
entropy

Article

Research on Channel Selection and Multi-Feature Fusion of
EEG Signals for Mental Fatigue Detection

Quan Liu, Yang Liu, Kun Chen * , Lei Wang, Zhilei Li, Qingsong Ai and Li Ma

����������
�������

Citation: Liu, Q.; Liu, Y.; Chen, K.;

Wang, L.; Li, Z.; Ai, Q.; Ma, L.

Research on Channel Selection and

Multi-Feature Fusion of EEG Signals

for Mental Fatigue Detection. Entropy

2021, 23, 457. https://doi.org/

10.3390/e23040457

Academic Editors: Nadia Mammone,

Juan Pablo Amezquita-Sanchez and

Yiwen Wang

Received: 24 March 2021

Accepted: 11 April 2021

Published: 13 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China;
quanliu@whut.edu.cn (Q.L.); yangliu-cs@whut.edu.cn (Y.L.); wanglei@whut.edu.cn (L.W.);
zhileili@whut.edu.cn (Z.L.); qingsongai@whut.edu.cn (Q.A.); excellentmary@whut.edu.cn (L.M.)
* Correspondence: kunchen@whut.edu.cn

Abstract: With the rapid development of modern social science and technology, the pace of life is
getting faster, and brain fatigue has become a sub-health state that seriously affects the normal life of
people. Electroencephalogram (EEG) signals reflect changes in the central nervous system. Using
EEG signals to assess mental fatigue is a research hotspot in related fields. Most existing fatigue
detection methods are time-consuming or don’t achieve satisfactory results due to insufficient features
extracted from EEG signals. In this paper, a 2-back task is designed to induce fatigue. The weight
value of each channel under a single feature is calculated by ReliefF algorithm. The classification
accuracy of each channel under the corresponding features is analyzed. The classification accuracy of
each single channel is combined to perform weighted summation to obtain the weight value of each
channel. The first half channels sorted in descending order based on the weight value is chosen as
the common channels. Multi-features in frequency and time domains are extracted from the common
channel data, and the sparse representation method is used to perform feature fusion to obtain
sparse fused features. Finally, the SRDA classifier is used to detect the fatigue state. Experimental
results show that the proposed methods in our work effectively reduce the number of channels for
computation and also improve the mental fatigue detection accuracy.

Keywords: brain fatigue detection; EEG signal; channel selection; sparse representation; feature
fusion

1. Introduction

With rapid economic development, people’s life rhythm is getting faster and faster, and
the pressure of competition is becoming greater and greater. High-intensity use of the brain
for a long time can easily cause mental fatigue. Mental fatigue has become a sub-health state
that seriously affects people’s normal life, which might cause heart disease, palpitations,
and other physiological diseases, and may also cause insomnia, anxiety, depression, and
other mental diseases [1]. It is very important and necessary to timely detect mental fatigue
and make feedback. There are subjective and objective methods for fatigue detection [2].
The subjective detection method mainly evaluates the fatigue state via the subjects filling
out the scale based on their subjective mental state and feelings. The commonly used
scales include Karolinska sleepiness scale (KSS), Stanford sleepiness scale (SSS), Chalder
fatigue scale, et al. [3,4]. The advantage of the subjective evaluation method is ease of use,
but the standards are not uniform, and the results are not comprehensive. The objective
evaluation method is to obtain the physiological data parameters or biochemical data
parameters of the subject under different brain fatigue states through external experimental
equipment to evaluate the fatigue state of the subject. According to the information used,
objective evaluation methods are divided into psychological and behavioral evaluations,
biochemical evaluations, and physiological evaluations. Itoh et al. used sensors to obtain
driver’s body movements during driving to assess driver’s fatigue [5]. Fernstrom, et al.
conducted related research, and the results showed that the subject’s serum tryptophan
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will increase as the subject’s fatigue state deepens [6]. Compared with other signals, the
electroencephalogram (EEG) signal is considered to be the most accurate and credible
assessment of brain fatigue and has been widely recognized by the medical community
and scientific research community.

