation is provided as an encoded header name and its encoded value,
separated by “:” (colon), and such pairs are separated using “/” (forward slash). If
the header can have multiple values, their representation is separated by “,” (comma).
The order of the headers is preserved. Additionally, the value of the User-Agent header
is always represented as the FNV1a hash.

3.2.3. Payload Features

They are extracted if the payload of a request is not empty. Payload features consist of
three features (in the order used in the fingerprint):
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• Presence of non-ASCII characters, represented as a single letter “N” if non-ASCII charac-
ters are present, and “A” otherwise,

• Shannon entropy of the payload, represented as a floating-point number rounded to one
decimal place or rounded to an integer,

• Payload length, represented as a logarithm with base 10 of the actual payload length
(provided as a floating-point number rounded to one decimal place or rounded to
an integer).

3.2.4. Numerical Features’ Representation

As presented above, some of the numerical features are inherently real numbers and
have to be represented as a float type. During the design phase, a decision was made to
round such values to one decimal place or round them to an integer. The rounding mode
can have a significant impact on Hfinger evaluation; thus, in Section 5.1 an analysis of
which version of the representation should be chosen for each of these features is discussed.

3.3. Fingerprint Generation

Features described above are used to create the HTTP request fingerprint. Figure 2
illustrates an overview of an exemplary Hfinger fingerprint generation. All analyzed
features are presented, including floating-point representation, what may vary from the
final feature set selection presented in Section 5.1.

POST /level1/level2/test.php?var1=val1&var2=val2 HTTP/1.1
User-Agent: MyUA
Accept: */*
Accept-Encoding: identity
Host: example.com
Connection: Keep-Alive
Content-Type: text/plain
Content-Length: 28

Sending a dummy POST request

A|4.0|1.4

1.6|3|0.8|php|1.3|2|0.6

PO|1|us-ag,ac,ac-en,ho,co,co-ty,co-le|us-ag:f452d7a9/ac:as-as/ac-en:id/co:Ke-Al/co-ty:te-pl

Header structure features
Request method
HTTP protocol version
Representation of header order
Representation of popular header's values

URI features
Length of the URI
Number of directory levels
Average length of directory
Extension of the requested file
Length of the variable part of the URI
Number of variables in the URI
Average value length

Payload features
Presence of non-ASCII characters
Shannon entropy of payload
Payload length

Figure 2. An example of a HTTP POST request fingerprint produced by Hfinger.

As presented in Figure 2, Hfinger analyzes three parts of the HTTP request to generate
a fingerprint. Firstly, the URI part is analyzed and the feature values are generated. For
example, in Figure 2, the URI length is 43 characters, there are 3 directory levels, and a PHP
file is requested. These features are represented in the generated fingerprint part as 1.6, 3,
and php respectively.

Secondly, header structure features are extracted to generate the second part of the
final fingerprint. For instance, using the example in Figure 2, the method is POST, protocol
is in version 1.1, User-Agent header has value of MyUA, and Connection header has value
of Keep-Alive. These values are transformed into corresponding fingerprint parts: PO, 1,
us-ag:f452d7a9, and co:Ke-Al, respectively. Header names on their own and in pair with
values are parts of broader structure features, representing order of all headers in the
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request, or representing popular header’s values, also order wise. The encoding of header
names and values is provided by Hfinger’s configuration file.

The third part of the fingerprint is generated on the basis of request’s payload data. In
the example in Figure 2, the request contains payload of Sending a dummy POST request.
This string is built only from ASCII characters and is 28 characters long. The corresponding
features generated by Hfinger are A and 1.4.

Final fingerprint is created by combining the three generated parts in predefined
manner: URI features, header structure features, and payload features. The fingerprint
length is variable as it is dependent on the request’s structure and data, for example,
payload features are provided only if payload data is present. The final selection of features
in particular fingerprint parts and their rounding mode also affects the format and length
of the fingerprint. This will be described in Section 5.1.

4. Experimental Methodology

In this section, we first present details related to the malware and benign application
data sets that are later used during experimental evaluation. Next, we describe existing
fingerprinting tools utilized while conducting comparison analysis. Finally, we outline and
define performance measures and experimental methodology.

4.1. Malware Data Set

Malware data set is compiled from two pcap data sets: one was used in the authors’
previous work [17] and originates from CERT Polska’s sandboxing environment and
Malware Capture Facility Project (https://www.stratosphereips.org/datasets-malware,
accessed on 26 March 2021). The second data set was derived from a newer version of
CERT Polska’s malware analysis platform.

The first data set contains 26,133 pcap files analyzed and labeled in the previous work.
To this end, Snort IDS with Emerging Threats Pro (ET Pro—https://www.proofpoint.
com/us/threat-insight/et-pro-ruleset, accessed on 26 March 2021) and Snort Registered
(https://www.snort.org/downloads#rules, accessed on 26 March 2021) rulesets were used.
More information about this data set can be found in [17].

