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Abstract: In this article, sources of information in electronic states are reexamined and a need for the
resultant measures of the entropy/information content, combining contributions due to probabil-
ity and phase/current densities, is emphasized. Probability distribution reflects the wavefunction
modulus and generates classical contributions to Shannon’s global entropy and Fisher’s gradient
information. The phase component of molecular states similarly determines their nonclassical sup-
plements, due to probability “convection”. The local-energy concept is used to examine the phase
equalization in the equilibrium, phase-transformed states. Continuity relations for the wavefunction
modulus and phase components are reexamined, the convectional character of the local source of
the resultant gradient information is stressed, and latent probability currents in the equilibrium
(stationary) quantum states are related to the horizontal (“thermodynamic”) phase. The equivalence
of the energy and resultant gradient information (kinetic energy) descriptors of chemical processes is
stressed. In the grand-ensemble description, the reactivity criteria are defined by the populational
derivatives of the system average electronic energy. Their entropic analogs, given by the associated
derivatives of the overall gradient information, are shown to provide an equivalent set of reactivity
indices for describing the charge transfer phenomena.

Keywords: continuity relations; grand ensemble; information sources; phase equalization; reactivity
criteria; resultant information

1. Introduction

In this conceptual work we focus on the overall entropy/information content of
electronic wavefunctions in the position representation of quantum mechanics (QM). Such
quantum states are described by (complex) vectors in the molecular Hilbert space or by their
statistical mixtures. Each state vector is characterized by its modulus (“length”) and phase
(“orientation”) components in the complex plane. The square of the former determines
the classical descriptor of the state probability distribution, while the gradient of the latter
generates the density of electronic current and the associated velocity field reflecting the
probability convection. These physical descriptors summarize different aspects of the state
electronic structure: the probability density represents the static “structure of being”, while
its flux characterizes the dynamic “structure of becoming” [1]. Indeed, in the underlying
continuity equation for the (sourceless) probability distribution, the divergence of electronic
flow, which shapes its time dependence, determines the local outflow of the probability
density. The fundamental Schrödinger equation (SE) of QM ultimately determines the time
evolutions of the state wavefunction itself, its components, and expectation values of all
physical observables.
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As complementary descriptors of electronic structure and reactivity phenomena,
both the modulus and phase parts of molecular states contribute to the overall (resultant)
content of their entropy (uncertainty) and information (determinicity) descriptors [2–9]. The
need for such generalized information-theoretic (IT) measures of the entropy/information
content in electronic states has been emphasized elsewhere [10–14]. Such descriptors
combine the classical terms due to wavefunction modulus (or probability density), and
the nonclassical contributions generated by the state phase (or its gradient determining the
convection velocity). The overall gradient information, the quantum extension of Fisher’s
intrinsic accuracy functional for locality events, then represents the dimensionless measure
of the state electronic kinetic energy [2–15]. This proportionality relation between the state
resultant information content and the average kinetic energy of electrons ultimately allows
applications of the molecular virial theorem [16–29] in an information interpretation of the
chemical bond and reactivity phenomena [4,6,9,30].

In principle, all these entropic contributions can be extracted by an experimental
removal of the position and momentum uncertainties in the system quantum state [31,32].
For the parametrically specified particle location in the position representation of QM, both
the probability distribution and its effective convectional velocity (current-per-particle) are
uniquely specified by the system wavefunction. Therefore they both constitute bona fide
sources of the information contained in electronic states, fully accessible in the separate
position and momentum experiments.

In the stationary bound states, for the sharply specified energy, time-independent
probability distribution and purely time-dependent phase, the local phase component and
probability convection identically vanish. It will be argued, however, that their (phase-
transformed) equilibrium analogs exhibit latent electronic fluxes along probability contours,
which do not affect the stationary probability density. These flows are related to the state
local (“thermodynamic”) phase component, proportional to the negative logarithm of
probability density, for which the internal resultant IT descriptor of electronic state vanishes.
Therefore, for this equilibrium criterion the average entropy measure in thermodynamic
states becomes identical with von Neumann’s entropy [33], the function of external state
probabilities defining the density operator of the ensemble mixed state.

In this analysis the quantum dynamics and continuity relations for the modulus
(probability) and phase (current) degrees-of-freedom of electronic states are reexamined
and their contributions to the resultant entropy/information descriptors are identified. The
convection character of the net source of resultant gradient information is stressed, and
equivalence of the energy and information criteria of chemical reactivity is emphasized.
A distinction between classical (probability) and quantum (wavefunction) mappings is
briefly discussed and the convection velocity of probability “fluid” is used to define fluxes
of general physical and information properties. In such an approach, the system electrons
thus act as carriers of the property densities. The latent electronic flows in the quantum
stationary equilibrium, which do not affect the probability distribution, are also examined
in some detail. Their quantum dynamics is examined and related to the “horizontal”
phase component of “thermodynamic” equilibrium states. The local energy, probability
acceleration, and force concepts are related to the state phase equalization and production.
It is stressed that, contrary to the sourceless classical IT measures, the resultant descriptors
exhibit finite local productions due to their nonclassical contributions.

2. Local Energy and Phase Equalization

Consider, for simplicity reasons, the quantum state |ψ(t)〉 of a single electron at time t,
and the associated (complex) wavefunction in position representation,

ψ(r, t) = 〈r|ψ(t)〉 = R(r, t) exp[iϕ(r, t)], (1)



Entropy 2021, 23, 483 3 of 22

defined by its modulus R(r, t) and phase ϕ(r, t) ≥ 0 parts. The state logarithm then
additively separates these two independent components:

2lnψ(r, t) = 2lnR(r, t) + 2iϕ(r, t) = lnp(r, t) + 2iϕ(r, t), (2)

where p(r, t) = R(r, t)2 denotes the particle spatial probability density. Its real part deter-
mines the logarithm of the state classical (probability) component, while the imaginary
part accounts for the nonclassical (phase) distribution:

Re[2ln ψ(r, t)] = 2lnR(r, t) = lnp(r, t) and Im[lnψ(r, t)] = ϕ(r, t). (3)

The electron is moving in the external potential v(r), due to the fixed positions of the
system constituent nuclei. In this Born–Oppenheimer (BO) approximation the (Hermitian)
electronic Hamiltonian

H(r) = −[h̄2/(2m)]∆ + v(r) ≡ T(r) + v(r) (4)

determines the quantum dynamics of this molecular state, in accordance with the time-
dependent SE.

ih̄ [∂ψ(r, t)/∂t] = H(r) ψ(r, t). (5)

This fundamental equation and its complex conjugate ultimately imply the associated dy-
namic equations for the wavefunction components or temporal evolutions of the associated
physical distributions of the spatial probability and current densities (see the next section).

Consider the stationary state corresponding to the sharply specified energy Est.,

ψst.(r, t) = Rst.(r) exp[−i(Est./h̄)t] = Rst.(r) exp(−iωst.t) (6)

where ϕst.(r, t) =−ωst.t≡ ϕst.(t). In this state the probability distribution is time-independent,

pst.(r, t) = |ψst.(r, t)|2 = Rst.(r)2 ≡ pst.(r), (7)

and the probability current exactly vanishes:

jst.(r, t) = (h̄/2mi) {ψst.(r, t)* ∇ψst.(r, t) − ψst.(r, t) ∇ψst.(r, t)*}
= (h̄/m) pst.(r) ∇ϕst.(t) = 0.