Nowadays, research on brain fatigue detection is not limited to improving the accuracy
of fatigue state recognition but also begins to focus on the combination of brain fatigue
detection and practical application. This leads to high requirements on the real-time nature
of the mental fatigue detection system, the portability of the acquisition equipment, and the
complexity of the operation. Considering these factors, it is necessary to reduce the number
of brain electrodes to save computation time. Yvonne Trand et al. used 26 channels to obtain
EEG data of all subjects before and after fatigue. By analyzing the PSD characteristics
and comparing the classification performance of PCA before and after dimensionality
reduction, it was found that the results after dimensionality reduction were comparable to
the results using the original data [7]. Chen, J et al. used 40 lead channels on the NeuroScan
EEG acquisition device to record the EEG signal of the subject in the driving simulation
phase on the driving simulator and to study the changes in the mental state of the subject
during the simulated driving [8]. Chai, R et al. compared the classification effects of
using 32 channels of data and the selected 11 frontal lobe channels (FP1, AF3, F7, F3, FC1,
FC2, F4, F8, AF4, FP2, and FZ). The effect of 11-channel data is slightly lower than that of
using 32-channel data, but the processing time is reduced [9]. Rifai et al. performed ICA
processing on 32-channel data to reduce the channel number to 16. The results showed
that the classification effect of the selected 16-channel was comparable to the result using
the original 32-channel [10].

In mental fatigue detection based on EEG signals, feature extraction is a crucial step.
Whether the extracted features are sensitive to fatigue directly affects the classification
performance of fatigue detection. At present, mental fatigue detection methods using EEG
signals can be divided into three major categories: power spectrum-based feature analysis,
entropy-based feature analysis, and brain network-based feature analysis. Nguyen et al.
extracted the power spectrum features of the α-band and β-band, combined with the
blink rate, closed-eye rate, and heart rate features to identify the state of the subject.
10 subjects were tested for their proposed method and achieved classification accuracy
of 70.5 (±9.9) [11]. Rohit et al. performed spectrum analysis on EEG signals and used
support vector machines to predict the state of the 23 subjects. Using EEG spectral features
achieved 74% accuracy with SVM and for temporal aggregation of the classifier over a 3 min
window improved accuracy to 84% [12]. Wang et al. analyzed the sample entropy value
of the EEG signal and combined it with the EMG eigenvalues to establish a mathematical
model for fatigue driving evaluation. Combining a PCA-multiple regression model, they
got an average accuracy of 95.32% in eight subjects [13]. Zhang et al. calculated the
complexity of the approximate entropy of EEG data to distinguish whether the subject
had driving experience, combined with the sample entropy characteristics and EOG, EMG
signal characteristics to determine the driver’s fatigue level [14]. Han, C et al. applied
complex network theory to study the changes of brain network characteristics under
different fatigue states. Their results demonstrated under fatigue state, the brain network
complexity of 16 subjects improved [15]. Zhao, C used the graph theory method to
study the functional network reconstruction changes in different frequency bands of six
subjects and compared the brain function network in normal and fatigue states [16]. Only
performing feature analysis from a single aspect will cause the loss of effective information.
Tzimourta et al. extracted six time domain features and five spectral features for analysis
and found that the classification results using two fusion features are more ideal and the
best accuracy reached 85.5% [17]. Hu, J. et al. extracted four characteristics of sample
entropy, fuzzy entropy, approximate entropy, and power spectrum entropy, and fused
together as an input to the gradient-enhanced decision tree to determine whether the
driver was in a fatigue state. Under performing on 22 subjects, their results had the
average highest accuracy up to 94% [18]. Some closely related methods have been recently
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developed for EEG based mental health detection. To evaluate the association of EEG
with Parkinson’s disease (PD), Peláez Suárez et al., proposed to combine EEG function
connection (FC) with graph theory. 30 patients with Parkinson’s disease and 26 healthy
subjects were tested. Results demonstrated that PD patients presented alterations in the
FC in all frequencies and patients’ neural networks showed less connectivity in the alpha
and delta frequencies [19]. Ruiz, Gomez et al. proposed a CCA-based multiplex feature
parameters (multiplex clustering coefficient and strength) method to detect Alzheimer’s
disease (AD) and showed that the interpretation of the proposed method can be analogous
to their frequency-specific counterparts [20].

