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Abstract: An irreversible Carnot cycle engine operating as a closed system is modeled using the
Direct Method and the First Law of Thermodynamics for processes with Finite Speed. Several models
considering the effect on the engine performance of external and internal irreversibilities expressed
as a function of the piston speed are presented. External irreversibilities are due to heat transfer at
temperature gradient between the cycle and heat reservoirs, while internal ones are represented by
pressure losses due to the finite speed of the piston and friction. Moreover, a method for optimizing
the temperature of the cycle fluid with respect to the temperature of source and sink and the piston
speed is provided. The optimization results predict distinct maximums for the thermal efficiency
and power output, as well as different behavior of the entropy generation per cycle and per time.
The results obtained in this optimization, which is based on piston speed, and the Curzon–Ahlborn
optimization, which is based on time duration, are compared and are found to differ significantly.
Correction have been proposed in order to include internal irreversibility in the externally irreversible
Carnot cycle from Curzon–Ahlborn optimization, which would be equivalent to a unification attempt
of the two optimization analyses.

Keywords: irreversible Carnot engine; optimization; thermodynamics with finite speed; internal and
external irreversibilities; entropy generation calculation; thermodynamics in finite time

1. Introduction

Recent work [1] has emphasized that an analysis using the finite time of the process
rather convey to a “physical potential optimization” than to an “engineering optimization”
of thermal machine [2]. What is called physical optimization could provide more realistic
performance compared to reversible Carnot cycle one, but it is still overvalued with respect
to the actual one. Thus, the results of the physical optimization can be considered as upper
bounds for real machine performance [3–5].

Moreover, criticisms have been addressed [6–11] to the results of Finite Time Thermo-
dynamics (FTT) analysis of thermal machines, claiming that it failed to keep the promises,
at least from the engineer’s point of view. The main reason is the fact that FTT does not con-
sider the internal losses generated by irreversibilities on a fundamental basis, since they have
been introduced through a constant coefficient [12], factor of non-endoreversibility [13],
degree of internal irreversibility [14], entropy variation ratio [15], ratio of two entropy
differences [16], or entropy generation term as a function of temperature [17,18]. Therefore,
the studies based on FTT approach cannot be effectively used by engineers for a better de-
sign and optimization study, leading to the conception and build of more efficient thermal
machines since to apply optimization in a thermodynamic analysis, it needs to advance to
the higher phases of the system design than the one based on endoreversibility assumption
that is considered very early [10]. Furthermore, the internal irreversibilities contributed by
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the system components are inherently interconnected with external irreversibilities in real
operation conditions, so the performance reported by FTT analysis may be even smaller
compared to that of a real system [8].

These criticisms did not remain without reply [19–23]. Thus, some authors of the
anti-criticism papers addressed the clarification of finite-time thermodynamics objectives
and their inclusion in the efforts to approach the irreversible systems and their perfor-
mance [21]. Others emphasized the meaning of time for thermodynamic processes, namely
that of providing bounds by discussing nine general principles for finding bounds on the
effectiveness of energy conversion [22] or bounds relative to the efficiency versus maximum
power efficiency of heat engines [23].

However, regarding the usefulness of the FTT, the endoreversible model has the merit
of launching nowadays the competition of finding new upper bounds of thermal machines
performance, closer to the real one. Thus, progress has been made in the modeling and
optimization of thermodynamic processes and cycles [24–32], with special attention to the
common ones in thermal machines: Otto cycle [27], Stirling engine [28], Kalina cycle [30],
and Brayton cycle [31,32]. The results obtained [30,31] have shown that besides the gains
of FTT optimization with three or four objectives, the original results reported in the initial
work of the FTT theory [3–5] are also revealed.

The engineering optimization is mainly concerned about internal irreversibility assess-
ment by insight in dissipation mechanism, to approach and model the irreversible cycle
performance. Both internal and external irreversibility are considered, conveying an actual
optimization of thermal machine performance.

Although there is no operational Carnot machine, much has been written on the opti-
mization of Carnot cycle, and in particular, on the heat engine cycle, endoreversible [33–39]
or with internal and external irreversibilities [40–61]. One reason could be that the per-
formance of the Carnot cycle represents upper bounds for actual operating machines.
However, only in the 1990s was attention focused on analysis of the Carnot cycle that also
includes internal irreversibilities [12,16–18,41,42,46–49].

The Thermodynamics with Finite Speed (TFS) has been shown to be able to provide
analytical evaluation of internal irreversibilities in several machines (Stirling, Otto, Diesel,
Brayton, Carnot) [60–68] and electrochemical devices [69], as a function of the speed of the
piston. Actually, the finite speed of the piston (and process implicitly) is also responsible
of external irreversibilities, namely the finite heat transfer rate from source to cycle fluid
and then to sink. The computation scheme developed in TFS using the Direct Method is
based on the First Law of Thermodynamics for Processes with Finite Speed that contains the
main internal irreversibility causes of thermal machines expressed as a function of the
average piston speed. By integration of the new expression of the First Law on each cycle
process, analytical expression for performance (Power and Efficiency) is provided. It can
be used to optimize theoretical cycles of actual thermal machines and most importantly, it
was validated for 12 performing Stirling Engines (in 16 operational regimes) [63,64] and
4 Solar Stirling Motors [49,50].

In recent publications [54–58], it has been mentioned that only Thermodynamics with Fi-
nite Speed (TFS) developed the necessary tools to optimize thermal machines by considering
internal losses in addition to external ones by analytical means. Based on these statements,
it was concluded that using the above-mentioned achievements of TFS in combination
with FTT tools could convey a more realistic and efficient approach of thermal machines.

The analytical approach relative to this combination is presented here by original
models introducing irreversibilities step by step and leading to important results that are
more accurate than those obtained by each irreversible thermodynamics branch separately.

Firstly, a brief presentation of the Curzon–Ahlborn modeling of an endoreversible
Carnot engine is given, together with the discussion relative to the presence of the nice
radical in other works.

