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Abstract: Nash equilibria and correlated equilibria of classical and quantum games are investigated
in the context of their Pareto efficiency. The examples of the prisoner’s dilemma, battle of the sexes
and the game of chicken are studied. Correlated equilibria usually improve Nash equilibria of games
but require a trusted correlation device susceptible to manipulation. The quantum extension of these
games in the Eisert–Wilkens–Lewenstein formalism and the Frąckiewicz–Pykacz parameterization is
analyzed. It is shown that the Nash equilibria of these games in quantum mixed Pauli strategies are
closer to Pareto optimal results than their classical counter-parts. The relationship of mixed Pauli
strategies equilibria and correlated equilibria is also studied.
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1. Introduction

Game theory analyzes and models the behavior of agents in the context of strategic
thinking and interactive decision making. It is essential in making choices and considering
opportunities in business and in everyday life. Examples of situations requiring strategic
thinking can be found in economics [1], political science [2], biology [3,4] or military
applications [5]. The participating sites have their own sets of possible actions, called
strategies, and have preferences over these actions defined by the payoff matrix. Game
theory deals with modeling these activities and searching for optimal strategies. Among
all notions of game theory, the concept of Nash equilibrium plays a major role. It describes
the optimal decisions with regard to the moves of other players. In a Nash equilibrium no
player has anything to gain by changing only his own strategy [6].

Game theory results favorable to the whole group of players are called Pareto-efficient.
From an economic point of view, they are the most desirable results. However, in many
cases, what is beneficial individually is not always also Pareto-efficient. It is often the
opposite—striving to meet one’s own interests does not lead to the best solution for
all players. This type of dilemma occurs in many real situations regarding e.g., traffic
organization [7], excessive exploitation of natural resources [8] or public procurement
regulation [9].

Quantum mechanics is one of the most prolific theories of all time. Despite the many
controversies it has aroused since the dawn of its history, its predictions have been con-
firmed experimentally with incredible accuracy. One of the fields that uses the quantum
mechanics formalism is quantum economics—a very promising novel field of its appli-
cation [10,11]. The impetus for the development of this field was the emergence of pro-
grammable quantum computers [12]. The various areas of quantum economics research
include: market games [13], duopoly problems [14,15], auctions and competitions [16],
gambling [17], quantum money [18], quantum annealing [19], quantum cryptography and
security issues [20,21] quantum optimal transport [22] or even high-frequency trading [23].
An important role in economic applications is also played by the concept of the probability
amplitude utilized by quantum statistics [24].

The purpose of this work is to analyze game mechanisms, that allow players to
regulate their choices in such a way that, attempting to optimize their individual interests,
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they do not create a disadvantage for the group. In the language of game theory, we
will strive to reformulate games in such a way that the participants act individually in a
favorable manner, i.e., achieve the Nash equilibrium state, and at the same time obtain
results as close as possible to the Pareto-efficient results for the group.

Quantum game theory allows to study interactive decision making by players with
access to quantum technology. This technology can be used in both of two ways: as a quan-
tum communication protocol and as a way to randomize players’ strategies more efficiently
than in classical games [25]. Better randomization of game results by quantum strategies
is the key to achieving Pareto-efficient solutions. In this paper we use the Eisert–Wilkens–
Lewenstein (EWL) quantization protocol [26], which is the most studied protocol in games
of quantum communication. In the EWL approach with the SU(2) strategy set, obtaining
Pareto-efficient solutions is feasible but the problem is that this 3-parameter strategy space
yield only trivial Nash equilibria. On the other hand many authors tried to investigate
EWL scheme with a 2-parameter strategy space in which non-trivial equilibria can be
obtained. This, however, leads to an undesirable dependence of the equilibria on the se-
lected parameterization [27]. To resolve this dilemma, we propose using the criterion of
quantum game invariance under isomorphic transformations of the input classic game
introduced by Frąckiewicz [28]. This criterion allow the full SU(2) strategy parameter space
but also selected 2-parameter strategy spaces. On this basis, we build mixed quantum
strategies, which yield non-trivial NE and, at the same time, are not arbitrarily chosen
parameter subspaces.

We study four games in which the problem of suboptimal Nash’s equilibrium arises:
the prisoner’s dilemma, battle of the sexes and two versions of the game of chicken. Thanks
to the use of mixed quantum strategies, we obtain both: non-trivial Nash equilibria and
that they are closer to Pareto-efficient solutions than classical equilibria. The ultimate goal
is to design a quantum device, the input of which is operated by players, parties to the
conflict, economic institutions, and the output, through the collapse of the wave function,
determines the result of the game, the solution of the dispute or conflict between the parties.
The speed with which quantum technologies are currently developing allows us to assume
that the efficient quantum strategies may soon be applicable to real practical problems [29].

In the second section, the basic concepts of games and their payouts in pure, mixed
strategies and general probability distributions are defined. We also define the concepts
of the Nash equilibrium, Pareto-efficiency and correlated equilibrium. The third section,
presents four classical games, discuss their Nash equilibria and analyzes their Pareto-
optimality. We also discuss their correlated equilibria, which thanks to the use of additional
mechanisms of correlation of players’ behavior, allow for better Pareto optimization of the
results of these games. The fourth section is devoted to defining the concept of quantum
game in the EWL scheme with the full SU(2) parameter space and in the Frąckiewicz Pykacz
parameterization. Part five of the paper presents our proposals for new Nash equilibria
in quantum mixed strategies and their comparison with correlated equilibria. In the last
part we discuss the applicability of both correlation mechanisms and the perspective of
physical implementation of quantum games.

