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Abstract: Image encryption is a confidential strategy to keep the information in digital images from
being leaked. Due to excellent chaotic dynamic behavior, self-feedbacked Hopfield networks have
been used to design image ciphers. However, Self-feedbacked Hopfield networks have complex
structures, large computational amount and fixed parameters; these properties limit the application
of them. In this paper, a single neuronal dynamical system in self-feedbacked Hopfield network is
unveiled. The discrete form of single neuronal dynamical system is derived from a self-feedbacked
Hopfield network. Chaotic performance evaluation indicates that the system has good complexity,
high sensitivity, and a large chaotic parameter range. The system is also incorporated into a frame-
work to improve its chaotic performance. The result shows the system is well adapted to this type of
framework, which means that there is a lot of room for improvement in the system. To investigate its
applications in image encryption, an image encryption scheme is then designed. Simulation results
and security analysis indicate that the proposed scheme is highly resistant to various attacks and
competitive with some exiting schemes.

Keywords: single neuronal dynamical system; self-feedbacked; hopfield network; chaos; image en-
cryption

1. Introduction

Neural networks and neuro-dynamics expand to different application areas including
signal processing, information security, encryption and associative memory [1–6]. The
Hopfield network is a typical dynamic neural network with abundant dynamic charac-
teristics. Since Hopfield proposed the model, it has been applied to solving multifarious
optimization problems [7–9]. However, the conventional Hopfield network often obtained
a solution which was far from the optimal solution [10].

Since the obstacle was reported, multitudinous improved methods have been applied
to the Hopfield network [11–15]. Among these modifications of the Hopfield network, a
self-feedbacked Hopfield network has similar properties with the conventional Hopfield
network, but have higher convergence speed [15]. It was also proved to have good chaotic
dynamic behavior [16]. Therefore, the self-feedbacked Hopfield network has been widely
used in optimization problems and image encryption [17–24]. However, the self-feedbacked
Hopfield network still has some interesting properties to be discovered. We found that
the single neuron of the self-feedbacked Hopfield network also showed complex dynamic
behavior. Self-feedbacked Hopfield networks that were used to generate chaos phenomena
have complex structures, a large computational amount and fixed parameters [16,18–22].
Due to these properties, self-feedbacked Hopfield networks need to be combined with other
chaotic maps [18–21], which have consequently limited the application. On the contrary,
the structure and calculation of single neuron are simplified, and the single neuron can
present chaos phenomenon as its parameters vary in continuous range. Therefore, the
single neuron has a broad application scope.
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In recent years, chaotic systems have been widely applied in cryptography and pseudo-
random number [25–29]. The orbits of high-dimensional chaotic systems are difficult to be
predicted, but the systems need complex performance analysis and high implementation
costs [30,31]. Many simple chaotic systems (e.g., logistic map, sine map, and chebyshev
map) have been used to achieve high efficiency due to fewer parameters and a simple
structure [32–39]. However, the simple chaotic systems have drawbacks in the application.
Due to the small number of parameters, the key space is limited, and the initial states can be
estimated through certain methods [40–42]. This makes the applications of simple chaotic
systems not secure enough [41,43,44]. Also, sensitivity to the effects of computer precision
may degenerate the systems into being non-chaotic immediately [45]. The single neuronal
dynamical system in a self-feedbacked Hopfield network has sufficient parameters and
excellent chaotic properties.

In addition, various frameworks that can improve the properties of simple chaotic
systems have been proposed, including a combination of multiple maps [46–49], modifying
the chaotic sequences generated by chaotic maps [50–52], and modifying the existing
maps [53–55]. Most of the frameworks set the existing maps as a whole and incorporate
them into the fixed format [54,56–58], thus generating new maps with better performance
automatically. The single neuronal dynamical system in self-feedbacked Hopfield network
is also applicable to existing frameworks, and it can achieve a positive effect.

In this paper, the discrete form of single neuronal dynamical system (SNDS) is de-
rived from the self-feedbacked Hopfield network. Moreover, SNDS is incorporated into a
framework and enhanced single neuronal dynamical system (ESNDS) is produced. At last,
an image encryption scheme based on the ESNDS is designed.

The paper is organized as follows. Section 2 presents the derivation process of the
SNDS discrete form. Section 3 demonstrates the chaotic dynamic behavior of SNDS from
two perspectives. The structure and performance of ESNDS is shown in Section 4, where
the sequences generated from ESNDS are also test. Section 5 shows an encryption scheme
and the results of simulation and analysis. Section 6 reveals our conclusion.