Then, optimization models for a Carnot cycle engine in a closed system that operates
with finite speed of the piston are presented. The speed is considered constant and equal
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to the average speed of the piston that moves with a classical rod–crankshaft mechanism;
by using the First Law of Thermodynamics for Processes with Finite Speed and the Direct
Method, the optimization analysis of this cycle with external and internal irreversibilities
is developed. Heat losses between the two heat reservoirs temperature level through the
engine are considered. External irreversibilities are due to the finite heat transfer rate
at the source and sink are modeled by an irreversible coefficient added to the classical
expression of heat transfer on isothermal process. Internal irreversibilities are included
in the mathematical expression of the First Law of Thermodynamics for Processes with
Finite Speed as non-dimensional pressure losses due to the non-uniformity of the fluid
pressure in the cylinder and friction. The piston speed for maximum power and for
maximum efficiency is found for a particular set of engine parameters and it is shown
that the minimum entropy generation per cycle occurs at maximum power. This analysis
provides lower values of Carnot cycle efficiency than predicted by the Curzon–Ahlborn
approach that was considered for comparison.

A further development of the model aims to combine the analysis of the Carnot cycle
engine with only external irreversibility from Finite Time Thermodynamics (FTT) with
the main advantage of the Thermodynamics with Finite Speed (TFS) approach, namely
the internal irreversibility quantification as a function of the speed of the process (piston).
Thus, corrections of the power output, efficiency, and optimized cycle fluid temperature
in FTT optimization results based on the calculated speed of processes from the duration
time in FTT and average piston speed in TFS. It results that when internal ireversibilities
(speeds and friction) are included, the performance predicted by a TFS analysis is better
than that predicted by an FTT analysis.

The first unification attempt between TFS and FTT considers only pressure losses due
to the non-uniformity of the pressure in the cylinder as a function of piston speed. The
analytical development of the model provides modified Curzon–Ahlborn expression for
the externally irreversible Carnot cycle to also include the internal irreversibility. Equations
for the optimum cycle temperature, maximum power, and efficiency for the internally
and externally irreversible cycle are presented. The corrections are shown to increase
with increased piston speed and to be significant at high but realizable piston speeds.
The optimum temperature corresponding to maximum power is shown to increase with
increased piston speed.

Then, a further step in the unification attempt between TFS and FTT is done by
considering in addition to the Finite Speed, two other causes of internal irreversibility
given by friction and throttling. Thus, based on the first unification achievement, new
expressions are derived for the power output and efficiency of the direct Carnot cycle with
finite speed processes. The results emphasize optimum speed values generating maximum
power output, as well as the effect of irreversibilities on the optimum high temperature of
the cycle.

The overview on the results of these models emphasizes that a significant difference
exists between the results of the two optimization analyses in the sense that FTT optimiza-
tion seems to be an upper bound when compared to the engineering optimization based
on TFS and the Direct Method.

2. Optimization Models of Carnot Cycle Engine
2.1. Models in Thermodynamics in Finite Time Analysis Seeking for Maximum Power Output of
Carnot Cycle Engine

The Curzon–Ahlborn modeling of the Carnot-type engine [3] refers to a cycle that
is internally reversible but with no thermal equilibrium between the working fluid and
the thermal reservoirs during the isothermal heat input and heat rejection, respectively.
Furthermore, there exists a finite time duration of heat transfer given by Newton’s heat
transfer law during the isothermal processes. The expression of the power output of the
Curzon and Ahlborn cycle allows a maximum for which the corresponding efficiency is
given by what was called nice radical.
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Actually, the efficiency of a Carnot engine is treated for the case where the power
output is limited by the rates of heat transfer to and from the working substance. It
is shown that the efficiency, ηCA, at maximum power output is given by the expres-
sion ηCA = 1 − (T2/T1)1/2 where T1 and T2 are the respective temperatures of the heat
source and heat sink. It results in an efficiency less than the one introduced by Carnot
(η = 1 − (T2/T1)), and it is shown that the existing engines performance is well described
by the above result.

Before the Curzon and Ahlborn analysis, a similar approach aiming to maximize the
power output and the nice radical has appeared in Chambadal modeling of the Carnot
engine [4], but its model used heat capacity rate instead of heat conductances.

Almost at the same time, Novikov [5] has also found the nice radical.
The above-mentioned models and mainly the Curzon–Ahlborn one, which remain as

references for the Carnot machine optimization in the frame of what was called Thermody-
namics in Finite Time.

2.2. Models of Irreversible Carnot Cycle Engine in Thermodynamics with Finite Speed
2.2.1. First Law of Thermodynamics for Processes with Finite Speed in Closed System

The optimization modeling presented in this section proceeds from a basis of ther-
modynamic fundamentals, systematically detailed and developed, starting from a unique
equation called the First Law of Thermodynamics for Processes with Finite Speed [59,70–79]. The
advantages of using this equation instead of the one from Classical Reversible Thermody-
namics consists of its capability to account for both causes and mechanisms of irreversibility
generation in complex cycles or real machines such as Stirling Engines, as well as in other
cycles such as Otto, Diesel, Brayton, and Carnot cycles [60,71–73]. In addition, it is capable
to consider both internal and external irreversibilities.

By integrating this equation for irreversible process step by step on each transfor-
mation of the cycle, the efficiency and power output are determined analytically. These
expressions contain the causes of irreversibility, namely, the finite speed of the piston, an
important parameter that can be optimized, for Maximum Efficiency or Maximum Power.

The mathematical expression of the First Law of Thermodynamics for Processes with
Finite Speed in a closed system in its differential form is [59,70–76,78]:

dU = δQ− pav,i

(
1± aw

c
±

f · ∆p f

pav,i

)
dV, (1)

and the irreversible work for these processes [59,70–76,78]:

δWirrev = pav,i

(
1± aw

c
±

∆p f

pav,i

)
dV (2)

where U—internal energy, Q—heat, W—mechanical work, pav,i—instantaneous average
pressure of the gas, w—average speed of the piston, c—average molecular speed, ∆pf—
pressure losses due to friction, a—coefficient depending the gas nature, f —coefficient
relative to the amount of heat generated by friction that remains in the cycle, and V—
volume.