2. Game Theory Preliminaries

Let us consider a two player, two strategy game G = (N, {SX}XεN , {PX}XεN), where
N = {A, B} is the set of players (Alice and Bob), SA = {A0, A1}, SB = {B0, B1} are sets
of their possible pure strategies (or actions) and PX : SA × SB →

{
vX

ij ε R
∣∣∣ i, j = 0, 1

}
, are

respective payoff functions for Player X, X = A, B, usually represented by a game bimatrix( (
vA

00, vB
00
) (

vA
01, vB

01
)(

vA
10, vB

10
) (

vA
11, vB

11
) ). Let us denote by

∆(SA × SB) =
{
∑i,j=0,1 σij AiBj| σij ≥ 0, ∑i,j=0,1 σij = 1

}
(1)

the set of all probability distributions over SA× SB. The payoff of a Player X, corresponding
to a given distribution σ =

{
σij
}

i,j=0,1 is
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∆PX(σ) = ∑
i,j=0,1

σijvX
ij (2)

Let us now restrict the set of all probability distributions to distributions, that can be
factorized, i.e., presented in a form(

σ00 σ01
σ10 σ11

)
=

(
σAσB σA(1− σB)

(1− σA)σB (1− σA)(1− σB)

)
(3)

They define mixed strategy spaces

∆SX ≡ ∆(SX) = {σXX0 + (1− σX)X1 | 0 ≤ σX ≤ 1} ≡ [0, 1], X = A, B

which are defined by a single number σX ε [0, 1]. Note that the product of mixed strategy
spaces is a subset of the set of all probability distributions ∆SA × ∆SB ⊂ ∆(SA × SB).

Given a profile σ = (σA, σB) ε ∆SA × ∆SB of mixed strategies of both players, Player
X obtains an expected payoff which is an element of ∆(ImPX)—the set of probability
distributions over the outcomes of G. It leads to the notion of the mixed classical game
Gmix = (N, ∆SA, ∆SB, ∆PA, ∆PB), where payoffs ∆PX : [0, 1]× [0, 1]→ ∆(ImPX) are de-
fined by (2) and (3).

Let us define a vector valued payoff function ∆P : ∆(SA × SB)→ R2 by ∆P(σ) =
(∆PA(σ), ∆PB(σ)). The range of the payoff function of the mixed game is RGmix = ∆P(∆A × ∆B).
The range of all probability distributions (1) over SA × SB is RPD = ∆P(∆(SA × SB)).
Note that RGmix is usually a proper subset of the range of all probability distributions
RGmix ⊂ RPD.

The pair of strategies
(
σ∗A, σ∗B

)
ε∆SA × ∆SB is a Nash equilibrium (NE), if for each

strategy σXε∆SX , X = A, B, ∆PA
(
σ∗A, σ∗B

)
≥ ∆PA(σA, σ∗B) and ∆PB

(
σ∗A, σ∗B

)
≥ ∆PB

(
σ∗A, σB

)
,

i.e., no player has a profitable unilateral deviation from his strategy, while the other stays
with his [30]. Thus, NE is such a pair of players’ strategies for which they all achieve their
optimal (for a given strategy of other player) individual efficiency. In the same way one
can define, that a pair (A∗, B∗) ε SA × SB is a Nash equilibrium of the (pure) game G, if for
each strategy Xi ε SX, X = A, B, PA(A∗, B∗) ≥ PA(Ai, B∗) and PB(A∗, B∗) ≥ PB(A∗, Bi).
Whereas the celebrated Nash’s theorem says that every mixed classical game has a Nash
equilibrium (in mixed strategies), it does not have to be true for every (pure) game G [31].

From the viewpoint of mutual efficiency, the concept of Pareto optimality plays an
important role. Let S be an arbitrary set of strategies. A pair of strategies (σA, σB) ε S is
not Pareto optimal in S if there exists another pair, (σA

′, σB
′) ε S that is better for one of the

players ∆PX(σA, σB) < ∆PX(σA
′, σB

′), and not worse for the other Player ∆P−X(σA, σB) ≤
∆P−X(σA

′, σA
′), where −X is the remaining player for player X = A, B, otherwise the pair

(σA, σB) is called Pareto optimal (or Pareto-efficient) in S. A set of all Pareto optimal strategies
for a given set of strategies S is called the Pareto frontier of S and denoted PO(S). For
instance a pair of strategies (σA, σB) ε ∆SA × ∆SB is Pareto optimal in ∆SA × ∆SB if there
exist no other set of mixed strategies, that would be better for at least one of players and
not worse for the other. Note that the Pareto optimal strategy in a set S is not necessarily
optimal in a larger set S′ ⊃ S.