The second pcap data set consists of 8674 files and it was created specifically for
the purpose of this research. The analyzed pcap files originate from the CERT Polska’s
malware analysis platform, where Windows-based malware samples are analyzed. The
malware samples are obtained from various open-source feeds, for example, Abuse.ch
(https://abuse.ch/, accessed on 26 March 2021), from external user uploads via mwdb.
cert.pl, accessed on 26 March 2021 malware service, and from the CERT Polska’s internal
malware hunting systems. The analyzed pcap files were labeled using Suricata IDS and ET
Pro ruleset. The labeling process was performed in multiple steps. Firstly, all pcap files
were analyzed using Suricata IDS and these logs were saved. Secondly, alert messages
from the IDS logs were reviewed semimanually to include only those related to HTTP
requests and the malware family’s name. Based on the SID rule identification number,
the alert messages were labeled with the corresponding malware family name using the
information from the corresponding IDS rule. Thirdly, all HTTP requests belonging to
a particular network flow, for which the reviewed IDS alert existed, were labeled with
corresponding alerts. This step was performed with the assumption that all requests within
such a network flow should be treated as malicious. Network flows were identified by
source and destination IP addresses and ports. Note that in many cases, HTTP requests
were labeled with multiple IDS alerts. As the last step, malware requests were labeled
with the malware family name. Again this process was performed semiautomatically by
reviewing the names of families corresponding to alerts of particular requests. Requests
with multiple different family names were analyzed manually. In most cases, it involved
aliases of malware, when names were merged to one, or forks of malware families. These
were merged to one name or a specific fork name was chosen. For example, all Ursnif

https://www.stratosphereips.org/datasets-malware
https://www.proofpoint.com/us/threat-insight/et-pro-ruleset
https://www.proofpoint.com/us/threat-insight/et-pro-ruleset
https://www.snort.org/downloads#rules
https://abuse.ch/
mwdb.cert.pl
mwdb.cert.pl
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family forks were merged, because alert messages were written by different rule authors,
thus incorporating inconsistencies in naming, and the provided fingerprints were identical.

The two data sets mentioned above were merged based on the labeled malware family
name. They originate nearly from the same source of malware traffic and use the same
intelligence source for labeling, mainly ET Pro rulesets. The final malware data set used in
further analyses covers 121 popular malware families with 401,566 HTTP requests. The
complete data set provides more data; however, only those malware families were chosen
that have at least 20 requests. The top 10 malware families sorted by the number of HTTP
requests are presented in Table 2, while the complete list is presented in Appendix C.

Table 2. Top 10 malware families by the number of HTTP requests in the final data set.

Malware Family Name Number of Requests Percentage of All Requests [%]

Upatre 62,257 15.50
Simda 57,730 14.38
Locky 44,498 11.08
Dridex 30,070 7.49
Arkei 22,057 5.49

DirtJumper 18,486 4.60
Chthonic 14,410 3.59
Vflooder 14,252 3.55

Ursnif 11,756 2.93
Arid Viper APT 10,063 2.51

4.2. Data Set of Benign Application

Apart from the malicious data set, the benign one was also necessary. To obtain it,
network traffic of benign applications was collected from two sources: (i) popular web
browsers, including background traffic, and (ii) popular benign applications running on
Windows 10.

4.2.1. Popular Web Browsers

The data set of popular web browsers’ network traffic was generated by the authors
in their previous research [17], where it is described in detail. Various web browsers
under the control of different versions of the Windows OS were used to visit websites
from the list of 500 most popular websites worldwide, extracted from Alexa top 1 million
websites worldwide (http://s3.amazonaws.com/alexa-static/top-1m.csv.zip, accessed on
9 February 2017). The websites were accessed between 9 and 15 February 2017 and between
13 and 18 October 2017, depending on the browser. Table 3 contains information about the
networking environment and the number of requests observed in each web browser traffic.
Including background traffic, this part of the data set contains 194,940 HTTP requests.

Table 3. Networking environments in which web browser HTTP traffic was analyzed.

Browser Name Operating System Number of Requests

Microsoft Edge Windows 10 17,659
Google Chrome Windows 7 30,281

Mozilla Firefox (Adobe Flash Player installed) Windows 7 19,523
Mozilla Firefox Windows 7 26,131

Microsoft Internet Explorer 11 Windows 7 29,216
Google Chrome Windows 8.1 22,133
Mozilla Firefox Windows 8.1 19,082

Microsoft Internet Explorer 11 Windows 8.1 19,807

http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
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4.2.2. Network Traffic of Popular Benign Applications Running on Windows 10

Network traffic of popular benign applications running on Windows 10 was obtained
using an experimental environment equipped to perform a man-in-the-middle (MitM) at-
tack on HTTPS network traffic. The main objective was to create a data set of network traffic
that would be highly similar to the traffic observed in a home or a small business network.

The experimental environment consisted of two virtualized hosts: one, in the remain-
der of this section called analysis host, was running Windows 10, and the second one,
called MitM host, was used to provide Internet connectivity and network traffic dumping.
Windows 10 OS was obtained from https://modern.ie, accessed on 26 March 2021 in
version 1809. Additional root X.509 certificate was installed in the system to provide means
for the MitM mechanism. MitM host was based on Ubuntu 20.04 LTS OS, equipped with
sslsplit tool to perform a man-in-the-middle attack on HTTPS traffic. All network traffic
was routed through the MitM host. The experiment was divided into three parts that were
executed during six consecutive days. The network traffic was not deciphered during the
first part, mainly giving unmangled situation and normal traffic. All OS updates were
performed during this period.

