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Abstract: As an effective tool to unify discrete and continuous analysis, time scale calculus have
been widely applied to study dynamic systems in both theoretical and practical aspects. In addition
to such a classical role of unification, the dynamic equations on time scales have their own unique
features which the difference and differential equations do not possess and these advantages have
been highlighted in describing some complicated dynamical behavior in the hybrid time process.
In this review article, we conduct a survey of abstract analysis and applied dynamic equations on
hybrid time scales, some recent main results and the related developments on hybrid time scales will
be reported and the future research related to this research field is discussed. The results presented
in this article can be extended and generalized to study both pure mathematical analysis and real
applications such as mathematical physics, biological dynamical models and neural networks, etc.

Keywords: dynamic equations; time scales; general theory

MSC: 34N05; 26E70

1. Basic Knowledge on Time Scales

In 1988, S. Hilger initiated the theory of time scales in his PhD thesis [1] to unify con-
tinuous and discrete analysis. The theory is more general and versatile than the traditional
theories of differential and difference equations since it is an optimal way to accurately
depict the continuous-discrete hybrid processes under one framework and have been
widely applied to physics, chemical technology, population dynamics, biotechnology and
economics, neural networks, and social sciences. It is well-known that the dynamic equa-
tions with time scale form contains, links, and extends the classical theory of differential
and difference equations. Since a time scale is an arbitrary nonempty closed subset of R,
we will have a result for difference equations if T = Z and obtain a result for differential
equations if T = R. This theory represents a powerful tool for applications to economics,
population models, and quantum physics, among others. Not only does the new theory
of the so-called “dynamic equations” unify the theories of differential equations and dif-
ference equations, but it also extends these classical cases to cases “in between,” e.g., to
the so-called q-difference equations when T = qN0 := {qt : t ∈ N0 for q > 1} ∪ {0} or
T = qZ := qZ ∪ {0} (which has important applications in quantum theory) and can be
applied on different types of time scales like T = hN, T = N2 and T = Tn the space of the
harmonic numbers. Therefore, dealing with problems of differential equations on time
scales becomes very important and meaningful in function analysis and applied dynamic
equations.

In the sequel, we will provide some necessary knowledge that will be used in this
review article.

A time scale T is a closed subset of R. It follows that the jump operators σ, $ : T→ T
are defined by σ(t) = inf{s ∈ T : s > t} and $(t) = sup{s ∈ T : s < t} with a stipulation
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that inf ∅ = supT (i.e., σ(t) = t if T has a maximum t) and sup ∅ = infT (i.e., ρ(t) = t if
T has a minimum t), where ∅ denotes the empty set. If σ(t) > t, we say t is right scattered,
while if ρ(t) < t we say t is left-scattered. Points that are right-scattered and left-scattered
at the same time are called isolated. In addition, if t < supT and σ(t) = t, then t is called
right-dense, and t > infT and ρ(t) = t, then t is called left-dense. Points that are right
dense and left-dense at the same time are called dense. The mapping ν : T→ [0, ∞) such
that ν(t) = t− ρ(t) is called the backward graininess function, the mapping µ : T→ [0, ∞)
such that µ(t) = σ(t)− t is called the forward graininess function. Note that both σ(t) and
ρ(t) are in T when t ∈ T, this is because T is a closed subset of R. Define

Tκ =

{
T\
{(

ρ(sup(T)), supT
]
∩T

}
if supT < ∞,

T if supT = ∞.

Likewise, Tκ is defined as the set Tκ = T\
{[

infT, σ(infT)
)
∩ T

}
if | infT| < ∞ and

Tκ = T if infT = −∞. If f : T → R is a function, then the function f σ, f ρ : T → R is
defined by f σ(t) = f

(
σ(t)

)
and f ρ(t) = f

(
ρ(t)

)
for all t ∈ T, respectively, i.e., f σ = f ◦ σ

and f ρ = f ◦ ρ.
Throughout the paper, for the intervals on time scales, we make the assumption that a

and b are the points in T. For a ≤ b, we will denote the time scale interval

[a, b]T = {t ∈ T : a ≤ t ≤ b}.

Open intervals and half-open intervals, etc. are defined accordingly. Note that [a, b]κT =
[a, b]T if b is left-dense and [a, b]κT = [a, b)T = [a, ρ(b)]T if b is left-scattered. Similarly,
([a, b]T)κ = [a, b]T if a is right-dense and ([a, b]T)κ = (a, b]T = [σ(a), b]T if a is right-
scattered.

1.1. Some Basic Knowledge of ∆-Calculus

Definition 1 ([2,3]). A function f : T→ R is called regulated provided its right-sided limits exist
(finite) at all right-dense points in T and its left-sided limits exist (finite) at all left-dense points
in T.

Definition 2 ([2,3]). The function f : T→ R is called rd-continuous provided that it is continuous
at each right-dense point and has a left-sided limit at left dense points. The set of rd-continuous
functions f : T → R will be denoted in this book by Crd(T) = Crd(T,R). The set of functions
f : T→ R that are ∆-differentiable and whose derivative is rd-continuous is denoted by C1

rd(T) =
C1

rd(T,R).

Definition 3 ([2,3]). Assume f : T→ R is a function and let t ∈ Tκ . Then, we define f ∆(t) to be
the number (provided it exists) with the property that given any ε > 0, there exists a neighborhood
U of t (i.e., U = (t− δ, t + δ) ∩T for some δ > 0) such that

| f (σ(t))− f (s)− f ∆(t)[σ(t)− s]| ≤ ε|σ(t)− s|

for all s ∈ U, we call f ∆(t) the delta (or Hilger) derivative of f at t. A function F : T→ R is called
an antiderivative of f : T→ R provided

F∆(t) = f (t) holds for all t ∈ Tκ ,

and we define the Cauchy delta integral of f by∫ t

a
f (s)∆s = F(t)− F(a) for all t, a ∈ T.

Theorem 1 ([2,3]). Assume f , g : T→ R are differentiable at t ∈ Tκ . Then:
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(i) The sum f + g : T→ R are differentiable at t with

( f + g)∆(t) = f ∆(t) + g∆(t).

(ii) For any constant α, α f : T→ R is differentiable at t with

(α f )∆ = α f ∆(t).

(iii) The product f g : T→ R is differentiable at t with

( f g)∆(t) = f ∆(t)g(t) + f
(
σ(t)

)
g∆(t) = f (t)g∆(t) + f ∆(t)g

(
σ(t)

)
.

(iv) If f (t) f
(
σ(t)

)
6= 0, then 1

f is differentiable at t with

(
1
f

)∆

(t) = − f ∆(t)
f (t) f

(
σ(t)

) .

(v) If g(t)g
(
σ(t)

)
6= 0, then f

g is differentiable at t and

(
f
g

)∆

(t) =
f ∆(t)g(t)− f (t)g∆(t)

g(t)g
(
σ(t)

) .

Theorem 2 ([2,3]). If a, b, c ∈ T, α, β ∈ R, and f , g ∈ Crd, then

(i)
∫ b

a
[
α f (t) + βg(t)

]
∆t = α

∫ b
a f (t)∆t + β

∫ b
a g(t)∆t;

(ii)
∫ b

a f (t)∆t = −
∫ a

b f (t)∆t;

(iii)
∫ c

a f (t)∆t =
∫ b

a f (t)∆t +
∫ c

b f (t)∆t;

(iv)
∣∣ ∫ b

a f (t)∆t
∣∣ ≤ ∫ b

a | f (t)|∆t.

Definition 4 ([2,3]). For h > 0, we define the Hilger complex numbers, the Hilger real axis, the
Hilger alternating axis, and the Hilger imaginary circle as

Ch :=
{

z ∈ C : z 6= −1
h

}
,

Rh :=
{

z ∈ Ch : z ∈ R and z > −1
h

}
,

Ah :=
{

z ∈ Ch : z ∈ R and z < −1
h

}
,

Ih :=
{

z ∈ Ch :
∣∣∣∣z + 1

h

∣∣∣∣ = 1
h

}
,

respectively. For h = 0, let C0 := C,R0 := R, I0 = iR, and A0 := ∅.

Definition 5 ([2,3]). Let h > 0 and z ∈ Ch. We define the Hilger real part of z by

Reh(z) :=
|zh + 1| − 1

h

and the Hilger imaginary part of z by

Imh(z) :=
Arg(zh + 1)

h
,
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where Arg(z) denotes the principle argument of z (i.e., −π < Arg(z) ≤ π). Note that Reh(z)
and Imh(z) satisfy

−1
h
< Reh(z) < ∞ and − π

h
< Imh(z) ≤

π

h
,

respectively. In particular, Reh(z) ∈ Rh.

Definition 6 ([2,3]). Let −π
h < ω ≤ π

h . We define the Hilger purely imaginary number ι̊ω by

ι̊ω =
eiωh − 1

h
.

For z ∈ Ch, ι̊Imh(z) ∈ Ih.

Theorem 3 ([2,3]). If the “circle plus” addition ⊕ is defined by z⊕ ω := z + ω + zωh, then
(Ch,⊕) is an Abelian group. For z ∈ Ch, we have z = Reh(z)⊕ ι̊Imh(z).

Definition 7 ([2,3]). The “circle minus” substraction 	 on Ch is defined by z	ω := z⊕ (	ω),
where 	ω := −ω

1+ωh .

For h > 0, let Zh be the strip

Zh :=
{

z ∈ C : −π

h
< Im(z) ≤ π

h

}
,

and for h = 0, let Z0 := C.

Definition 8 ([2,3]). For h > 0, the cylinder transformation ξh : Ch → Zh by

ξh(z) =
1
h

Log(1 + zh),

where Log is the principal logarithm function. For h = 0, we define ξ0(z) = z for all z ∈ C.

We define addition on Zh by

z + ω := z + ω

(
mod

2πi
h

)
for z, ω ∈ Zh. (1)

Theorem 4 ([2,3]). The inverse transformation of the cylinder transformation ξh when h > 0 is
given by

ξ−1
h (z) =

1
h
(ezh − 1)

for z ∈ Zh. For h = 0, ξ−1
0 (z) = z.

Theorem 5 ([2,3]). The cylinder transformation ξh is a group homomorphism from (Ch,⊕) onto
(Zh,+), where the addition + on Zh is defined by (1).

Definition 9 ([2,3]). A function p : T→ R is called µ- regressive provided 1 + µ(t)p(t) 6= 0 for
all t ∈ Tκ . The set of all regressive and rd-continuous functions p : T→ R will be denoted byR =
R(T) = R(T,R). We define the setR+ = R+(T,R) = {p ∈ R : 1 + µ(t)p(t) > 0, ∀ t ∈ T}.
The set of all regressive functions on a time scale T forms an Abelian group under the addition ⊕
defined by p⊕ q := p + q + µpq.
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Definition 10 ([2,3]). If r is a µ-regressive function, then the generalized exponential function er
is defined by

er(t, s) = exp
{ ∫ t

s
ξµ(τ)(r(τ))∆τ

}
for all s, t ∈ T, where the µ-cylinder transformation is as in

ξh(z) :=
1
h

Log(1 + zh).

Theorem 6 ([2,3]). Assume that p, q : T→ R are two µ-regressive functions. Then,
(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;
(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);
(iii) ep(t, s) = 1

ep(s,t) = e	p(s, t);

(iv) ep(t, s)ep(s, r) = ep(t, r);
(v) (e	p(t, s))∆ = (	p)(t)e	p(t, s).

1.2. Some Basic Knowledge of ∇-Calculus

In this subsection, we will introduce some basic knowledge of ∇-calculus.

Definition 11 ([2,3]). The function f : T→ R is called ld-continuous provided that it is continu-
ous at each left-dense point and has a right-sided limit at right-dense points. The set of ld-continuous
functions f : T→ R is denoted by Cld(T) = Cld(T,R). The set of functions f : T→ R that are
∇-differentiable and whose derivative is ld-continuous is denoted by C1

ld(T) = C1
ld(T,R).