(8)

These eigenstates of electronic Hamiltonian,

H(r) ψst.(r, t) = Est. ψst.(r, t) or H(r) Rst.(r) = Est. Rst.(r) (9)

correspond to the spatially equalized local energy

E(r, t) ≡ ψ(r, t)−1 H(r) ψ(r, t), (10)

Est.(r) ≡ Rst.(r)−1 H(r)Rst.(r) = Est.. (11)

This equalization principle can be also interpreted as the related equalization rule for
the state spatial phase. Indeed, introducing the local wave-number/phase concepts,

ω(r, t) ≡ E(r, t)/h̄ and ϕ(r, t) = −ω(r, t) t, (12)

directly implies their spatial equalization in the stationary electronic state:

ωst.(r, t) = Est./h̄ = ωst. = const. and

ϕst.(r, t) = −(Est./h̄)t = −ωst.t = ϕst.(t). (13)
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The stationary equilibrium in QM is thus marked by the local phase equalization
throughout the whole physical space. It should be realized that due to the complex
nature of wavefunctions, the local energy of Equation (10) is also complex in character:
E(r, t) 6= E(r, t)*. This further implies the complex concepts of the local phase or wave-
number,

ω(r, t) = c(r, t) + i b(r, t),
c(r, t) = Re[ω(r, t)] = [ω(r, t) + ω(r, t)*]/2, b(r, t) = Im[ω(r, t)] = [ω(r, t) − ω(r, t)*]/(2i),

(14)

which determines dynamic equations for the additive components of the state wavefunction
of Equations (2) and (3). Rewriting SE in terms of complex wave-number components gives:

∂lnψ(r, t)/∂t = ψ(r, t)−1 [∂ψ(r, t)/∂t] = ∂lnR(r, t)/∂t + i ∂ϕ(r, t)/∂t
= −iω(r, t) = −ic(r, t) + b(r, t).

(15)

The real terms in this complex equation determine the modulus dynamics,

∂lnR(r, t)/∂t = b(r, t), (16)

while its imaginary terms determine the time evolution of the wavefunction phase:

∂ϕ(r, t)/∂t = −c(r, t). (17)

For more SE identification of these wave-number components, the reader is referred to
Equations (65) and (66) in Section 5.

To summarize, the (complex) local energy generates a transparent description of
the time evolution of wave-function components: its real contribution shapes the phase
dynamics, while the modulus dynamics is governed by the imaginary components of E(r, t)
or ω(r, t). In QM the spatial equalization of these wave-number or local-phase concepts
marks the stationary state corresponding to the sharply specified energy, purely time-
dependent phase, and time-independent probability distribution. We argue in Sections 7
and 8 that these equilibrium states may still exhibit finite “hidden” flows of electrons, along
probability contours, which can be associated with the local “horizontal” phase defining
the phase-transformed, “thermodynamic” states.

3. Origins of Information Content in Electronic States

The independent (real) parts of the complex electronic wavefunction of an electron
in Equation (1) ultimately define the state physical descriptors of the spatial probability
density p(r, t) = R(r, t)2 and its current

j(r, t) = (h̄/m) p(r, t) ∇ϕ(r, t) ≡ p(r, t) V(r, t). (18)

The effective probability velocity introduced in the preceding equation measures a density
of the current-per-particle,

V(r, t) ≡ P(r, t)/m = (h̄/m) ∇ϕ(r, t) ≡ j(r, t)/p(r, t), (19)

and reflects the local convection momentum P(r, t) ≡ h̄ k(r, t), with k(r, t) = ∇ϕ(r, t)
standing for its wave-vector factor.

The real and imaginary components of Equation (3), in the wavefunction logarithm of
Equation (2), determine the independent probability and velocity densities, respectively.
They account for the “static” and “dynamic” (convection) aspects of the state probability
distribution, which we call the molecular structures of “being” and “becoming”. Both these
organization levels ultimately contribute to the overall entropy or gradient-information
contents in quantum electronic states and their thermodynamic mixtures [2,10–14].
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The probability IT functionals S[p] and I[p], due to the logarithm of the state prob-
ability density of Equation (2), constitute the classical IT concepts of Shannon’s global
entropy [34,35],

S[p] = −
∫

p(r, t) lnp(r, t) dr, (20)

and Fisher’s information functional for locality events [36,37]:

I[p] =
∫

p(r, t) [∇lnp(r, t)]2 dr =
∫

p(r, t)−1 [∇p(r, t)]2 dr. (21)

In the associated resultant measures [2,10–14] these probability functionals are sup-
plemented by the average nonclassical contributions S[ϕ] and I[ϕ] = I[j], due to the state
phase or its gradient generating the probability velocity:

S[ψ] = S[p] − 2
∫

p(r, t) ϕ(r, t) dr ≡ S[p] − 2〈ϕ〉ψ = S[p] + S[ϕ] = S[p, ϕ], and

I[ψ] = I[p] + 4
∫

p(r, t) [∇ϕ(r, t)]2 dr = I[p] + I[ϕ] = I[p, ϕ]
= I[p] + (2m/h̄)2

∫
p(r, t)−1 j(r, t)2 dr = I[p] + I[j] = I[p, j].

(22)

We also introduce the combined measure of the gradient-entropy,

M[ψ] = M[p] + M[ϕ] ≡ I[p] − I[ϕ]. (23)

The nonclassical entropy terms S[ϕ] and M[ϕ]≡−I[ϕ] =−I[j] are negative since the current
pattern introduces an extra dynamic “order” into the system electronic “organization”,
compared to the corresponding classical descriptors S[p] and M[p] = I[p], thus decreasing
the state overall “uncertainty” content. These generalized descriptors of the resultant uncer-
tainty (entropy) content S[ψ] in the quantum state ψ, or of its overall (gradient) information
I[ψ] [2,10–14], have been used to describe the phase equilibria in the substrate subsystems
and to monitor electronic reconstructions in chemical reactions [3–5,13,14,38–40].

To summarize, in the resultant IT descriptors of the pure quantum state ψ, the classical
probability functionals, of Shannon’s global entropy or Fisher’s intrinsic accuracy for
locality events, are supplemented by the corresponding nonclassical complements S[ϕ] or
I[ϕ] = I[j], respectively, due to the wavefunction phase or the electronic current it generates.
In the overall (“scalar”) entropy [2,10], the (positive) classical descriptor is combined with
the (negative) average phase contribution,

S[ψ] = −
∫

p(r, t)[ln p(r, t) + 2ϕ(r, t)] dr ≡
∫

p(r, t) S(r, t) dr. (24)

while the complex (“vector”) entropy [2,12] represents the expectation value of the state
(non-Hermitian) entropy operator S = −2lnψ:

S[ψ] = 〈ψ|S|ψ〉 = −
∫

p(r, t)[ln p(r, t) + 2iϕ(r, t)] dr ≡
∫

p(r, t) S(r, t) dr ≡ S[p] + i S[ϕ] = S[p, ϕ]. (25)

Therefore, the negative nonclassical entropy effectively lowers the state classical
uncertainty measure S[p]. Indeed, the presence of finite currents implies more state spatial
“order”, i.e., less electronic “disorder”. The resultant measure of the state average gradient
information [2,10–15],

I[ψ] = 4〈∇ψ|∇ψ〉 = −4〈ψ|∆|ψ〉 = (8m/h̄2)〈ψ|T|ψ〉 ≡ κT[ψ]
=
∫

p(r, t){[∇lnp(r, t)]2 + 4[∇ϕ(r, t)]2} dr ≡
∫

p(r, t) I(r, t) dr,
(26)

then reflects the (dimensionless) kinetic energy of electrons: T[ψ] = 〈ψ|T|ψ〉 = κ−1 I[ψ].
In both the classical IT and in position representation of QM the admissible locations

{r} of an electron exhaust the whole physical space and constitute the complete set of
elementary particle-position events. The associated infinite and continuous probability
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scheme of the classical mapping {r→p(r)} in Figure 1 thus describes a state of the position
indeterminacy (uncertainty). It is best reflected by Shannon’s global entropy S[p], measuring
a “spread” (width) of the probability distribution, since we know only the probabilities
p(r) = |ψ(r)|2 of possible definite outcomes of the underlying localization experiment in
the pure quantum state ψ. Another suitable classical probe of the average information
content in p(r) is provided by Fisher’s probability functional I[p]. This gradient measure of
the position determinacy reflects the “compactness” (height) of the probability distribution,
thus complementing the Shannon global descriptor.
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{r→ ψ(r)} implies both the classical {r→p(r)} and nonclassical attributions {r→[ϕ(r), j(r) or V(r)]}.