An interesting concept of optimizing equilibria beyond the classical game theory was
put forward by R. Aumann. By correlated equilibrium, we understand a situation in which
players make their optimal decisions, guided by an external signal, transmitted to them
by a trusted correlating device according to a given probability distribution. Each player
maximizes his expected payoff by following this recommendation. Formally, probability
distribution

{
σij
}

i,j=0,1 over the set of action vectors (Ai, Bj)i,j=0,1 of the game G is called a
correlated equilibrium [31], if for every strategy AiεSA and BiεSB

∑
j=0,1

σijvA
ij ≥ ∑

j=0,1

σijvA
−ij and ∑

j=0,1

σjivB
ji ≥ ∑

j=0,1

σjivB
j(−i) (4)
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respectively, where X−iεSX is the remaining strategy −i 6= i.
One of the advantages of correlated equilibria is that they are computationally easier

than Nash equilibria. Computing the correlated equilibrium requires only solving the linear
problem, while solving the Nash equilibrium requires solving the equations that make
each player’s payoffs independent of the others.

3. The Efficiency of Selected Classical Games

The most contrasting example of the lack of Pareto optimality for Nash equilibria is
the prisoner’s dilemma (PD) game [32]. The game is universal in nature and describes
many decision-making dilemma commonly found in different situations of social life. It is
defined by PD = (N, {SX}XεN , {PX}XεN) and the payoffs are defined by the bimatrix in
Table 1, where t > r > p > s and r > s+t

2 [33]. A typical scenario assumes that two players,
Alice and Bob, independently of each other, choose one of two strategies—“cooperation”
A0 and B0 or “defection” A1 and B1.

Table 1. The payoff matrix for the prisoner’s dilemma.

Bob

B0 B1

A
li

ce A0 (r, r) (s, t)
A1 (t, s) (p, p)

It is easy to see that regardless of the opponent’s choice, the dominant strategy of
each player is to “defect” and the pair of mutual defection strategies (A1,B1) is the Nash
equilibrium of the game. On the other hand the Pareto-efficient solutions are all the re-
maining pairs of pure strategies. Moreover, when allowing the players to randomize their
strategies, the Nash equilibrium remains the same and the Pareto frontier of ∆SA × ∆SB is
A0 × ∆SB ∪ ∆SA × B0. In case of typical game payoffs: t = 5, r = 3, p = 1, s = 0, the Nash
equilibrium (A1,B1) with a payoff of (1, 1) is far from the Pareto optimal (A0, B0) with a
payoff of (3, 3). One can show that the only correlated equilibrium (4) of PD is of the form

σPD =

(
0 0
0 1

)
, i.e., coincides with its NE and does not improve Pareto efficiency. It is

because both cooperation strategies A0 and B0 are strictly dominated and therefore can
never be played in a correlated equilibrium.

The second game under consideration is battle of the sexes (BoS), defined by the
payoff bimatrix in Table 2. Alice and Bob plan to be together, for which they can get paid 2.
However, Alice would prefer to go to the theater X0, whereas Bob would prefer the football
game X1, X = A, B. Going to a preferred place gives players an additional bonus of + 1.

Table 2. The payoff matrix of battle of the sexes.

Bob

B0 B1

A
li

ce A0 (3, 2) (1, 1)
A1 (0, 0) (2, 3 )

This game has two Nash equilibria (A0, B0) and (A1, B1) in pure strategies. Both of
them form a set of Pareto optimal solutions PO(∆SA × ∆SB) = (A0, B0) ∪ (A1, B1) but the
problem, which gives the name to the game, is that they can not be both satisfied with a just
solution. One player consistently does better than the other. BoS has also one NE in mixed
strategies, in which players go to their preferred event more often than the other. It is given
by a pair of strategies σA = 3

4 A0 +
1
4 A1, σB = 1

4 B0 +
3
4 B1, for Alice and Bob, respectively.

The mixed strategy NE, where they both get the same payoff
( 3

2 , 3
2
)

is however not Pareto-
efficient even in ∆SA × ∆SB because e.g., each of the pure strategy NE is better for both
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players. One can also find an correlated equilibrium for this game, that according to (4)
are defined by inequalities: 3σ00 ≥ σ01, σ00 ≥ 3σ10, 3σ11 ≥ σ01 and σ11 ≥ 3σ10. The Pareto

frontier of correlated equilibria is the set
{(

σ 0
0 1− σ

)∣∣∣∣0 ≤ σ ≤ 1
}

and equal payoff

optimal solution is then
(

2 1
2 , 2 1

2

)
, achievable for the distribution σBoS =

(
1/2 0

0 1/2

)
.

It means that the players go together to the theater or the game depending on the coin
toss. This payoff is higher than the Nash equilibrium in mixed strategies and is Pareto-
optimal σBoSεPO(∆(SA × SB)) in the set of all probability distributions, moreover it is not
accessible by any mixed strategy σBoS /∈ ∆SA × ∆SB.

The last of the classical games we consider is the game of chicken CG (chicken game),
with the payoff bimatrix defined by Table 3. This game describes, e.g., the behavior of two
drivers approaching, one from the south and the other from the west, at the same time
to the intersection. They both have two options: to cross the intersection X1 or to stop X0
before it, X = A, B. If both of them choose the option to drive, they will collide and both
lose 10. If only one of them passes and the other stops, the passing one wins (1, 0). If both
of them stop, the result is neutral (0,0).

Table 3. The payoff matrix of the game of chicken.