2. Mathematical Preliminaries
2.1. The Hopfield Networks

The Hopfield network [8] is defined as Equations (1) and (2):

vi(t) = f [ui(t)], (1)

Ci
dui(t)

dt
= −ui(t)

Ri
+

n

∑
j=1

Tijvj(t) + Ii, (2)

where, Ci represents the capacitance of the i neuron; ui(t) represents the input of neuron
i at time instance, t; vj(t) represents the output of neuron j at time instance, t; Ri is the
resistance of neuron i; T−1

ij is the finite impedance between the output vj and the neuron i;
Ii is any other fixed input current to neuron i; f () is the activation function of neurons. The
structure of conventional Hopfield network is shown in Figure 1.
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ing to Figure 1, there is no self-feedbacks in conventional Hopfield Neural network, we 
can denote 𝑤 = [𝑤 ] in the condition of 𝑤 = 𝑤  and 𝑤 = 0, then Equations (1) and 
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According to Figure 2, we have 𝑤 ≠ 0. For a single neuron, we don’t add the output 
of other neurons, so set 𝑤 = 0, 𝑗 ∈ [1,2, . . . , n] (𝑗 ≠ 𝑖). The Equations (3) and (4) can be 
converted into single neuron format, as Equations (5) and (6): 

Figure 1. The structure of conventional Hopfield network [8].

We assume εi = RiCi, wij = RiTi, bi = Ri Ii. Also, assuming that u(t) = [u1(t),
u2(t), . . . , un(t)]T, v(t) = [v1(t), v2(t), . . . , vn(t)]

T , ε = Diag(ε1, ε2, . . . , εn). According to
Figure 1, there is no self-feedbacks in conventional Hopfield Neural network, we can
denote w = [wij] in the condition of wij = wji and wii = 0, then Equations (1) and (2) are
transformed to Equations (3) and (4):

v(t) = f [u(t)], (3)

ε
du(t)

dt
= −u(t) + Wv(t) + b. (4)

2.2. Single Neuronal Dynamical System in Self-Feedbacked Hopfield Networks

The structure of self-feedbacked Hopfield network is shown in Figure 2.
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According to Figure 2, we have wii 6= 0. For a single neuron, we don’t add the output
of other neurons, so set wij = 0, j ∈ [1, 2, . . . , n] (j 6= i). The Equations (3) and (4) can be
converted into single neuron format, as Equations (5) and (6):

vi(t) = f (ui(t)), (5)

ui(t + ∆t)− ui(t)
∆t

= −ui(t)
εi

+
1
εi

wiivi(t) +
bi
εi

, (6)

where, ∆t is unit interval, set ∆t = 1. The Equation (7) can then be obtained:

ui(t + 1) =
(

1− 1
εi

)
ui(t) +

1
εi

wiivi(t) +
1
εi

bi. (7)

We assume k = 1 − 1
εi

, z = 1
εi

wii, h = 1
εi

bi, then Equation (7) is transformed to
Equation (8):

ui(t + 1) = kui(t) + zvi(t) + h. (8)

For conventional Hopfield network, the activation function is sigmoid. Therefore, this
study uses sigmoid function as activation function. The Equation (5) is transformed to
Equation (9):

vi(t) =
1

1 + exp(−γui(t))
. (9)

Thus, the single neuronal dynamical system in self-feedbacked Hopfield networks
is obtained.

3. Analysis of Single Neuronal Dynamical System
3.1. Dynamical Behavior in Single Neuronal Dynamical System

On the basis of Equations (8) and (9), it should be noted that the single neuronal
dynamical system (SNDS) has four parameters. We can vary them to show complex
dynamic behaviors. When the parameters hold specific value, a sequence of bifurcation
leading to chaos can be observed by changing one parameter. To unmask the dynamical
behavior of the SNDS, the single-parameter bifurcation diagrams and the corresponding
evolution diagrams of the Lyapunov exponent are drawn, as shown in Figures 3–6. In
the figures, there is distinct correspondence between bifurcation diagrams and evolution
diagrams of the Lyapunov exponent. For parameter γ, Figure 3 shows multiple instances of
entering and exiting chaos, which are associated with multiple bifurcations phenomenon.
The instances that exit chaos are sudden, and it corresponds to the sudden decrease of
Lyapunov exponent in the evolution diagram. For parameter k, as shown in Figure 4, it
first gradually enters chaos, and then gradually exits after a period of evolution. In the
evolution, chaos is not continuous. Furthermore, the Lyapunov exponent diagram of k
has symmetry in the domain of definition. Parameter z also appears discontinuous chaos
phenomenon in a large range, and parameter h appears chaos phenomenon only within a
very small range.