In the previous equations, the plus sign corresponds to the compression processes and
the minus sign corresponds to the expansion ones.

Regarding the terms appearing in the right member, the first term in the parenthesis
accounts for the irreversibility generated by the Finite Speed of the piston, w, and due to
the non-uniformity of the pressure in the cylinder. Therefore, the pressure on the piston
pp is larger during compression and smaller during expansion than the pressure on the
head of the cylinder pc, and this is also the case for the instantaneous average pressure in
the gas pav.i [47,59–61,76]. The experimental verification of this term is described in refer-
ences [51,59–61]. The second term in the parenthesis takes into account the irreversibility
generated by the friction between moving parts of the machine (piston–cylinder, bearings,
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etc.) [47,60,61]. When the processes in the machine involve internal throttling, a third term
is added in the First Law for Processes with Finite Speed [47,60,61], playing an important
role in the optimization of Stirling machines [51,59–67,77,80]. This term is less important in
the Carnot cycle modeling, so that it is neglected in this study.

Other terms from the right member of Equations (1) and (2) have the following
expressions:

a =
√

3γ, c =
√

3RT, (3)

with γ—ratio of specific heat at constant pressure and constant volume, and R—gas specific
constant.

The pressure losses due to friction expressed as function of rotation per minute and
based on their experimental evaluation for classical thermal engines operating upon Otto
and Diesel cycles [81] were adapted to speed [76], and their expression resulted as:

∆p f = (0.97 + 0.045w)/N (4)

where N—parameter depending on structural characteristics of the engine.
Note that Equations (1) and (2) completed by Equations (3) and (4) clearly show that

the finite speed of the piston is responsible for all irreversibility causes, since it appears in
both terms in the parentheses.

2.2.2. Model of Carnot Cycle Engine with Analytically Modeled Internal and External
Irreversibility

The cyclic system of a Carnot heat engine, including irreversibilities of finite-rate heat
transfer between the gas in the thermal engine and its heat reservoirs, heat leakage between
the reservoirs, and internal dissipations of the working fluid, is shown schematically in
Figure 1 [48,49]. The working fluid in the system is alternately connected to a hot reservoir
at constant temperature TH,S and to a cold reservoir at constant temperature TL,S and its
temperatures are, respectively, TH and TL.
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Figure 1. Carnot engine cycle with finite speed of the piston illustrated in p-V diagram [48,49].

Heat losses between the two heat reservoirs temperature level through the engine
are considered by the heat rate term

.
Qlost. In addition, irreversible adiabatic processes are

shown by the curves 2-3′ and 4′-1.
Inside the cylinder with the piston illustrated in the bottom side of Figure 1 appears

several pressures that are used in a process with finite speed analysis: on the piston, pp, on
the cylinder, pc, and the instantaneous average pressure in the gas, pav,i.
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By integrating Equations (1) and (2) over the isothermal processes of the Carnot cycle,
the following expressions for the energy exchanges are dependent of the average piston
speed yield:

• The irreversible heat received by the cycle gas from the source:

QH = z′H ·mRTH ln
V4

V3
= z′H ·mRTH ·lnε, (5)

with z′H—irreversible coefficient that accounts for a limited heat input in the cycle due to
the finite speed of the process:

z′H =

(
1− aw√

3RTH
−

f · ∆p f

pav,34

)
. (6)

This irreversible coefficient shows that regardless of the heat available at the source,
the cycle gas can only receive a limited amount of heat from the source.

• The irreversible heat rejected by the cycle gas to the sink:

QL = z′L ·mRTLln
V2

V1
= −z′L ·mRTL·lnε, (7)

with z′L—irreversible coefficient that accounts for a limited heat rejected by the cycle gas to
the sink due to the finite speed of the process:

z′L =

(
1 +

aw√
3RTL

+
f · ∆p f

pav,12

)
. (8)

• The irreversible work produced/consumed during the isothermal processes of the cycle:

WH,w = zH ·mRTH ·lnε, (9)

|WL,w| = zL ·mRTL·lnε, (10)

with the corresponding irreversible coefficients:

zH =

(
1− aw√

3RTH
−

∆p f

pav,34

)
, (11)

zL =

(
1 +

aw√
3RTL

+
∆p f

pav,12

)
. (12)

with
mR = P1rV1r/T1r, (13)

and
T1r = TL,S, V1r = V1. (14)

and
V4

V3
=

V1

V2
= ε. (15)

The work per cycle results from Equations (9) and (10) as:

Wcycle,w = mR(zHTH − zLTL)lnε. (16)

The non adiabaticity of the engine suggested in Figure 1 by the term
.

Qlost is better
explained in Figure 2 by the insulating wall between the two semi-cylinders that form the
heat conduction path between the heat source and sink.
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The heat transfer rate lost through this conduction path is:

.
Qlost = kins Alost(THS − TLS)/Bins, (17)

where kins—thermal conductivity of the insulation, and Bins—insulation thickness.
Equation (17) expressed on the cycle becomes:

Qlost,cycle =
.

Qlost · τcycle. (18)

The cycle time duration can be expressed as:

τcycle =
2(V1 −V3)

wAp
, (19)

with Ap—piston area.
The area associated to the heat transfer rate lost between the source and sink yields

(see Figure 2):
Alost = (D + 2L4)(De − D), (20)

where D is the inner diameter of the cylinder.
This heat transfer rate lost per cycle will modify the heat supply from the source and

the heat rejected to the sink as follows:

QH,tot = QH + Qlost,cycle, (21)

|QL,tot| = |QL|+ Qlost,cycle. (22)

In the above equations, the heat input to the cycle gas and heat rejected from the gas
to the sink may be considered those already given by Equations (5) and (7), or it can be
expressed in terms of heat transfer as follows:

QH = UH(w) · AH · (TH,S − TH) · τH , (23)

|QL| = UL(w) · AL · (TL − TL,S) · τL. (24)

where UH(w) and UL(w) are the overall heat transfer coefficient during the heat exchange at
the source and sink, respectively, and AH and AL are the area of the heat transfer surfaces.