Definition 12 ([2,3]). The function f : T→ R is called ld-continuous provided that it is continu-
ous at each left-dense point and has a right-sided limit at each point, write f ∈ Cld(T) = Cld(T,R).
Let t ∈ Tκ . Then, we define f∇(t) to be the number (provided it exists) with the property that given
any ε > 0, there exists a neighborhood U of t (i.e., U = (t− δ, t + δ)∩T for some δ > 0) such that

| f (ρ(t))− f (s)− f∇(t)[ρ(t)− s]| ≤ ε|ρ(t)− s|

for all s ∈ U, we call f∇(t) the nabla derivative of f at t. A function F : T → R is called an
antiderivative of f : T→ R provided

F∇(t) = f (t) holds for all t ∈ Tκ ,

and we define the Cauchy nabla integral of f by∫ t

a
f (s)∇s = F(t)− F(a) for all t, a ∈ T.

Definition 13 ([2,3]). A function p : T → R is called ν- regressive provided 1− ν(t)p(t) 6= 0
for all t ∈ Tk. The set of all regressive and ld-continuous functions p : T→ R will be denoted by
Rν = Rν(T) = Rν(T,R). We define the set R+

ν = R+
ν (T,R) = {p ∈ Rν : 1− ν(t)p(t) >

0, ∀ t ∈ T}. We define circle plus addition by p⊕ν q = p(t) + q(t)− ν(t)p(t)q(t) for all t ∈ Tκ .

Theorem 7 ([2,3]). The set (Rν,⊕ν) is an Abelian group.

Definition 14 ([2,3]). For p ∈ Rν, define circle minus by

	ν p = − p
1− νp

.
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Definition 15 ([2,3]). If r is a regressive function, then the generalized exponential function êr is
defined by

êr(t, s) = exp
{ ∫ t

s
ξ̂ν(τ)(r(τ))∇τ

}
for all s, t ∈ T, where the ν-cylinder transformation is as in

ξ̂h(z) := −1
h

Log(1− zh).

Lemma 1 ([2,3]). Assume that p, q : T→ R are two ν-regressive functions. Then,
(i) ê0(t, s) ≡ 1 and êp(t, t) ≡ 1;
(ii) êp($(t), s) = (1− ν(t)p(t))êp(t, s);
(iii) êp(t, s) = 1

êp(s,t) = e	ν p(s, t);

(iv) êp(t, s)êp(s, r) = êp(t, r);
(v) (ê	ν p(t, s))∇ = (	ν p)(t)ê	ν p(t, s).

2. Almost Periodic and Almost Automorphic Theory on Time Scales

Almost periodic phenomena are very common and almost periodic theory plays a
significant role in natural science. Almost periodicity is an important feature of dynamical
systems that will inaccurately retrace their paths through phase space, for example, for a
planetary system, all the planets in orbits move in commensurable periods (i.e., a period
vector is not proportional to a vector of integers). In mathematics, within any desired level
of precision of periodicity, an almost periodic function is a real function with a suitably
long, well-distributed “almost-periods”. The concept was first studied by H. Bohr and later
generalized by V. Stepanov, H. Weyl and A.S. Besicovitch, and John von Neumann (see
[4–6]), etc.

Compared with periodic phenomenon, almost periodic phenomenon can describe
many regular changes in nature more accurately. Almost automorphic function, as a
generalization of almost periodic function, has a wider range of applications. This notion
was proposed by W.A. Veech (see [7,8]) and was found in the study of differential geometry
related to physics, then more and more attention has been paid to the research on the
generalization of corresponding concepts and their series (see [9,10]).

In this section, we will demonstrate some main results and recent developments of
almost periodic and almost automorphic theory on translation time scales and extend the
topic to more complicated hybrid time cases under the matched spaces of time scales.

2.1. Almost Periodic and Almost Automorphic Theory on Translation Time Scales

The theory of almost periodic and almost automorphic functions have wide appli-
cations in dynamic equations (see [9]). Through using the time scale theory initiated by
Hilger (see [1]), many classical results of almost periodic and almost automorphic functions
were extended to different time scales. The translation doublication of two time scales is the
basic requirement of introducing the notions of almost periodic and almost automorphic
functions. In 2016, Wang and Agarwal et al. (see [11–13]) proposed some equivalent
concepts of periodic time scales as follows:

Definition 16 ([12,13]). A time scale T is called a periodic time scale (or a translation invariant
time scale) if Π := {τ ∈ R : T∩Tτ = T} 6∈

{
{0}, ∅

}
, where Tτ = {t + τ : t ∈ T}.

We can obtain that, if we choose nonzero real number τ ∈ Π, then T = Tτ if and only
if T is invariant under translations.

Definition 17 ([12,13]). A time scale T is called a periodic time scale (or a translation invariant
time scale) if Π := {τ ∈ R : Tτ ∪T−τ ⊂ T} 6∈

{
{0}, ∅

}
.
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Remark 1. According to Definitions 16 and 17, the translation invariance of a time scale implies
that the time scale T coincides with the obtained time scale Tτ through a translation number τ ∈ R.

Example 1. The following time scales are invariant:

(i) T = hZ, where h > 0, has period P = h.
(ii) T = {t = k− qm : k ∈ Z, m ∈ N0}, where 0 < q < 1, has period P = 1.
(iii) T = R has an arbitrary period P ∈ R\{0}.
(iv)

⋃∞
i=−∞

[
(2i− 1)h, 2ih

]
, h > 0, has period P = 2h.

Based on Definitions 16 and 17, some corrected concepts of almost periodic functions
were proposed (see [11,14]). In [15], some sufficient conditions were obtained for the
existence and exponential stability of piecewise mean-square almost periodic solutions of
the impulsive stochastic Nicholson’s blowflies model on translation time scales. In [16–20],
the authors firstly introduced the concept of piecewise almost periodic and almost auto-
morphic functions on time scales with periodicity and applied them to analyze the almost
periodic solutions to neural networks and biological dynamic models.

Definition 18 ([16,18]). We say ϕ : T→ Rn is piecewise rd-continuous with respect to a sequence
{τi} ⊂ T which satisfies τi < τi+1, i ∈ Z, if ϕ(t) is continuous on [τi, τi+1)T and rd-continuous
on T\{τi}. Furthermore, [τi, τi+1)T, i ∈ Z, are called intervals of continuity of the function ϕ(t).

Definition 19 ([16,18]). For any ε > 0, let Γε ⊂ Π be a set of real numbers and {τi} ⊂ T. We
say {τ j

i }, i, j ∈ Z is equipotentially almost periodic on a periodic time scale T if for r ∈ Γε ⊂ Π,
there exists at least one integer k such that

|τk
i − r| < ε, for all i ∈ Z.

In the following, we will give the definition of piecewise rd-continuous almost periodic
functions with respect to the sequence {τi, }i∈Z on a periodic time scale T.

Definition 20 ([16,18]). Let T be a periodic time scale and assume that {τi} ⊂ T satisfying the
derived sequence {τ j

i }, i, j ∈ Z, is equipotentially almost periodic. A function ϕ ∈ PCrd(T,Rn) is
said to be piecewise rd-continuous almost periodic (short for rd-piecewise almost periodic) if:

(i) for any ε > 0, there is a positive number δ = δ(ε) such that if the points t
′

and t
′′

belong to
the same interval of continuity and |t′ − t

′′ | < δ, then ‖ϕ(t
′
)− ϕ(t

′′
)‖ < ε;

(ii) for any ε > 0, there is relative dense set Γε ⊂ Π of ε-almost periods such that if τ ∈ Γε, then
‖ϕ(t + τ)− ϕ(t)‖ < ε for all t ∈ T, which satisfies the condition |t− τi| > ε, i ∈ Z.

Based on Definitions 18–20, some basic properties of piecewise almost periodic func-
tions were obtained.

Theorem 8 ([16,18]). If ϕ ∈ PCrd(T,Rn) is rd-piecewise almost periodic, then, for any ε > 0,
there exists a relative dense set of intervals of a fixed length γε ∈ Π, which consist of ε-almost
periods of the function ϕ(t).

Theorem 9 ([16,18]). Let ϕ ∈ PCrd(T,Rn) be an rd-piecewise almost periodic function with
values in the set E ⊂ Rn. If F(y) is an uniformly continuous function defined on the set E, then
the function F

(
ϕ(t)

)
is rd-piecewise almost periodic in t.

Theorem 10 ([16,18]). For any two rd-piecewise almost periodic functions with respect to the same
sequence {τi} ⊂ T, for any ε > 0, there exists a relative dense set of their common ε-almost periods.

In fact, the above Definitions 18–20 can be generalized to Banach spaces and some
basic theorems can be established in Banach space.
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Now, introduce the set

B =
{
{tk} : tk ∈ T, tk < tk+1, k ∈ Z, lim

k→±∞
tk = ±∞

}
,

which denotes all unbounded increasing sequences of real numbers.
Let X be a Banach space, Ω be an open set in X or Ω = X, and S denotes an arbitrary

compact subset of Ω.

Definition 21 ([16,18]). The functions f , g ∈ PCrd(T×Ω,X) are said to be ε-equivalent uni-
formly for x ∈ Ω or f , g possess uniform ε-equivalence for x ∈ Ω, and denote f ε∼ g, if for all
ε > 0 and for each compact subset S of Ω, the following conditions hold:

(i) The points of possible discontinuity of these functions can be enumerated t f
k , tg

k , admitting a

finite multiplicity by the order in T, so that |t f
k − tg

k | < ε.
(ii) There exist strictly increasing sequences of numbers {t′k}, {t

′′
k}, t

′
k < t

′
k+1, t

′′
k < t

′′
k+1, k ∈ Z,

for which we have

sup
t∈(t′k ,t′k+1)T,t′∈(t′′k ,t′′k+1)T

‖ f (t, x)− g(t
′
, x)‖ < ε, |t′k − t

′′
k | < ε, ∀x ∈ S, k ∈ Z.

Theorem 11 ([16,18]). Let ϕ ∈ PCrd(T×Ω,X) be rd-piecewise almost periodic in t uniformly
for x ∈ Ω. Then, it is uniformly rd-continuous on T\B and bounded on T× S.

Let T, P ∈ B and let s(T ∪ P) : B → B be a map such that the set s(T ∪ P) forms
a strictly increasing sequence. For D ⊂ R and 0 < h ∈ Π, we introduce the notations
θh(D) = {t+ h : t ∈ D}, Fh(D) = D∩ {θh(D)}. Denote by φ =

(
ϕ(t), T

)
the element from

the space PCrd(T×Ω,X)×B and, for every sequence of real numbers {sn}, n = 1, 2, . . .
with θsn φ =

(
ϕ(t + sn, x), T + sn

)
, we shall consider the sets

{(
ϕ(t + sn, x), T + sn

)}
⊂

PCrd ×B, where
T + sn := Tsn = {tk + sn : k ∈ Z, n = 1, 2, . . .}.

For convenience, we introduce the translation operator S, and let us denote by Sα+βφ
and SαSβφ the limits lim

n→∞
θαn+βn(φ) and lim

n→∞
θαn( lim

m→∞
θβm φ), respectively, and are written

only when the limits exist.

Theorem 12 ([16,18]). The function ϕ ∈ PCrd(T×Ω,X) is rd-piecewise almost periodic in t
uniformly for x ∈ Ω with respect to a sequence T ∈ B if and only if from every pair of sequence
α
′
, β
′
, one can extract common subsequences α ⊂ α

′
, β ⊂ β

′
such that

Sα+βφ = SαSβφ

exists pointwise, where φ =
(

ϕ(t, x), T
)
.

We established the following piecewise almost periodic solution of the dynamic
equations on hybrid time scales.