Driver B

D
ri

ve
r

A B0 B1

A0 (0, 0) (0, 1)
A1 (1, 0) (−10,−10)

CG has two Nash equilibria in pure strategies (A0, B1) and (A1, B0), which are Pareto-
efficient. However, none of these equilibria, just like in BoS, satisfy both players. The game
also has the third equilibrium in mixed strategies: each car passes a crossroads with a prob-
ability of 1/11. This equilibrium is fair—both players receive equal payouts, but the trouble
is that both payouts are equal to 0, and therefore not optimal in ∆SA × ∆SB—each player can
increase his payout by increasing the frequency of crossing, while the other stops at the junc-

tion. The Pareto frontier of correlated equilibria (4) is the set
{(

0 σ
1− σ 0

)∣∣∣∣0 ≤ σ ≤ 1
}

and the equal payoff correlated equilibrium is σCG =

(
0 1/2

1/2 0

)
, i.e., each of the

drivers passes the intersection with a probability of while the other one stops. Such a
solution is realized by traffic lights. It is a correlated equilibrium because none of the
drivers is interested in running a red light, kowing that the other one is green at that time.
If they both comply with the traffic rules, they will receive a payment of , i.e., higher than
the mixed strategy Nash equilibrium. It has the highest, equal for both players payoff
because it is Pareto-efficient in the set of all probability distributions σCGεPO(∆(SA × SB))
but not accessible by any mixed strategy as σCG /∈ ∆SA × ∆SB.

The last game we will consider is another version of the chicken game (Table 4):

Table 4. The payoff matrix of the game of chicken 2.

Player B

Pl
ay

er
A B0 B1

A0 (4, 4) (1, 5)
A1 (5, 1) (0, 0)

As in the previous game, the winner is the player who chooses the X1 option while the
other one plays X0, X = A, B. The best fair solution is for both players to choose (A0, B0)
but it is not an equilibrium. As before, this game has three Nash equilibria: two in pure
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strategies (A1, B0) and (A0, B1) and one in a mixed strategy, in which both players choose
X0 and X1 with equal probabilities σX = 1

2 X0 +
1
2 X1, X = A, B. The payoffs for these Nash

equilibria are: (5, 1), (1, 5) and (2 1
2 , 2 1

2 ) respectively. As before, Pareto-efficient equilibria
are not fair (in the sense that one player wins and the other loses), and the fair equilibrium
is not Pareto-efficient (because both players can score better in ∆SA × ∆SB by choosing
(A0, B0). It follows from (4) that the correlated equilibrium for this game should obey four
inequalities: σ00 ≤ σ01, σ00 ≤ σ10, σ11 ≤ σ01 and σ11 ≤ σ10. Therefore the Pareto frontier of
the set of correlated equilibria is{(

σ′ σ
1− σ− σ′ 0

)∣∣∣∣ 0 ≤ σ ≤ 1, σ′ = max
(

σ,
1− σ

2

) }

and the maximal symmetric payoff is (3 1
3 , 3 1

3 ), corresponding to σCG2 =

(
1/3 1/3
1/3 0

)
.

It is better than the symmetric Nash equilibrium.
Aumann [34] proposed the following mechanism of correlated equilibrium realization.

Let’s consider the third side (or some natural event), which with a probability of 1/3 draws
one of three cards marked: (0, 0), (0, 1) and (1, 0). After the card is drawn, the third party
informs the players about the strategy assigned to them on the card (but not about the
strategy assigned to the opponent). Suppose one player is assigned “1”, knowing that the
other player saw “0” (because there is only one card that assigns him “0”), he should play
“1” because he will receive the highest possible payout 5. Let’s assume that the player was
assigned “0”. Then he knows, that the other player has received “0” or “1” commands, with
probabilities 1/2. The expected payoff for playing “1” (contrary to the recommendation)
is therefore 5× 1

2 + 0× 1
2 = 5

2 , and the expected payout for playing as recommended
“0” is the same 4× 1

2 + 1× 1
2 = 5

2 . Because none of the players has motivation to play
differently than was recommended by the third party, the result of the draw is the correlated
equilibrium. The probability distribution σCG2 ε ∆(SA × SB) can not be factorized as in
Equation (3) and therefore is not a mixed game strategy σCG2 /∈ ∆SA × ∆SB. It is also not
Pareto-efficient σCG2 /∈ PO(∆(SA × SB)) in the set of all probability distributions.

The disadvantage of correlated equilibria is the need to use an external signal that
must be generated by an independent device that can be manipulated. Therefore, it is worth
looking for correlation mechanisms that would be safe and not susceptible to manipulation.
As in the field of cryptography [35], such a solution may be transferring games to the
quantum domain.

4. EWL Quantization Protocol in Frąckiewicz–Pykacz Parameterization

In recent years, we have witnessed the rapid development of research on quantum
information processing [36,37] and successful experiments related to the engineering of
entangled qubits [38,39]. In the laboratories of Google Quantum AI [12], IBM [40], D-
wave and several other companies [41], there is a race to achieve the so-called quantum
supremacy. Google AI Quantum managed to construct a quantum processor based on
53 qubits, which in 200 s solved a problem that a classical computer would solve in
10 thousand years [12]. In the field of possible applications of quantum engineering,
quantum games are also attracting much attention [42,43]. Apart from their own intrinsic
interest, quantum games explore the fascinating world of quantum information [44–46].