To solve the problem of complicated calculation induced by channel redundancy when
detecting mental fatigue states with multi-channel EEG data, this paper proposes a common
channel selection method based on ReliefF algorithm [21]. Considering that the single
feature analysis causes the loss of effective information, and multiple feature concatenation
causes high dimension of the feature set, this paper suggests a multi-feature fusion method
based on sparse representation to improve the classification effect of fatigue state.

2. Methods
2.1. Channel Selection Based on ReliefF

Relief is a feature selection algorithm by calculating feature weights, mainly for two
classification problems [22]. The importance of different features can be expressed by the
following formula:

δ = (‖s−M(s)‖ − ‖s− H(s)‖) (1)

In the above formula, s indicates the sample point. M(S) represents the nearest
neighbor sample point of the same kind as s. In the training data set S1, S2, S3 . . . . . . Sn,
sample points Si(1 ≤ i ≤ n) are randomly selected, the nearest neighbor sample point
SiNM is calculated as nearest hit in the training data set with the same kind Si, and the
nearest neighbor sample point SiNM is calculated as nearest miss in the training data set
with different classes Si. For feature sets F, update the weight values of different features
according to the following rules: For a certain feature, if the distance between Si and SiNH
is smaller than the distance between Si and SiNM, it means that the feature’s contribution to
distinguishing the samples of the same type and different types is positive, and the feature
weight value should be increased. Otherwise, the feature weight value should be reduced.
The complexity of the Relief algorithm is positively related to the number of samples and
the number of features. The sampling number is m, the original feature number is a, the
threshold of feature weight is δ, the weight of each feature is W, the feature subset is T. The
algorithm process is as follows Algorithm 1:

Algorithm 1. Relief algorithm

1: Input: Features: F, time of iteration: m

2: Initialize weight value of all features to 0, T is the empty set;

3: For i = 1 to m, do

4: Obtain a sample Si randomly from the training data set S;

5: Calculate Si’s nearest neighbor sample point SiNH from homogeneous training sets, and
Si’s nearest neighbor sample point SiNM from Si different kinds of training sets;

6: For j = 1 to a, do

W(Fj) = W(Fj)− di f f (Fj, Si
Fj , S

Fj

iNH)/m + di f f (Fj, Si
Fj , S

Fj

iNM)/m (2)

7: end for

8: end for
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9: For j = 1 to a, do

10: If W(Fj) ≥ δ

11: Add feature Fj to T

12: end if

13: end for

14: Output: selected feature subset T

In Equation (2), Fj is a certain original feature, and Si
Fj is the value of the sample Si on

the feature Fj. di f f (Fj, Si
Fj , S

Fj
iN) is defined as follows:

F is discrete:

di f f (Fj, Si
Fj , S

Fj
iN) =

{
0 Si

Fj = S
Fj
iN

1 Others
(3)

F is continuous:
di f f (Fj, Si

Fj , S
Fj
iN) =

∣∣∣Si
Fj − S

Fj
iN

∣∣∣ (4)

The ReliefF algorithm is improved on the basis of the Relief algorithm. The principle
of handling multi-classification problems is as follows: Sample points Si(1 ≤ i ≤ n) are
randomly selected from the training data set S1, S2, S3 . . . . . . Sn. Calculate the k nearest
neighbor sample points of Si nearest hit in the training set of the same kind as Si and
record it as SiNHh

(h = 1, 2..k). For different features Fj, the weight value of each feature is
calculated and updated as follows:

W(Fj) = W(Fj)−
k

∑
h=1

di f f (Fj, S
Fj
i , S

Fj
iNHh

)/(mk) + ∑
C/∈class(Si)

[
p(C)

1− p(class(Si))

k

∑
h=1

di f f (Fj, S
Fj
i , S

Fj
iNMh

(C)

]
/(mk) (5)

In the above formula, Fj is a certain original feature, W(Fj) is the corresponding weight
value, p(C) is the proportion of a certain category C different from Si, p(class(Si)) is the pro-
portion of the randomly selected sample Si corresponding to the category. di f f (F, S1, S2)
is the distance between sample S1 and sample S2 on feature F. Defined as follows:

F is discrete:

di f f (F, S1, S2) =

{
0 SF

1 = SF
2

1 SF
1 6= SF

2
(6)