The heat transfer expressed using the Finite Speed analysis (Equations (5) and (7))
should be the same as the heat transfer corresponding to the above Equations (23) and (24).
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Therefore, the two equalities allow expressing the temperature of the gas at the hot end and at
the cold end respectively, in connection with the source and sink temperature:

TH = TH,S ·
[

1 +
z′H ·mR · lnε

UH(w) · AH · τH

]−1

(25)

TL = TL,S ·
[

1−
z′L ·mR · lnε

UL(w) · AL · τL

]−1

. (26)

The overall heat transfer coefficients of the heat exchanger at source and sink, UL,
UH are calculated based on average bulk fluid temperatures by using well-known equa-
tions [82]:

NuD =

 1.86(ReDPr)
1
3
(

D
L

) 1
3
(

µ
µwall

)0.14
, f or ReD ≤ 2300

0.023 Re0.8
D Prn, f or ReD ≥ 3000

, (27)

with n = 0.4 for heating, respectively, n = 0.3 for cooling.
Similarly, the dynamic viscosity and the thermal conductivity of the gas are calculated

using polynomial functions [64], based on the bulk gas temperature.
The contact time per cycle for the heat transfer from the heat source to the engine

corresponding to the isothermal process is:

τH = (L4 − L3)/w =
L1

(
1− 1

ε

)(
TL
TH

) 1
γ−1

w
, (28)

while the contact time per cycle for heat transfer from the gas engine to the sink is:

τL = (L1 − L2)/w =
L1

(
1− 1

ε

)
w

. (29)

The area for the heat transfer between the source and the hot gas during the isothermal
heat addition process (see Figure 2) is:

AH = 0.5D
(

πD
4
− Bins

)
+ 0.5L1

(
1 +

1
ε

)(
πD

2
− Bins

)
·
(

TL
TH

) 1
γ−1

. (30)

Similarly, the area for heat transfer between the cold gas and the sink during the
isothermal heat rejection process is expressed as:

AL = 0.5D
(

πD
4
− Bins

)
+ 0.5L1

(
1 +

1
ε

)(
πD

2
− Bins

)
, (31)

with
L1

ε
= L2. (32)

The power output of the irreversible Carnot engine is given by:

P∆T,w,Qlost =
Wcycle,w

τcycle
. (33)

The efficiency of the Carnot cycle with internal and external irreversibility is:

η∆T,w,Qlost = 1− |QL,w|
QH,w

= 1− TL
TH
·

z′L
z′H

. (34)
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Then, the entropy generation per cycle can be expressed as:

∆Scycle =
QH,w

TH
+

QL,w

TL
= mRlnε ·

(
z′H − z′L

)
, (35)

and its corresponding expression per unit time is:

.
Sgen =

∆Scycle

τcycle
. (36)

The results of this optimization model will be given in Section 3.

2.3. The Curzon–Ahlborn Model of the Carnot Cycle Engine Combined with the Analysis Based on
Thermodynamics with Finite Speed (TFS)

The model aims to combine the analysis of the Carnot cycle engine with only external
irreversibility in Thermodynamics in Finite Time (FTT) with the main advantage of the
Thermodynamics with Finite Speed (TFS) approach, namely the internal irreversibility
quantification as a function of the speed of the process.

The main differences of this model compared to the previous one are represented by:

• The absence of heat losses Qlost, in order to consider similar cycles in both analyses.
• The presence of losses in the work expression, so that the work lost in the two adiabatic

processes due to finite speed is obtained by integrating the irreversible work for
processes with finite speed in the processes 2-3′ and 4′-1 (Equation (2)) and subtracting
the reversible work in the processes 2-3 and 4-1 (see Figure 1):

Wlost, ad, int =

(
aw
c23′

+
∆p f

p23′

)
(V3′ −V2)23′ −

(
aw
c4′1

+
∆p f

p4′1

)
(V1 −V4′)4′1. (37)

where p23′ and p4′1 are the average gas pressure on the irreversible adiabatic compres-
sion and expansion, respectively.

This lost work term is then subtracted from the work per cycle given by Equation (16),
since it does not include the effect of internal irreversibilities of the adiabatic processes.

By including this lost work term in the analysis, an expression for the efficiency of the
Carnot cycle, considering all internal and external irreversibilities yields as:

η∆T,w, f =

(
zH
z′H
− zL · TL

z′H · TH

)
− Iad

1− TL/TH
z′H(γ− 1)lnε

, (38)

where the irreversible adiabatic process contribution of the internal irreversibility of the
cycle, due to the finite piston speed and friction, Iad, results as:

Iad = aw
(

1
c23′

+
1

c4′1

)
+ ∆p f

(
1

p23′
+

1
p4′1

)
. (39)

Note that the second term in Equation (38) is obtained by integration of the First Law
for Processes with Finite Speed (TFS) for the adiabatic processes 23′ and 4′1 (see Figure 1),
Equations (1) and (2).

The combination of the two analyses based on FTT and TFS models will include a
similar term to that given by Equation (39) in the Curzon–Ahlborn approach. As previously
mentioned, this approach included the time duration of the cycle processes, with the
assumption that the adiabatic processes occur rapidly and accordingly consume far less
time than the isothermal processes. Based on this assumption, the FTT and TFS analyses
can be rationally compared only if the Carnot cycle engine dimensions and number of
cycles per unit time are made equal in both cases. In a TFS analysis, the speed of the
piston, w, is assumed constant in each of the four processes and equals the average speed
based on the number of cycles per unit time. However, in a Curzon–Ahlborn type analysis
(FTT optimization), the speed of isothermal compression wL, the speed of isothermal
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expansion wH, and the speed of the adiabatic processes wad (assumed equal for both
adiabatic processes), are calculated. The result must be consistent with the total cycle time
optimized for maximum power.