In the second part of the experiment, the MitM mechanism was enabled and network
traffic on ports 80 and 443 was forwarded through sslsplit. sslsplit was configured to
work with the least offensive mode to minimize its impact on the network traffic. The
traffic was dumped to pcap files for later analysis. During this period, popular benign
applications were installed and run. This includes VLC media player, Adobe Acrobat
Reader, Steam, Spotify, Discord, Libre Office, and Microsoft Office. The complete list is
available in Appendix B. The applications were used to mimic the behavior of a standard
user: creating files with Microsoft Office/LibreOffice suites, saving them to OneDrive
cloud repositories, opening some saved files, using e-mail clients to download and send
messages, listening to music, or downloading files. In all applications, update modules
were used to download any available updates. Additionally, some well-known websites
were visited using Google Chrome and Microsoft Edge based on Chromium, including
registering and logging on popular social media sites such as Facebook, Instagram, and
Outlook.com, accessed on 26 March 2021. Internal Windows applications were also used,
including weather, calendar, and movie services. Usage of the MitM during this part of
the experiment caused some essential OS services to stop working, including Windows
Update and Windows App Store. According to multiple sources [20,21], these services
send telemetry data using HTTPS with internal, additional X.509 certificate repository and
certificate pinning mechanism. When sslsplit was enabled, these applications encountered
the error 80245006.

In the third part, the sslsplit was disabled and traffic was dumped in the same manner
as during the first part. This phase provided an environment not impacted by the MitM
mechanism, with all OS services operating normally and background services of previously
installed applications.

The data set contains 53,717 HTTP requests. The top 10 values of the User-Agent
header value ordered by the number of requests are presented in Table 4. Note that 2.26%
of requests do not contain User-Agent header or its value is empty.

Table 4. The top 10 values of User-Agent header value ordered by the number of requests in the data set of network traffic of
popular benign applications running on Windows 10.

User-Agent Header Value Percentage of All Requests in the
Data Set [%]

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/83.0.4103.116 Safari/537.36 Edg/83.0.478.58 35.87

Microsoft-Delivery-Optimization/10.0 10.57

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/83.0.4103.116 Safari/537.36 Edg/83.0.478.61 9.46

https://modern.ie
Outlook.com
Outlook.com


Entropy 2021, 23, 507 13 of 25

Table 4. Cont.

User-Agent Header Value Percentage of All Requests in
the Data Set [%]

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/83.0.4103.116 Safari/537.36 6.50

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/64.0.3282.140 Safari/537.36 Edge/18.17763 5.27

Mozilla/5.0 (Windows; U; Windows NT 10.0; en-US; Valve Steam Client/default/1591251555; )
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.117 Safari/537.36 2.82

Mozilla/5.0 (Windows NT 10.0.17763; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Slack/4.7.0 Chrome/83.0.4103.119 Electron/9.0.5 Safari/537.36 Sonic Slack_SSB/4.7.0 2.52

Valve/Steam HTTP Client 1.0 (0) 1.65

microsoft.windowscommunicationsapps 1.51

Microsoft Office/16.0 (Windows NT 10.0; Microsoft Outlook 16.0.13001; Pro) 1.45

4.3. Fingerprinting Tools Used for Comparison

Three HTTP fingerprinting tools were used for comparison with Hfinger: FATT, p0f,
and Mercury. Their overview is presented in Section 2.2. Their source code versions are
presented in Appendix A. Code changes and configuration of the tools used in the analysis
are described below.

FATT is used in the version provided by its GitHub repository (https://github.com/
0x4D31/fatt/, accessed on 26 March 2021). Additionally, to provide similar test conditions
between all tested tools, two types of FATT output are further analyzed. The first one is the
header hash as provided by the tool. The second one is the header hash with the value of
the User-Agent header that is the output of the default reporting mode when used with the
command-line interface.

p0f was analyzed using source code parts of its Python port (https://github.com/
FlUxIuS/p0f3plus, accessed on 26 March 2021). As the tool fingerprints only GET requests,
the code was patched to analyze all request types to provide the same base for comparison
with Hfinger. The code was also patched to support requests with a nonstandard end of
line tag: LF instead of CRLF.

For analysis of Mercury its Python version pmercury was used. Mercury’s analysis
process can be modified using a configuration file to manipulate, for example, the list of
analyzed headers or the list of headers that should be represented with their values. Thus,
for comparison with other tools, two configurations were used: (i) the default, provided by
the authors of the tool and (ii) the same as the default but extended with representing the
value of the User-Agent header in the fingerprint. The source code was patched to support
the analysis of nonstandard requests. These were present when analyzing requests with
the nonstandard end of line tag: LF instead of CRLF and those without protocol version
definition. Even though such requests are rarely observed in malware traffic, they should
be properly handled.

4.4. Comparison Measures and Methodology

In this research, the performed analyses and comparisons are based on four measures
that, in our opinion, provide useful insights into real-life applications of malware HTTP
traffic fingerprinting tools. This includes, for example, the uniqueness of the fingerprint
across malware families.

Please note that to minimize the effect of different sizes of request sets of analyzed
malware families, the measures are computed as averages of each family’s partial value,
not a global value. Firstly, the analyzed phenomena occurrences are counted separately for
each family and then the average value is computed and provided as the final measure.
With such an approach, all requests in each malware family set can be analyzed, which

https://github.com/0x4D31/fatt/
https://github.com/0x4D31/fatt/
https://github.com/FlUxIuS/p0f3plus
https://github.com/FlUxIuS/p0f3plus
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could not be achieved if, for example, undersampling methods of data set balancing were
used. If the measures were counted with a global approach, the families with a significantly
higher number of requests (e.g., Dridex, Upatre, or Chthonic) would bias measure’s value
impacting the whole analysis.

The comparison measures utilized in this research include: malware collision level,
fingerprint generation level, level of collision with benign applications, and entropy. All of
them are explained in detail below.