The information given us by carrying out the given experiment consists of removing
the uncertainty existing before the experiment [32]. If we carry out the particle-localization
probe we obtain some information, since its outcome means that we then know exactly,
which position has actually been detected. This implies that, after repeated trials performed
for the specified quantum state, the initial uncertainty contained in the position probability
scheme has been completely eliminated. The average information gained by such tests
thus amounts to the removed position uncertainty. The larger the uncertainty in p(r), the
larger the amount of information obtained when we eventually find out which electron
position has actually been detected after the experiment. In other words, the amount of
information given us by the realization of the classical, probability scheme alone equals the
global entropy in the classical probability scheme of Figure 1 [31,32].

In QM, however, one deals with the wavefunction scheme {r → ψ(r)} of Figure 1, in
which the classical probability map {r→ p(r)} constitutes only a part of the overall (com-
plex) mapping. In fact, the wavefunction mapping implies a simultaneous ascription to the
parametrically specified electron position of the local modulus (static) and phase/current
(dynamic) arguments of the state wavefunction, or the related local probability and proba-
bility velocity descriptors. This two-level scheme in QM ultimately calls for the resultant
measures of the entropy/information content in quantum states, combining classical (prob-
ability) and nonclassical (phase/current/velocity) contributions. The difference between
the resultant and classical information contents can be best compared to that between the
(phase-dependent) hologram and (phase-independent) ordinary photograph.

The resultant IT measures are in principle experimentally accessible, since the local
probability velocity in physical space, defined by the velocity of probability current, is
uniquely specified in QM. In other words, all static and dynamic arguments of the resultant
IT descriptors are all sharply specified by the corresponding expectation values of the
associated observables. However, the localization experiment alone cannot remove all
the uncertainty contained in a general electronic state, which exhibits a nonvanishing
local phase component ϕ(r, t) and hence gives rise to a finite current density j(r, t). This
probability flux vanishes only in the stationary state of Equation (6), for the purely time-
dependent stationary phase ϕst.(t): jst.(r, t) = Vst.(r, t) = 0. For such states an experimental
determination of electronic position removes completely all the uncertainty contained in
the spatial wavefunction Rst.(r) and the probability distribution pst.(r) = Rst.(r)2. Indeed, the
quantum scheme of Figure 1 then reduces to the classical mapping alone.

Since the current operator j(r) includes the momentum operator of an electron,
P(r) = −ih̄∇,

j(r) = (2m)−1[Pp(r) + p(r)P], p(r) = |r〉〈r|, {r |r’〉 = r’|r’〉}, (27)
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which does not commute with the position operator r(r) = r,

Pr − rP ≡ [P, r] = −ih̄, (28)

the incompatible observables r and j(r) do not have common eigenstates. In other words,
these quantities cannot be simultaneously defined sharply, in accordance with Heisenberg’s
uncertainty principle of QM. Therefore, the position dispersion σr cannot be simultaneously
eliminated with the current dispersion σj in a single type of experiment, e.g., that of the
particle localization. Indeed, a removal of σj ultimately calls for an additional momentum
experimental setup, which is incompatible with that required for determining the electronic
position. Only the repeated, separate localization and momentum experiments, performed
on molecular systems in the same quantum state, can fully eliminate the position and
current uncertainties contained in a general electronic state. Neertheless, both the particle
position r and the local convection velocity V(r) of the probability distribution are precisely
defined as expectation values of the associated Hermitian operators. Therefore, their
resultant IT functionals are all uniquely specified, with their densities exhibiting vanishing
spatial dispersions.

The nonclassical uncertainty S[ϕ], proportional to the state average phase 〈ϕ〉ψ, effec-
tively lowers the information received from the localization-only experiment. The removable
uncertainty in ψ(r) is then less than its classical content S[ρ] or M[ρ] = I[ρ]. In other words,
the nonvanishing current pattern introduces an extra (dynamic) determinacy in the system
electronic structure, which diminishes its resultant uncertainty (indeterminacy) descriptors.

The phase equilibria corresponding to phase-transformed quantum states,

ψeq.(r) = ψ(r) exp{iϕeq.[p, r]}, (29)

have been explored elsewhere [2,10–14]. The optimum local (“thermodynamic”) phase
component ϕeq.[p, r] ≡ ϕeq.(r) for the specified probability density p(r) = pst.(r) in the
stationary state ψ = ψst. of Equation (6) marks the exact cancellation of the state classical
(S[p]) and nonclassical (S[ϕeq.]) entropy contributions:

S[ψeq.] = S[p] + S[ϕeq.] = −
∫

p(r) [lnp(r) + 2ϕeq.(r)]dr = 0. (30)

We argue in the next section that this exact reduction of the “internal” (resultant) en-
tropy content in the equilibrium “thermodynamic” state is essential for the consistency
between the von Neumann thermodynamic entropy [33] and the overall IT entropy in the
grand ensemble.

The above condition determines the equilibrium (“thermodynamic”, horizontal) local
phase for the conserved (stationary) probability distribution,

peq.(r) = |ψeq.(r)|2 = |ψ(r)|2 = p(r), (31)

proportional to the negative logarithm of probability density:

ϕeq.[p, r] = − 1/2 lnp(r) ≥ 0. (32)

The same prediction follows from the condition of the vanishing gradient measure of the
resultant entropy content in ψeq.:

M[ψeq.] = M[p] + M[ϕeq.] = I[p] − I[ϕeq.]
=
∫

p(r) {[∇lnp(r)]2 − 4[∇ϕeq.(r)]2} dr = 0.
(33)

Indeed, solving this equation for ϕeq. ≥ 0 (phase convention) gives:

[∇lnp(r)]2 − 4[∇ϕeq.(r)]2 = [∇lnp(r) − 2∇ϕeq.(r)] [∇ln p(r) + 2∇ϕeq. (r)] = 0 or
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∇lnp(r) + 2ϕeq.(r) = 0⇒ ϕeq.(r) = − 1/2 lnp(r). (34)

We can also observe that writing the average functionals for resultant entropy mea-
sures as expectations of the corresponding (multiplicative) operators,

S[ψ] = −
∫

p(r) [lnp(r) + 2ϕ(r)] dr ≡ −〈ψ|lnp + 2ϕ|ψ〉

and
M[ψ] =

∫
p(r) {[∇lnp(r)]2 − 4[∇ϕeq.(r)]2} dr = 〈ψ|(∇lnp)2 − 4(∇ϕ)2|ψ〉, (35)

makes it possible to formally interpret the equilibrium phase of Equations (32) and (34) as
the optimum solution defined by the extrema of these wavefunction functionals:

{δS[ψ]/δψ(r)* = 0 or δM[ψ]/δψ(r)* = 0}⇒ ϕeq.(r) = −1/2 lnp(r). (36)

4. Equilibrium States and Thermodynamic Entropy

Consider now the mixed quantum state in the grand ensemble, the statistical mixture
of molecular stationary states {|Ψj

i〉 ≡ |Ψj(Ni)〉} for different numbers of electrons {Ni},
defined by the corresponding density operator,

D = ∑i∑j |Ψj
i〉Pj

i〈Ψj
i| ≡∑i∑j Pj

i Oj
i, ∑i∑j Oj

i = 1, ∑i∑j Pj
i ≡∑i Pi = 1, (37)

where, Oj
i = |Ψj

i〉〈Ψj
i| stands for the state projector. The average entropy or information—

say, the resultant IT quantity G represented by the associated operator G, possibly state-
dependent, G = G[Ψj

i] ≡ Gj
i, is given by the weighted average of the property state-

expectations {Gj
i = 〈Ψj

i|G|Ψj
i〉}:

〈G〉ens. = tr(DG) = ∑i∑j Pj
i 〈Ψj

i|G|Ψj
i〉 ≡∑i∑j Pj

i Gj
i ≡ G (D). (38)

For example, the ensemble entropy of von Neumann [33],

〈S〉ens. = −kB ∑i∑j Pj
i lnPj

i ≡ S (D), (39)

corresponds to the state entropy operator Sj
i = Sj

i Oj
i and the expectation value of entropy

in state Ψj
i

Sj
i = 〈Ψj

i|Sj
i|Ψj

i〉 = −kB lnPj
i. (40)

This average value depends solely on the state external probability Pj
i in the mixture,

shaped by thermodynamic conditions, and is devoid of any local (internal) content of the
constituent wavefunction distributions.