When this comparison is performed, the following process speeds, in terms of the
average speed, are obtained (see Figure 2) [49]:

wL =
a′(L1 − L2)(1 + Z∗)

2L1/w
, (40)

wH =
a′(L4 − L3)(1/Z∗ + 1)

2L1/w
, (41)

wad =
a′w[(L2 − L3) + (L1 − L4)]

2L1(a′ − 1)
, (42)

where Z*—ratio of the optimized duration of the isothermal processes in the Curzon–
Ahlborn treatment (FTT), a’—coefficient depending on time to speed transfer.

The optimized temperatures in the Curzon–Ahlborn analysis [3] are expressed based
on corresponding optimized times for each process, as follows:

TL,FTT = TL
1 +

√
TH
TL
· 1

Z∗

1 + 1
Z∗

, (43)

TH,FTT = TH
1 +

√
TL
TH
· Z∗

1 + Z∗
. (44)

By using the above expressions of temperatures and including the effect of internal
irreversibility, the corresponding power of Carnot cycle in FTT analysis is:

PowerFTT =
ALUL

a′ .
(√

TH −
√

TL
)2

(Z∗ + 1)2 − (Wloss,ad,int + Wloss,isot,int)
1

τcycle
. (45)

Equation (45) appears as a combination of the two analyses as the first term is the
original Curzon–Ahlborn term [3] taking account of only external irreversibilities generated
by the temperature difference, and the second term accounts for internal irreversibilities
generated by the finite speed and friction from the TFS approach.

Nevertheless, a simpler expression of the power output can be also given as:

Power∆T,w, f ,FTT = QH · η′∆T,w, f ,FTT ·
1

τcycle
, (46)

where the efficiency term contains all irreversibility causes of the Carnot cycle engine.
The passage from the efficiency of the Carnot cycle including only external irre-

versibilities and corresponding to maximum power output in the original Curzon–Ahlborn
analysis [3]:

η∆T,FTT = 1− TL,FTT

TH,FTT
= 1−

√
TLS
THS

, (47)

will be performed here by including the effects of internal irreversibilities. Similarly,
Equations (5)–(12) are expressed by evaluating ZFTT and Z′FTT irreversible coefficients at
the appropriate speeds (wL and wH) on the isothermal processes at TL and TH respectively,
and on the adiabatic processes (wad) conveying to the following corrected efficiency:

ηirr,int,FTT =
ZH,FTT

Z′H,FTT
− ZL,FTT · TL,FTT

Z′L,FTT · TH,FTT
− I′ad

1− TL,FTT/ · TH,FTT

Z′H,FTT(γ− 1)lnε
(48)
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where the equivalent term Iad
′ to that from Equation (39) is similar, but it is based on wad

(Equation (42)) instead of w and also on the resulting temperatures and pressures from the
Curzon–Alhborn. Ref. [3] analysis of the Carnot cycle completed by TFS tools (Equations
(43) and (44)).

2.4. Unification Attempts of Thermodynamics in Finite Time and Thermodynamics with Finite
Speed Analyses

The first unification attempt is based on [47] that had a very important role in the
development of Thermodynamics with Finite Speed (TFS) and the Direct Method, for
analytical evaluation of the performances of irreversible cycles with internal and external
irreversibilities. Later, it was completed by [31,34].

Specific issues addressed in this model are illustrated on cycle Carnot engine repre-
sented in T-S coordinates in Figure 3. There are shown to have external irreversibility due to
heat transfer from the source (with fixed temperature TH,S) to the cycle temperature at the
hot end, TX, during the isothermal heat addition process 2–3. Then, internal irreversibilities
due to the finite piston speed are considered during only the adiabatic compression and
expansion processes. The sink temperature and the cycle temperature at the cold end are
the same. The sink temperature, T0, is fixed, while the cycle temperature at the hot end, TX,
is a variable.
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Another novelty compared to previous model consists of the use of entropy variation
calculation on the irreversible cycle processes that will provide a term in the cycle efficiency
expression that could unify the two analyses.

The first unification attempt is based on the First Law of Thermodynamics for Pro-
cesses with Finite Speed [70–73] in its reduced form that considers only the internal irre-
versibility due to the finite speed of the piston:

dU = δQ− pav,i

(
1± aw

c

)
dV. (49)
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From the equation for adiabatic irreversible processes of ideal gases with constant
specific heats that is derived from Equation (49) by integration [72,73,75,76], one can express
the temperature T2 at the end of an irreversible adiabatic process as

T2 =

(
1± aw

c1

)2

(
1± aw

c2

)2 T1

(
V1

V2

)γ−1
= δirrT1

(
V1

V2

)γ−1
, (50)

where γ is the ratio of the specific heat at constant pressure and at constant volume.
For a compression process with finite speed w << c, one could express δirr.cpr as

follows:

δirr,cpr =

(
1 + aw

c1

)2

(
1 + aw

c2

)2
∼=
[(

1 +
aw
c1

)(
1− aw

c2

)]2
=

[
1 +

aw
c1
− aw

c2

]2
, (51)

if a2w2 << c1·c2 and the corresponding term is neglected.
Note that for compression, the plus sign is used in parenthesis.
Note that the average molecular speed c2 depends on temperature T2 that contains

δirr.cpr. Thus, the calculation should be done by using approximations.
The first approximation considers the temperature at the end of the reversible adiabatic

compression for which one gets (see Equation (3)):

T2 = T1

(
V1

V2

)γ−1
⇒ c2 = c1

(
V1

V2

) γ−1
2

. (52)

By substituting Equation (52) in Equation (51), a first evaluation of δirr.cpr is done:

δirr.cpr =

1 +
aw
c1
− aw

c1

(
V2

V1

) γ−1
2

2

. (53)

Note that a more precise approximation is possible by combining Equations (50) and
(53) that yields:

T2 = δirr.cprT1

(
V1

V2

)γ−1
, (54)

and a better approximation for the adiabatic irreversible coefficient is given by:

δ′irr.cpr =

1 +
aw
c1
− aw

c1

(
V2

V1

) γ−1
2 (

δirr,cpr
)− 1

2

2

. (55)

For simplicity, the first approximation expression of the adiabatic irreversible coeffi-
cient (Equation (53)) is used hereafter.