Malware collision level provides information on whether any collisions of request
fingerprints between malware families occur, that is, whether request fingerprints are seen
across multiple families and are not unique to one family. This measure should be as low as
possible to provide exclusive and reliable fingerprints. Malware collision level is computed
by firstly counting the ratio of requests with fingerprint collision to all requests for each
family, then counting the mean value of these ratios across all families. Malware collision
level is expressed by Equation (1), where N is the number of malware families, rc

i denotes
the number of requests with fingerprint collision for malware family i, and ri expresses the
number of all requests for malware family i.

CM =
∑N

i=1
rc

i
ri

N
(1)

Fingerprint generation level provides information about the number of fingerprints
generated for a particular malware family set of requests. It can be interpreted as a measure
of an average number of fingerprints generated per analyzed request set (for example, in a
single pcap file) but also a measure of the degree to which requests are grouped together.
Thus indirectly informing about the degree of a fingerprinting tool’s request information
generalization. This measure should be as low as possible but still capable of discerning
requests that are actually different. It results from requirements that fingerprinter should
extract only necessary information from requests and minimize the number of produced
fingerprints, not to overwhelm logging and analytic systems. The measure is computed
by counting the average ratio of request fingerprints to all malware families’ requests.
Fingerprint generation level is calculated using Equation (2), where N is the number of
malware families, fi is the number of fingerprints for malware family i, and ri is the number
of all requests for a malware family i.

G =
∑N

i=1
fi
ri

N
(2)

Note that a trade-off between malware collision and fingerprint generation levels
exists. When the fingerprinter extracts more information from requests to provide a more
unique set of fingerprints, it decreases the collision level. However, it also provides a larger
number of fingerprints, as a result increasing the fingerprint generation level. This trade-off
is further analyzed in Section 5.1, where optimization of these measures is performed.

The third measure is the level of collision with benign applications that provides informa-
tion about the number of malware fingerprint collisions with some popular, benign appli-
cations. In real-life environments, malware operates along with standard, nonmalicious
applications. A good fingerprinter should be capable of producing unique fingerprints
both to malware and benign applications, thus providing means for discerning these types
of applications. This measure is computed similarly to malware collision level, i.e., an av-
erage value of the ratio between malware requests with fingerprint collision with benign
applications and the number of all requests. The level of collision with benign applications
is expressed by Equation (3), where N is the number of malware families, rbc

i expresses the
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number of requests with fingerprint collision with benign applications for malware family
i, and ri denotes the number of all requests for the malware family i.

CB =
∑N

i=1
rbc

i
ri

N
(3)

The final, fourth measure provides information about entropy of the tool. It is repre-
sented as an average Shannon entropy of fingerprints across analyzed malware families
represented in bits. Equation (4) provides the formula of this measure, where N is the
number of malware families and Hi Shannon entropy for malware family i.

E =
∑N

i=1 Hi

N
(4)

Shannon entropy Hi of fingerprints of a particular malware family i is defined by
Equation (5), where Mi denotes the number of fingerprints produced by the tool for the
malware family i, p( f j) represents the occurrence probability of fingerprint f j (computed
as the number of occurrences of requests with a particular fingerprint j divided by the
number of all requests of the particular family), and log2 is a logarithm with base 2.

Hi =
Mi

∑
j=1

p( f j)log2(p( f j)) (5)

Fingerprint entropy E can be interpreted as a measure of the average amount of
information provided by malware fingerprints of a particular tool. The higher the value,
the better, as in this case, fingerprints are more informative.

5. Experimental Results

Below we present the experimental evaluation of the proposed Hfinger tool. First of
all, we demonstrate how the optimal feature set selection has been performed. Then, we
outline the results of the comparison of Hfinger with other existing HTTP fingerprinting
tools. Note that all tools were analyzed using fingerprint exact match search, and no fuzzy
search mechanisms were utilized, even if the tool under evaluation supports it.

Data sets presented in Section 4 were divided randomly into two equal parts based on
the malware family (malware data set) or the application name present in the User-Agent
string (benign data set). For each malware family/application, 50% of the requests were
assigned to the first part used to select the optimal feature set, while the rest of the requests
were assigned to the part used for the final evaluation of fingerprinting tools.

5.1. Selecting the Optimal Feature Set

The goal of the selection of the optimal feature set is to provide a list of features from
those presented in Section 3.2 that will provide the optimal results of the four measures
defined in Section 4.4 (i.e., malware collision level, fingerprint generation level, level of
collisions with benign applications, and fingerprint entropy). Additionally, some numerical
features can be presented with different rounding: with or without fractional component,
in the remainder of the text described as a float or as an integer, respectively. Thus, this
process will provide information on which rounding would be best for each feature.

The process of feature set selection is based on two steps. Firstly, the defined mea-
sures are computed for all 186,623 subsets of features. Secondly, the actual selection was
performed using different methods described further in the text, including multiobjective
optimization techniques, with the results from the first step.

Figure 3 presents the relationships between all pairs of defined measures: malware
collision level, fingerprint generation level, level of collisions with benign applications, and
fingerprint entropy for all possible combinations of feature sets.
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Analysis of the relationship diagrams in Figure 3 suggests that for many feature sets,
with the increase of malware collision levels, the level of collisions with benign applications
also increases, while the fingerprint generation level and fingerprint entropy decrease.
This follows the intuition that with the increase of fingerprint information, fewer malware
requests are incorrectly tagged with the exact representation but for the price of an elevated
number of fingerprints.

Based on Figure 3 an interesting observation can also be made. Two distinct result
groups can be seen for all diagrams except for fingerprint generation level and fingerprint
entropy relationship. One of the groups represents results better suited for optimization.
Analysis of feature sets showed that this group contains sets with the order of headers or
popular headers and their values, thus indicating a significant impact of those two features
on results.