In addition, the double-parameter evolution diagrams of Lyapunov exponent are used
for a clearer understanding of the dynamical behavior of SNDS, as shown in Figure 7.
The Figure includes six parameter combinations. Each combination is presented by two
two-dimensional evolution diagrams of Lyapunov exponent. The latter two-dimensional
evolution diagram is formed on the basis of setting Lyapunov exponent which is less
than zero to be zero. In Figure 7, some interesting phenomenon can be observed. The
combinations of γ− z, γ− k, and k− z appear wide area of chaos, and the area is banded in
the diagram. This corresponds to the single-parameter evolution diagram of the Lyapunov
exponent. On the contrary, the chaos range of the combination with parameter h is narrow.
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Figure 6. Single-parameter bifurcation diagram of v versus parameter h and corresponding Lyapunov
exponent diagram for γ = 250, k = 0.6, and z = −0.1.
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Figure 7. Two-dimensional evolution diagram of Lyapunov exponent (the original), and two-di-
mensional evolution diagram of Lyapunov exponent (set Lyapunov exponent < 0 to 0) of (a) 𝑘-𝛾 
for 𝑧 = −0.1 and ℎ = 0.01; (b) 𝑧-𝛾 for 𝑘 = 0.6 and ℎ = 0.01; (c) ℎ-𝛾 for 𝑘 = 0.6 and 𝑧 = −0.1; 
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Figure 7. Two-dimensional evolution diagram of Lyapunov exponent (the original), and two-
dimensional evolution diagram of Lyapunov exponent (set Lyapunov exponent < 0 to 0 ) of (a) k -γ
for z = −0.1 and h = 0.01; (b) z -γ for k = 0.6 and h = 0.01; (c) h -γ for k = 0.6 and z = −0.1; (d) z -k
for γ = 250 and h = 0.01; (e) k -h for γ = 250 and z = −0.1; (f) z -h for k = 0.6 and γ = 250.

3.2. Efficiency Analysis

High efficiency of the chaotic map is necessary as practical applications always involve
the generation of a large number of pseudorandom sequences. Compared with self-
feedbacked Hopfield networks, SNDS has low implementation cost. Table 1 shows the time
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elapsed by SNDS and self-feedbacked Hopfield networks when generating pseudorandom
sequences. The experimental environments are as follows: Matlab R2017a, Intel (R) Core
(TM) i5-9400F CPU @ 2.90 GHz with 24 GB memory, Windows 10 Operation System. In
the experiment, each sequence is generated 100 times, and the average running time is
taken as the result. This indicates that SNDS has the higher efficiency than self-feedbacked
Hopfield networks.

Table 1. Implementation cost (second) of SNDS and self-feedbacked Hopfield networks.

Length of
Sequence 1×103 1×104 1×105 1×106 1×107

[21] 0.006050 0.013739 0.079042 0.635034 6.286282
[16] 0.005240 0.012485 0.071335 0.581641 5.802823
[19] 0.008347 0.020941 0.120890 0.971717 9.612208

SNDS 0.001287 0.003032 0.017690 0.163250 1.723895

4. Enhanced Single Neuronal Dynamic System and Random Bit Generation
4.1. Enhanced Single Neuronal Dynamic System

By incorporating SNDS into the framework proposed in [54], The enhanced single
neuronal dynamic system (ESNDS) is obtained. It is described by Equation (10):

vi(t) = 1
1+exp(−γui(t))

v′i(t) = vi(t)× 2n − f loor(vi(t)× 2n)
ui(t + 1) = kui(t) + zv′i(t) + h

, (10)

where the parameter v′i(t) is the value of vi(t) after an intermediate calculation. The
Lyapunov exponent evolution diagram of n is shown as Figure 8. In this paper, n is set to a
fixed value of 14.
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Figure 8. The evolution diagram of Lyapunov exponent versus parameter n for γ = 250, k = 0.6,
z = −0.1, and h = 0.01.