The idea of using quantum computers to extend classical games to the quantum
domain was put forward at the end of the 20th century. In his groundbreaking work on the
theory of quantum games [47], Meyer proposed a simple coin toss game and showed that
a player using quantum superposition will always win against a classical player. A general
protocol for quantum games was proposed by Eisert, Wilkens and Lewenstein (EWL) [26].
This model has been widely discussed [48] and, e.g., extended to multiplayer games [49].

In this approach, players’ strategies are operators in a certain vector space known as a
Bloch sphere [50]. This space is a set of qubits—normalized vectors with complex coefficients
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spanned on a two-element basis {|0〉, |1〉} which, up to the phase, can be represented in
the form

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 (5)

where θ ∈ [0, π] and ϕ ∈ [−π, π]. An example of the qubit can be any quantum mechanical
two-state system such as an electron with spin up or down, or a photon in two different
polarizations.

Qubits |ψ〉 representing a superposition of the basis states |0〉 and |1〉 are pure quantum
states. A qubit in a state (5) does not have any value “between” |0〉 and |1〉. It means that
before the measurement is carried out, it is not defined and only the measurement yields a
value of |0〉 or |1〉 with probabilities cos2 θ

2 and sin2 θ
2 respectively. This process is called

the collapse of the wave function. For example, all qubits representing states with θ = π/2,
i.e., at the equator of the Bloch sphere represent a quantum state which, after measurement,
collapses to the state |0〉 or |1〉 with probabilities equal to 1

2 .
Now let us consider a space of qubit pairs, one for each player. In this product space the standard

observational basis is {|00〉, |01〉, |10〉, |11〉}, where the first (second) qubit belongs to the first
(second) player. Then let’s use the entangling operator Ĵ = cos

( γ
2
)

Î ⊗ Î + i sin
( γ

2
)
σx ⊗ σx, where Î

is the unit operator, σx =

(
0 1
1 0

)
is the Pauli matrix and γ ∈

[
0, π

2
]
, represents the

entanglement level, to prepare the initial quantum state |ψ0〉 = Ĵ|00〉. For γ = 0, this state
is separable |ψ0〉 = |00〉, whereas for γ = π

2 , the initial state |ψ0〉 = 1√
2
(|00〉+ i|11〉) is

the maximally entangled (Bell) state [51]. From now on, we assume that γ = π
2 , i.e., the

initial state is fully entangled. Quantum entanglement is a nonlocal property that allows a
set of qubits to express higher correlation than is possible in classical systems, e.g., if one
of the owners of the entangled pair performs a measurement of his part, it immediately
determines the result of the measurement of the other party, regardless of how far away
they may be. We also assume that the initial entangled state |ψ0〉 is known to both players.

From the Schrödinger equation, describing the time evolution of quantum states, it
follows that the transformations governing it must be unitary. Therefore, in quantum game
theory, players’ strategies are unitary transformations ÛA i ÛB operating on the initial state
|ψ0〉. They correspond to the manipulations that are performed by the players, each on its
own part of an entangled qubit. Transformations ÛX ∈ SU(2), X = A, B are defined by
unitary matrices

ÛX(θX , αX , βX) =

(
eiαX cos θX

2 ieiβX sin θX
2

ie−iβX sin θX
2 e−iαX cos θX

2

)
(6)

where, θX ∈ [0, π] and αX, βX ∈ [0, 2π], X = A, B. The quantum state obtained in this
way is then in the EWL protocol disentangled by the Ĵ† (Hermitian conjugate of Ĵ) operator.
The final state of this operation is

|ψ f 〉 = Ĵ†
(

ÛA ⊗ ÛB

)
Ĵ |00〉 (7)

and can be expressed in an observational basis by |ψ f 〉 = ∑i,j=0,1 pij |ij〉, where
∣∣pij
∣∣2 =

|〈ij|ψ f 〉|2, i, j = 0, 1 are probabilities that the final state measurement will give one of four
vectors in the observational basis.

The sequence of operations that makes up the quantum game is schematically repre-
sented in Figure 1.

The quantum game in the Eisert–Wilkens–Lewenstein protocol is defined as a triple
ΓEWL = (N, {UX}XεN , {ΠX}XεN), where N = {A, B} is the set of players, UX are sets
of unitary transformations (6) ÛX ∈ UX, that are pure strategies of the players and
ΠX : SU(2)× SU(2)→ R is the payoff function defined by

ΠX

(
ÛA, ÛB

)
= ∑

i,j=0,1

∣∣pij
∣∣2vX

ij , X = A, B (8)
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where {vX
ij } is the payoff bimatrix of the corresponding classical game. In the original formu-

lation of the EWL model, transformations (6) are limited to the two-dimensional parameter
space, where β = − 3

2 π is constant. However, Benjamin and Hayden [52] observed that
the set of 2-parameter quantum strategies is not closed under composition and therefore it
seems unlikely, that the restriction can reflect any reasonable physical constraint. A more
significant argument has been put forward by Frąckiewicz [28] who showed that this
2-parameter set of strategies may yield different optimal strategy profiles depending on the
order of player’s strategies in the classical game. The necessary condition to be satisfied
by the parameterization scheme is its invariance under isomorphic transformations of the
input game. This condition is met by the full SU(2) strategy parameter space and also by
2-parameter strategy set introduced by Frąckiewicz and Pykacz [53]