One would expect a similar feature in the overall IT description of molecular ensem-
bles. In the pure quantum state |Ψj

i〉 the probability of finding an electron at the specified
location r is given by the state internal distribution,

pj
i(r) = ρj

i(r)/Ni ≡ 〈Ψj
i|p(r)|Ψj

i〉, (41)

the shape factor of the associated electron density ρj
i(r). In thermodynamic ensemble it

is given by the weighted average over such internal state densities {pj
i(r)}, with the state

(external) probability weights {Pj
i}:

〈p(r)〉ens. = tr(Dp) = ∑i∑j Pj
i pj

i(r) ≡∑i∑j P(Ψj
i, r). (42)

The probability product P(Ψj
i, r) represents the normalized joint probability of finding in

state Ψj
i an electron at r, with both its factors thus acquiring the status of

conditional probabilities:
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Pj
i ≡ P(Ψj

i|r) = P(Ψj
i, r)/pj

i(r), ∑i∑j P(Ψj
i|r) = 1;

pj
i(r) ≡ P(r|Ψj

i) = P(Ψj
i, r)/Pj

i,
∫

P(r|Ψj
i) dr = 1.

(43)

The Shannon entropy in the ensemble joint distribution then separates into the “external”
entropy S[{Pj

i}] of von Neumann and the weighted average of “internal” state contributions

{S[pj
i] = −

∫
pj

i(r) lnpj
i(r) dr}, (44)

S[{P(Ψj
i, r)}] = − ∑i∑j

∫
{P(Ψj

i, r) lnP(Ψj
i, r)} dr

= − ∑i∑j Pj
i lnPj

i − ∑i∑j Pj
i ∫ pj

i(r) lnpj
i(r) dr

= S[{Pj
i}] + ∑i∑j Pj

i S[pj
i].

(45)

For a consistent IT description of the equilibrium mixed states of the open reactive com-
plexes and their substrate subsystems, it would be desirable that in each phase-transformed
pure state,

Ψeq.[pj
i] = Ψj

iexp{iϕeq.[pj
i]}, (46)

defined by its local (horizontal) phase ϕeq.[pj
i, r] ≡ ϕ(h)(r) (see also Sections 7 and 8), equi-

librium for the specified state probability density pj
i(r), the second (internal) contribution

of Equation (45), exactly vanishes. This is indeed the case when the internal entropy of
each equilibrium state is exactly zero:

S[Ψeq.[pj
i]] = S[pj

i] − 2
∫

pj
i(r) ϕeq.[pj

i, r] dr ≡ 0. (47)

In statistical mixtures of the equilibrium stationary states the only source of uncertainty
is then generated by von Neumann’s ensemble entropy, determined by the “external”
probabilities alone. This consistency requirement thus identifies the state equilibrium
phase of Equation (32) [2,10–14]:

ϕeq.[pj
i, r] = − 1/2 lnpj

i(r) ≥ 0. (48)

In such “horizontally” phase-transformed states the thermodynamic and resultant equilib-
rium entropies are thus consistent with one another:

〈S〉ens. = kB S[{P(Ψj
i, r)}] = kB S[{Pj

i}]. (49)

To summarize, the equilibrium “thermodynamic” (horizontal) phase is proportional
to the local probability logarithm. This is very much in spirit of density-functional theory
(DFT) [41–46]: the equilibrium stationary state is the unique functional of the system
electron distribution ρj

i(r) = Ni pj
i(r), Ψj

i,eq. = Ψeq.[ρj
i], since both Ψj

i = Ψj
i[ρj

i], by the
first Hohenberg–Kohn (HK) [41] theorem, and the equilibrium “thermodynamic” phase
ϕeq. = ϕeq.[pj

i].
Therefore, when the state “thermodynamic” phase satisfies the “equilibrium” criterion

of Equation (30), the introduction of the phase-transformed states for conserved (stationary)
probability distribution generates the mutual consistency between the external (ensemble)
and internal (resultant) entropy descriptors. It implies that for the single stationary state the
resultant global and gradient uncertainty descriptors of the specified wavefunction vanish
in equilibrium, as indeed does von Neumann’s [33] entropy of the pure quantum state. In
such states, the internal nonclassical (phase/current) contribution exactly cancels out the
classical (probability) term. The equilibrium-phase condition of the state vanishing “inter-
nal” (resultant) IT descriptor then consistently predicts the equilibrium (horizontal) phase
being related to the negative logarithm of the stationary probability distribution [2,10–14]:

{M[pst., ϕ(h)] = 0 or S[pst., ϕ(h)] = 0}⇒ ϕopt.
(h)(r) = − 1/2 lnpst.(r) ≡ ϕeq.(pst.). (50)
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5. Continuity Relations

It is of crucial importance for continuity laws of QM to distinguish between the
reference frame moving with the particle (Lagrangian frame) and the reference frame fixed
to the prescribed coordinate system (Eulerian frame). The total derivative d/dt is the time
change appearing to an observer who moves with the probability flux, while the partial
derivative ∂/∂t is the local time rate of change observed from a fixed point in the Eulerian
reference. These derivatives are related to each other by the chain-rule transformation,

d/dt = ∂/∂t + V(r, t)·∇, (51)

where the velocity-dependent part V(r, t) ·∇ generates the probability “convection” term.
In Schrödinger’s dynamical picture the state vector |ψ(t)〉 introduces an explicit time

dependence of the system wavefunction, while the dynamics of the basis vector |r(t)〉 of
the position representation is the source of an additional, implicit time dependence of the
electronic wavefunction ψ(r, t) = ψ[r(t), t], due to the moving reference (monitoring) point.
This separation applies to wavefunctions, their components, and expectation values of
physical observables. In Table 1 we summarize the dynamic equations for the wavefunction
modulus and phase components together with the continuity relations for the state prob-
ability, current, and information densities, which directly follow from the wavefunction
dynamics of SE.

Table 1. Summary of wavefunction components of the quantum state |ψ(t)〉 of an electron, their dynamics, physical
descriptors and local sources.

Schrödinger equation: H |ψ(t)〉 = ih̄ [∂|ψ(t)〉/∂t]

Wavefunction: ψ[r(t), t] = 〈r(t)|ψ(t)〉 ≡ ψ(r, t) = R(r, t) exp[iϕ(r, t)]

modulus R(r, t), ∂R(r, t)/∂t = −V(r, t)·∇R(r, t)

phase ϕ(r, t), ∂ϕ(r, t)/∂t = h̄(2m)−1 {R(r, t)−1 ∆R(r, t) − [∇ϕ(r, t)]2} − v(r)/h̄

time-dependence Explicit, due to |ψ(t)〉, and implicit, due to |r(t)〉

logarithm lnψ(r, t) = lnR(r, t) + iϕ(r, t) = 1
2 lnp(r, t) + iϕ(r, t)

Descriptors of electron probability density
p(r, t) = R(r, t)2:

current j(r, t) = (h̄/m) p(r, t) ∇ϕ(r, t) = p(r, t) V(r, t)

velocity V(r, t) ≡ j(r, t)/p(r, t), ∇·V(r, t) = (h̄/m)∆ϕ(r, t) = 0

acceleration a(r, t) = dV(r, t)/dt = (h̄/m)∇σϕ(r, t)

force F(r, t) = m a(r, t) ≡ −∇W(r, t)

potential W(r, t) = −
∫

F(r, t) dr = −h̄σϕ(r, t)