Figure 3. Relationships between defined measures for all possible combinations of feature subsets using training data set.
From left to right upper row: (a) fingerprint generation level in function of malware collision level, (b) level of collision with
benign applications in function of malware collision level, (c) fingerprint entropy in function of malware collision level.
From left to right lower row: (d) Level of collision with benign applications in function of fingerprint generation level, (e)
Fingerprint entropy in function of fingerprint generation level, (f) Fingerprint entropy in function of collision level with
benign applications.

Using results described above, five feature sets (A–E) are selected, and they are
presented in Table 5.

The feature sets (A–E) were selected using the following methods. The descriptions
include a short explanation of the main motive behind each selection method:

A lexicographic method from multiobjective optimization techniques (see [22]), where
firstly malware collision level was minimized, then using this minimal value, the
minimal value of fingerprint generation level was selected. Obtained feature sets
had equal values of collision level with benign applications and fingerprint entropy.
Finally, a feature set with the lowest number of features was chosen. This set has
been chosen using a proven method of multiobjective optimization.
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B from all feature sets with maximal feature number, the set with the minimal level
of fingerprint generation level was selected. One such set existed. This set has
been chosen to provide information about all proposed request features but also
to minimize number of generated fingerprints. In some analysis scenarios, e.g.,
highly similar malware, such complete information might be crucial for discerning
malware families.

C firstly, feature sets were limited to those containing features from the defined list.
The list was compiled based on the authors’ experience with malware analysis
and how commonly such features are used in their operational work. The list is
formed by features: length of the URI, the extension of the file requested in the URI,
representation of header order or representation of popular header’s values (at least
one feature from this pair), request method, protocol version, payload length, and
Shannon entropy of payload. Secondly, the feature sets were filtered to provide only
those with a null level of collisions with benign applications and a minimal level
of collisions with malware. The feature set with a higher number of features was
chosen from two sets with an identical value of fingerprint generation level and
fingerprint entropy.

D firstly, fingerprint generation level was limited to 6% (approximately half of the value
observed for the sets chosen with the lexicographic method). Then, feature sets with
the lowest number of malware collisions were chosen. From four such sets, one
with the lowest number of features was chosen. This set has been chosen to provide
significantly lower fingerprint generation levels than other Hfinger’s feature sets that
also are comparable to other tools.

E firstly feature sets with the maximum level of fingerprint entropy were chosen,
and then feature sets with minimal fingerprint generation level were chosen. Four
feature sets were obtained with this method, where malware collision level and level
of collision with benign applications were equal. Hence, the set with the highest
number of features was chosen. This set has been chosen to provide the highest
entropy level but with the minimal possible number of generated fingerprints, thus
giving the most informative fingerprints from all feature sets.

Table 5. Selected feature sets.

Feature Set Name Feature List

A average directory length represented as an integer
average value length represented as a float
number of directories
extension of requested file
order of headers
popular headers and their values
payload length represented as a float

B average directory length represented as an integer
average value length represented as an integer
number of directories
extension of requested file
URI length represented as an integer
variable length represented as an integer
number of variables
request method
version of protocol
order of headers
popular headers and their values
presence of non-ASCII characters
payload entropy represented as an integer
payload length represented as an integer
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Table 5. Cont.

Feature Set Name Feature List

C average directory length represented as an integer
average value length represented as a float
number of directories
extension of requested file
URI length represented as an integer
request method
version of protocol
order of headers
popular headers and their values
presence of non-ASCII characters
payload entropy represented as an integer
payload length represented as a float

D average directory length represented as an integer
average value length represented as an integer
extension of requested file
URI length represented as an integer
order of headers

E average directory length represented as a float
average value length represented as a float
number of directories
extension of requested file
URI length represented as a float
variable length represented as a float
request method
version of protocol
order of headers
popular headers and their values
presence of non-ASCII characters
payload entropy represented as a float
payload length represented as a float

The results for these five feature sets, along with the results for other analyzed, existing
tools, are presented in Table 6.

Table 6. Optimization results for five selected feature sets compared to other analyzed tools. The UA suffix marks nondefault
configuration of tools supporting User-Agent header value as a part of the fingerprint.

Tool Malware Collision
Level [%]

Fingerprint Generation
Level [%]

Level of Collisions with
Benign Applications [%]

Fingerprint Entropy
[bits]

Hfinger (A) 1.76 11.76 0.00 1.72
Hfinger (B) 3.49 11.19 0.00 1.57
Hfinger (C) 1.76 12.09 0.00 1.77
Hfinger (D) 16.85 5.95 1.11 0.87
Hfinger (E) 1.76 15.96 0.00 2.29

FATT 53.04 4.16 24.45 0.54
FATT UA 22.11 6.63 11.87 0.88
Mercury 64.15 4.11 31.33 0.49

Mercury UA 27.13 6.58 15.26 0.85
p0f 15.70 16.71 11.25 1.99

5.2. Comparison of Hfinger to Other Existing Tools

A final comparison of the results was performed using the remaining 50% of the data
set, as described in Section 5. The results for the four defined measures are presented in
Table 7.
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Based on the results presented in Table 7, a general observation can be made that with
the default configuration, Mercury provides the worst levels of collision (both malware and
benign applications) and fingerprint entropy for all analyzed tools, 63.34%, 31.95%, and
0.46 bits, respectively. It is followed by FATT with the default configuration with malware
collision level at 53.45%, benign application collision level at 25.11%, and fingerprint
entropy at 0.51 bits. Nevertheless, these two tools provide the lowest fingerprint generation
levels: 3.79% for Mercury and 3.83% for FATT. p0f compared to these two tools results in a
lower level of malware and benign applications collisions (15.25% and 10.96% respectively)
and a higher level of fingerprint entropy (1.98 bits) but at the cost of a higher fingerprint
generation level, i.e., 16.41%.