V̂X(θX , φX) =

(
eiφX cos θX

2 ieiφX sin θX
2

ie−iφX sin θX
2 e−iφX cos θX

2

)
, θX ∈ [0, π], φX ∈ [0, 2π] (9)

In this parameterization, the observational basis probabilities are:

|p00|2 =
(

cos θA
2 cos θB

2 cos(φA + φB) + sin θA
2 sin θB

2 sin(φA + φB)
)2

|p01|2 =
(

cos θA
2 sin θB

2 cos(φA − φB)− sin θA
2 cos θB

2 sin(φA − φB)
)2

|p10|2 =
(

cos θA
2 sin θB

2 sin(φA − φB) + sin θA
2 cos θB

2 cos(φA − φB)
)2

|p11|2 =
(

cos θA
2 cos θB

2 sin(φA + φB)− sin θA
2 sin θB

2 cos(φA + φB)
)2

.

(10)

In the special case where the players’ strategies are defined only by the angle θ, with
φA = φB = 0, they can be expressed by V̂(θ, 0) = cos θ

2 Î + i sin θ
2 σx. In this case, V̂(0, 0) = Î

is the unit matrix corresponding to the classical X0 strategy and V̂(π, 0) =
(

0 i
i 0

)
is

the matrix that is flipping (up to a constant) |0〉 and |1〉 qubits and corresponds to the
classical X1 strategy X = A, B. General 1-parameter strategy V̂(θ, 0) is equivalent to the
classical mixed strategy for which the probabilities of both pure strategies X0 and X1 are
cos2 θX

2 and sin2 θX
2 respectively. In this way the classical game becomes a special case of

the quantum game.
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2
sin

𝜃𝐵

2
sin(𝜙𝐴 + 𝜙𝐵))

2

 (10) 

Figure 1. The quantum game in EWL protocol.

Quantum games can be physically implemented by a quantum computer operating
according to the above algorithm. Such an algorithm was carried out experimentally [54,55]
in EPR-type experiments based on measurements of the Stern Gerlach effect. The players
initially share an entangled pure quantum state |ψ0〉. Each of them apply his strategy by
performing arbitrary local unitary operations on his own qubit, but no direct communica-
tion between players is allowed. The result of the game is revealed, by measuring the final
state (7) which, as a result of the collapse of the wave function, will give one of the four
possible states with the appropriate probability. Due to the fact that players use quantum
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strategies, entanglement offers opportunities for players to interact with each other, which
has no analogue in classical games.

The probability distribution leading to the payoff of the quantum game (8) is, in
general, non-factorizable and, therefore, can play a role of the external device correlating
player actions proposed by Aumann. There is no need to use cryptographic protocols to
replace the trusted mediator [56]. In this case, quantum mechanics offers the possibility of
randomizing players’ strategies better than classical methods.

5. Efficiency of Quantum Games Equilibria

Let us go back to optimization of game equilibria. For a quantum game so defined,
the Nash equilibrium can be defined in exactly the same way as in the classical games.
Note however, that the discrete set of pure strategies SX is, in a quantum game replaced by
a continuous domain UX , which elements depend on 2 or 3 parameters.

For the classical prisoner’s dilemma (Table 1), the only Nash equilibrium is the mutual
defection (A1, B1). In the quantum case and original EWL quantization scheme with
2D parameter space (fixed β = − 3

2 π), there is a new Nash equilibrium, the “magic”
strategy denoted by Q̂ ≡ Û

(
0, π

2 ,− 3
2 π
)
, corresponding to the Pareto-efficient payoff

(3, 3) [26]. However, if we consider the above strategy in the full SU(2) space, then the
“Nash equilibrium” obtained in this way ceases to be the equilibrium. Indeed, for any
strategy ÛA(θ, α, β) ∈ SU(2), there is a strategy ÛB = Û(θ + π, β− π/2, α) which “cancels”
the action Û of the Player A and changes the game result to (0, 5) in favor of the Player B.
The result is the same if the answer of the Player B is Û′B = Û

(
θ + π, β + π

2 , α + π
)
. It is

then evident, that in the SU(2) case of EWL a Nash equilibrium can exist only in a trivial
case, when the original game bimatrix has a result vX

ij , which is maximal for both players,
X = A, B. This conclusion significantly reduces the usefulness of the EWL scheme with a
full group of SU(2) strategies for the search for Pareto efficient equilibria. As shown in [53],
non-trivial Nash equilibria are also possible in the FP parameterization of an EWL scheme.

In analogy to classical games, Nash equilibria can be defined also for mixed quantum
games in mixed quantum strategies [57,58]. Classification of Nash equilibria in mixed
strategies for the full SU(2) group of EWL strategies was studied in [59,60]. Here we find
mixed strategy equilibria for the FP parameterization of EWL model. Let us consider a set
of quantum strategies:

P̂0 = V̂(0, 0) =
(

1 0
0 1

)
,

P̂x = V̂(π, π) =

(
0 −i
−i 0

)
,

P̂y = V̂(π, π/2) =
(

0 −1
1 0

)
,

P̂z = V̂(0, π/2) =
(

i 0
0 −i

)
.

(11)

The names of these strategies refer to their similarity to the Pauli matrices P̂x = −iσ̂x,
P̂y = −iσ̂y and P̂z = iσ̂z, and therefore can be named Pauli strategies. Although they are
generated through a 2-parameter family of operators, they form a basis of infinitesimal
generators of the whole SU(2).