Resultant gradient information: I[ψ] =
∫

p(r, t){[∇lnp(r, t)]2 + 4 [∇ϕ(r, t)]2} dr ≡
∫

p(r, t)I(r, t) dr

Convection operator: V(r, t)·∇ = d/dt − ∂/∂t

Sources:
σp(r, t) = dp(r, t)/dt = ∂p(r, t)/∂t + ∇· j(r, t) = 0probability

phase
σϕ(r, t) = dϕ(r, t)/dt = ∂ϕ(r, t)/∂t + ∇·J(r, t)
= h̄(2m)−1 {R(r, t)−1∆R(r, t) + [∇ϕ(r, t)]2} − v(r)/h̄
J(r, t) = ϕ(r, t) V(r, t)

current σj(r, t) = dj(r, t)/dt = σϕ(r, t)V(r, t) + ϕ(r, t) a(r, t)

information
σI(t) = κ

∫
j(r, t)·∇v(r) dr = κ h̄

∫
j(r, t)·∇σϕ(r, t) dr

κ = 8m/h̄2

It directly follows from the SE that the probability field is sourceless:

∂p(r, t)/∂t = 2R(r, t) [∂R(r, t)/∂t] = −∇· j(r, t) = − V(r, t)·∇p(r, t) or
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σp(r, t) ≡ dp(r, t)/dt = ∂p(r, t)/∂t + ∇·j(r, t) = ∂ρ(r, t)/∂t + ∇p(r, t)·V(r, t) = 0. (52)

Indeed, separating the explicit and implicit time dependencies in probability density
p(r, t) = p[r(t), t] gives:

σp(r, t) = ∂p[r(t), t]/∂t + (dr/dt)·∂p(r, t)/∂r = ∂p(r, t)/∂t + V(r, t)·∇p(r, t)
= ∂p(r, t)/∂t + ∇·j(r, t).

(53)

Above, the total time derivative dp(r, t)/dt determines the vanishing local probability
“source”: σp(r, t) = 0. It measures the time rate of change in an infinitesimal volume element
of probability fluid moving with probability velocity V(r, t) = dr(t)/dt, while the partial
derivative ∂p[r(t), t]/∂t refers to a volume element around the fixed point in space. The
divergence of probability flux in the preceding equation,

∇·j(r, t) = ∇p(r, t)·V(r, t) + p(r, t)∇·V(r, t) = ∇p(r, t)·V(r, t), (54)

thus implies the vanishing divergence of the velocity field V(r, t), related to the phase
Laplacian ∇2 ϕ(r, t) = ∆ϕ(r, t):

∇·V(r, t) = (h̄/m) ∆ϕ(r, t) = 0 or ∆ϕ(r, t) = 0. (55)

As in fluid dynamics, in these transport equations the operators (V ·∇) and∇2 = ∆ represent
the “convection” and “diffusion”, respectively. Thus, in Equation (52), the local evolution
of the particle probability is governed by the density “convection”, while the preceding
equation implies the vanishing “diffusion” of the phase distribution.

In Table 1 we summarize local continuity equations for the wavefunction components,
the state physical descriptors, and information densities. For example, it follows from the
table that the resultant gradient information exhibits a nonvanishing net production σI(t)
due to a finite phase source σϕ(r, t). The classical contribution to σI(t) identically vanishes
due to the probability continuity of Equation (52). These relations directly follow from the
molecular SE and identify the relevant local sources of the distributions of interest.

As an example, consider continuities of the wavefunction components. When ex-
pressed in terms of the state modulus and phase parts the SE reads:

ih̄ [∂ψ(r, t)/∂t] = ih̄ {[∂R(r, t)/∂t] + i R(r, t) [∂ϕ(r, t)/∂t]} exp[i ϕ(r, t)] = H(r) ψ(r, t)
= [−h̄2(2m)−1{∆R(r, t) + 2i∇R(r, t) ·∇ϕ(r, t) − R(r, t) [∇ϕ(r, t)]2}

+ v(r) R(r, t)] exp[iϕ(r, t)],
(56)

where we have used Equation (55). Dividing both sides by h̄R(r, t) and multiplying
by exp[−iϕ(r, t)] gives the following (complex) dynamic relation linking the wavefunc-
tion components:

i [∂lnR(r, t)/∂t] − ∂ϕ(r, t)/∂t
= −[h̄/(2m)]{R(r, t)−1∆R(r, t) + 2i[∇lnR(r, t)]·∇ϕ(r, t) − [∇ϕ(r, t)]2} + v(r)/h̄.

(57)

Comparing its imaginary parts generates the time evolution of the modulus part of elec-
tronic state,

∂lnR(r, t)/∂t = − (h̄/m) ∇ϕ(r, t) ·∇lnR(r, t) = − V(r, t) ·∇lnR(r, t), (58)

which can be directly transformed into the probability continuity equation

∂p(r, t)/∂t = −∇·j(r, t) or σp(r, t) = dp(r, t)/dt = 0. (59)

Equating the real parts of Equation (57) similarly determines the phase dynamics

∂ϕ(r, t)/∂t = [h̄/(2m)] {R(r, t)−1∆R(r, t) − [∇ϕ(r, t)]2} − v(r)/h̄. (60)
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The preceding equation ultimately determines the production term σϕ(r, t) = dϕ(r, t)/dt in
the phase-continuity relation

∂ϕ(r, t)/∂t = −∇·J(r, t) + σϕ(r, t), (61)

since the effective velocity V(r, t) of the probability current j(r, t) = p(r, t) V(r, t) also deter-
mines the phase flux and its divergence, the convection term in the continuity Equation (61):

J(r, t) = ϕ(r, t) V(r, t) and ∇·J(r, t) = V(r, t) ·∇ϕ(r, t) = (h̄/m) [∇ϕ(r, t)]2. (62)

This complementary flow descriptor ultimately identifies the finite phase production

σϕ(r, t) ≡ dϕ(r, t)/dt = ∂ϕ(r, t)/∂t + V(r, t) · ∇ϕ(r, t) 6= 0. (63)

Finally, using Equation (60) gives the following expression for the phase source:

σϕ(r, t) = [h̄/(2m)]{R(r, t)−1∆R(r, t) + [∇ϕ(r, t)]2} − v(r)/h̄. (64)

This production of the local phase is seen to group the probability-diffusion and phase-
convection terms supplemented by the external potential contribution.

The component SE (57) also allows one to identify the wave-number distributions
introduced in Equations (14)–(17):

c(r, t) = −∂ϕ(r, t)/∂t = −[h̄/(2m)] {R(r, t)−1∆R(r, t) − [∇ϕ(r, t)]2} + v(r)/h̄
= −[h̄/(2m)] {∆lnR(r, t) + [∇lnR(r, t)]2 − [∇ϕ(r, t)]2} + v(r)/h̄

(65)

and

b(r, t) = ∂lnR(r, t)/∂t = − (h̄/m) ∇ϕ(r, t) ·∇lnR(r, t) = − V(r, t) ·∇lnR(r, t). (66)

To summarize, the effective velocity of the probability current also determines the
phase flux in molecular states. The source (net production) of the classical probability
variable of electronic states identically vanishes, while that of their nonclassical phase
part remains finite. In overall descriptors of the state information or entropy contents
they ultimately generate finite production terms. For example, the nonclassical informa-
tion I[ϕ] generates the nonvanishing (integral) source of the average resultant gradient
information I[ψ]:

σI(t)= dI[ϕ]/dt ≡
∫

p(r, t)σI(r, t) dr = (8m/h̄)
∫

j(r, t) ·∇σϕ(r, t) dr. (67)

Its density-per-electron σI(r, t) is determined by a product of the local probability “flux”
j(r, t) and “affinity“ factor proportional to the gradient of the phase source. It also follows
from this local information source in Table 1, that it is determined by the “convection” of
the phase source σϕ(r, t):

σI(r, t) = (8m/h̄) V(r, t) ·∇σϕ(r, t). (68)

6. Principle of Stationary Resultant Information and Charge-Transfer Descriptors of
Open Systems

The equilibrium subsystems in the specified (pure) state of the molecular system as
a whole require the mixed-state description in terms of ensemble-average physical quan-
tities [31,47–50]. The same applies to the (externally) open microscopic systems in the
applied thermodynamic conditions. In reactivity problems the specified temperature T of
the “heat bath”B(T) and electronic chemical potential µ (or electronegativity χ = −µ) of
the macroscopic “electron reservoir”R(µ) call for the grand-ensemble approach [44,51,52].
The equilibrium quantum state is then represented by the statistical mixture of the system
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pure (stationary) states, defined by the externally imposed (equilibrium) state probabilities.
Indeed, only the ensemble-average value of the overall number of electrons N ≡ 〈N〉ens.
exhibits a continuous (fractional) spectrum of values justifying the populational derivatives
defining the reactivity criteria [44,51,52]. The externally open molecule M(v), identified
by its external potential v(r) due to the system fixed nuclei, then constitutes a part of the
composed systemM = [M(v)¦R(µ)] consisting of the mutually open (microscopic) molec-
ular fragment M(v) and an external (macroscopic) electron reservoirR(µ). In the theory
of chemical reactivity one adopts such populational derivatives of the system ensemble-
average energy and its underlying Taylor expansion in predicting reactivity behavior of
molecules (single-reactant criteria) or bimolecular reactive systems (two-reactant criteria in
situ) [44,53–59].