Table 7. Final evaluation of Hfinger’s five selected feature sets compared to other analyzed tools. The UA suffix marks
nondefault configuration of tools supporting User-Agent header value as a part of fingerprint.

Tool Malware Collision
Level [%]

Fingerprint Generation
Level [%]

Level of Collisions with
Benign Applications [%]

Fingerprint Entropy
[bits]

Hfinger (A) 1.85 11.76 0.00 1.72
Hfinger (B) 3.58 11.01 0.00 1.58
Hfinger (C) 1.85 12.15 0.00 1.78
Hfinger (D) 16.78 5.78 1.51 0.85
Hfinger (E) 1.78 15.96 0.00 2.30

FATT 53.45 3.83 25.11 0.51
FATT UA 21.77 6.32 12.22 0.87
Mercury 63.34 3.79 31.95 0.46

Mercury UA 26.46 6.27 15.76 0.84
p0f 15.25 16.41 10.96 1.98

When the User-Agent header value is used as a part of a fingerprint for FATT or Mer-
cury, the tools provide lower levels of collisions, both for malware and benign applications
but also higher fingerprint entropy. For FATT, the malware collision level decreases by
nearly 32 pp (percentage points), from 53.45% to 21.77%, while for Mercury, it decreases
by almost 37 pp, from 63.34% to 26.46%. Collisions with benign applications decrease by
nearly 13 pp from 25.11% to 12.22% for FATT and by 16 pp from 31.95% to 15.76% for
Mercury. An increase in fingerprint entropy value is observed from 0.51 to 0.87 bits for
FATT and from 0.46 to 0.84 bits for Mercury. These improvements of the three measures’
values come with the worsening of the fingerprint generation level that nearly doubles both
for FATT (from 3.83% to 6.32%) and Mercury (from 3.79% to 6.27%). These results support
intuition of the relationship between the collision level and the fingerprint generation
level, i.e., if the tool better discerns applications, the number of fingerprints it provides
also elevates.

Further analysis of Table 7 shows that, except feature set D, all other feature sets of
Hfinger provide significantly lower levels of malware collision than other tools. Feature
sets A, C, and E achieve levels lower than 2% and feature set B lower than 4%. These
levels are lower by nearly 60 pp (30 times), compared to the worst value for Mercury, and
at least 11 pp (4 times) when compared to the best value of the p0f tool. These feature
sets also provide a null value of collisions with benign applications that is lower by 10 to
30 pp when compared to other tools. Hfinger’s feature sets A, B, and C achieve higher
fingerprint entropy levels than Mercury and FATT, i.e., 1.72, 1.58, and 1.78 bits, respectively.
It is about one bit higher than these two tools. However, only feature set E that was chosen
to provide the maximum fingerprint entropy of 2.29 bits achieves a higher level than p0f.
As observed before with other tools, Hfinger’s measure improvements increase fingerprint
generation level. For feature sets A, B, and C, they are nearly 12% (11.76%, 11.01%, and
12.15% respectively), and for feature set E, it is 15.85%. These values are higher by 5 to 12 pp
(2–3 times) compared to FATT and Mercury but lower by 5 pp or nearly equal compared
to p0f.
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Hfinger’s feature set D was chosen with a focus on providing a lower fingerprint
generation level than other feature sets, more comparable to FATT and Mercury; thus, it
will be analyzed separately for the sake of brevity of the argument. As Table 7 presents,
feature set D achieves lower collision levels for both malware and benign applications
when compared to FATT and Mercury. Differences appear in comparing feature set D
with the default and nondefault configurations of these two tools. Default configurations
achieve lower fingerprint generation levels by nearly 2 pp compared to feature set D but
almost the same level for nondefault configurations. The same is observed for fingerprint
entropy: default versions achieve lower levels, while nondefault achieve nearly the same
values as Hfinger with feature set D. When compared to p0f, feature set D achieves 1.5 pp
higher malware collision level, but 10 pp lower fingerprint generation level. The level
of collisions with benign software is also lower for feature set D by 9 pp. However, p0f
achieves a higher fingerprint entropy level: 1.98 bits when the feature set D: 0.85 bits.
The additional perspective of the results for feature set D is provided by the fact that this
feature set does not contain information about the values of User-Agent header, unlike other
Hfinger’s feature sets and unlike p0f, and FATT’s and Mercury’s nondefault configurations.
It can be used as a starting point for future work on analyzing how much the User-Agent
header’s value can impact the fingerprint and its capabilities to identify applications.

Overall, the analysis results show that in the majority, Hfinger achieves significantly
lower levels of malware and benign applications collisions than other analyzed tools. It
results in higher fingerprint generation levels compared to FATT and Mercury but still
lower than those of p0f. Fingerprint entropy for Hfinger is also higher than that of FATT
and Mercury; however, only one feature set achieves a higher level of this measure than p0f.
Specifically designed to decrease the fingerprint generation level, feature set D achieves
lower levels of collisions with malware and benign applications when compared to FATT
and Mercury but with similar or only 2 pp higher fingerprint generation level. It also
provides similar or higher fingerprint entropy. This feature set produces 1.5 pp more
malware collisions than p0f and achieves lower fingerprint entropy and has lower levels of
fingerprint generation and collisions with benign applications.