First, we shall consider the linear dynamic equations as follows:{
x∆ = A(t)x, t 6= tk,
∆̃x(tk) = Bkx(tk), t = tk, k ∈ Z,

(2)

where t ∈ T, {tk} ∈ B, A ∈ PCrd(T,Rn×n), Bk ∈ Rn×n, k ∈ Z.
By x(t) = x(t; t0, x0), we denote the solution of (2) with initial condition by x(t+0 ) =

x0, x0 ∈ Rn. Assume the following conditions hold:

(H1) The matrix-valued function A ∈ PCrd(T,Rn×n) is almost periodic.
(H2) {Bk}, k ∈ Z is an almost periodic sequence.
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(H3) det(E + Bk) 6= 0, k ∈ Z, where E is the identity matrix.

(H4) The set of sequence {tj
k}, tj

k = tk+j − tk, k ∈ Z, j ∈ Z is equipotentially almost
periodic and infk t1

k = θ > 0.

Now, consider the following system:{
x∆ = A(t)x + f (t), t 6= tk,
∆̃x(tk) = Bkx(tk) + Ik, t = tk, k ∈ Z.

(3)

Theorem 13 ([16,18]). If (H1)− (H4) hold, (2) admits an exponential dichotomy on T with a
projection P, then (3) admits a piecewise rd-continuous almost periodic solution as follows:

x(t) =
∫ t

−∞
X(t)PX−1(σ(s)) f (s)∆s−

∫ +∞

t
X(t)(E− P)X−1(σ(s)) f (s)∆s

+ ∑
−∞<tk<t

X(t)PX−1(tk)Ik − ∑
t<tk<+∞

X(t)(E− P)X−1(tk)Ik,

where X(t) is a fundamental matrix solution of system (2).

In the following part, based on the translation hybrid time scales, the definition of ld-
piecewise continuous functions on time scales was introduced and some basic properties of
piecewise ld-continuous weighted pseudo almost automorphic functions were established.

Definition 22 ([20]). We say ϕ : T → X is piecewise ld-continuous with respect to a sequence
{tk} ⊂ T which satisfies tk < tk+1, k ∈ Z, if ϕ(t) is continuous on (tk, tk+1]T and ld-continuous
on T\{tk}. Furthermore, (tk, tk+1]T are called intervals of continuity of the function ϕ(t).

For simplicity, let PCld(T,X) be the set of all piecewise ld-continuous functions with
respect to a sequence {tk}, k ∈ Z and X be a Banach space. For {tk}k∈Z ∈ B, the notation
BPCld(T,X) denotes the space constituted by all bounded piecewise ld-continuous func-
tions φ : T→ X with the property that φ(·) is ld-continuous at t for any t 6∈ {tk}k∈Z and
φ(tk) = φ(t−k ) for all k ∈ Z. The symbol Ω denotes a subset of X and BPCld(T×Ω,X) de-
notes the space constituted by by all bounded piecewise functions which are ld-continuous
in t, φ : T×Ω → X with the property that, for any x ∈ Ω, φ(·, x) ∈ BPCld(T× X,X).
Moreover, φ(t, ·) is continuous at x ∈ Ω for any t ∈ T.

Now, we use the symbol UPCld(T,X) to denote the space of all functions ϕ ∈
PCld(T,X) with the property that for any ε > 0, there exists a positive number δ = δ(ε)

such that if the left-dense points t
′
, t
′′

belong to the same interval of continuity of ϕ and
|t′ − t

′′ | < δ, then ‖ϕ(t
′
)− ϕ(t

′′
)‖ < ε.

Furthermore, T, P ∈ B and s(T ∪ P) : B→ B is a map with the property that the set
s(T ∪ P) constitutes a strictly increasing sequence. For D ⊂ R and ε > 0, the notations
θε(D) = {t + ε : t ∈ D}, Fε(D) = D ∩ {θε(D)}. We use the symbol φ̃ = (ϕ(t), T) to
denote the element from the space PCld(T,X)×B. For every sequence of real numbers
{sn}, n = 1, 2, . . . with θsn φ̃ := (ϕ(t + sn), T− sn), the sets {ϕ(t + sn), T− sn} ⊂ PCld ×B

will be considered, where

T − sn = {tk − sn : k ∈ Z, n = 1, 2, . . .}.

Definition 23 ([20]). Let {tk} ∈ B, k ∈ Z. We say {tj
k} is a derivative sequence of {tk} and

tj
k = tk+j − tk, k, j ∈ Z.
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Definition 24 ([20]). Let tj
k = tk+j − tk, k, j ∈ Z. We say {tj

k}, k, j ∈ Z is equipotentially almost
automorphic on a periodic time scale T if for any sequence {sn} ⊂ Z, there exists a subsequence
{s′n} such that

lim
n→∞

ts
′
n

k = γk

is well defined for each k ∈ Z and

lim
n→∞

γ
−s
′
n

k = tk

for each k ∈ Z.

Definition 25 ([20]). A function φ ∈ PCld(T,X) is said to be piecewise ld-continuous almost
automorphic (short for ld-piecewise almost automorphic) if the following conditions are fulfilled:

(i) Let T = {tk} be an equipotentially almost automorphic sequence.
(ii) Let ϕ ∈ PCld(T,X) be a bounded function with respect to a sequence T = {tk}. We say that

ϕ is ld-piecewise almost automorphic if, from every sequence {sn}∞
n=1 ⊂ Π, we can extract a

subsequence {τn}∞
n=1 such that

φ̃∗ =
(

ϕ∗(t), T∗
)
= lim

n→∞

(
ϕ(t + τn), T − τn

)
= lim

n→∞
θτn φ̃

is well defined for each t ∈ T and

φ̃ =
(

ϕ(t), T
)
= lim

n→∞

(
ϕ∗(t− τn), T∗ + τn

)
= lim

n→∞
θ−τn φ̃∗

for each t ∈ T. Denote by AApl(T,X) the set of all such functions.
(iii) A bounded function f ∈ PCld(T×X,X) with respect to a sequence T = {tk} is said to be

ld-piecewise uniformly almost automorphic if f (t, x) is ld-piecewise automorphic in t ∈ T
uniformly in x ∈ B, where B is any bounded subset of X. Denote by AApl(T×X,X) the set
of all such functions.

Similarly, we can also introduce the concept of piecewise almost automorphic func-
tions which belong to PCrd(T,X).

Some basic properties of piecewise almost automorphic functions were obtained as
follows.

Let U be the set of all functions ρ̂ : T → (0, ∞) which are positive and locally ∇-
integrable over T. For a given r ∈ [0, ∞)Π and ∀t0 ∈ T, set

m(r, ρ̂, t0) :=
∫ t0+r

t0−r
ρ̂(s)∇s (4)

for each ρ̂ ∈ U.

Remark 2. In (4), if T = R, t0 = 0, one can easily get

m(r, ρ̂, t0) :=
∫ r

−r
ρ̂(s)ds

if T = Z, t0 = 0, one has the following:

m(r, ρ̂, t0) =
r

∑
k=−r+1

ρ̂(k).

Define

U∞ :=
{

ρ̂ ∈ U : lim
r→∞

m(r, ρ̂, t0) = ∞
}

,
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UB :=
{

ρ̂ ∈ U∞ : ρ̂ is bounded and inf
s∈T

ρ̂(s) > 0
}

.

It is clear that UB ⊂ U∞ ⊂ U. Now, for ρ̂ ∈ U∞, define

PAApl
0 (T, ρ̂) : =

{
φ ∈ BPCld(T,X) : lim

r→∞

1
m(r, ρ̂, t0)

∫ t0+r

t0−r
‖φ(s)‖ρ̂(s)∇s = 0,

∀t0 ∈ T, r ∈ Π
}

.

Similarly, we define

PAApl
0 (T×X, ρ̂) : =

{
Φ ∈ BPCld(T×Ω,X) :

lim
r→∞

1
m(r, ρ̂, t0)

∫ t0+r

t0−r
‖Φ(s, x)‖ρ̂(s)∇s = 0

uniformly with respect to x ∈ K, ∀t0 ∈ T, r ∈ Π
}

.

We are now ready to introduce the sets WPAApl(T, ρ̂) and WPAApl(T × X, ρ̂) of
piecewise ld-continuous weighted pseudo almost automorphic functions:

WPAApl(T, ρ̂) =
{

f = g + φ ∈ PCld(T,X) : g ∈ AApl(T,X) and φ ∈ PAApl
0 (T, ρ̂)

}
,

WPAApl(T×X, ρ̂) =
{

f = g + φ ∈ PCld(T×X,X) : g ∈ AApl(T×X,X)

and φ ∈ PAApl
0 (T×X, ρ̂)

}
.

Theorem 14 ([20]). Let f = g + φ ∈ WPAApl(T×X, ρ̂), where g ∈ AApl(T×X,X), φ ∈
PAApl

0 (T×X, ρ̂), ρ̂ ∈ UB and the following conditions hold:

(i)
{

f (t, x) : t ∈ T, x ∈ K
}

is bounded for every bounded subset K ⊆ Ω.
(ii) f (t, ·), g(t, ·) are uniformly continuous in each bounded subset of Ω for all t ∈ T.

Then, f
(
·, h(·)

)
∈WPAApl(T, ρ̂) if h ∈WPAApl(T, ρ̂) and h(T) ⊂ Ω.

Theorem 15 ([20]). A necessary and sufficient condition for a bounded sequence {an} to be in
WPAApl(Z, ρ̂) is that there exists a uniformly ld-continuous function f ∈WPAApl(T, ρ̂) and a
discretization partition {tn} such that f (tn) = an, n ∈ Z, ρ̂ ∈ UB.

Theorem 16 ([20]). Assume that ρ̂ ∈ UB and the sequence of vector-valued functions {Ii}i∈Z is
weighted pseudo almost automorphic, i.e., for any x ∈ Ω, {Ii(x), i ∈ Z} is weighted pseudo almost
automorphic sequence. Suppose {Ii(x) : i ∈ Z, x ∈ K} is bounded for every bounded subset K ⊆ Ω,
Ii(x) is uniformly continuous in x ∈ Ω uniformly in i ∈ Z. If h ∈WPAApl(T, ρ̂)∩UPCld(T,X)
such that h(T) ⊂ Ω, then Ii

(
h(ti)

)
is a weighted pseudo almost automorphic sequence.

Through using the above basic theorems, one can study the almost automorphic
solutions of the following dynamic equations on time scales.

Abstract impulsive ∇-dynamic equations as follows:{
x∇(t) = A(t)x$ + f

(
t, x(t)

)
, t ∈ T, t 6= ti, i ∈ Z,

∆x(ti) = x(t+i )− x(t−i ) = Ii
(

x(ti)
)
, t = ti,

(5)

where A ∈ PCld(T,X) is a linear operator in the Banach space X and f ∈ PCld(T ×
X,X), x$ = x($(t)). Now, f , Ii, ti satisfy suitable conditions that will be given later and T
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is an almost periodic time scale. In addition, the notations x(t+i ) and x(t−i ) represent the
right-hand and the left-hand side limits of x(·) at ti, respectively.

In the following, consider the abstract dynamic system (5) with the following assump-
tions:

(H1) The family {A(t) : t ∈ T} of operators in X generates an exponentially stable evolu-
tion system {T(t, s) : t ≥ s}, i.e., there exist K0 > 1 and ω > 0 such that

‖T(t, s)‖ ≤ K0 ê	νω(t, s), t ≥ s,

and for any sequence {sn} ⊂ Π, there exists a subsequence {s′n} ⊂ {sn} such that

lim
n→∞

T(t + s
′
n, s + s

′
n) = T∗(t, s) is well defined for each t, s ∈ T, t ≥ s.

(H2) f = g + φ ∈WPAA(T, ρ̂), where ρ̂ ∈ U∞ and f (t, ·) is uniformly continuous in each
bounded subset of Ω uniformly in t ∈ T; Ii is a weighted pseudo almost periodic
sequence, Ii(x) is uniformly continuous in x ∈ Ω uniformly in i ∈ Z, infi∈Z t1

i = θ > 0.