Such N -derivatives of electronic energy are indeed involved in definitions of sev-
eral reactivity criteria, e.g., the chemical potential/electronegativity [44,52–62] or hard-
ness/softness [46,56–59,63] and Fukui function (FF) [44,56–59,64] descriptors of the reaction
complex. In IT treatments one introduces analogous concepts of the populational deriva-
tives of the ensemble average (resultant) gradient information. Since reactivity phenomena
involve electron flows between the mutually open (polarized) substrates, only in such a
generalized, ensemble framework can one precisely define the relevant reactivity criteria,
determine the hypothetical states of the promoted subsystems, and eventually predict
effects of their chemical coordination. It has been demonstrated that, in such an ensemble
approach, the energetic and information principles are exactly equivalent, giving rise to
identical predictions of thermodynamic equilibria, charge relaxation, and average descrip-
tors of molecular systems and their fragments [9,10,30,65,66].

The populational derivatives of the average energy and resultant information in
reactive systems thus invoke the composite representation 〈M(v)〉ens. of the equilibrium
state of the molecular system M(v) in the grand ensemble. Thermodynamic conditions in
the (microscopic) molecular system are thus imposed by the hypothetical (macroscopic)
heat bathB(T) and external electron reservoirR(µ). The mixed state then corresponds
to the equilibrium probabilities P(µ, T; v) ≡ {Pj

i(µ, T; v)} of the pure (stationary) states
{|Ψj

i〉 ≡ |Ψj(Ni)〉}, with |Ψj
i〉 denoting the j-th state for Ni (integer) number of electrons,

which define the equilibrium density operator of Equation (37):

D(µ, T; v) = ∑i∑j |Ψj
i〉 Pj

i(µ, T; v) 〈Ψj
i|, ∑i∑j Pj

i(µ, T; v) ≡∑i Pi(µ, T; v) = 1. (69)

This statistical mixture of molecular states gives rise to the ensemble average values of the
system electronic energy and its resultant gradient information. The former is defined by
the quantum expectations of electronic Hamiltonians {Hi = H(Ni, v)},

〈E〉ens. = ∑i∑j Pj
i(µ, T; v) 〈Ψj

i| Hi|Ψj
i〉 ≡∑i∑j Pj

i(µ, T; v) Ej
i ≡ E (µ, T; v) ≡ E (D),

(70)
while the latter corresponds to the quantum expectation of (Hermitian) operator for the
resultant gradient information of Ni electrons, {Ii ≡ I(Ni) ≡ ∑k I(k)}, related to the corre-
sponding kinetic-energy operators {Ti ≡ T(Ni) = ∑k T(k)}, k = 1, 2, . . . , Ni,

Ii = −4∑k ∆k ≡∑k I(k) = (8m/h̄2) Ti ≡ κ Ti = κ ∑k T(k), T(k) = −[h̄2/(2m)] ∆k, (71)

〈I〉ens. = ∑i∑j Pj
i(µ, T; v) 〈Ψj

i|Ii|Ψj
i〉 ≡∑i∑j Pj

i(µ, T; v) Ij
i ≡ I (µ, T; v) ≡ I (D), (72)

Thus the average gradient information I (D) reflects the (dimensionless) average kinetic en-
ergy

〈T〉ens. = ∑i ∑j Pj
i(µ, T; v) 〈Ψj

i|Ti|Ψj
i〉 ≡∑i∑j Pj

i(µ, T; v) Tj
i ≡ T (µ, T; v) = T (D) = κ−1 I (D),

Tj
i = 〈Ψj

i|Ti|Ψj
i〉 = κ−1 Ij

i. (73)
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The equilibrium probabilities P(µ, T; v) result from the minimum principle of the grand
potential Ω(D):

δ[E (D) − µN (D) − TS (D)]|P(µ,T; v) ≡ δΩ(D)|P(µ,T; v) = 0. (74)

Here, the average number of electrons

〈N〉ens. = ∑i Ni [∑j Pj
i(µ, T; v)] ≡∑i Ni Pi(µ, T; v) =N (D) (75)

and the thermodynamic entropy of the ensemble

〈S〉ens. = −kB ∑i∑j Pj
i(µ, T; v) lnPj

i(µ, T; v) ≡ S (D), (76)

with kB denoting the Boltzmann constant.
The entropy-constrained energy principle of Equation (74) can be also interpreted as an

equivalent (potential-energy constrained) information rule [5,6,9,67–69], for the minimum
of the ensemble resultant gradient-information I (D):

δ[I (D) − λW (D) − ζ N (D) − τ S (D)]P(µ ,T; v) = 0. (77)

It contains the additional constraint of the fixed overall potential energy, 〈W〉ens. =W (D),
multiplied by the Lagrange multiplier λ = −κ, and includes the “scaled” information
intensities associated with the remaining constraints:

potential ζ = κ µ, enforcing the prescribed electron populationN (D) = N;
temperature τ ≡ κ T, for the subsidiary entropy condition, S (D) = S.
The extrema of the ensemble principles of Equations (74) and (77) determine the same

equilibrium probabilities P(µ, T; v) of electronic states. The physical equivalence of the en-
ergy and information principles indicates that energetic and information reactivity concepts
are mutually related, being both capable of describing charge-transfer (CT) phenomena in
acid(A)–base(B) systems.

The ensemble interpretation applies to all populational,N -derivatives of the average
energy or information functionals. For example, in energy representation the global
chemical hardness [44,63] reflects theN -derivative of the chemical potential,

η = ∂2E/∂N 2 = ∂µ/∂N > 0, (78)

while the information hardness measures theN -derivative of the information potential:

ω = ∂2I /∂N 2 = ∂ζ/∂N = κ η > 0. (79)

The positive signs of these “diagonal” (hardness) derivatives assure the external stability
of 〈M(v)〉ens., with respect to charge flows between the molecular system M(v) and its
electron reservoir, in accordance with the Le Châtelier and Le Châtelier–Braun principles
of thermodynamics [70].