Regarding the above analysis, feature set C has been chosen as a default reporting
mode for the Hfinger. Firstly, it provides a similar malware collision level as sets A and E,
lower than sets B and D. Secondly, its fingerprint generation level is similar to that of set
A and lower than of set E. Thirdly, its fingerprint entropy level is lower than of set E but
almost identical of set A. Lastly, feature set C provides information about a higher number
of features than set A, giving a more complex overview of a request for analyst. Feature set
E achieves this with a higher fingerprint generation level.

6. Practical Usage Scenarios and Limitations

In this section practical usage scenarios for Hfinger are presented along with the
discussion on limitations of this tool.

6.1. Practical Usage Scenarios

Hfinger was designed to be used as a standard network fingerprinting tool, and its
usage cases are no different from other tools. It is capable of reading pcap files, thus
it can analyze network traffic originating from different sources, for example, malware
sandbox systems, honeypots but also enterprise networks. Hfinger can be used directly
to analyze network traffic or it can be used as a subsystem, whose output is ingested
by other analysis systems. When used as a standalone tool, it can help the analyst in
network forensic objectives. While used as a subsystem, it can feed data into network
monitoring or event logging systems, for example, SIEM (Security Information and Event
Management) solutions.

Fingerprints created by Hfinger can also be used to identify and track malware in
different scenarios. For example, when analyzing the network traffic of unknown malware,
fingerprints created by Hfinger can be used to identify requests that were previously
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labeled as belonging to a particular malware family. Moreover, if the analyzed network
traffic consists of multiple HTTP requests, fingerprints can help in grouping them, giving
a basis for further analysis of the purpose of the requests—whether it was a connectivity
check, C&C server check-in, or some other malicious activity. Additionally, Hfinger can
extend and complement IDS systems by using alerts to search for requests that were not
reported but have the same fingerprint as those identified. Another application is to
identify similarities between different malware families when similar fingerprints for both
are discovered; however, this can be achieved when using Hfinger with techniques other
than default exact match search. These were not analyzed in this paper but can be used as
a starting point for future work.

Hfinger cannot analyze HTTP network traffic secured with HTTPS protocol on its
own. However, in many environments and architectures, HTTPS traffic can be inspected,
for example, by using TLS keys in sandbox systems or TLS inspection systems in corpo-
rate networks.

6.2. Limitations

The presented research and the proposed tool, apart from the auspicious results as
outlined in the previous sections, have their limitations that will be discussed below.

Firstly, the authors put maximum effort into the correct preparation of the data sets;
however, not all biases could be eliminated. The malware labeling process involved the
usage of the ET Pro IDS ruleset. It is a well-known, industry-tested intelligence source
that both false positive and false negative errors could be present. That is, some benign
HTTP requests were marked as malware, some malicious requests were not alerted, or
the malware name provided by the rule was incorrect. Additionally, although malware
families were carefully selected for the analysis, their distribution in terms of malware
types might not reflect the actual distribution. These biases could influence the results of
the analysis and Hfinger feature set selection process.

Secondly, Hfinger capabilities to analyze many features, including header values, can
be less efficient for malware families that introduce many changes in the request structure.
This can happen, for example, with malware used to perform DDoS attacks, where it is a
common technique to change the value of User-Agent header with each request. In such a
situation, the number of fingerprints created by Hfinger can increase. However, thanks to
the fingerprint’s modular structure, this issue can be addressed by ignoring the part of the
fingerprint generating the higher level of noise.

Thirdly, some malware families tend to incorporate mimicking mechanisms to become
similar to benign applications. Depending on the level of mimicry, Hfinger can help to
uncover it. If the changes are simple, for example, altering the value of the User-Agent
header to a benign one, the generated fingerprints will show only a change in this value.
However, when the whole structure of a request is changed, then the issue is becoming
harder to address. In the worst-case scenario, the request can be changed to such a degree
that the malware fingerprint can be the same as of a benign application. Nevertheless, we
believe that applying such a degree of mimicry mechanisms would require a lot of design
effort and, from our experience, is not typical for malware developers.

Finally, fingerprints produced by Hfinger were designed to be used in exact match
searches. Potentially, they can also be used to perform fuzzy searching, for example, by
using only some parts of the basic fingerprint. However, we considered it is out of the
scope of this paper. The main focus during Hfinger design was put on exact matching,
which is supported by many security monitoring and logging tools, contrary to fuzzy
search. Furthermore, fuzzy search functionality can be provided with different mechanisms,
depending on the monitoring system, thus creating problems with interoperability and
potential lack of support of some operations. These issues were analyzed during the design
phase of Hfinger, and the decision was made to develop a solution that can be easily
integrated into existing deployments of various systems and tools. Nevertheless, fuzzy
searching or request clustering mechanisms can be treated as our future work.
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7. Conclusions

This paper presents Hfinger, an HTTP request fingerprinting tool. Hfinger analyzes
the network traffic and extracts information from different parts of the HTTP requests to
provide a simple and interpretable for analyst representation of requests. The fingerprints
provided by the tool can be used for exact match searches to identify similar requests
between different pcap files and, as such, aid in threat hunting or as a step to identify
unknown malware.