Theorem 17 ([20]). Let f
(
·, ϑ(·)

)
∈ WPAA(T, ρ̂), where ϑ ∈ WPAA(T, ρ̂) and {T(t, s), t ≥

s} is exponentially stable, ρ̂ ∈ U∞. Then,

F(·) :=
∫ (·)

−∞
T(·, s) f

(
s, ϑ(s)

)
∇s + ∑

ti<·
T(·, ti)Ii

(
ϑ(ti)

)
∈WPAA(T, ρ̂).

According to Theorem 17, the following existence result of almost automorphic solu-
tions was obtained.

Theorem 18 ([20]). Assume the following conditions hold:

(A1) The family {A(t) : t ∈ T} of operators in X generates an exponentially stable evolution
system {T(t, s) : t ≥ s}, i.e., there exist K0 > 1 and ω > 0 such that

‖T(t, s)‖ ≤ K0 ê	νω(t, s), t ≥ s,

and, for any sequence {sn} ⊂ Π, there exists a subsequence {s′n} ⊂ {sn} such that

lim
n→∞

T(t + s
′
n, s + s

′
n) = T∗(t, s) is well defined for each t, s ∈ T, t ≥ s.

(A2) f ∈ WPAA(T×Ω, ρ̂), and f satisfies the Lipschitz condition with respect to the second
argument, i.e.,

‖ f (t, x)− f (t, y)‖ ≤ L1‖x− y‖, t ∈ T, x, y ∈ Ω,

(A3) Ii is a weighted pseudo almost periodic sequence, and there exists a number L2 > 0 such that

‖Ii(x)− Ii(y)‖ ≤ L2‖x− y‖,

for all x, y ∈ Ω, i ∈ Z.

Suppose that
K0L1(1− νω)

ω
+

K0L2

1− ê	νω(θ, 0)
< 1.

Then, (5) has a unique weighted piecewise pseudo almost automorphic mild solution, where
ê	νω(θ, 0) := supi∈Z ê	νω(ti+1, ti).

In [21,22], the Π-semigroup and the semigroups induced by complete-closed time
scales were introduced to study the almost periodic mild solutions to evolution equations.
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Let Π+ = [0,+∞)Π and X be a Banach space, and Tτ : X → X be a transformation.
Obviously, {Tτ : τ ∈ Π} is a set containing only one parameter. We introduce the
multiplication as follows:

Tτ1 Tτ2 = Tτ1+τ2 . (6)

It follows that
Tτ1

(
Tτ2 Tτ3

)
=
(
Tτ1 Tτ2

)
Tτ3 = Tτ1+τ2+τ3 ,

I = T0 is the identity, and T−τ is the inverse element of Tτ .

Theorem 19 ([21]). {Tτ : τ ∈ Π} is an operator group with respect to the multiplication defined
by (6). It is an Abelian group.

According to Theorem 19, some basic concepts which will be needed to define a
Π-semigroup for an invariant time scale under translations can be introduced as follows.

Definition 26 ([21]). Let a time scale T be invariant under translations, and {Tτ} be a family of
bounded linear operators on Banach space X. If, for all τ1, τ2 ∈ Π+, the following holds:

Tτ1+τ2 = Tτ1 Tτ2 , (7)

then {Tτ : τ ∈ Π+} is called a one-parameter operator semigroup; if (7) holds for all τ ∈ Π, we
call {Tτ : τ ∈ Π} a one-parameter operator group.

Definition 27 ([21]). Let T be an invariant time scale under translations, and {Tτ : τ ∈ Π+} be
an operator group on a Banach space X, i.e.,

Tτ1 Tτ2 = Tτ1+τ2 , τ1, τ2 ∈ Π+, T0 = I.

If, for every τ0 ≥ 0 and any ε > 0, there is a neighborhood U of τ0 (i.e., U = (τ0 − δ, τ0 + δ)Π+

for some δ > 0) such that
‖Tτx− Tτ0 x‖ < ε for all τ ∈ U,

then we call {Tτ : τ ∈ Π+} the strong-continuous operator semigroup or the Π-semigroup.

Theorem 20 ([21]). Let a time scale T be invariant under translations, and {Tτ : τ ∈ Π+} be an
operator semigroup on the Banach space X. For any ε > 0 and x ∈ X, there exists a neighborhood
U = (τ1 − δ, τ1 + δ)Π+ for some δ > 0, such that∥∥T|σΠ(τ1)−τ2|x− x

∥∥ ≤ ε for all τ2 ∈ U, (8)

then {Tτ : τ ∈ Π+} is a Π-semigroup.

In the following, the definition of infinitesimal generator of a Π-semigroup was
introduced.

Definition 28 ([21]). Let T be an invariant time scale under translations and {Tτ : τ ∈ Π+}
be a Π-semigroup on a Banach space X. Let D denote a subset of X, which has the property
that, for each x ∈ D , there exists a y ∈ X such that for any ε > 0, there is a neighborhood
U = (τ1 − δ, τ1 + δ)Π+ for some δ > 0 such that∥∥(T|σΠ(τ1)−τ2| − I)x− y|σΠ(τ1)− τ2|

∥∥ < ε|σΠ(τ1)− τ2|, τ2 ∈ U. (9)

We define A : D → X satisfying Ax = y, where y is fixed by (9). In what follows, we call this A
the infinitesimal generator of this Π-semigroup.
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Theorem 21 ([21]). Let T be an invariant under translations time scale, {Tτ : τ ∈ Π+} be a
Π-semigroup on Banach space X satisfying (8), and A be the infinitesimal generator of the Π-
semigroup. Then, A is a closed densely defined operator and for every x ∈ D(A), the following holds:

(Tτx)∆Π = A(Tτx) = Tτ Ax,

that is
(Tτx)− x =

∫ τ

0
ATsx∆Πs =

∫ τ

0
Ts Ax∆Πs,

where D(A) denotes the domain of the operator A and ∆Π is the differential operator over the time
scale Π.

Theorem 22 ([21]). Let T be an invariant time scale under translations and X be a Banach space.
Assume that {Tτ : τ ∈ Π+} is a Π-semigroup, A is the infinitesimal generator of the Π-semigroup
and D(A) = X, eA(τ1 + τ2, 0) = eA(τ1, 0)eA(τ2, 0) for all τ1, τ2 ∈ Π+. Then,

Tτ = eA(τ, 0), τ ∈ Π+,

where D(A) denotes the domain of A.

Now, we introduce a new notion called the moving-operator on time scales.

Definition 29 ([21]). Let A be the infinitesimal generator of the Π-semigroup. We call ẽA(t, t0), t0 ∈
T the exponential function generated by A on the time scale T. We also let Tt = ẽA(t, t0) and call
Tt the moving-operator on T.

Let X be a Banach space, and consider the following system:

x∆ = Ax(t), x(t0) = x0, t0 ∈ T, (10)

where A is the infinitesimal generator of a Π-semigroup satisfying all the conditions in
Theorem 22, and x : T→ X.

Theorem 23 ([21]). The fundamental solution of the system (10) can be expressed as

x(t) = Ttx0,

From Theorem 23, the following result follows immediately.

Theorem 24 ([21]). Let A be the infinitesimal generator of the Π-semigroup, and let Tt be the
moving-operator on T. Then,

(Ttx)∆ = A(Ttx) = Tt Ax,

that is

(Ttx)− x =
∫ t

t0

ATsx∆s =
∫ t

t0

Ts Ax∆s.

In the following part, we will introduce two equivalent definitions of relatively dense
sets on semigroups induced by complete-closed time scales under translations.

Definition 30 ([22]). Let T be a complete-closed time scale. If

Π+ := [0,+∞)Π 6∈
{

∅, {0}
}

,
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then we say (Π+,+) is a positive direction semigroup induced by the time scale T; if

Π− := (−∞, 0]Π 6∈
{

∅, {0}
}

,

then we say (Π−,+) is a negative direction semigroup induced by the time scale T.

Now, we denote the set {1, 2, . . . , m} by Λ and introduce the following concept.

Definition 31 ([22]). A subset E of a semigroup Π+ induced by time scales is relatively dense if
there exists elements s1, s2, . . . , sm in Π+ such that

⋃
i∈Λ(si + E) = Π+, where si + E = {si + e :

e ∈ E}.

Definition 32 ([22]). A subset E of Π+ is called relatively dense if there exists a positive num-
ber L ∈ Π+ such that [a, a + L]Π+ ∩ E 6= ∅ for all a ∈ Π+. The number L is called the
inclusion length.

Theorem 25 ([22]). Definition 31 is equivalent to Definition 32.

By Theorem 25, it is obvious that, for the Abelian group (Π,+), the following two
definitions are also equivalent.

Definition 33 ([22]). A subset E of a group Π induced by time scales is relatively dense if there
exists elements s1, s2, . . . , sm in Π such that

⋃
i∈Λ(si + E) = Π, where si + E = {si + e : e ∈ E}.

Definition 34 ([22]). A subset E of Π is called relatively dense if there exists a positive number
L ∈ Π+ such that [a, a + L]Π ∩ E 6= ∅ for all a ∈ Π. The number L is called the inclusion length.

Next, in [22], the equivalence of Bochner and Bohr almost automorphy on semigroup
related to time scales was proved which play a fundamental role in studying the almost
automorphic solutions for dynamic equations by using both notions.

Definition 35 ([22]). Let T be a positive direction complete-closed time scale and (Π+,+) be a
semigroup. A function f : T → X is said to be almost automorphic function on the semigroup
(Π+,+) if for any sequence α

′
= {α′n}n∈N ⊂ Π+ of semigroup elements, there is a subsequence

α = {αn}n∈N and a sequence {α̃n} ⊂ Π+ depending on α such that for each t ∈ T the equality

lim
n→∞

lim
m→∞

f (t + αm + α̃n) = Tα̃Tα f = f (t)

holds on (Π+,+).

Definition 36 ([22]). A bounded function f on a semigroup Π+ is said to be positive direction
Bohr almost automorphic if, for each finite set NT ⊂ T and prescribed ε > 0, there is a set
Bε = Bε(NT) ⊂ Π+ such that

(i) Bε is relatively dense.
(ii) If τ ∈ Bε, then maxt∈NT | f (t + τ)− f (t)| < ε.
(iii) If τ1, τ2 ∈ Bε, then maxt∈NT | f (t + τ1 + τ2)− f (t)| < 2ε.

Theorem 26 ([22]). A function f on semigroup Π+ is a positive direction Bochner almost auto-
morphic function if and only if it is a positive direction Bohr almost automorphic function.

Particularly, since the irregularity of time scales, the delay classification was addressed
to solve the delay dynamic equations on hybrid time scales (see [23]).

The irregularity and the translation of time scales led to the idea of the approximation
of time scales. In 2014, Wang and Agarwal (see [24]) firstly proposed the concept of almost
periodic time scales with the approximation property as follows:
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Definition 37 ([11–13]). We say T is an almost periodic time scale, if for any given ε > 0, there
exists a constant l(ε) > 0 such that each interval of length l(ε) contains a τ(ε) ∈ R such that
d(T,Tτ) < ε, i.e., for any ε > 0, the following set

E{T, ε} = {τ ∈ R : d(Tτ ,T) ≤ ε}

is relatively dense in Π1. Here, τ is called the ε-translation number of T and l(ε) is called the
inclusion length of E{T, ε}, E{T, ε} is called the ε-translation numbers set of T, and for simplicity,
we use the notation E{T, ε} := Πε and Π1 := {τ ∈ R : T ∩ Tτ 6= ∅} 6= {0}, where
Tτ := T+ τ = {t + τ : ∀t ∈ T}.