F is continuous:

di f f (F, S1, S2) =

∣∣∣SF
1 − SF

2

∣∣∣
max(F)−min(F)

(7)

Suppose the sampling frequency is m, the original feature number is a, the nearest
neighbor sample number is k, the feature weight threshold is δ, the weight of each feature
is W, and the feature subset is T. The specific steps of the ReliefF algorithm are as follows
Algorithm 2:
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Algorithm 2. ReliefF algorithm

1: Input: Features: F, time of iteration: m, the number of features: a

2: Initialize the weight value W corresponding to all features to 0 and T to the empty set;

3: for i = 1 to m, do

4: Obtain the sample point Si randomly from the training data set S1, S2, S3 . . . . . . Sn;

5: Calculate k nearest neighbor samples SiNHh
(h = 1, 2...k) from the training data set of the

same type as Si; calculate the k nearest neighbor samples SiNMh
(h = 1, 2...k) from each

training data set different from Si;

6: For j = 1 to a, do

Equation (5),

7: end for

8: end for

9: For j = 1 to a, do

10: If W(Fj) ≥ δ

11: Add feature Fj to T

12: end if

13: end for

14: Output: selected feature subset T

In this paper, each EEG channel is regarded as a feature, and then the feature selection
is carried out according to the above method, so as to select the channel with a high contri-
bution to the classification effect of fatigue EEG data. There are n channels C1, C2, C3 . . . Cn
and b features F1, F2 . . . Fb are extracted from each channel. The weight of channel l can be
calculated by the following formula:

W(Cl) =
1
b

b

∑
i=1

W(CFi
l ) (8)

In the above formula, W(CFi
l ) represents the weight corresponding to the feature i on

channel l, and b is the number of features extracted on each channel. The value of W(CFi
l )

can be obtained by the above ReliefF method.

2.2. Common Channel Selection Based on Weight Addition

There are m subjects S1, S2, S3 . . . . . . Sn. According to the above method, the channel
weight value [23] of each subject is W1, W2, W3 . . . Wm. First normalize the channel weights
of each subject. After the normalized channel weights are obtained, the normalized weights
of the corresponding channels of each test are summed to obtain the common channel
weights, as follows:

W(Ci) =
m

∑
j=1

W(C
Sj
i ) (9)

In the above formula, W(Ci) represents the weight of the i-th channel of the last

common channel, W(C
Sj
i ) is the weight of the subject Sj channel i after normalization.

Finally, the weights W are sorted from large to small, and the channel with the highest rank
is the common optimal channel combination.
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2.3. Common Channel Selection Based on Weighted Classification Performance Using
a Single Channel

In this paper, the results of each subject’s single-channel performance analysis are
combined with the channel weights. The SRDA (Spectral Regression Discriminant Analysis)
classifier [24] is used to obtain the single channel classification accuracy rate, and the
accuracy rate is weighted to calculate the common channel weight. Suppose there are m
subjects S1, S2, S3 . . . . . . Sm and n channels C1, C2, C3 . . . Cn. Extract b features F1, F2 . . . Fb
from each channel, and the calculation method of common channel weights is as follows:

W(Cl) =
m

∑
j=1

(
b

∑
i=1

(W(CFi
l Sj) ∗ Acc(CFi

l Sj))) (10)

In the above formula, W(Cl) represents the weight value of the l-th common channel,
W(CFi

l Sj) represents the weight value calculated for the i-th feature on the l-th channel of

the j-th subject. Acc(CFi
l Sj) represents the classification accuracy rate under the i-th feature

on the l-th channel of the j-th subject. Calculate the weight value of each channel according
to the above formula, and sort each channel by weight. Finally, select the common channel
combination according to the order.

2.4. Feature Fusion Based on Sparse Representation
2.4.1. Feature Extraction

Five features in time domain and frequency domain are extracted in this paper. The
specific features are shown in Table 1.

Table 1. Feature details.