The results presented in this paper show that in the default Hfinger reporting mode,
the generated fingerprints are 8–34 times more unique between malware families than in
other three similar, community-proven, existing fingerprinting tools: FATT, Mercury, and
p0f. In the default reporting mode, Hfinger introduces no collisions between malware and
benign applications, contrary to the other tools. The number of generated fingerprints is
at most about three times higher when compared to FATT and Mercury but 35% lower
compared to p0f. Hfinger achieves higher levels of fingerprint entropy than FATT and
Mercury but only slightly lower than p0f. In the authors’ opinion, the three-fold increase in
the number of fingerprints is justifiable by the significant (8–34 fold) increase of fingerprint
uniqueness. Thus, this analysis confirms that Hfinger is an effective tool for malware HTTP
request fingerprinting.

Hfinger can also operate in other reporting modes that can help achieve better fin-
gerprint entropy levels, provide a lower number of fingerprints, or produce information
about a broader set of request features. They offer better or at least comparable results for
all measures defined in this paper compared to the other analyzed tools.

Future work will focus on enabling fuzzy searching. This includes, for example,
capabilities for searching similar requests on the base of a fingerprint’s substring, using a
wildcard search or searching depending on the importance of fingerprint elements. Another
direction is to use Hfinger as a basis for request clustering mechanisms, which can help to
uncover new relations between requests.
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Appendix A. List of Source Code Versions of the Analyzed Fingerprinting Tools

FATT:
https://github.com/0x4D31/fatt/commit/314cd1ff7873b5a145a51ec4e85f6107828a2c79, ac-
cessed on 26 March 2021
p0f3plus:

https://www.stratosphereips.org/datasets-malware
https://github.com/0x4D31/fatt/commit/314cd1ff7873b5a145a51ec4e85f6107828a2c79
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https://github.com/FlUxIuS/p0f3plus/commit/748cc69cc996e830f258f3f3c7b95ca7a4a74a3
e, accessed on 26 March 2021
Mercury:
https://github.com/cisco/mercury/commit/500f5b74a710c0f1c423b8cb370c667aae44a7e3,
accessed on 26 March 2021

Appendix B. List of Installed Benign Applications Used in Experiments

• Adobe Reader
• Discord
• GIMP
• LibreOffice
• Mozilla Thunderbird
• Notepad++
• Microsoft Office 2019 Home and Business
• Skype
• Slack
• Spotify
• Steam
• VLC media player
• Zoom
• µtorrent

Appendix C. Malware Families of the Final Malware Data Set Sorted by the Number
of HTTP Requests

Table A1. Malware families of the final malware data set sorted by the number of HTTP requests in
the final data set.

Malware Family Name Number of Requests Malware Family Name Number of Requests

Upatre 62,257 KeyBase 141
Simda 57,730 STOP 139
Locky 44,498 Nessfi 136
Dridex 30,070 Jaff 136
Arkei 22,057 GrayBird 136

DirtJumper 18,486 Cannibal 130
Chthonic 14,410 1ms0rry 129
Vflooder 14,252 IcedID 122

Ursnif 11,756 Wannacry 113
Arid Viper APT 10,063 Adylkuzz 111

Emotet 9662 Amadey 103
Nemucod 8857 ArtraDownloader 99
Houdini 7583 Zeprox 96

Miuref/Boaxxe 7501 PowershellEmpire 88
Pushdo.S 7012 MegalodonHTTP 88

SmokeLoader 6523 BlackshadesRAT 82
Andromeda 5839 Banload 80

Nymaim 5590 GrandSteal 76
Matsnu 5522 Mokes 73
LokiBot 4415 EightRed 73
Kovter.B 4332 ZeroHTTP 70

Tinba 4004 Sakula 67
Formbook 3496 NetSupport 65
AgentTesla 3052 Legion 62

Gaudox 2880 FindPOS 60
BlackNET 2822 DDI.Bot 59
AZORult 2057 Agent.ZJL 57
Mydoom 1833 Adware.Liuliangbao.A 55

Htbot 1730 DCRS 54
Neutrino 1697 Dalexis 52

https://github.com/FlUxIuS/p0f3plus/commit/748cc69cc996e830f258f3f3c7b95ca7a4a74a3e
https://github.com/FlUxIuS/p0f3plus/commit/748cc69cc996e830f258f3f3c7b95ca7a4a74a3e
https://github.com/cisco/mercury/commit/500f5b74a710c0f1c423b8cb370c667aae44a7e3
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Table A1. Cont.

Malware Family Name Number of Requests Malware Family Name Number of Requests

Kronos 1692 FTCode 50
PUP.Linkury 1481 MSIL.adv 47

Trickbot 1255 Maze 46
Necurs 1158 KPOT 45

Sage 1145 Sality 41
Hancitor 1034 Madness 41

CryptoWall 613 Dimnie 38
Pony 607 Instagram Like Bot 37

Wizzcaster 567 H1N1 36
QuantLoader 538 Panda 35

TVRat 436 Ratankba 34
Kelihos.F 406 Zeroaccess 33

MedusaHTTP 403 DownloadGuide 33
Karmen 397 Betabot 31

GuLoader 383 Alina.POS 31
KINS 351 SocStealer 30

Tofsee.AX 338 Sezin 30
Predator The Thief 286 Scarab 30

InstallCapital 274 Golroted.B 30
Terdot 256 Agima.o 30

TinyNuke 250 CobaltStrike 29
ColorFish 242 Philadelphia 28
HawkEye 234 Dapato 27
Sarwent 229 Mole 26

GandCrab 229 TorrentLocker 24
DustySky 200 FusionCore 23
Phorpiex 190 Qadars 20
DirCrypt 174 KrugBOT 20

Alphacrypt 174 JakyllHyde 20
Donvibs 168 HPDefender.B 20

DiamondFox 153
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