Definition 37 was applied to study the almost periodicity and almost automorphy of
time scales through translations and the notions of almost periodic and almost automorphic
time scales were introduced (see [25]). Based on the results of approximation property of
time scales, a new type of almost periodic functions called double-almost periodic functions
was proposed and applied to study neural networks and biological dynamic models, and
some new results of the existence and stability of the double-almost periodic solutions were
established (see [26,27]). Moreover, these results were also extended to discontinuous cases
and some notions of piecewise double-almost periodic functions and their generalizations
were put forward and applied to study the impulsive dynamic equations and models
(see [28–31]).

In 2015, to obtain the general results on more complicated hybrid time scales, the
notion of changing-periodic time scales was introduced as follows:

Definition 38 ([32,33]). Let T be an infinite time scale. We say T is a changing-periodic or a
piecewise-periodic time scale if the following conditions are fulfilled:

(a) T =

(
∞⋃

i=1
Ti

)⋃
Tr and {Ti}i∈Z+ is a well connected timescale sequence, where Tr =

k⋃
i=1

[αi, βi] and k is some finite number, and [αi, βi] are closed intervals for i = 1, 2, . . . , k or

Tr = ∅;
(b) Si is a nonempty subsets of R with 0 6∈ Si for each i ∈ Z+ and Λ =

(⋃∞
i=1 Si

)⋃
R0, where

R0 = {0} or R0 = ∅;
(c) for all t ∈ Ti and all ω ∈ Si, we have t + ω ∈ Ti, i.e., Ti is an ω-periodic time scale;
(d) for i 6= j, for all t ∈ Ti\{tk

ij} and all ω ∈ Sj, we have t+ω 6∈ T, where {tk
ij} is the connected

points set of the timescale sequence {Ti}i∈Z+ ;
(e) R0 = {0} if and only if Tr is a zero-periodic time scale and R0 = ∅ if and only if Tr = ∅;

and the set Λ is called a changing-periods set of T, Ti is called the periodic sub-timescale of T and
Si is called the periods subset of T or the periods set of Ti, Tr is called the remain time scale of T
and R0 the remain periods set of T.

Definition 38 shows that one can discuss the almost periodic and almost automorphic
approximation problems on any arbitrary time scales with a bounded graininess function
µ. The following theorems play a fundamental role in establishing the basic theory of local
almost periodic and almost automorphic functions and the related dynamic equations
on time scales. Based on the following theorems, it is meaningful to conduct the related
qualitative analysis of local almost periodic and almost automorphic dynamical behavior
described by dynamic systems on arbitrary time scales in the future.

Theorem 27 ([32,33], Decomposition Theorem of Time Scales). Let T be an infinite time scale
and the graininess function µ : T→ R+ be bounded. Then, T is a changing-periodic time scale, i.e.,

there exists a countable periodic decomposition such that T =

(
∞⋃

i=1
Ti

)⋃
Tr and Ti is ω-periodic

sub-timescale, ω ∈ Si, i ∈ Z+, where Ti, Si, Tr satisfy the conditions in Definition 38.
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Theorem 28 ([32,33], Periodic Coverage Theorem of Time Scales). Let T be an infinite time
scale and the graininess function µ : T→ R+ be bounded. Then, T can be covered by countable
periodic time scales.

On changing-periodic time scales, the local-periodic solutions for functional dynamic
equations with infinite delay and the local pseudo almost automorphic solutions to semi-
linear dynamic equations were respectively discussed (see [34,35]).

Consider the following dynamic equation:

x∆(t) = Ax(t) + f
(
t, x(t)

)
, t ∈ T, (11)

where A is the infinitesimal generator of a Π-semigroup for the periodic sub-timescale Tτt ,
x : Tτt → X, f : Tτt ×X→ X.

Definition 39 ([35]). A local mild solution to (11) is a continuous function x(t) : Tτt → X
satisfying

x(t) = T τ
t,t0

x(t0) +
∫ t

t0

T τ
t,s f
(
s, x(s)

)
∆τs s

for all t ≥ t0 and all t0 ∈ Tτt , where T τ
t,t0

is the moving-operator on Tτt .

In [35], the following sufficient condition of the existence and uniqueness of the local
pseudo almost automorphic mild solution to (11) was established under the following
assumptions:

(H1) Let A be the infinitesimal generator of a Π-semigroup {Tτ : τ ∈ Sτt}. The moving-
operator family

{
T τ

t,t0
: t, t0 ∈ Tτt , t ≥ t0

}
is exponentially stable, that is, there exist

K > 0, ω > 0 such that

‖T τ
t,t0
‖ ≤ Keτ

	ω(t, t0), for all t ∈ Tτt .

(H2) f : R×X→ X is local pseudo almost automorphic.
(H3) There exists a nonnegative function $0(t) ∈ Lp(Tτt ,R+)(p = 1, 2) such that

‖ f (t, x)− f (t, y)‖ ≤ $0(t)‖x− y‖

for all x, y ∈ X and t ∈ Tτt .

Theorem 29 ([35]). Under assumption (H1)− (H3), if S−τt 6= {0} or S+
τt 6∈

{
{0}, ∅

}
, then (11)

has a unique local pseudo almost automorphic mild solution.

2.2. Almost Periodic and Almost Automorphic Theory under Matched Spaces of Time Scales

In 2017, the notion of matched spaces of time scales was introduced by Wang and
Agarwal et al. in [36–38]. Before giving the concept of matched spaces of time scales, we
need the following definition.

Definition 40 ([36,38]). Let the pair (Π∗, δ̃) be an Abelian group and Π∗, T∗ be the largest
open subsets of the time scales Π and T, respectively. Furthermore, let Π be the adjoint set of
T and F the adjoint mapping between T and Π. The operator δ : Π∗ × T∗ → T∗ satisfies the
following properties:

(P1) (Monotonicity) The function δ is strictly increasing with respect to its all arguments, i.e., if

(T0, t), (T0, u) ∈ Dδ :=
{
(s, t) ∈ Π∗ ×T∗ : δ(s, t) ∈ T∗

}
,

then t < u implies δ(T0, t) < δ(T0, u); if (T1, u), (T2, u) ∈ Dδ with T1 < T2, then
δ(T1, u) < δ(T2, u).
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(P2) (Existence of inverse elements) The operator δ has the inverse operator δ−1 : Π∗ ×T∗ → T∗
and δ−1(τ, t) = δ(τ−1, t), where τ−1 ∈ Π∗ is the inverse element of τ.

(P3) (Existence of identity element) There exists eΠ∗ ∈ Π∗ such that δ(eΠ∗ , t) = t for any t ∈ T∗,
where eΠ∗ is the identity element in Π∗.

(P4) (Bridge condition) For any τ1, τ2 ∈ Π∗ and t ∈ T∗, δ
(
δ̃(τ1, τ2), t

)
= δ

(
τ1, δ(τ2, t)

)
=

δ
(
τ2, δ(τ1, t)

)
.

Then, the operator δ(s, t) associated with eΠ∗ ∈ Π∗ is said to be a shift operator on the set T∗. The
variable s ∈ Π∗ in δ is called the shift size. The value δ(s, t) in T∗ indicates s units shift of the term
t ∈ T∗. The set Dδ is the domain of the shift operator δ.

Then, the matched spaces of time scales can be defined as follows.

Definition 41 ([36,38]). Let the pair (Π∗, δ̃) be an Abelian group, and Π∗, T∗ be the largest open
subsets of the time scales Π and T, respectively. Furthermore, let Π be an adjoint set of T and F the
adjoint mapping between T and Π. If there exists the shift operator δ satisfying Definition 40, then
we say the group (T, Π, F, δ) is a matched space for the time scale T.

By using Definition 41, the classical definitions of almost periodic functions and almost
automorphic functions can be generalized as follows.

Definition 42 ([39]). Let T be a periodic time scale under the matched space (T, Π, F, δ). A
function f ∈ C(T× D,X) is called δ-almost periodic function with shift operators in t ∈ T
uniformly for x ∈ D if the ε-shift set of f

E{ε, f , S} =
{

τ ∈ Π̃ :
∥∥ f
(
δτ±1(t), x

)
− f (t, x)

∥∥ < ε, for all t ∈ T∗ and x ∈ S}

is a relatively dense set with respect to the pair (Π∗, δ̃) for all ε > 0 and for each compact subset S of
D; that is, for any given ε > 0 and each compact subset S of D, there exists a constant l(ε, S) > 0
such that each interval of length l(ε, S) contains a τ(ε, S) ∈ E{ε, f , S} such that∥∥ f

(
δτ±(t), x

)
− f (t, x)

∥∥ < ε, for all t ∈ T∗ and x ∈ S.

Now, τ is called the ε-shift number of f and l(ε, S) is called the inclusion length of E{ε, f , S}.

Definition 43 ([40]). (i) Let f : T → X be a bounded continuous function. f is said to be δ-
almost automorphic under the matched space (T, F, Π, δ) if for every sequence of real numbers
{sn}∞

n=1 ⊂ Π̃, one can extract a subsequence {τn}∞
n=1 ⊂ Π̃ such that:

g(t) = lim
n→∞

f
(
δτn(t)

)
is well defined for each t ∈ T and

lim
n→∞

g
(
δ

τ−1
n
(t)
)
= lim

n→∞
g
(
δ−1

τn (t)
)
= f (t)

for each t ∈ T. Denote by AAδ(T,X) the set of all such functions.
(ii) A continuous function f : T × X → X is said to be δ-almost automorphic if f (t, x) is

δ-almost automorphic in t ∈ T uniformly for all x ∈ B, where B is any bounded subset of X.
Denote by AAδ(T×X,X) the set of all such functions.

Definitions 42 and 43 are the basic concepts of almost periodic functions and almost au-
tomorphic functions on irregular time scales such as qZ,N± 1

2 , etc., and their basic properties
were obtained as follows.
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Theorem 30 ([36,38,39]). Assume that f ∈ C(T× D,En) is δ-almost periodic in t uniformly for
x ∈ D under the matched space (T, F, Π, δ), and δτ(t) is continuous in t. Then, it is uniformly
continuous and bounded on T∗ × S.

We introduce the moving-operator Tδ, Tδ
α f (t, x) = g(t, x) by

g(t, x) = lim
n→+∞

f
(
δαn(t), x

)
and is written only when the limit exists. The mode of convergence, e.g., pointwise,
uniform, etc., will be specified at each use of the symbol.

In the following, we will establish a shift-convergence theorem of δ-almost periodic
functions.

Theorem 31 ([36,38,39]). Assume that f ∈ C(T× D,En) is δ-almost periodic in t uniformly
for x ∈ D under the matched space (T, F, Π, δ). Then, for any given sequence α

′ ⊂ Π̃, there is
a subsequence β ⊂ α

′
and g ∈ C(T× D,En) such that Tδ

β f (t, x) = g(t, x) holds uniformly on
T∗ × S. Furthermore, g(t, x) is δ-almost periodic in t uniformly for x ∈ D under the matched
space (T, F, Π, δ).

Theorem 32 ([36,38,39]). Assume that f (t, x) ∈ C(T× D,En) is δ-almost periodic in t uni-
formly for x ∈ D and ϕ(t) is δ-almost periodic with {ϕ(t) : t ∈ T} ⊂ S, then f

(
t, ϕ(t)

)
is

δ-almost periodic.

Definition 44 ([36,38,39]). Let f (t, x) ∈ C(T× D,En). Then, Hδ( f ) = {g(t, x) : T → En|
there is α ∈ Π̃ such that Tδ

α f (t, x) = g(t, x) exists uniformly on T∗ × S } is said to be the δ-hull
of f (t, x) under the matched space (T, F, Π, δ).

Theorem 33 ([36,38,39]). Hδ( f ) is compact if and only if f (t, x) is δ-almost periodic in t uni-
formly for x ∈ D.

Theorem 34 ([36,38,39]). If f (t, x) is δ-almost periodic in t uniformly for x ∈ D under the
matched space (T, F, Π, δ), then for any g(t, x) ∈ Hδ( f ) and Hδ( f ) = Hδ(g).

Based on the theorems above, a sufficient and necessary criterion for δ-almost periodic
functions was established.