Features Feature Details

Frequency domain features

Power spectral density in the beta band (12–30 Hz)
Power spectral density in the alpha band (8–12 Hz)
Power spectral density in the theta band (4–8 Hz)

Power spectral density in the delta band (0.5–4 Hz)

Time domain feature Sample entropy

2.4.2. Sparse Representation

It is difficult to analyze and process high-dimensional signals, and it is easier and
faster to process sparse signals. Sparse signals are signals with few non-zero elements and
low dimensions. Most signals are not sparse signals, but in a certain transform domain, the
signals can be sparse to obtain a sparse representation of the original signal.

In recent years, the sparse representation theory [25] of signals has attracted the
attention of many researchers, a large number of applications are in the field of image
signal processing, and there are also a few studies applying sparse representation theory
to the classification processing of physiological signals. Sparse representation theory is to
represent the original signal with a linear combination of fewer basic signals. Suppose an
N-dimensional original signal X ∈ RN , dictionary matrix D ∈ RN∗M containing primitive
column signals. Then the signal X can be represented by a linear combination of atoms in
D, as follows:

X = DαorX ≈ Dα, ‖X− Dα‖ < ε (11)

In the above formula, α ∈ RM = [α1, α2, ..., αM]T represents the sparse representation
of the original signal X. The sparse representation diagram is shown in Figure 1.
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In this paper, in order to reduce the dimension of the feature set, the incomplete
dictionary D is used to realize the sparse representation of features.

2.4.3. Multi-Class Feature Fusion Based on K-SVD

The determination of the dictionary in sparse representation theory is a key step. In
this paper, K-SVD dictionary learning algorithm [26] is used to design the dictionary matrix.

The K-SVD dictionary learning algorithm is mainly divided into two stages: sparse
representation and dictionary update. The sparse representation stage first initializes a
dictionary matrix D. Using the OMP algorithm to obtain the sparse representation X of the
signal Y is as follows:

Y ≈ DX =
M

∑
i=1

dixi (12)

The results of the initial dictionary for sparse representation are often not optimal,
and dictionary update is required. The dictionary matrix D is updated by columns. First
fix the sparse coefficient matrix X and dictionary matrix D. Suppose we want to update
the k column dk of the dictionary matrix, corresponding k-th row in the sparse coefficient
matrix X is xk

T .The following formula is available:

‖Y− DX‖2
F = ‖Y−

M

∑
j=1

djx
j
T‖

2

F

= ‖(Y−∑
j 6=k

djx
j
T)− dkxk

T‖
2

F

= ‖Ek − dkxk
T‖

2
F (13)

Keep the non-zero value in xk
T , remove the value of 0, and do the corresponding

processing on Ek, the specific processing is as follows: Define the set ωk = {i|1 ≤ i ≤ N,
xk

T(i) 6= 0}, which represents the set of index values of the signal {y i
}

using dk. Define Ωk
as a matrix of N ∗ |ωk|, except that the value at position (ωk(i), i) is set to 1, and all other
values are 0. Make Equation (13) as follows:

‖EkΩk − dkxk
TΩk‖

2
F = ‖Ek

R − dkxk
R‖

2
F (14)

In the above formula, Ek
R = EkΩkYk

R = YΩkxk
R = xk

TΩk respectively show the contrac-
tion results of the three after removing 0. Perform SVD decomposition on Ek

R:

Ek
R = U∆VT (15)
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The first column of U is denoted by
∼
dk, then

∼
dk is the update to dk. Multiply the

first column of V by ∆(1, 1) to get the updated result of xk
R. Follow the above steps to

update the dictionary column by column to get a new dictionary
∼
D, and then use the new

dictionary to sparsely represent the original signal. Determine whether the stop condition
is reached. If the stop condition is not met, continue to iterate through the above steps until
the direct condition is met. The flow of K-SVD dictionary learning algorithm is shown in
Figure 2 below.

In this paper, based on the K-SVD dictionary learning algorithm, the dictionary matrix
corresponding to the multi-feature set is constructed. Sparse representations of multiple
feature sets are used to obtain sparse fusion features, which are used as input to the SRDA
classifier to reduce the dimension of the feature set and improve the classification accuracy.
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3. Experimental Setup
3.1. Subject and Experiment Environment

The experimental subjects include eight graduate students without brain disease or
other physiological psychological diseases. And they were required not to drink alcohol
or take foods, beverages, and drugs that might affect the mental state of the human body
during the first 24 h before the experiment. The experiments were conducted in a quiet and
closed laboratory, ensuring no external interference, good ventilation, and suitable light.
The subjects were asked to sit in a comfortable chair, facing the computer screen, and relax
the body to prevent muscle tension from interfering with the results of the experiment.
Subjects were instructed and trained about the experimental procedure in advance. And
all subjects gave their informed consent for inclusion before they participated in the study.
The study was conducted with approval from Wuhan University of Technology.