Let us consider a quantum game ΓEWL , where the set of unitary strategies is
UX =

{
P̂0, P̂x, P̂y, P̂z

}
. The final state of the game |ψ f 〉 = Ĵ†

(
P̂α ⊗ P̂β

)
Ĵ |00〉, where

α, β ∈ {0, x, y, z}, can be expanded in terms of a single vector of an observational basis.
Therefore payoffs corresponding to this game (Table 5) are single bimatrix pairs of the
original classical game. Note that for any strategy of Player A, there is such a strategy of
Player B, that the result of the quantum game is any pair of payoffs of the original game.
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Table 5. The payoff matrix of Pauli strategies in the EWL scheme.

Player B

P̂0 P̂x P̂y
P̂z

Pl
ay

er
A

P̂0
(
vA

00, vB
00
) (

vA
01, vB

01
) (

vA
10, vB

10
) (

vA
11, vB

11
)

P̂x
(
vA

10, vB
10
) (

vA
11, vB

11
) (

vA
00, vB

00
) (

vA
01, vB

01
)

P̂y
(
vA

01, vB
01
) (

vA
00, vB

00
) (

vA
11, vB

11
) (

vA
10, vB

10
)

P̂z
(
vA

11, vB
11
) (

vA
10, vB

10
) (

vA
01, vB

01
) (

vA
00, vB

00
)

Having this matrix, one can now construct mixed Pauli strategies defined by quadru-
ples of coefficients σX =

(
σX

α

)
α=0,x,y,z,

∆VX ≡ ∆(VX) =

 ∑
α=0,x,y,z

σX
α P̂α

∣∣∣∣∣∣∣ 0 ≤ σX
α ; ∑

α=0,x,y,z

σX
α = 1

, X = A, B.

Subsequently one can define a mixed quantum game in the EWL protocol Γmix
EWL =

(N, {∆VX}XεN , {∆ΠX}XεN), where the payoffs are defined by

∆ΠX

(
σA, σB

)
= ∑

α,β=0,x,y,z

σA
α σB

β ΠX

(
P̂α, P̂β

)
Now it is possible to construct nontrivial Nash equilibria in mixed Pauli strategies.

For the prisoner’s dilemma game from Table 1, the pair of strategies σA =
(

1
2 , 0, 0, 1

2

)
and σB =

(
0, 1

2 , 1
2 , 0
)

(or equivalently σ′A =
(

0, 1
2 , 1

2 , 0
)

and σ′B =
(

1
2 , 0, 0, 1

2

)
) is a Nash

equilibrium with payoffs (∆ΠA, ∆ΠB) =
( 5

2 , 5
2
)
. There is also a third equilibrium with

a lower payoffs of
( 9

4 , 9
4
)

for a pair of strategies σ′′A = σ′′B =
(

1
4 , 1

4 , 1
4 , 1

4

)
. Note that this

quantum equilibrium gives both players a much higher payoff than the Nash equilibrium
and the best correlated equilibrium, both yielding a payoff of (1, 1).

Similarly, we can find a Nash equilibrium for battle of the sexes game from Table 2.
Likewise the quantum PD, this game has no equilibrium in pure quantum strategies.
One can check that, the highest payoffs of the game occur in two subgames defined by
pairs of quantum strategies {P̂0,P̂z} and {P̂x,P̂y}. Therefore, one can be built two pairs of

equilibria in mixed Pauli strategies σA = σB =
(

1
2 , 0, 0, 1

2

)
and σ′A = σ′B =

(
0, 1

2 , 1
2 , 0
)

,
that is, unlike the PD example, the Nash equilibrium is the case when Alice and Bob
simultaneously play the same pair of strategies. The payoff for both pairs is then equal to
(∆ΠA, ∆ΠB) =

( 5
2 , 5

2
)
, so exactly as for classical correlated equilibrium of this game.

For the chicken game the pair of Nash equilibrium mixed Pauli strategies is the same
as in the prisoner’s dilemma σA =

(
1
2 , 0, 0, 1

2

)
and σB =

(
0, 1

2 , 1
2 , 0
)

(or equivalently

σ′A =
(

0, 1
2 , 1

2 , 0
)

and σ′B =
(

1
2 , 0, 0, 1

2

)
. In this equilibrium, drivers receive equal payoffs

(∆ΠA, ∆ΠB) =
(

1
2 , 1

2

)
, the same, which provide the usual traffic lights and at the same

time the best available in correlated equilibria. In the chicken game 2, the above pair of
mixed Pauli strategies yields the payoffs (∆ΠA, ∆ΠB) = (3, 3). Among equilibria giving
both players equal payoffs, the above equilibrium gives the highest result and is better than
the mixed strategy Nash equilibrium of the classical game (2 1

2 , 2 1
2 ). It is however worse

than maximal correlated equilibrium (3 1
3 , 3 1

3 ). The comparison of the obtained results is
presented in Table 6.