Theorem 35 ([36,38,39]). A function f (t, x) is δ-almost periodic in t uniformly for x ∈ D under
the matched space (T, F, Π, δ) if and only if for every pair of sequences α

′
, β
′ ⊆ Π̃, there exist

common subsequences α ⊂ α
′
, β ⊂ β

′
such that

Tδ
δ̃(α,β) f (t, x) = Tδ

α Tδ
β f (t, x). (12)

In what follows, some basic properties of δ-almost automorphic functions were also
established.

Next, the notation X denotes a Banach space endowed with the norm ‖ · ‖ and B(X,Y)
the Banach space of all bounded linear operators from X to Y. This is simply denoted as
B(X) when X = Y. Let BC(T,X) be the space of bounded continuous function from T to
X with the supremum norm ‖u‖∞ = supt∈T ‖u(t)‖.

Theorem 36 ([40,41]). AAδ(T,X) equipped with the norm ‖ · ‖∞ is a Banach space.

Theorem 37 ([40,41]). Let (T, F, Π, δ) be a regular matched space. If g(t, x) ∈ AAδ(T×X,X)
and α(t) ∈ AAδ(T,X), then G(t) := g

(
t, α(t)

)
∈ AAδ(T,X).

Moreover, if the following assumptions hold:
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(H1) f (t, x) is uniformly continuous in any bounded subset K ⊂ X for all t ∈ T.
(H2)g(t, x) is uniformly continuous in any bounded subset K ⊂ X for all t ∈ T.

Then, we can obtain the following theorem.

Theorem 38 ([40,41]). Let f = g + φ ∈ WPAAδ(T × X, ρ) where g ∈ AAδ(T × X,X),
φ ∈ PAAδ

0(T× X, ρ), ρ ∈ U∞. Assume that (H1) and (H2) are satisfied. Then, the L(·) :=
f
(
·, h(·)

)
∈WPAAδ(T, ρ) if h ∈WPAAδ(T, ρ).

From Theorem 38, we can establish the following consequence:

Corollary 1 ([40,41]). Let f = g + φ ∈ WPAAδ(T, ρ) where ρ ∈ U∞ and assume both f and
g are Lipschitzian in x ∈ X uniformly in t ∈ T. Then L(·) := f

(
·, h(·)

)
∈ WPAAδ(T, ρ) if

h ∈WPAAδ(T, ρ).

It is very important to establish the approximation theory on non-translational shift
time scales since that they may combine into more complicated hybrid time scales. In [38,41],
the concept of the n0-order ∆-almost periodic functions and weighted pseudo δ-almost
automorphic functions were introduced and studied, respectively, and their obtained basic
properties were applied to the qualitative analysis of the related dynamic equations on
hybrid domains.

Definition 45 ([38]). Let T be a periodic time scale under the matched space (T, Π, F, δ) and
n0 ∈ N, the shift δτ(t) is ∆-differentiable with rd-continuous bounded derivatives δ∆

τ (t) := δ∆(τ, t)
for all t ∈ T∗. A function f ∈ C(T× D,X) is called an n0-order ∆-almost periodic function
(∆δ

n0
-almost periodic function) in t ∈ T uniformly for x ∈ D under the matched space if there exists

some i0 ≥ 1, ni ∈ Z, i = 1, 2, . . . , i0 such that the ε-shift set of S
n1,ni0
f

E{ε, S
n1,ni0
f , S} =

{
τ ∈ Π̃ :

∥∥ f
(
δτ(t), x

)(
δ∆

τ (t)
)n0−S

n1,ni0
f (t, x)

∥∥ < ε, for all t ∈ T∗ and x ∈ S
}

is a relatively dense set with respect to the pair (Π∗, δ̃) for all ε > 0 and, for each compact subset S of
D; that is, there exists some i0 ≥ 1, ni ∈ Z, i = 1, 2, . . . , i0 such that for any given ε > 0 and each
compact subset S of D, there exists a constant l(ε, S) > 0 such that each interval of length l(ε, S)

contains a τ(ε, S) ∈ E{ε, S
n1,ni0
f , S} such that

∥∥ f
(
δτ(t), x

)(
δ∆

τ (t)
)n0 − S

n1,ni0
f (t, x)

∥∥ < ε, for all t ∈ T∗ and x ∈ S,

where

S
n1,ni0
f (t, x) = f (t, x)

i0

∏
i=1

(
δ∆

eΠ∗
(t)
)ni .

Now, τ is called the ε-shift number of S
n1,ni0
f and l(ε, S) is called the inclusion length of

E{ε, S
n1,ni0
f , S}, and S

n1,ni0
f is called the approximation shift selection-function (ASS-function) of f .

In what follows, we established some basic properties of ∆δ
n0

-almost periodic functions.

Theorem 39 ([38]). Let f ∈ C(T× D,En) be ∆δ
n0

-almost periodic in t uniformly for x ∈ D with
the ASS-function Sn0

f = f (t, x)
(
δ∆

eΠ∗
(t)
)n0 under the matched space (T, F, Π, δ), and δτ(t) is

continuous in t. Then, Sn0
f is uniformly continuous and bounded on T∗ × S.

In the following, we established a shift-convergence theorem of ∆δ
n0

-almost periodic
functions.
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Theorem 40 ([38]). Let f ∈ C(T× D,En) be ∆δ
n0

-almost periodic in t uniformly for x ∈ D
with the ASS-function Sn0

f = f (t, x)
(
δ∆

eΠ∗
(t)
)n0 under the matched space (T, F, Π, δ). Then, for

any given sequence α
′ ⊂ Π̃, there exists a subsequence β ⊂ α

′
and g ∈ C(T× D,En) such that

Tδ,n0
β (Sn0

f ) = Sn0
g holds uniformly on T∗ × S and g(t, x) is ∆δ

n0
-almost periodic in t uniformly for

x ∈ D with the ASS-function Sn0
g = g(t, x)

(
δ∆

eΠ∗
(t)
)n0 under the matched space (T, F, Π, δ).

Next, we give a sequentially compact criterion of ∆δ
n0

-almost periodic functions
through shift operator Tδ,n0 .

Theorem 41 ([38]). Let f (t, x) ∈ C(T × D,En). If for any sequence α
′ ⊂ Π̃, there exists

α ⊂ α
′

such that Tδ,n0
α (Sn0

f ) exists uniformly on T∗ × S, then f (t, x) is ∆δ
n0

-almost periodic in
t uniformly for x ∈ D with the ASS-function Sn0

f under the matched space (T, F, Π, δ), where

Sn0
f = f (t, x)

(
δ∆

eΠ∗
(t)
)n0 .

From Theorems 40 and 41, we can obtain the following equivalent definition of
uniformly ∆δ

n0
-almost periodic functions.

Definition 46 ([38]). Let f (t, x) ∈ C(T× D,En). If for any given sequence α
′ ⊂ Π̃, there

exists a subsequence α ⊂ α
′

such that Tδ,n0
α (Sn0

f ) exists uniformly on T∗ × S, where Sn0
f =

f (t, x)
(
δ∆

eΠ∗
(t)
)n0 , then f (t, x) is called an ∆δ

n0
-almost periodic function in t uniformly for x ∈ D

with the ASS-function Sn0
f under the matched space (T, F, Π, δ).

Theorem 42 ([38]). If f (t, x) ∈ C(T× D,En) is ∆δ
n0

-almost periodic in t uniformly for x ∈ D
with the ASS-function Sn0

f = f (t, x)
(
δ∆

eΠ∗
(t)
)n0 , ϕ(t) is ∆δ

n0
-almost periodic with the ASS-

function Sn0
ϕ = ϕ(t)

(
δ∆

eΠ∗
(t)
)n0 and {Sn0

ϕ : t ∈ T} ⊂ S, then f
(
t, Sn0

ϕ (t)
)

is ∆δ
n0

-almost periodic
with the ASS-function

Sn0
f = f (t, Sn0

ϕ (t))
(
δ∆

eΠ∗
(t)
)n0 .

Definition 47 ([38]). Let f (t, x) ∈ C(T× D,En). Then, Hn0(S
n0
f ) = {Sn0

g (t, x) : T → En|
there exists α ∈ Π̃ such that Tδ,n0

α Sn0
f (t, x) = Sn0

g (t, x) exists uniformly on T∗ × S } is called the
n0-order hull of Sn0

f (t, x) under the matched space (T, F, Π, δ).

Theorem 43 ([38]). Hn0(S
n0
f ) is compact if and only if f (t, x) is ∆δ

n0
-almost periodic in t uniformly

for x ∈ D with the ASS-function f (t, x)
(
δ∆

eΠ∗
(t)
)n0 .

Theorem 44 ([38]). If f (t, x) is ∆δ
n0

-almost periodic in t uniformly for x ∈ D with the ASS-
function Sn0

f = f (t, x)
(
δ∆

eΠ∗
(t)
)n0 under the matched space (T, F, Π, δ), then, for any Sn0

g (t, x) ∈
Hn0(S

n0
f ), we have Hn0(S

n0
f ) = Hn0(S

n0
g ).

Now, we establish a sufficient and necessary criterion for ∆δ
n0

-almost periodic func-
tions.

Theorem 45 ([38]). A function f (t, x) is ∆δ
n0

-almost periodic in t uniformly for x ∈ D with the
ASS-function Sn0

f = f (t, x)
(
δ∆

eΠ∗
(t)
)n0 under the matched space (T, F, Π, δ) if and only if for

every pair of sequences α
′
, β
′ ⊆ Π̃, there exist common subsequences α ⊂ α

′
, β ⊂ β

′
such that

Tδ,n0
δ̃(α,β)

Sn0
f (t, x) = Tδ,n0

α Tδ,n0
β Sn0

f (t, x).
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In [38], the linear ∆δ
n0

-almost periodic dynamic equation on T was discussed:

x∆ = Sn0
A (t)x(t) + Sn0

f (t) (13)

and its associated homogeneous equation

x∆ = Sn0
A (t)x(t), (14)

where A(t) is an ∆δ
n0

-almost periodic matrix function and f (t) is an ∆δ
n0

-almost periodic
vector function.

Theorem 46 ([38]). Let A(t) be an ∆δ
n0

-almost periodic matrix function with the ASS-function
Sn0

A and f (t) be an ∆δ
n0

-almost periodic vector function with the ASS-function Sn0
f . If (14) admits

an exponential dichotomy, then (13) has a unique δ-almost periodic solution with the ∆δ
n0

-almost
periodic function x:

Sn0
x (t) =

∫ t

−∞
Sn0

X (t)PSn0
X−1(σ(s))S

n0
f (s)∆s−

∫ +∞

t
Sn0

X (t)(I − P)Sn0
X−1(σ(s))S

n0
f (s)∆s,

where Sn0
X (t) is the fundamental solution matrix of (14) and X(t) is the fundamental matrix

solution for x∆(t) = A(t)x(t).

As an application of Theorem 46, the following almost periodic dynamic equation
with variable delays under the matched space (T, F, Π, δ) was considered:

x∆(t) = Sn0
A (t)x(t) +

n

∑
i=1

Sn0
f
(
t, x
(
δ(τi(t), t)

))
, (15)

where A(t) is an ∆δ
n0

-almost periodic matrix function on T, τi(t) : T∗ → Π∗ is ∆δ
n0

-almost
periodic on T for every i = 1, 2, . . . , n, f ∈ C(T×Rn,Rn) is ∆δ

n0
-almost periodic uniformly

in t for x ∈ Rn.

Theorem 47 ([38]). Suppose that the following hold:

(H1) x∆(t) = Sn0
A (t)x(t) admits an exponential dichotomy on T with positive constants K and α.

(H2) There exists M <
α

2Kn
such that |S f (t, x)− S f (t, y)| ≤ M|Sx − Sy| for t ∈ T, x, y ∈ Rn.

Then, the system (15) has a unique δ-almost periodic solution with the ∆δ
n0

-almost periodic affiliated
function.