The entropy variation computation in the case of an adiabatic irreversible process of
compression with finite speed when the results from Equations (50) and (53) are introduced
in the classical formula of ∆S:

∆S = S f − Si = mcvln
Tf

Ti
+ mRln

Vf

Vi
, (56)

which provides:

∆Sirr,cpr = mcvln

1 +
aw
c1
− aw

c1

(
V2

V1

) γ−1
2

2

. (57)
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Similarly, the entropy variation expression on the adiabatic irreversible expansion
can be derived showing that the only difference consists in the change of signs in the
parentheses, so that one can give a general form of both compression and expansion
processes, as:

∆Sw
ad,irr = mcvln

1± aw
c1
∓ aw

c1

(
V2

V1

) γ−1
2

2

. (58)

By using Equations (56) and (58) in the present analysis on the two irreversible
adiabatic processes and on the isothermal expansion, the following expressions result:

∆Sw
ad.irr.cpr = ∆S12 = mcvln(α1), with α1 =

1 +
awcpr

c1
−

awcpr

c1

(
V2

V1

) γ−1
2

2

, (59)

∆Sw
ad.irr.exp = ∆S34 = mcvln(α2), with α2 =

1−
awexp

c3
+

awexp

c3

(
V4

V3

) γ−1
2

2

, (60)

∆S23 = S3 − S2 = mRln
p2

p3
. (61)

with cv—specific heat at constant volume, R—specific constant of the cycle fluid.
Then, the actual thermal efficiency of the Carnot cycle engine with irreversibilities can

be expressed based on previous calculation (see Figure 3) as:

ηact = 1− Q41

Q23
= 1− TC∆S14

TX∆S23
= 1− T0(∆S23 + ∆S12 + ∆S34)

TX∆S23
, (62)

and together with Equations (59)–(61), the following expression results:

ηact = 1− T0

TX

[
1 +

2ln(α1α2)

(γ− 1)ln p2
p3

]
. (63)

When the piston speed is much less than the average molecular speed, namely awcpr
<< c1, and aexp << c3, one gets a simplified form of Equation (63):

ηact = 1− T0

TX

[
1 +

2(β1 + β2)

(γ− 1)ln p2
p3

]
, (64)

where

β1 =
awcpr

c1

(
1−

√
T0

TX

)
, (65)

β2 =
awexp

c3

(√
TX
T0
− 1

)
. (66)

For the same speed of the piston on the two adiabatic processes of the cycle, Equation
(64) becomes:

ηact = 1− T0

TX

1 +
4aw
c1

(
1−

√
T0
TX

)
(γ− 1)ln p2

p3

. (67)

Once having the actual efficiency of the cycle, the power output of the engine can be
easily derived as:

.
Wact =

.
QHηact = UH AH(TH,S − TX)ηact. (68)
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To render the model more general, a non-dimensional form of the power output of
the Carnot engine will be optimized, namely:

PND =

.
Wact

UH AHTH,S
. (69)

Moreover, the actual efficiency is expressed as a product of the Carnot reversible
efficiency:

ηCC =

(
1− T0

TX

)
, (70)

and the second law efficiency accounting for irreversibilities:

ηw
IIad.irr =

1−
C
(

T0
TX

)
(

1 +
√

T0
TX

)
, (71)

with the internal irreversible coefficient C given by:

C =
4aw

c1(γ− 1)ln p2
p3

. (72)

By combining Equation (69) with Equations (68), (70)–(72) and term rearrangement,
one gets:

PND =

(
1− TX

TH,S

)(
1− T0

TXΦ

)
, (73)

With
Φ =

1

1 + C
(

1−
√

T0
TX

) . (74)

Note that for a given cycle fluid, coefficient Φ depends only on the fluid temperature
at the hot end, TX, and the piston speed, w. Thus, the non-dimensional power (Equation
(73)) is seen to be a complex function of TX and the piston speed by the term C. Searching
for an analytic expression of the optimum temperature to maximize the non-dimensional
power can be done in the first approximation, for Φ = constant in Equation (73). This is in
good agreement with Ibrahim’s approach [16], where for Φ constant, the expression of the
optimal temperature of the cycle fluid at the hot end that maximizes the power output of
the engine was established as:

TmaxPND
X → Topt =

√
TH,S·T0

Φ
. (75)

Although this is a simple expression, the value of Φ is not known. It is indicated as a
parameter with a given (not computed) value.

In the present analysis, one can approximate the value of Topt by iterations. Thus:

• For w = 0, which means an internally reversible cycle, Equations (72) and (74) lead to
Φ = 1, so that Equation (75) becomes:

T(w=0)
opt =

√
TH,S·T0. (76)

• For w 6= 0, by combining Equations (74) and (76), a first approximation of the term
responsible for cycle irreversibilities is expressed as:

Φw =

[
1 + C

(
1− 4

√
T0

TH,S

)]−1

, (77)
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and the corresponding optimum temperature yields from Equation (75) as:

T(w 6=0)
opt =

√√√√TH,S·T0

[
1 + C

(
1− 4

√
T0

TH,S

)]
. (78)

Equation (78) is the first approximation of the optimum temperature to maximize
the non-dimensional power when the piston speed is not zero and when therefore both
internal and external irreversibilities are accounted for.