For ESNDS, the bifurcation diagrams and Lyapunov exponent evolution diagrams
of single-parameter are shown in Figures 9–12. It can be seen that the chaotic range of
all parameters tends to be continuous. The Lyapunov exponent of Parameter γ falls first
and rises later, and Lyapunov exponent > 0 occurs around γ = 150. The other three
parameters are also in chaos over a wide range. Note that for h, the chaotic property of this
parameter has been greatly improved. It means that SNDS can achieve better performance
by using the frameworks suitable for a simple chaotic system. This greatly increases the
application potential of SNDS.
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4.2. Random Bit Generation
4.2.1. NIST SP800-22 Test

To demonstrate the robustness of ESNDS and the potential of its application in image
encryption, the NIST SP800-22 test standard is used for ESNDS. It is designed by National
Institute of Standards and Technology (NIST) to validate the randomness of binary se-
quences [59]. NIST SP800-22 is the most complete statistical test suite for randomness
test of binary sequences [60]. The binary numbers are generated by the value of v′i in the
iterative process of ESNDS. For each value of v′i, we discard the former 10 decimal digits
and compare the result with 0.5, the process is shown as Equations (11) and (12):

si = (1010 × v′i) mod 1, (11)

yi =

{
1, 0 ≤ si < 0.5
0, 0.5 ≤ si < 1

. (12)

The NIST test standard includes 15 subsets. In the experiment, all subsets were
considered, and each subset can output a p-value. If the p-value is greater than 0.01, the
sequence is thought to pass a subset. The length of each binary sequence is 1,000,000 bits,
and we test 100 binary sequences for each subset. During the process, the initial values
of parameters for ESNDS are set as follows: γ = 250, k = 0.6, z = −0.1, h = 0.01, and
u0 = 0.1. The result is shown in Table 2, and p− value of the last round is put into the
table. According to [59], the minimum pass rate of each subset is 96 percent. Therefore, a
dynamical system is chaotic enough if the minimum pass rate is achieved in all subsets.
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Table 2. NIST SP800-22 test results of ESNDS.

Test Number Subset p-Value Proportion Test Result

1 Frequency 0.675947 100/100 Random
2 Block Frequency 0.124338 100/100 Random

3 Cumulative
Sums 0.771002 100/100 Random

4 Runs 0.965044 99/100 Random
5 LongestRun 0.734606 98/100 Random
6 Rank 0.609329 100/100 Random
7 FFT 0.229310 99/100 Random

8 Non Over.
Temp. 0.328353 100/100 Random

9 Over. Temp. 0.617757 100/100 Random
10 Universal 0.384464 98/100 Random
11 Appr. Entropy 0.663306 99/100 Random
12 Ran. Exc. 0.130397 99/100 Random
13 Ran. Exc. Var 0.341983 100/100 Random
14 Serial 0.320912 98/100 Random

15 Linear
Complexity 0.340430 100/100 Random

4.2.2. TestU01

To further investigate the pseudo-random sequence generated by ESNDS, two binary
sequences are used in TestU01. As an empirical statistical test suite, TestU01 can evaluate
the randomness of sequences through a collection of utilities [61]. The length of two
binary sequences is 30,000,000 bits and 1,000,000,000 bits, respectively. In standard tests
suits, the sequence size of nearly 30,000,000 is commonly used [62,63]. In the experiment,
three predefined batteries, Rabbit, Alphabit, and Block Alphabit, are used to evaluate the
randomness of bits generated by ESNDS. The initial values of parameters for ESNDS are
set as follows: γ = 250, k = 0.6, z = −0.1, h = 0.01, and u0 = 0.1. The result is shown in
Table 3. It can be seen that the sequences have strong randomness and ESNDS is effective.

Table 3. TestU01 test results of ESNDS.

Battery Length of Sequences Test Result

Rabbit 3× 107 Pass
109 Pass

Alphabit 3× 107 Pass
109 Pass

BlockAlphabit 3× 107 Pass
109 Pass

4.2.3. The Sensitivity to Initial Condition

The sensitivity to initial condition is how slightly a parameter or initial value change
will generate different sequence. In this section, the four parameters and initial value of
ESNDS are studied. The result is shown in Figure 13. It is seen that the sequences vary at
about ten iterations of all parameters and initial value. Therefore, ESNDS is sufficiently
sensitive to initial condition and can fully ensure encryption security.
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4.3. Performance Analysis
4.3.1. Sample Entropy