3. The Uncertainty Theory on Time Scales with Shift Operators

As is known to all that all kinds of natural changes are full of uncertainty. To describe
this inaccuracy in an accurate way, the stochastic theory and fuzzy theory are always
applied to overcome these difficulties in physics and biological field (see [42–45]), etc.

In this section, we will present some recent main results of the stochastic and fuzzy
dynamic equations on translational and non-translational time scales. Non-translational
time scales are always with shift operators introduced in [46]. Some new equivalent
concepts of the periodic time scales in shift operators were proposed in [47–50] to establish
the theory of almost periodic and almost automorphic functions on irregular time scales.

3.1. The Stochastic Theory on Time Scales

The theory of stochastic dynamic equations was discussed in [51] and applied to study
the existence and exponential stability of piecewise mean-square almost periodic solutions
of the impulsive stochastic Nicholson’s blowflies model on time scales (see [15]).
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Let (Ω,F,P) be a probability space and L2(Rn) stands for a space that consists of all
Rn-valued random variables x with the norm

E‖x‖2 =
∫

Ω
‖x‖2dP.

Let ω be a standard Wiener process and suppose {ω(t + h)−ω(t) : h ≥ 0} is independent
of Ft := σ{ω(s) : 0 ≤ s ≤ t}, where FR := {Ft : t ∈ R} is a filtration on R, and with σ{·},
we mean the σ-algebra generated by {·}. We denote ∆-stochastic integral on [0, 1]T, by∫ 1

0 f (t)∆ω(t).

Lemma 2 ([51]). The ∆-stochastic integral has the following properties:

(i) If f1, f2 ∈ L2([0, 1]T) and c1, c2 ∈ R, then

∫ 1

0

(
c1 f1(t) + c2 f2(t)

)
∆ω(t) = c1

∫ 1

0
f1(t)∆ω(t) + c2

∫ 1

0
f2(t)∆ω(t).

(ii) If E
( ∫ 1

0 | f (t)|
2∆t
)
< ∞, then E

( ∫ 1
0 f (t)∆ω(t)

)
= 0 and the Itô-isometry holds, i.e.,

E
(( ∫ 1

0
f (t)∆ω(t)

)2)
= E

( ∫ 1

0
f 2(t)∆t

)
.

Definition 48 ([46]). Let T be a time scale with the shift operators δ± associated with the initial
point t0 ∈ T∗. The time scale T is said to be periodic in shifts δ± if there exists a p ∈ (t0, ∞)T∗
such that (p, t) ∈ D∓ for all t ∈ T∗. Furthermore, if

P := inf
{

p ∈ (t0, ∞)T∗ : (p, t) ∈ D∓ for all t ∈ T∗
}
6= {t0},

then P is called the period of the time scale T, whereD± =
{
(s, t) ∈ [t0, ∞)T×T∗ : δ(s, t) ∈ T∗

}
.

Based on Definition 48, we introduce the following concept of relatively dense set
under periodic time scales with shifts δ±.

Definition 49 ([47,48]). Let T be a time scale with the shifts operators δ± associated with the
initial point t0 ∈ T∗. A subset S of R is called relatively dense under the shift δ+ if there exists a
positive number L ∈ (t0, ∞)T∗ such that [a, δ+(L, a)]T∗ ∩ S 6= ∅ for all a ∈ T∗. The number L is
called the inclusion length with respect to the pair (T∗, δ+).

Remark 3. In fact, some classical definitions of relatively dense set from Definition 49 can be
addressed below.

(i) Let T = R, δ+(L, a) = a + L. Definition 49 can be written as:

Definition 50. A subset S of R is called relatively dense if there exists a positive number L
such that [a, a + L] ∩ S 6= ∅ for all a ∈ R.

(ii) Let T = qZ, q > 1, δ+(L, a) = aL, Definition 49 is equivalent to the notion of relatively
dense set on quantum time scale:

Definition 51. A subset S of R is called relatively dense if there exists a positive number
L ∈ (1, ∞) ∩ qZ such that [a, aL]qZ ∩ S 6= ∅ for all a ∈ qZ.

(iii) Let T = N 1
2 , δ+(L, a) =

√
L2 + a2. The concept of relatively dense set on this irregular time

scale follows immediately:



Entropy 2021, 23, 450 24 of 66

Definition 52. A subset S of R is called relatively dense if there exists a positive number
L ∈ (0, ∞) ∩N 1

2 such that [a,
√

L2 + a2]
N

1
2
∩ S 6= ∅ for all a ∈ N 1

2 .

(iv) Let T = Z, δ+(L, a) = a + L. The concept of relatively dense set in discrete situation can be
stated as follows:

Definition 53. A subset S of R is called relatively dense if there exists a positive number
L ∈ (0, ∞) ∩Z such that [a, a + L]Z ∩ S 6= ∅ for all a ∈ Z.

From (i), (ii), (iii), (iv), it easily follows that Definition 49 is efficient and feasible to cover some
important irregular time scales. Based on it, the almost periodic functions on irregular time scales
can be introduced.

For convenience, PCrd
(
T, L2(Rn)

)
denotes the set of all piecewise continuous stochas-

tic process with respect to a sequence {tk}, k ∈ Z.
By Lemma 1 from [46], the following lemma follows.

Lemma 3 ([47,48]). If tj
k = δ−(tk, tk+j) and k, j ∈ Z, then

δ−(t
j
k, tj

k+k1
) = δ−(t

k1
k , tk1

k+j), δ−(t
k1
k , tj

k) = tj−k1
k+k1

.

According to Lemma 3, we adopt the notion tj
k := δ−(tk, tk+j) and introduce the

concept of equipotentially almost periodic sequence under the shifts operators δ±.

Definition 54 ([47,48]). For any ε > 0, let Γε ⊂ T∗ be a set of real numbers and {tk} ⊂ T∗. We
say {tj

k}, k, j ∈ Z is equipotentially almost periodic under the shifts operators δ± if for r ∈ Γε, there
exists at least one integer q such that |tq

k − r| < ε, for all k ∈ Z.

Based on Definition 49, we can introduce the following new concepts of almost
periodic stochastic process. Let Ω ⊂ L2(Rn) or Ω = L2(Rn), we will introduce the
following definitions.

Letting t0 be the initial point and Π :=
{

p ∈ T∗ : (p, t) ∈ D± for all t ∈ T∗
}
6∈{

{t0}, ∅
}

, then for any s ∈ Π, we define a function A : Π→ Π,

A(s) =

{
δ+(s, t0), s > t0,
δ−(s, t0), s < t0,

which will be used later. Note that A(s) > t0 and A(s) ≥ s.

Definition 55 ([47,48]). Let T be periodic in shifts δ± and t0 ∈ T∗ be an initial point. {tk} ⊂ T∗

satisfies that the derived sequence {tj
k}, k, j ∈ Z, is equipotentially almost periodic under the shifts

operators δ±. We call a stochastic process ϕ ∈ PCrd
(
T×Ω, L2(Rn)

)
mean-square almost periodic

in t uniformly for x ∈ Ω if for any ε > 0 and for each compact subset S of Ω:

(i) there is a positive number δ∗ = δ∗(ε, S) such that if the points t
′

and t
′′

belong to the same
interval of continuity and A

(
δ−(t

′
, t
′′
)
)
< δ∗, then E‖ϕ(t

′
, x) − ϕ(t

′′
, x)‖2 < ε for all

t
′
, t
′′ ∈ T∗;

(ii) there is relative dense set Γ0 ⊂ (t0, ∞)T∗ of mean-square ε-almost periods with respect

to the pair (T∗, δ+) such that if τ ∈ Γ0, then E
∥∥ϕ
(
δ+(τ, t), x

)
− ϕ(t, x)

∥∥2
< ε for all

(t, x) ∈ T∗ × S which satisfies the condition A
(
δ−(t, tk)

)
> ε, k ∈ Z.

In 2017, Wang and Agarwal firstly proposed the concept of relatively dense set under
time scales with shift operators and established the following basic notions and proper-
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ties to investigate the almost periodicity and almost automorphy of impulsive dynamic
equations on more general hybrid time scales (see [47,49]).

Let
D± =

{
(s, t) ∈ T∗ ×T∗ : δ±(s, t) ∈ T∗

}
.

For any s ∈ T∗, denote

Tδs−∗ := δ−(s,T∗) :=
{

δ−(s, t) : (s, t) ∈ D−, ∀t ∈ T∗
}

, (16)

Tδs+∗ := δ+(s,T∗) :=
{

δ+(s, t) : (s, t) ∈ D+, ∀t ∈ T∗
}

. (17)

Definition 56 ([50]). Let T be a time scale attached with the shifts operators δ± and t0 ∈ T∗ is
the initial point. The time scale T is called bi-direction shift complete-closed time scales (or
S-CCTS for short) in shifts δ± if

Π :=
{

p ∈ T∗ : (p, t) ∈ D± for all t ∈ T∗
}
6∈
{
{t0}, ∅

}
. (18)

By (16) and (17), we may rewrite (18) into the equivalent form Π =
{

p ∈ T∗ : T
δp±
∗ ⊆

T∗
}
6∈
{
{t0}, ∅

}
.

Furthermore, from (18), we will refine the following the concept of S-CCTS attached
with shift direction. For convenience, we will use the notations

Π+ :=
{

p ∈ T∗ : Tδp
∗ ⊆ T∗

}
, Π− :=

{
p ∈ T∗ : T

δp−
∗ ⊆ T∗

}
.

Definition 57 ([50]). Let T be an S-CCTS. Then,

(i) we say S-CCTS is with positive-direction if Π+ 6∈
{
{t0}, ∅

}
;

(ii) we say S-CCTS is with negative-direction if Π− 6∈
{
{t0}, ∅

}
;

(iii) we say S-CCTS is with bi-direction if Π 6∈
{
{t0}, ∅

}
.

Through Definitions 49 and 55, the authors investigated the almost periodic oscil-
lations for delay impulsive stochastic Nicholson’s blowflies timescale model and the
almost periodic dynamical behavior of a new type of neutral impulsive stochastic Lasota-
Wazewska timescale model, respectively.

In [48], two new concepts of mean-square almost periodic stochastic processes were
first introduced and the following timescale model was considered:

∆
(

xi(t) + ci(t)xi(δ−(τi, t))
)
=
[
− αi(t)xi(t) +

m
∑

j=1
βij(t)e

−γij(t)xj(δ−(τij ,t))
]
∆t

+
m
∑

j=1
Hij
(
t, xj(δ−(σij, t))

)
∆ωj(t), t 6= tk,

∆̃xi(tk) = xi(t+k )− xi(t+k ) = Iik(xi(tk)) + αikxi(tk) + νik, t = tk,

(19)

where xi denotes the number of the red blood cells at time t of the ith animal, ci(t) is the
stimulative rate of the generation of red blood cells per unit time, and τi is the stimulative
time needed to produce blood cells of the ith animal. αi is the rate of death of the red blood
cells of the ith animal, βij and γij describe the generation of red blood cells per unit time
and τij is the time needed to produce blood cells of the ith animal when blood of the jth
animal is transfused into the ith one. ∆xi(t) denotes a ∆-stochastic differential of xi(t),
αi, βij, γij ∈ PCrd(T,R+), τi, τij, σij are some positive constants, {tk} ∈ B, B =

{
{tk} : tk ∈

T, tk < tk+1, k ∈ Z, limk→±∞ = ±∞
}

, the constants αik, νik ∈ R and Iik ∈ C(L2(R),R),
Hij is Borel measurable, i = 1, 2, . . . , n, j = 1, 2, . . . , m, k ∈ Z and A = (Hij)n×m is a
diffusion coefficient matrix (i.e., the random perturbation term for the system). The operator
δ± : T∗ → T∗ are shifts operators satisfying all the conditions in Definition 3 from [46] (here
T∗ = T, T∗ denotes the closure of T, i.e, T∗ is the largest subset of T). Let (Ω,F,P) be a
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complete probability space furnished with a complete family of right continuous increasing
sub σ-algebras {Ft : t ∈ [0,+∞)T} satisfying Ft ⊂ F. ω(t) =

(
ω1(t), ω2(t), . . . , ωm(t)

)
is

an m-dimensional standard Brownian motion over (Ω,F,P). Some sufficient conditions are
obtained ensuring the existence of mean-square almost periodic solutions for system (19)
by inverse operator theorem and fixed point theorem.