Furthermore, the next step in the approximation procedure is to replace Tx in Equation
(74) by Equation (78), that allows obtaining a more accurate expression of Φ term:

Φ′w =

[
1 + C

(
1− 4

√
T0Φw

TH,S

)]−1

. (79)

One could continue the iteration, but the gain in accuracy would become insignificant.
Thus, the optimized temperature of the cycle fluid at the hot end of the engine coming out
of TFS analysis is:

T
′(w 6=0)
opt =

√
TH,S·T0

Φ′w
, (80)

and the maximum non dimensional power output of the internally and externally irre-
versible Carnot cycle becomes:

PND,maxZ =

1−
T
′(w 6=0)
opt

TH,S

1− T0

Φ′wT
′(w 6=0)
opt

 =

(
1−

√
T0

TH,SΦ′w

)2

. (81)

Then, the efficiency of the irreversible Carnot cycle is calculated by substituting T
′(w 6=0)
opt

into Equation (67) that leads to:

ηact = 1−
√

T0

TH,S
Φ′w ·

[
1 + C

(
1− 4

√
T0

TH,S
Φ′w

)]
. (82)

One can see now that Equation (82) unifies the FTT and TFS analyses by the same
expression of the actual efficiency of an irreversible Carnot cycle engine. Thus:

• For internally reversible, externally irreversible Carnot cycle engine for which w = 0
and consequently, Φ′w = 1, one gets the Curzon–Ahlborn “nice radical” [3]:

ηCA = 1−
√

T0

TH,S
. (83)

• For an internally and externally irreversible Carnot cycle engine for which w 6= 0 and
consequently, Φ′w > 1, one gets:

ηact = 1−
√

T0

TH,S
ζw, (84)

with

ζw =
√

Φ′w

[
1 + C

(
1− 4

√
T0

TH,S
Φ′w

)]
. (85)

Note that ζw ≥ 1 and it accounts for internal irreversibilities of the cycle when
depending on the piston speed. Equations (83)–(85) clearly show that the nice radical of
FTT analysis overestimates the actual efficiency of the engine evaluated by TFS analysis.
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A second unification attempt is under development. It aims to extend the modeling
by considering, in addition to the finite speed, two other causes of internal irreversibility:
friction and throttling.

Based on previous equations of the first unification attempt, a new expression was
derived for the actual efficiency of the Carnot cycle engine:

ηirr
act = 1− T0

TX

1 + 4
(

aw
c1

+
∆p f

pav,34
+

∆pthr
pav,34

)(1−
√

T0
TX

)
(γ− 1)ln p2

p3

, (86)

where ∆pthr is estimated as [62–64,83]:

∆pthr = Cthr · w2, (87)

with Cthr = 0.005.
Then, the irreversibility coefficient yields:

Cirr = 4
(

aw
c1

+
∆p f

pav,34
+

∆pthr
pav,34

)
1

(γ− 1)ln p2
p3

. (88)

The power output and efficiency of the Carnot cycle engine with finite speed processes
considering all internal irreversibility causes are smaller compared to those determined
from Equations (81) and (82), since the new correction is more substantial by its three terms
(Equation (88)).

The results of this modeling emphasize optimum speed values generating maximum
power output, as well as the effect of irreversibilities on the optimum cycle high tempera-
ture.

3. Results

The results of TFS analysis presented in Section 2.2 relative to a Carnot cycle engine
with internal and external irreversibilities generated by losses due to (1) heat transfer
between the cycle and the heat source and sink, (2) the effect of variation in the area for
heat transfer and in the dwell time for heat transfer due to the movement of the piston
during the isothermal expansion and compression processes, and (3) non adiabaticity of
the engine are presented in Figures 4–6. The following fixed parameters entering in the
equations of the model were used: D = 0.015 m; L1 = 2 m; ε = 3; f = 0; p1r = 0.05 bar (pressure
of the gas in state 1r); ∆pf = (0.97 + 0.045 w)/80; TH,S = 1200 K; TL,S = 300 K; γ = 1.4; Bins =
0.002 m; kins = 0.01 W/mK; De = 0.019 m. The cycle fluid is air that is considered as an ideal
gas with specific heat, conductivity, and viscosity varying as a function of temperature.

Figure 4 illustrates the effect of irreversibilities introduced gradually on the power
output showing the important difference between the cycle power output for the reversible
Carnot cycle and for the Carnot cycle with irreversiblities due to the finite speed of the
piston. Then, the cycle efficiency including internal and external irreversibilities, η∆T,w,Qlost ,
is represented as a function of piston speed showing optimum values for maximum
performance. In addition, the time rate of entropy generation is added in order to compare
the optimization results in terms of optimal speed.

One can see that the piston speed for maximum efficiency is only 4 m/s, for which the
rate of entropy generation (per unit of time) is very low. Moreover, the piston speed for
maximum power is near 17 m/s, and the rate of entropy generation (per unit of time) at
this speed is significantly higher. As expected, the power output decreases, as additional
irreversibilities are included in the analysis.
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Figure 5 brings together the efficiency of the Carnot cycle determined by the TFS
analysis when it is gradually affected by irreversibility, the one based on Curzon–Ahlborn
analysis, the power output, and the entropy variation per cycle as functions of piston
speed. The efficiency of the Carnot cycle as determined by TFS analysis is at all piston
speeds less than the efficiency based on the Curzon–Ahlborn analysis. In addition, for
piston speeds greater than wopt, the efficiency of the Carnot cycle at maximum power as
determined by TFS is less than the efficiency based on the Curzon–Ahlborn analysis, even
if only the external irreversibility is included. For example, the TFS efficiency, at the speed
corresponding to maximum power, is 0.29 when only external irreversibilities are included
and is 0.15 when both internal and external irreversibilities are included in the analysis.

An important aspect is related to the entropy generation per cycle and per time as
functions of piston speed from Figures 4 and 5. Their evolution with the piston speed is
completely different, in that only ∆Scycle shows a minimum for the speed as the maximum
power output.

The hot and cold heat reservoir temperatures, the hot and cold end gas temperatures,
and the Curzon–Ahlborn optimized temperature are shown in Figure 6 as a function of the
piston speed. The hot-end gas temperature optimized for maximum power is shown to be
nearly the same over a large variation range of piston speeds (5 to 10 m/s), as the Curzon–
Ahlborn optimized temperature. In addition, the predicted temperature difference between
the high and low gas temperature is shown to increase as the piston speed decreases and
to be especially great at piston speeds less than the speed for maximum efficiency.