Sample Entropy (SE) is used to describe the complexity of a time series quantita-
tively [64]. The computing method of SE is defined in [65]. The time series with a lower
degree of regularity always have a larger SE. Therefore, a lager SE indicates that the time
series is higher complexity. In order to reflect the complexity of the sequences generated by
ESNDS clearly, we introduced two simple chaotic maps (i.e., Sine map, Logistic map) and
Two coupled chaotic maps which are proposed in [48,55]. The coupled chaotic map in [48]
is defined as Equation (13), and that in [55] is defined as Equations (14) and (15).{

xi+1 = sin(πr(yi + 3)xi(1− xi))
yi+1 = sin(πr(xi+1 + 3)yi(1− yi))

, (13)

f (x)
{ x

α 0 ≤ x ≤ α
1−x
1−α α ≤ x ≤ 1

, (14)

xi+1 = f (4rxi(1− xi)). (15)

For intuitive comparison, the parameters k ∈ [0, 1] and z ∈ [−1, 0] are selected to depict
the SE of ESNDS, as shown in Figure 14. Furthermore, Figure 14a includes the SE of
coupled chaotic map in [55] along parameters α and r, and Figure 14b includes the SE of
coupled chaotic map in [48] and simple chaotic maps along parameter r. It can be seen that
ESNDS have relatively wider chaotic range and larger SE than the simple chaotic maps
and the coupled chaotic maps. This indicates that ESNDS can generate sequences with
more complex properties. It is of significance for chaotic maps applied in data security.
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4.3.2. Efficiency Analysis

In considering the complexity of sequences generated by chaotic maps, the high
efficiency of chaotic maps is also necessary. The implementation cost of ESNDS is calculated
in different length of sequence, and it is also compared with coupled chaotic maps proposed
in [48,55], as shown in Table 4. In the experiment, each sequence is generated 100 times,
and the average running time is taken as the result. It can be seen that implementation
cost of ESNDS is in the middle of the three chaotic maps. Therefore, ESNDS is suitable for
data security.
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Table 4. Implementation cost (second) of ESNDS and different coupled chaotic maps.

Length of
Sequence 1×103 1×104 1×105 1×106 1×107

[48] 0.001985 0.03982 0.023012 0.216749 2.118830
[55] 0.001984 0.003283 0.011455 0.083962 0.875654

ESNDS 0.001650 0.003364 0.019894 0.167419 1.730450

5. Application to Image Encryption
5.1. Encryption Process

Step 1: The original grayscale image is read as a M×N matrix X for further processing.
In addition, each element in the matrix is an integer from 0 to 255.

Step 2: The chaotic sequence is obtained from the ESNDS for encryption. u0, γ, k,
z and h are initial values of ESNDS, so they are used as the security keys. Iterate the
ESNDS (M× N + M + N + U0) times, and discard the former U0 elements. Therefore, a
new sequence with (M× N + M + N) is obtained.

Step 3: Take the former M elements as sequence a, the next N elements as sequence b,
and the rest elements as sequence L. The following modifications were made to sequence a
and b, as Equation (16): {

a′ = f loor(a×M) + 1
b′ = f loor(b× N) + 1

. (16)

Step 4: Obtain the column permutation matrix. The process is shown in Figure 15.
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Step 5: Obtain the row permutation matrix. The process is shown in Figure 16.
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Step 6: The permutated matrix is converted into the 1D matrix P = {p1, p2, . . . , pM×N},
and sort the sequence L in ascending order. According to the sorting result, matrix P′ is
obtained. The process is shown in Figure 17.
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Figure 17. Permutating process of matrix P.

Step 7: Obtain the diffused matrix H from the sequence L and the matrix P′ by
Equations (17) and (18):

L′ =
(

f loor(L)× 108
)

mod 256, (17)

H = P′
⊕

L′. (18)

Step8: Convert H into the encrypted image with the size of M× N.
The decryption is the inverse process of encryption.
In the experiment, the initial value of ESNDS u0 = 0.1, the parameters γ = 250,

k = 0.6, z = −0.1, h = 0.01, and four images are used to verify encryption effect of the
encryption method. The original images and results of encryption are shown in Figure 18.
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disorder after the encryption scheme. 
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5.2. Security Analysis
5.2.1. Security Key Space