Interestingly, in the family of all mixed Pauli strategic equilibria, there is e.g., σA =(
1
2 , 0, 1

2 , 0
)

and σB =
(

1
2 , 1

2 , 0, 0
)

or σ′A =
(

0, 1
2 , 0, 1

2

)
and σ′B =

(
0, 0, 1

2 , 1
2

)
, which
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yields the payoff (2 1
2 , 4 1

2 ), or symmetrically σ′A =
(

1
2 , 1

2 , 0, 0
)

and σ′B =
(

1
2 , 0, 1

2 , 0
)

or σ′A =
(

0, 0, 1
2 , 1

2

)
and σ′B =

(
0, 1

2 , 0, 1
2

)
with payoff (4 1

2 , 2 1
2 ), i.e., of the sum of payoffs

higher than in the correlated equilibrium. These equilibria are Pareto efficient. A graphical
representation of all probability distributions, mixed strategies, Pareto frontiers, Nash equi-
libria, optimal symmetric correlated equilibria and the obtained quantum mixed equilibria
is shown in Figure 2.

Table 6. Comparison of the best symmetric game results.

Game Name

Ta
bl

e
N

os
.

Best Symmetrical
Pareto-Efficient

Payoffs in ∆(SA × SB)

Best Symmetrical Payoffs for the

Nash
Equilibrium

Correlated
Equilibrium

NE in Mixed
Pauli Strategies

Prisoner’s dilemma 1 3 1 1 2 1
2

Battle of the sexes 2 2 1
2 1 1

2 2 1
2

2 1
2

The game of chicken 3 1
2 0 1

2
1
2

The game of chicken 2 4 4 2 1
2 3 1

3
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6. Conclusions

In this paper, we were looking for game solutions that would be closer to the Pareto-
efficient results than classical game solutions. We took into account: the prisoner’s dilemma
game, battle of the sexes and two versions of the chicken game. For most of these games
(apart from PD), correlated equilibria are better than Nash equilibria. However, obtaining
results in this way requires the introduction of an external device that correlates the actions
of players. Such a device, sending signals to players, could be vulnerable to manipulation.
Therefore, we proposed to use the quantum extension of games. We adopted the most
common formalism of Eisert–Wilkens–Lewenstein quantum games, with 2-parameter
strategy space introduced by Frąckiewicz and Pykacz. This parameterization scheme is
invariant under isomorphic transformations of the input game. It has been shown that in
this parameterization, the games under consideration have, in the mixed strategies, Nash
equilibria much closer to Pareto-efficient solutions than the equilibria of classical games.
These equilibria are comparable to correlated equilibria.

In the case of the prisoner’s dilemma, the Nash equilibrium of the quantum game
corresponds to mixing with equal probability of cooperation and defection. Although this
result is not Pareto-efficient, the players’ payoffs obtained in this way are better than the
correlated equilibrium (equal to the Nash equilibrium) of the classical game. In the case of
battle of the sexes, the quantum NE coincides with the best correlated equilibrium, it is
fully fair for both partners and Pareto-efficient. For the chicken game, the Nash equilibrium
of quantum game also coincides with the best Pareto optimal, correlated equilibrium. This
solution is unattainable in classical mixed strategies. In the second version of the chicken
game, the best equal solution obtained in mixed Pauli strategies is better than classical NE
but worse than the one achievable in correlated equilibria. However, there are also Pareto
efficient asymmetric equilibria with payoffs, the sum of which is greater than the sum for
the correlated equilibrium.

In the conventional quantum game theory, mainly one-shot games have been studied.
The nature of interpersonal interactions and the games people play are often repetitive
processes. This leads to the formulation of the discussed optimization problems in the
form of repeated (finitely or even infinitely) quantum games [61,62]. The results obtained
by Aoki and Ikeda for the repeated quantum prisoner’s dilemma are very promising and
set the direction for further research also on the games discussed in the present paper.

The question, whether quantum versions of games can contribute to solving practical
economic situations, naturally arises. It is clear from this study, that solving games by
means of a quantum strategy can give better results than conventional solutions. The
advantage of quantum games lies in increasing the randomization of the game, which
leads directly to results close to correlated equilibria, not available in classical games and
that such a game can be played on a quantum computer—a tangible device that is resistant
to external manipulation.

A general question can be asked: are there any connections between classical games
and quantum phenomena? As a mathematical theory, classical games turn out to be a
special case of quantum games. Do real classical games played by people every day have
anything to do with physical quantum processes? The answer to this question may be
surprising. A quantum phenomenon “suspected” of combining both realities is the collapse
of the wave function. According to a recent hypothesis, the quantum fluctuations cause
macroscopic phenomena that we consider random, such as, for example, tossing a coin or a
die [63]. Moreover, every practical use of probability has its source in quantum phenomena.
If this point of view were taken, any use of mixed strategy in a classical game would in fact
be a quantum phenomenon.

In quantum games, an important element of the game mechanism is a quantum
coherence, i.e., a definite phase relation between different states of the system. In practice,
this means that the interaction between players is by nature a wave-like phenomenon, that
has no equivalent in classical games. Problems with the decoherence of the wave function
make it difficult to maintain two entangled qubits even at the level of strictly controlled
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experiments, taking place under extreme conditions of isolation from the environment.
Building a quantum computer based on a register of many entangled qubits, subjected to
unitary quantum gate operations and capable of solving practical problems or simulating
quantum games with quantum algorithms is a real challenge. However, in recent years,
we have seen more and more successful attempts to build such a computer and use it to
implement quantum games.
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