3.2. 2-Back Task

The N-back task is a working memory task, which was first proposed by Kirchner and
used to examine the age difference in the short-term memory ability of rapidly changing
information. In the N-back task, when browsing the stimuli presented sequentially, the
subject judges whether the currently presented stimulus matches the N-th stimulus pre-
sented before the stimulus. The current stimulation position is marked as M. The subject
judges whether it is consistent with the M-1-th stimulation, which is called a 1-back task.
The subject judges whether it is consistent with M-2 stimulation, which is a 2-back task.
Taking into account the difficulty of the experiment and the experimental experience of
the subjects, and studies have shown that 2-back duration of 30 min can induce mental
fatigue. In our research, the letter 2-back task is designed to induce mental fatigue. The
design diagram is shown in Figure 3.
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Figure 3. 2-Back task stimulation diagram; (a) When browsing the stimuli presented sequentially, the
subject judges whether the currently presented stimulus matches the N-th stimulus presented before
the stimulus; (b) For every 3 s was a letter stimulation and the letter presented in the screen for 0.5 s.

Subjects need to judge whether the current letter stimulus is consistent with the
previous second letter stimulus based on memory. If they are consistent, the subject needs
to press the ‘←’ key to respond. If they are not consistent, they need to press the ‘→’ key to
respond. When the first and second letter stimuli appear, press the ‘→’ key to respond.

3.3. Experimental Design and Procedures

The experimental design in this article is shown in Figure 4.
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Figure 4. 2-Back task induced fatigue experiment design.

Step 1: The subject put on an electroencephalogram cap and applied conductive paste to
sit on the experimental chair and prepare for the experiment.

Step 2: The subject sat and filled in the Chalder fatigue scale.
Step 3: The subject sat quietly on the experimental chair and EEG data were collected

for 2 min.
Step 4: The subject began the 2-back task training stage until the accuracy rate reached

0.8 or above.
Step 5: The subject began the first round of 2-back task formal experiment, and the

subject’s key response and response time were recorded for 25 min.
Step 6: The subject rested for 5 min.
Step 7: The subject began the second round of the 2-back task formal experiment, and

the subject’s key response and response time were recorded for 25 min.
Step 8: The subject sat quietly on the experimental chair and the subject’s EEG data were

collected for 2 min.
Step 9: Subject sat and filled in the Chalder fatigue scale.
Step 10: The experiment ended.

In our research, the following 16 channels are used to collect the fatigue EEG data
of the subjects: Cz, FCz, F3, F4, C3, C4, P3, P4, FZ, O, F7, F8, T3, T4, T5, T6. The channel
distribution is shown in Figure 5.
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4. Results and Discussion
4.1. 2-Back Task Result Analysis

In this paper, the reaction time and accuracy of the response to stimulus during the
fatigue-induced experiment of eight subjects who completed the 2-back task with a total
duration of 50 min were recorded. Average the response time of eight subjects according
to the time series to get the average response time in the 50 min 2-back task. Next, the
average response time is calculated by a time window with a step length of 2 min and an
overlap interval of 1 min. Accuracy of response to eight subjects was treated in the same
time window. Finally, the average response accuracy of eight subjects is averaged. The
results are shown in Figure 6.
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It can be seen from the above figure that although the subjects have a more obvious
downward trend around the 25th average reaction time during the completion of the
2-back task. The overall trend is increasing. However, the average response accuracy
of the subjects fluctuated less, and only decreased significantly in the final stage of the
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experiment. The reasons for the above results combined with the feedback analysis after
the subject experiment are as follows: The subject gradually experienced fatigue when
completing the 2-back task. In order to resist the impact of fatigue, the subject needs to
spend a longer time to respond to the stimulus. This subjective resistance ensures that the
accuracy rate does not fluctuate much during the 2-back task. The obvious decrease in
the reaction time in the 25th period was caused by the subjects entering the second round
of task after taking a 5 min break after completing the first round of 2-back task. By the
end of the experiment, the subjects were already in a state of high fatigue, which caused a
significant drop in accuracy.