Key space refers to the summation of the different keys that can be used for encryption.
Due to multiple parameters of ESNDS, it is very complicated to determine the range of
all the keys that can generate chaotic sequences simultaneously. Therefore, we confirm
the range of some parameters by the two-dimensional diagram of Lyapunov exponent to
determine the minimum key space. The two-dimensional evolution diagram of Lyapunov
exponent of k− z is shown as Figure 19. Figure 19 and Section 4.2.2 show that the both
space of k and z is about 0.9× 1016, and the space of u0 is 1× 1016. We can get the minimum
key space is 0.9× 1016 × 0.9× 1016 × 1016 ≈ 2162. The minimum key space is larger than
2128 which enough to resist brute force attacks [66,67].
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5.2.2. Information Entropy

The information entropy is a measurement standard of the degree of information
ordering in digital images [68]. It is defined as Equation (19):

H(x) = −
n

∑
i=0

p(Xi) log2 p(Xi) , (19)

where n represents the grayscale level of an image, and p(Xi) represents the probability of
the grayscale value Xi. For a completely random image, the theoretical value of information
entropy is 8 [69]. As shown in Table 5, the information entropy of encrypted images is close
to the theoretical value. It shows the degree of information ordering tends to disorder after
the encryption scheme.

Table 5. Information entropy of different images.

Image Lena Cameraman Mandrill Peppers

Original image 7.4455 6.9719 7.3899 7.5327
Encrypted image 7.9993 7.9974 7.9993 7.9972

5.2.3. Correlation Analysis

In plaintext images, adjacent pixels tend to have high correlations. This is related to
the discernibility of the information in the images. Therefore, it is necessary to reduce the
correlation between adjacent pixels in the encrypted images [70]. The equation is shown as
Equation (20): 

x = 1
N

N
∑

i=1
xi

D(x) = 1
N

N
∑

i=1
xi − x

cov(x, y) = 1
N

N
∑

i=1
(xi − x )(yi − y )

ρxy = cov(x,y)√
D(x)
√

D(y)

, (20)

where, x and y are the gray values of adjacent pixels, and ρxy represents the correlation
coefficient between adjacent pixels. The horizontal, vertical and diagonal correlation of
original image Lena and encrypted image Lena is shown in Figure 20. As shown in Table 6,
compared with original images, the correlation coefficient of encrypted images is greatly
reduced. This means that the encrypted images effectively conceal the information of the
original images. In addition, Table 7 demonstrates the correlation coefficient of encrypted
Lena using various encryption schemes. It can be seen that our scheme achieves relatively
favorable performance among these methods.

Table 6. Correlation coefficient of various images.

Original Image Encrypted Image

Image Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Lena 0.9850 0.9719 0.9593 0.0043 0.0018 0.0003
Cameraman 0.9592 0.9340 0.9089 0.0002 0.0067 0.0012

Mandrill 0.8003 0.8763 0.7627 0.0003 0.0014 0.0013
Peppers 0.9651 0.9759 0.9457 0.0019 0.0008 0.0069
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Table 7. Correlation coefficient of various schemes.

Encrypted Lena

Scheme Horizontal Vertical Diagonal

[46] 0.0024 −0.0086 0.0402
[49] 0.0021 0.0051 0.0040
[55] 0.0046 0.0063 0.0023
[56] 0.0013 0.0018 0.0032
[71] −0.0084 −0.0017 −0.0019
[72] 0.0019 0.0038 −0.0019
[73] 0.0030 −0.0024 −0.0034
[74] 0.0013 −0.0141 −0.0054
[75] 0.0035 0.0065 0.0036
[76] −0.0230 0.0019 −0.0034

Proposed 0.0043 0.0018 0.0003Entropy 2021, 23, x FOR PEER REVIEW 21 of 27 
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5.2.4. Sensitivity Analysis

A good encryption scheme should be sensitive to tiny changes in key and plaintext
image. To test the sensitivity of the proposed scheme, two u0 with only 1× 1016 differences
are used to encrypt the original images, respectively. The difference between two encrypted
images can be measured through the Number of Pixel Change Rate (NPCR) and the Unified
Average Changing Intensity (UACI). The NPCR and UACI are calculated by Equations (21)
and (22) [72]:

PCR =
1

M× N

M

∑
i=1

N

∑
j=1

B(i, j)× 100%, (21)

UACI =
1

M× N

M

∑
i=1

N

∑
j=1

P1(i, j)− P2(i, j)
255

× 100%, (22)

where P1 and P2 are two images with the size of M×N. If P1(i, j) 6= P2(i, j), then B(i, j) = 1,
otherwise, B(i, j) = 0. According to [77], the expected value of NPCR and UACI are
99.6094% and 33.4635% for 8-bit grayscale images. Table 8 shows the value of NPCR and
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UACI of four images. It can be seen that the proposed encryption scheme is sensitive to
tiny changes in key.