The global FF [44,56–59,64] is defined by the “mixed” second derivative of the ensem-
ble average energy:

f (r) = ∂/∂N [δE/δv(r)] = ∂ρ(r)/∂N = δ/δv(r) (∂E/∂N ) = δµ/δv(r), (80)

where we have applied the Maxwell cross-differentiation identity. It can be thus interpreted
as either the density response per unit populational displacement, or as the response in
the global chemical potential to unit displacement in the local external potential. The
analogous derivative of the average gradient information similarly reads:

φ(r) = ∂/∂N [δI /δv(r)] = δ/δv(r) (∂I /∂N ) = κ f (r) = δζ/δv(r). (81)
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The in situ CT derivatives of the average resultant gradient information in the reactive
system R = A–B include the CT potential quantity, related to µCT,

ζCT = ∂I (NCT)/∂NCT = κ µCT, (82)

and the CT hardness descriptor, related to ηCT = SCT
−1,

ωCT = ∂2I (NCT)/∂NCT
2 = ∂ζ(NCT)/∂NCT = κ ηCT ≡ θCT

−1, (83)

which is the inverse of the CT softness θCT = ∂NCT/∂ζ. In terms of these CT descriptors,
the optimum amount of the B→A electron transfer in the donor–acceptor reactive system,

NCT =N A − NA
0 = NB

0 −N B > 0,

thus reads:
NCT = − µCT/ηCT = −µCT SCT = − ζCT/ωCT = −ζCT θCT. (84)

Above, {NX
0} and {N X} denote electron populations of the mutually closed and open reac-

tants in M+ = (A+|B+) and M* = (A*¦B*) = M, respectively.
Therefore, the in situ derivatives {ζCT, ωCT = θCT

−1} of the average content of the
resultant gradient information provide alternative reactivity descriptors, equivalent to
the chemical potential and hardness or softness indices {µCT, ηCT = SCT

−1} of the classi-
cal, energy-centered theory of chemical reactivity. This again demonstrates the physical
equivalence of the energy and information principles in describing the CT phenomena
in molecular systems. One thus concludes that the resultant gradient information, the
quantum generalization of the classical Fisher measure, constitutes a reliable basis for an
“entropic” description of reactivity phenomena.

7. Latent Probability Flows in Stationary Equilibrium

Consider again the stationary state ψst.(r, t) of an electron (Equation (6)) corresponding
to the sharply specified energy Est.. The wavefunction phase is then purely time dependent,
ϕst.(r, t) = −ωst.t ≡ ϕst.(t), with the state local aspect being described solely by its modulus
part Rst.(r), the eigenfunction (see Equation (9)) of the electronic Hamiltonian of Equation
(4). This stationary “equilibrium” thus generates the vanishing probability current jst.(r)
= pst.(r)Vst.(r), where the time-independent probability distribution pst.(r) = Rst.(r)2 and
the vanishing flux-velocity Vst.(r) = (h̄/m) ∇ϕst.(t) = 0. As indicated in Section 2, the
eigenstates of the electronic Hamiltonian correspond to the equalized local energy, Est.(r,t)
= Est., marking the equalized local phase: ϕst.(r, t) = ϕst.(t).

Clearly, the stationary probability distribution and its vanishing current/velocity in
such states do not imply that the particle is then at rest. The electrons are incessantly moving
around the fixed nuclei, with the experimentally (sharply) unobserved instantaneous
particle velocity W(r, t) = dr(t)/dt = P(r, t)/m reflecting its momentum P(r, t) = h̄ k(r,
t). Indeed, the system stability requires that centrifugal forces of these fast movements
compensate for the nuclear attraction as, e.g., in Bohr’s historic, “planetary” model of the
hydrogen atom. The tightly bound inner (“core”) electrons have to move faster than less
confined outer (“valence”) electrons. The natural question then arises: how to describe
the presence of these unceasing (latent) instantaneous motions in the dynamics of the
probability “fluid”?

One observes that, for the probability density pst.(r) to remain conserved in time, its
latent flows must follow the probability contours pst.(r) = p(0) = const. (see Figure 2). Any
motion in the direction perpendicular to the probability line passing a given location in
space would imply a change in time of the probability value at this point, and hence the
nonstationary character of the whole distribution. In other words, the latent flows of
the stationary position-probability distribution must be “horizontal”, directed along the
constant-probability lines. Such probability fluxes in ψst., along the probability contours
for the vanishing “vertical” velocity component, preserve in time the stationary character
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of the spatial probability distribution, which determines the vanishing probability flux.
Therefore, the stationary character of the molecular electronic state does not preclude the
latent local flows of electronic probability in horizontal directions generating the atomic
vortices of Figure 3.
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The instantaneous resultant (r) velocity V (r)(r, t) of probability “fluid” thus involves
two independent components (see Figure 2): the “vertical” (current) velocity along the
phase gradient,

V (v)(r, t) ≡ V(r, t) = j(r, t)/p(r, t) = (h̄/m) ∇ϕ(r, t), (85)

perpendicular to the local direction of probability contour at time t, V ⊥ (p = const.), and
hence parallel to ∇p(r, t), V||(∇ϕ, ∇p); and the “horizontal” velocity V (h)(r, t), along the
probability contour,

V (r)(r, t) = V(r, t) +V (h)(r, t). (86)

The horizontal velocity V (h)(r, t) of probability motions along the constant-probability lines,
V (h)||(p = const.), can also remain finite in the stationary electronic states of atomic or
molecular systems, since it does not affect the conserved probability distribution. The
vertical component V of the probability current then reflects a common direction of gra-
dients ∇ϕ and ∇p, of the distributions’ fastest increase, with a horizontal supplement
perpendicular to both these gradients: V (h)⊥(∇ϕ, ∇p).
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These components of probability velocity imply the associated combination rules for
the resultant probability and phase currents:

j(r)(r, t) = p(r, t) V (r)(r, t) = p(r, t)V(r, t) + p(r, t)V (h)(r, t) ≡ j(r, t) +j(h)(r, t), (87)

J(r)(r, t) = ϕ(r, t)V (r)(r, t) = ϕ(r, t)V(r, t) + ϕ(r, t)V (h)(r, t) ≡ J(r, t) +J(h)(r, t). (88)

The above directional properties of the vertical and horizontal components then confirm
the validity of the (vertical) continuity relations for the probability and phase distributions:

∂p/∂t = −∇·j(r) = −∇p·V (r) = −∇p·[V + V (h)] = −∇p ·V = −∇·j, (89)

∂ϕ/∂t = −∇·J(r) + σϕ = −∇ϕ ·V (r) + σϕ = −∇ϕ · [V + V (h)] + σϕ = −∇ϕ ·V + σϕ = −∇·J + σϕ, (90)

where we have recognized Equation (55) and observed that horizontal currents j(h) and J(h)

generate vanishing divergences,

∇·j(h) = ∇p·V (h) = 0 and∇·J(h) = ∇ϕ·V (h) = 0, (91)

since V (h) is perpendicular with respect to both ∇p and ∇ϕ.
Therefore, the phase and probability gradients are both perpendicular to the probabil-

ity contour and, hence,∇ϕ(r, t) ∝ ∇p(r, t). This directional character of the current velocity
V(r, t) suggests that the local aspect of the phase function itself should be related to the
probability density:

ϕ(r, t) = ϕ[p(r, t), t]⇒∇ϕ = (∂ϕ/∂p) ∇p. (92)

Such a directional feature indeed characterizes the IT equilibrium (“thermodynamic”)
phase of Equation (32) (see also Section 4), resulting from extrema of the phase en-
tropy/information functionals,

ϕeq.(r, t) = −(1/2) lnp(r, t) ≥ 0, (93)

for which
∇ϕeq.(r, t) = −[2p(r, t)]−1 ∇p(r, t). (94)

The velocity of the latent, “horizontal” flows along the probability contours can be then
attributed to the additional (local) horizontal phase ϕ(h)(r) component, a “thermodynamic”
addition to the purely time-dependent stationary phase ϕst.(t) in the resultant phase of the
transformed state:

Φ(r, t) = ϕst.(t) + ϕ(h)(r), (95)

V (r)(r, t) = (h̄/m) ∇Φ(r, t) = (h̄/m) ∇ϕ(h)(r) = V (h)(r). (96)

In order to study the time-dependent flows in liquids, the separate concepts of “stream-
line” and “pathline” are introduced [71]. At the specified time, the former are tangential to
the directional field of velocity “arrows”. Since the particles move in the direction of the
streamlines, there is no motion perpendicular to the streamlines and the property flux per
unit time between two streamlines remains constant. Patterns of streamlines describe the
instantaneous state of a flow, indicating the direction of motion of all particles at a given
time. For the time-dependent flows, the velocity field changes in time, with pathlines no
longer coinciding with streamlines. Only for the time-independent flows do the particles
move along streamlines, so that pathlines and streamlines coincide.