4.2. Channel Selection Result Analysis

After the 2-back task, the EEG data were recorded. With the 500 Hz sample rate of
EEG recorder, 2 min’s data were collected for pre and post fatigue states. Thus, the EEG
data size is 16 × 60,000 × 2 of a subject. After segmenting EEG data, the total number
of EEG samples was 1264. The datasets were randomly divided into two parts, 75% for
training and the rest for testing.

We compare the classification accuracy of eight subjects in the weighted common
channel, accuracy weighted common channel, ICA [27] common channel, and full channel.
The average accuracy results are shown in Figure 7.
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Figure 7. Comparison of classification accuracy of different channel selection methods.

It can be seen from the figure that, compared with the classification accuracy under the
full channel, except that Subject 4 is slightly lower than the classification accuracy under
the full channel, the remaining subjects always have one or several channels after selecting
basically flat or slightly higher than the classification accuracy under the full channel.
Among the three common channel selection methods, the effect of accuracy weighting is
overall better than the other two common channel selection methods. While ensuring the
classification accuracy, the number of channels is halved, which effectively reduces the
complexity of data processing. In addition, the computation time between the methods of
full channels and selected channels are shown in Figure 8. It can be seen that the proposed
method were less time consuming.
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4.3. Feature Fusion Result Analysis

Time and frequency domain features are illustrated in Figure 9 plotted with the
EEGLAB [28] package in MATLAB.

Figure 9c is the PSD spectrum before fatigue, and the X-axis represents the frequency
range from 0 to 30 Hz. The four brain topography maps are the energy spectra of the
intermediate values 3, 6, 10, and 22 Hz of the four sub bands δ (0.5–4), θ (4–8), α (8–13),
and β (13–30), respectively. Before fatigue, the active energy of each sub band was mainly
concentrated in the left brain and left temporal lobe, while during fatigue, the energy
was mainly distributed in the posterior and right occipital lobe. Under an alert or excited
(pre-fatigue) state, it is generally believed that beta waves improve. As the body enters
drowsiness or sleep, alpha and delta waves increase in energy. Figure 9e,f are time-
frequency graphs of T5 channel within 1000 ms before and after fatigue, respectively. It can
be seen that spectrum energy decreases after fatigue compared with pre-fatigue.

In our research, the five extracted single features and sparse fusion features are used
as the input of the SRDA classifier. As mentioned above, the total number of EEG samples
was 1264. The datasets were randomly divided into two parts, of which 75% were used
for training and the rest for testing. The computation was repeated five times. For feature
dimension aspect, the dimension of sample entropy and sub-band PSD features is 16
(16 channels*1) for one sample. The dimension of original fused feature is 80 (16 × 5).
After K-SVD dictionary learning algorithm, the original dimension was reduced to 20.
Classification accuracy of the eight subjects is shown in Table 2.

Table 2. Classification evaluation (mean ± standard deviation) on sparse fusion features method for
5-folds.

Subject Accuracy Precision F1 Score

Sub1 0.825 ± 0.01 0.842 ± 0.071 0.817 ± 0.079
Sub2 0.90 ± 0.04 0.834 ± 0.044 0.897 ± 0.1
Sub3 0.97 ± 0.005 0.962 ± 0.011 0.966 ± 0.04
Sub4 0.90 ± 0.02 0.891 ± 0.05 0.91 ± 0.04
Sub5 0.95 ± 0.10 0.925 ± 0.012 0.906 ± 0.083
Sub6 0.875 ± 0.02 0.84 ± 0.060 0.870 ± 0.08
Sub7 0.90 ± 0.013 0.858 ± 0.121 0.89 ± 0.113
Sub8 0.95 ± 0.025 0.971 ± 0.081 0.959 ± 0.004
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Figure 9. Feature visualization for pre-fatigue and fatigue state. (a) 16 channels of EEG time series in pre-fatigue state; (b)
16 channels of EEG time series in fatigue state; (c) PSD distribution in pre-fatigue state. X-axis is frequency from 0–30 Hz
and Y-axis is PSD value. The lines in the middle are the PSD value of 16 channels from 0–30 Hz. (d) PSD distribution in
fatigue state. (e) Time-frequency analysis in pre-fatigue state. This figure consists of two parts: upper and lower. The upper
is the power of frequency in 0–30 Hz and the lower is time series from 0–1000 ms in pre-fatigue state. (f) Time-frequency
analysis in fatigue state.