Table 8. NPCR and UACI test result of different images (u0 = 0.1 and u′0 = 0.1 + 10−16 ).

Image NPCR (%) UACI (%)

Lena 99.6037 33.5093
Cameraman 99.6201 33.4603

Mandrill 99.6029 33.4717
Peppers 99.6201 33.4738

5.2.5. Histogram Analysis

The histogram analysis refers to the number of times each value appears, so as to
reflect the distribution of pixel values of an image [21]. The ideal histogram should be
flat and smooth to resist statistic attacks. The Figure 21 shows the histograms of four
original images and the histograms of corresponding encrypted images. The pixel value
distribution of the four encrypted images is uniform, so it can resist statistic attacks.

5.2.6. Noise Robustness

Due to noise attack or noise jamming in the transmission channel, the pixel value
modification of cipher images may appear [78,79]. The noise makes the information in
cipher images difficult to recover. However, receivers would like to recover the original
images as much as possible in the situation. Thus, an encryption scheme should have an
ability of resisting noise.

To test the ability of resisting noise, an experiment on noise attack is performed.
Four different proportions of ‘salt & pepper’ noise are added to the encrypted Lena. The
decryption process is then applied to the images with “salt & pepper” noise. The results
are shown in Figure 22. It can be seen that the decrypted images recover most information
of the original images.

5.2.7. Robustness to Data Loss

In practical application, digital images are vulnerable to data loss in the process of
communication for all kind of reason. This may be caused by the various interception,
and some parts of digital images may be missing. In this case, the receiver can be easily
failed to get the intact data. To cope with this, the encrypted images should have good
anti-cutting performance.

Our proposed encryption scheme has enough robustness to data loss. The data loss is
performed at the rate of 25% and 50% in different positions, and the processed images are
used for decryption. The results are shown in Figure 23. It can be seen that the decrypted
images restore most of the original details visually. This shows the encryption scheme has
enough robustness to data loss.
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5.3. Speed Analysis

Since the proposed encryption scheme is a kind of symmetric encryption scheme, the
decryption is the inverse process of encryption. We only analyze the encryption speed in
this section.

For the time complexity analysis of the scheme, the time-consuming part includes
floating-point operations for the construction of chaotic sequences in ESNDS and permutation-
diffusion process. Table 9 lists the computational complexity of the proposed encryption
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scheme as well as some other chaos-based image encryption schemes. The efficiency of the
proposed scheme is comparable with existing chaos-based ciphers.

Table 9. Time complexity of different schemes.

Scheme Time Complexity

Proposed O(3MN + 2M + 2N)
[51] O(8MN)

[71] O
(

18MN + 2MNlog MN
2

)
[75] O(9MN)
[76] O(Mlog(8N) + 8NlogM + M + 8N)

Furthermore, the speed of the encryption scheme is tested. The experimental environ-
ment is same as that in Section 3.2. The images with different size are encrypted, and the
running time is shown in Table 10. In the experiment, each encryption is repeated 100 times,
and the average running time is taken as the result. It can be seen that the average encryp-
tion/decryption speed of proposed scheme is enough for image encryption applications.

Table 10. Encryption time of proposed scheme.

Encryption Time (s)

Image Size 128×128 256×256 512×512 1024×1024

Proposed
scheme 0.021936 0.086149 0.355649 1.406963

6. Conclusions

In this paper, the single neuronal dynamical system in self-feedbacked Hopfield net-
work is proposed, and its derivation process of the discrete form is given. The chaotic
dynamic behavior of the system is described from single-parameter and double-parameter
perspectives. The implementation cost of the system is also lower than self-feedbacked
Hopfield networks. Furthermore, we apply a framework for improving chaotic properties
of the simple chaotic system to our system and achieve good performance. It is important
to note that this applicability can make for the system being considered in more fields.
In addition, an image encryption scheme based on the enhanced system is herein de-
signed. The simulation results and security analysis prove that the scheme has an excellent
performance.

The single neuronal dynamical system in self-feedbacked Hopfield Networks still has
a large scope for exploration. In future work, we will continue improving the system, such
as changing the activation function.
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