Some results of the second model (Section 2.3) are shown in Figures 7–9.
Figure 7 illustrates the relative speed of the adiabatic processes and of each of the

isothermal processes in FTT optimization compared to the average speed of the piston
considered in TFS optimization. The curves show that the optimization results in lower
speed than the average speed of the piston wTFS, for the two isothermal processes in FTT
optimization. In addition, the high temperature isothermal process has the lowest speed;
then, it follows the low temperature isothermal process with a higher speed, while the
adiabatic processes occur at a much higher speed. However, the internal irreversibilities
were not included in the original Curzon–Ahlborn analysis [3], so the high piston speed
during the adiabatic process had no negative effect on the cycle efficiency and power.
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In fact, the resulting slower piston speed during the isothermal processes significantly
enhanced the cycle efficiency and power in FTT optimization.
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The effect of the piston speed on the power output and efficiency for a Carnot engine
with external irreversibilities and internal ones gradually introduced in both TFS and FTT
analyses is shown in Figures 8 and 9, respectively. These results are based on the following
fixed parameters: D = 0.015 m; L1 = 0.5 m; ε = 2; f = 0.3; a′ = 1.1; p1r = 0.01 bar (pressure of
the gas in state 1r); ∆pf = (0.97 + 0.045 w)/60 bar; THS = 800 K; TLS = 300 K; γ = 1.4.

The FTT optimization predicts greater power output from the Carnot engine at almost
all piston speeds than the TFS optimization when only external irreversibilities (∆T) are
considered. It is due to the little cycle time that was allocated to the adiabatic processes in
the FTT optimization. This allowed more time for the isothermal processes without any
penalty associated with the more rapid adiabatic processes, since the internal irreversibili-
ties of these processes are not considered. In the TFS optimization for example, at 9 m/s
the power is 0.33 W, and the efficiency is 25%. In the FTT optimization at the same speed,
by comparison, the power is 0.6 W, and the efficiency is 39%. However, when the internal
irreversibilities are included in the analyses, the TFS optimization results in greater power
and efficiency than FTT, even though both are less than when the internal irreversibilities
were neglected.

It is also important to keep in mind that a cycle that operates with three different
piston speeds for the four processes presents a huge mechanical complication in the design
of the actual engine. While it may be possible to design such an engine (for example, using
cams with different profiles for each process), there is no need to do so, since the TFS
optimization predicts superior operating performance.

The non-dimensional power as determined from Equation (77) as a function of the
cycle high temperature and the piston speed is shown in Figure 10. In addition, the
power output of the reversible Carnot cycle is added for comparison purposes. The non-
dimensional power reveals the maximum value for any fixed piston speed or internal
irreversibility consequence, and this maximum is moving toward growing temperature Tx
as the piston speed increases.
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Figure 11 presents the second law efficiency variation versus the cycle high temper-
ature for different values of the piston speed. The curves show that this irreversibility
coefficient decreases as piston speed increases, as expected, and the decrease is more
important at lower values of the cycle high temperature.
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high temperature.

Regarding the irreversible term Φ determined from Equation (74), its variation with
the cycle high temperature and piston speed becomes important mainly at high speeds,
as illustrated in Figure 12. However, there is little change of Φ in the region of optimal
temperatures (from 800 to 1000 K).

The comparison of the results before (Figure 10) and after (Figure 13) using approx-
imations in search of optimal temperature expression that optimizes the power output
of the engine shows good agreement and lends confidence that a first iteration provides
sufficiently accurate results for most purposes. However, it is possible to improve the
accuracy of the results by making a new iteration.
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4. Conclusions

Important performance parameters of an irreversible Carnot cycle engine based on
optimization models developed in Thermodynamics with Finite Speed and by using the
Direct Method have been presented. This analysis predicts lower values of Carnot cycle
efficiency than is predicted by the Thermodynamics in Finite Time (FTT), as originated
by Chambadal and Curzon–Ahlborn. The piston speed for maximum power and for
maximum efficiency has been found for two sets of engine parameters, and it has been
shown that entropy generation per time clearly differs from entropy generation per cycle.
Moreover, a minimum occurs for the entropy generation per cycle at optimum piston speed
corresponding to maximum power.

This study produces a more realistic model for the design of Carnot cycle engines since
it includes many of the various internal and external irreversible processes that occur in the
actual operation of these engines and correlates them with the finite speed of the piston.

The present analysis has shown that the first unification attempt of TFS and FTT
optimization involves analytical correction of the Curzon–Ahlborn efficiency, which is well
known as a nice radical, by a term accounting for internal irreversibilities of the Carnot
cycle engine. They were evaluated based on the Fundamental Equation of TFS, the First
Law for Processes with Finite Speed, where the main irreversibility causes are accounted
for, namely, finite speed of the piston, friction, and throttling. This correction appears not
only in the Carnot cycle efficiency but also in the optimum temperature of the gas at the
hot end of the engine for maximum power, and in the non-dimensional power output of
the engine. Thus, the engine performances were derived analytically for a Carnot engine
with external and internal irreversibilities generated by finite speed w.
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A step further in this first unification approach did a comparison between TFS and
FTT optimization results for a Carnot cycle emphasizing that TFS analysis can account for
both kind of irrevesibilities, and it can also provide improvement of FTT results.

Thermodynamic analysis based on the Direct Method and Finite Speed of the processes
is shown to be especially effective for engineering optimizations since the efficiency and
power can each be optimized based on gas temperatures and process speed. The fact that it
is already used by other researchers [54–58,84–87] proves its capability to become a useful
tool in thermal machine analysis and optimization.

We do hope that this work marks an important step toward the development of
a more powerful Engineering Irreversible Thermodynamics, which could be a synthe-
sis unifying the three important branches, namely Thermodynamics with Finite Speed,
Thermodynamics with Finite Dimensions, and Thermodynamics in Finite Time.
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