As can be seen from Table 3, the five extracted features and sparse fusion features are
input into the SRDA classifier for classification. Compared with the classification accuracy,
the classification effect of the sparse fusion feature obtained by the method in this paper is
higher than the classification effect of using a certain feature alone. This shows that the use
of multi-class sparse fusion features effectively improves the classification accuracy.

In addition, the sparse feature fusion method in this paper is compared with the
commonly used concatenated feature fusion method and the PCA feature fusion method.
The results are shown in Figure 10.

It can be seen from the figure that the three fusion features are used as the input of
the SRDA classifier, and the classification accuracy is compared. Subject 6 has the best
accuracy of PCA fusion feature classification. Subject 3 has the same effect on the three
fusion feature classifications. Subjects 1, 2, 4, 5, 7, and 8 all used sparse fusion features for
classification accuracy better than the other two fusion features. The sparse feature fusion
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method proposed in this paper effectively reduces the dimension of the feature set and
improves the classification accuracy.

Table 3. Comparison of average classification effects of different features and sparse fusion features.

Subject
Sample
Entropy
Feature

PSD
(Delta
Band)

PSD
(Theta
Band)

PSD
(Alpha
Band)

PSD
(Beta
Band)

Sparse
Fusion
Feature

Sub1 0.8 0.775 0.65 0.75 0.75 0.825
Sub2 0.9 0.725 0.775 0.725 0.8 0.9
Sub3 0.95 0.95 0.675 0.55 0.7 0.97
Sub4 0.775 0.875 0.85 0.825 0.775 0.9
Sub5 0.875 0.725 0.775 0.925 0.875 0.95
Sub6 0.85 0.575 0.875 0.6 0.8 0.875
Sub7 0.525 0.8 0.625 0.8 0.65 0.9
Sub8 0.925 0.675 0.65 0.775 0.85 0.95
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5. Conclusions

Research on brain fatigue detection based on EEG signal is a hot spot in current
research. In this paper, a fatigue induction experiment based on the 2-back task is designed,
and fatigue EEG data of eight subjects are collected. The channel selection and multi-type
feature fusion method of fatigue EEG signal are deeply researched. Based on the ReliefF
algorithm, an improved common channel selection algorithm is proposed. Treat each
channel as a feature. Use ReliefF algorithm to calculate the weight value of each channel
under each single feature, and analyze and calculate the classification accuracy of each
channel under each single feature. Finally, the weighted sum of the accuracy is used to
obtain the weight value of each channel, and the channel with the highest weight value is
the common channel. On this basis, the multi-feature fusion algorithm is further studied.
The time domain and frequency domain features are extracted, and multi-class fusion
features are obtained as input to the classifier through the sparse representation method.

Experimental results show that the channel selection method proposed in this paper
can effectively reduce the 16-channel data to 8 channels while ensuring the classification
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effect, reducing the amount of data, and reducing the computational complexity. At the
same time, the multi-feature sparse fusion method proposed in this paper improves the
classification accuracy while ensuring the feature dimension. The brain fatigue detection
method based on EEG signal proposed in this paper provides a theoretical basis for the
realization of online mental fatigue detection which has important significance.

However, some other problems need to be further researched. The fatigue induction
experiment based on the 2-back task in our research is carried out in the laboratory under
the shielded environment, which is relatively ideal, and the noise interference of the fatigue
EEG data collected is relatively less. How to effectively eliminate the interference of
environmental noise and apply mental fatigue detection to the scene closer to real life is
worth researching. The fatigue state is a gradual process, and a more detailed quantitative
assessment of the fatigue state is needed in the future.
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