In the stationary quantum mechanics the contours of molecular probability “fluid”
at time t = t0, p(r, t0) = pst.(r) similarly determine the streamlines of the latent (horizontal)
flows of electronic probability, which preserve the “static” probability distribution pst.(r) of
the stationary quantum state. They generate “vortices” of the latent “horizontal” velocity in
spherical probability distributions of free atoms of the promolecule M0, the deformed AIM
distributions in the polarized system M+, and in the equilibrium density of the molecule
M = M* (see Figure 3).
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8. Component Dynamics in Equilibrium Stationary States

Consider again a general (complex) state of an electron (Equation (1)) and its quantum
dynamics in Equation (5), determined by the Hamiltonian of Equation (4). Let us separate
the local “vertical” r(v) and “horizontal” r(h) components of a general displacement in
electronic position (see Figure 2), dr = dr(v) + dr(h), in directions perpendicular and parallel
to the probability contour p(r) = const., respectively. The former is consistent with the
probability gradient ∇ p(r), which reflects the direction of the distribution fastest increase.

The stationary (ground) state of an electron ψ0, for the sharply specified energy,

E[ψ0] = 〈ψ0|H|ψ0〉 = 〈R0|H|R0〉 = E0 ≡ Ev[p0], (97)

corresponds to the time-independent modulus function R0(r) and time-dependent phase
component ϕ0(t) = −(E0/h̄)t ≡ −ω0 t. The associated equilibrium state then corresponds
to the locally (horizontally) modified resultant phase,

Φ(r, t) = ϕ0(t) + ϕ(h)(r), (98)

in the phase-transformed wavefunction,

Ψ0(r, t) = ψ0(r, t) exp[iϕ(h)(r)] = R0(r) exp{i[− ω0 t + ϕ(h)(r)]}
≡ R0(r) exp{iΦ(r, t)]} ≡ φ0(r) exp{iϕ0(t)]},

(99)

which conserves the stationary probability distribution:

p0(r) = |Ψ0(r, t)|2 = |ψ0(r)|2 = |φ0(r)|2 = [R0(r)]2. (100)

However, the expectation value of the energy,

E[Ψ0] = 〈Ψ0|H|Ψ0〉 = 〈φ0|H|φ0〉 = E0 + T[ϕ(h)], (101)

differs from E0 of Equation (97) by the “horizontal” kinetic energy,

T[ϕ(h)] = κ−1 I[ϕ(h)] =
∫

p0(r){(m/2)[(h̄/m)∇ϕ(h)(r)]2dr
≡

∫
p0(r){(m[V (h)(r)]2/2)}dr ≡

∫
p0(r) T(h)(r) dr,

(102)

related to the (horizontal) nonclassical information,

I[ϕ(h)] = 4
∫

p0(r) [∇ϕ(h)(r)]2 dr.

The normalization-constrained minimum principle for this average energy gives the
following stationary SE, including the horizontal kinetic-energy contribution:

δ{E[Ψ] − λ 〈Ψ|Ψ〉}|0 = 0 or

HΨ0 = {E0 + T[ϕ(h)]}Ψ0 ≡ h̄ ω[Ψ0] Ψ 0 = h̄ {ω0 + T[ϕ(h)]/h̄}Ψ0 ≡ h̄ {ω0 + ω(h)}Ψ0. (103)

This horizontally-generalized stationary SE thus includes the additional wave-number
contribution ω(h) = T[ϕ(h)]/h̄. The DFT minimum principle of Ev[p], equivalent to the
ordinary (stationary) SE,

HR0 = {−[h̄2/(2m)]∆ + v} R0 = E0 R0 = h̄ω0 R0, (104)

determines the optimum probability distribution, popt. = p0 = R0
2, and energy Eopt. =

Ev[p0] = E0, while the equilibrium horizontal (“thermodynamic”) phase is determined by a
supplementary IT rule (see Section 3).
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In the stationary equilibrium,

∂R0/∂t = ∂ϕ(h)/∂t = 0 and ∇Φ = ∇ϕ(h), (105)

and the horizontal velocity of probability flux reflects the gradient of ϕ(h):

V (h) = dr(h)/dt = (h̄/m) ∇ϕ(h). (106)

The resultant probability velocity is then exclusively of a horizontal origin,

V0 = (h̄/m)∇Φ = (h̄/m)∇ϕ(h) ≡ V (h), (107)

and both components of Φ contribute to the resultant phase source in the associated conti-
nuity equation:

σΦ = dΦ/dt = dϕ0/dt + dϕ(h)/dt ≡ σ0 + σh = σ0 + V (h) ·∇ϕ(h) = σ0 + ∇·J(h). (108)

Therefore, in the stationary equilibrium, the vertical source of the wavefunction phase
remains constant, σ0 = dϕ0/dt = −ω0, while the local horizontal-phase source assumes a
purely convectional character:

σh ≡ dϕ(h)/dt = [dr(h)/dt] [∂ϕ(h)/∂r(h)]= V (h) ·∇ϕ(h) = ∇·J(h). (109)

The SE for components of Ψ0 reads:

∂Φ/∂t = ∂ϕ0/∂t = −ω0 = h̄(2m)−1{R0
−1∆R0 + 2i∇R0·∇ϕ(h) − [∇ϕ(h)]2} − v/h̄. (110)

Its imaginary part confirms that V (h) = (h̄/m)∇ϕ(h), and hence also the associated probability
current, j(h) = p0·V (h), are indeed perpendicular to the probability gradient ∇p0 = 2R0∇R0,

∇p0 ·V (h) = ∇·j(h) = 0. (111)

The real part of Equation (110) generates the associated phase dynamics,

∂Φ/∂t = −ω0 = h̄(2m)−1{R0
−1∆R0 − [∇ϕ(h)]2} − v/h̄ = −∇·J(h) + σ0, (112)

where the horizontal phase current J(h) = ϕ(h)V (h), ∇·J(h) = ∇ϕ(h)·V (h) and the resultant
phase source is defined in Equation (108).

9. Conclusions

In this conceptual overview we have first examined the spatial equalization of the elec-
tronic phase in molecules, using the (complex) local-energy concept. The real component of
E(r, t) was shown to shape the dynamics of wavefunction phase, while the time evolution of
the state modulus was shown to be governed by the imaginary component of local energy.
In QM the spatial equalization of the local wave-number or phase concepts marks the
system stationary state. The resultant IT descriptors, combining the modulus/probability
and phase/current contributions, were revisited and the wave-function mapping in QM
was compared with the probability scheme of classical IT. The nonclassical, phase/current
supplements in the resultant IT measures effectively lower the classical entropic uncertainty
and increase the spatial information determinicity of quantum states.

The phase-transformed (“thermodynamic”) states were introduced and their IT opti-
mum phases were determined from the auxiliary entropic principle. These equilibrium
states were shown to exhibit the exactly vanishing internal (resultant) IT descriptors of
electronic states. Therefore, in statistical mixtures of such states, the overall entropy content
reduces to the external ensemble entropy of von Neumann. This brings more consistency
into the quantum IT description of open molecular systems. We have also summarized the
local continuity relations for the wavefunction components, state physical descriptors, and
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information densities. They follow from the component-resolved SE and the realization
that flows of molecular properties are carried by (convection) fluxes of electronic probabil-
ity. Therefore, in such treatments, the electrons are carriers of densities of both the system
physical and information properties.

The principal variational principle for the minimum of the grand potential was inter-
preted as an equivalent information rule. In an ensemble description of chemical reactions
in the acid–base systems, the populational derivatives of the ensemble-average resultant
information were shown to constitute adequate entropic criteria for diagnosing the molecu-
lar CT phenomena, fully equivalent to their energy analogs. Latent electronic fluxes in the
stationary molecular states were identified. These hidden (“horizontal”) electronic flows,
along the constant-probability contours, do not affect the stationary probability distribution
and generate velocity vortices in molecules. Using the SE for wavefunction components,
their local velocity was related to the “thermodynamic” phase of the phase-transformed
equilibrium states.
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