The following result concerning the existence of square-mean positive almost periodic
solutions for (19) was established in [48].

Theorem 48 ([48]). If the conditions (A1)− (A4) are fulfilled—if (A5) holds, i.e, the following
inequalities holds:

3K2

λ2

{
2
(

1
1− cM

)2[( n

∑
i=1

m

∑
j=1

(
βM

ij γM
ij
))2

+

( n

∑
i=1

αM
i cM

i

)2]

+

( n

∑
i=1

m

∑
j=1

l
1
2
ij

1− cM
i

)2}
+

3K2(
1− e∗	λ(θ, 0)

)2

( n

∑
i=1

L
1
2
i (1 + cM

i )

1− cM
i

)2

< 1, then

there exists a unique piecewise mean-square almost periodic solution x(t) of system (19) in the

region B∗ =
{

ϕ̃ : ϕ̃ ∈ PCrd
(
T, L2(Rn)

)
,E‖ϕ̃(t)‖2 ≤

(
K0

1− cM

)2

, t ∈ T
}

.

3.2. The Fuzzy Theory on Time Scales

Time scale theory is also a powerful tool in establishing the fuzzy theory on hybrid
domains. Based on the Hilger theory, in [50], Wang, Agarwal, and O’Regan established the
theory of calculus of fuzzy vector-valued functions and almost periodic fuzzy vector-valued
functions on time scales.

Definition 58 ([52,53]). Letting Kn
C be the space of nonempty compact convex set of Rn, A, B ∈

Kn
C, we define the generalized Hukuhara difference of A and B as the set C ∈ Kn

C such that

A�gH B = C ⇔
{
(I) A = B + C or
(I I) B = A + (−1) · C.

(20)

In the following part, we establish an embedding theorem for fuzzy multidimen-
sional space.

Definition 59 ([50]). Let ui ∈ RF for each i = 1, 2, . . . , n. We say u = (u1, u2, . . . , un) ∈
RF ×RF × . . .×RF︸ ︷︷ ︸

n terms

= ×n
i=1{RF } := [Rn

F ] is a fuzzy (box) vector, where ×n
i=1 denotes the

Cartesian product.

Remark 4. Let u = (u1, u2, . . . , un) ∈ [Rn
F ], then the α-level of u are multidimensional intervals

(box) of Rn (see Section 3 from Stefanini [53]). In fact, a multidimensional interval (box) of Rn

can be regarded as a fuzzy (box) vector.

Let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) be two fuzzy vectors with (box)
α-levels:

[u]α = [u−1,α, u+
1,α]× [u−2,α, u+

2,α]× . . .× [u−n,α, u+
n,α] := ×n

i=1[u
−
i,α, u+

i,α],

[v]α = [v−1,α, v+1,α]× [v−2,α, v+2,α]× . . .× [v−n,α, v+n,α] := ×n
i=1[v

−
i,α, v+i,α].
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The distance is defined by

D∞(u, v) = sup
α∈[0,1]

max
{[ n

∑
i=1
|su(α, Pi)− sv(α, Pi)|2

] 1
2

,
[ n

∑
i=1
|su(α, P∗i )− sv(α, P∗i )|2

] 1
2

: α ∈ [0, 1], Pi, P∗i ∈ Sn−1 ∩Vn−1, i = 1, 2, . . . , n
}

, (21)

and the distance D∞(·, ·) induces ‖ · ‖F on [Rn
F ] defined by ‖u‖F = D∞(u, 0̃), where

0̃ = (0̃, 0̃, . . . , 0̃) and 0̃ is a zero element of RF . In fact, because[
− su(α, P∗i ), su(α, Pi)

]
= [u−i,α, u+

i,α], i = 1, 2, . . . , n,[
− sv(α, P∗i ), sv(α, Pi)

]
= [v−i,α, v+i,α], i = 1, 2, . . . , n,

then

[u−̃gHv]α = [u]α �gH [v]α =

{
(i) ×n

i=1 [sv(α, P∗i )− su(α, P∗i ), su(α, Pi)− sv(α, Pi)] or
(ii) ×n

i=1 [su(α, Pi)− sv(α, Pi), sv(α, P∗i )− su(α, P∗i )],

so, from (21), we have

D∞(u, v) = sup
α∈[0,1]

{‖[u]α �gH [v]α‖∗} = ‖u−̃gHv‖F

= sup
α∈[0,1]

max
{[ n

∑
i=1
|su(α, Pi)− sv(α, Pi)|2

] 1
2

,
[ n

∑
i=1
|su(α, P∗i )− sv(α, P∗i )|2

] 1
2

: α ∈ [0, 1], Pi, P∗i ∈ Sn−1 ∩Vn−1, i = 1, 2, . . . , n
}

.

Remark 5. For each i = 1, 2, . . . , n, if we introduce the distance

D(i)
∞ (ui, vi) = sup

α∈[0,1]
max

{
|su(α, Pi)− sv(α, Pi)|, |su(α, P∗i )− sv(α, P∗i )| :

α ∈ [0, 1], Pi, P∗i ∈ Sn−1 ∩Vn−1},

the distance D(i)
∞ (·, ·) induces ‖ · ‖F0 on RF defined by ‖ui‖F0 = D∞(ui, 0̃), and then it follows

that

D∞(u, v) = ‖u−̃gHv‖F =

( n

∑
i=1

D(i)
∞ (ui, vi)

) 1
2

=

( n

∑
i=1
‖ui − vi‖2

F0

) 1
2

.

Theorem 49 ([50]). The metric space ([Rn
F ], D∞) is complete.

In addition, the following theorem can be proved immediately.

Theorem 50 ([50]). ×n
i=1
(
C̄[0, 1]× C̄[0, 1]

)
, with the norm defined by

∥∥(( f1, g1), ( f2, g2), . . . , ( fn, gn)
)∥∥
×n

i=1(C̄×C̄) = sup
x∈[0,1]

max
{( n

∑
i=1

f 2
i (x)

) 1
2

,
( n

∑
i=1

g2
i (x)

) 1
2
}

is a Banach space.

The embedding theorem was established as follows.
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Theorem 51 (Embedding theorem of fuzzy multidimensional space, [50]). For all u ∈
[Rn

F ], denote j(u) = ×n
i=1
(
u−i , u+

i
)
. Then, j([Rn

F ]) is a closed convex cone with vertex 0 in
×n

i=1
(
C̄[0, 1]× C̄[0, 1]

)
and j : [Rn

F ]→ ×n
i=1
(
C̄[0, 1]× C̄[0, 1]

)
satisfies:

(i) for all u, v ∈ [Rn
F ], ŝ, t ≥ 0, j(ŝ · u+̃t · v) = ŝj(u) + tj(v);

(ii) D∞(u, v) = ‖j(u)− j(v)‖×n
i=1(C̄×C̄);

i.e., j embeds [Rn
F ] into ×n

i=1
(
C̄[0, 1]× C̄[0, 1]

)
isometrically and isomorphically.

Next, six new types of multiplication of two compact intervals were introduced as
follows.

Let [u−, u+] and [v−, v+] be two compact intervals and ab denote the ordinary product
of real numbers a, b. For convenience, we introduce the following notations:

I(I)
u,v =

∣∣∣∣u− u+

v− v+

∣∣∣∣, I(I I)
u,v =

∣∣∣∣u+ u−

v− v+

∣∣∣∣, I(I I I)
u,v =

∣∣∣∣u− u−

v− v+

∣∣∣∣,
I(IV)
u,v =

∣∣∣∣u+ u+

v− v+

∣∣∣∣, I(V)
u,v =

∣∣∣∣u− u+

v− v−

∣∣∣∣, I(VI)
u,v =

∣∣∣∣u− u+

v+ v+

∣∣∣∣.
For any [a−, a+] ⊆ [u−, u+] and [b−, b+] ⊆ [v−, v+], we defined the following multi-

plications:

Type I. [a−, a+] ◦ [b−, b+] =
{

a > b : a ∈ [a−, a+], b ∈ [b−, b+]
}

, (22)

where if I(I)
u,v ≤ 0, then

a > b =


ab, ab ∈ [u−v+, u+v−],
u−v+, ab < u−v+,
u+v−, ab > u+v−;

if I(I)
u,v ≥ 0, then

a > b =


ab, ab ∈ [u+v−, u−v+],
u+v−, ab < u+v−,
u−v+, ab > u−v+.

Type II. [a−, a+]} [b−, b+] =
{

a > b : a ∈ [a−, a+], b ∈ [b−, b+]
}

, (23)

where if I(I I)
u,v ≤ 0, then

a > b =


ab, ab ∈ [u+v+, u−v−],
u+v+, ab < u+v+,
u−v−, ab > u−v−;

if I(I I)
u,v ≥ 0, then

a > b =


ab, ab ∈ [u−v−, u+v+],
u−v−, ab < u−v−,
u+v+, ab > u+v+.

Type III. [a−, a+]� [b−, b+] =
{

a > b : a ∈ [a−, a+], b ∈ [b−, b+]
}

, (24)

where if I(I I I)
u,v ≤ 0, then
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a > b =


ab, ab ∈ [u−v+, u−v−],
u−v+, ab < u−v+,
u−v−, ab > u−v−;

if I(I I I)
u,v ≥ 0, then

a > b =


ab, ab ∈ [u−v−, u−v+],
u−v−, ab < u−v−,
u−v+, ab > u−v+.

Type IV. [a−, a+]� [b−, b+] =
{

a > b : a ∈ [a−, a+], b ∈ [b−, b+]
}

, (25)

where if I(IV)
u,v ≤ 0, then

a > b =


ab, ab ∈ [u+v−, u+v+],
u+v−, ab < u+v−,
u+v+, ab > u+v+;

if I(IV)
u,v ≥ 0, then

a > b =


ab, ab ∈ [u+v+, u+v−],
u+v+, ab < u+v+,
u+v−, ab > u+v−.

Type V. [a−, a+]⊗ [b−, b+] =
{

a > b : a ∈ [a−, a+], b ∈ [b−, b+]
}

, (26)

where if I(V)
u,v ≤ 0, then

a > b =


ab, ab ∈ [u−v−, u+v−],
u−v−, ab < u−v−,
u+v−, ab > u+v−;

if I(V)
u,v ≥ 0, then

a > b =


ab, ab ∈ [u+v−, u−v−],
u+v−, ab < u+v−,
u−v−, ab > u−v−.

Type VI. [a−, a+]� [b−, b+] =
{

a > b : a ∈ [a−, a+], b ∈ [b−, b+]
}

, (27)

where if I(VI)
u,v ≤ 0, then

a > b =


ab, ab ∈ [u−v+, u+v+],
u−v+, ab < u−v+,
u+v+, ab > u+v+;

if I(VI)
u,v ≥ 0, then

a > b =


ab, ab ∈ [u+v+, u−v+],
u+v+, ab < u+v+,
u−v+, ab > u−v+.

Now, six types of the multiplication of fuzzy vectors induced by the multiplications
of compact intervals can be defined by (22)–(27). For any α ∈ [0, 1] and i = 1, 2, . . . , n, we
introduce the notations:
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Iα,(I)
ui ,vi =

∣∣∣∣∣u−i,α u+
i,α

v−i,α v+i,α

∣∣∣∣∣, Iα,(I I)
ui ,vi =

∣∣∣∣∣u+
i,α u−i,α

v−i,α v+i,α

∣∣∣∣∣, Iα,(I I I)
ui ,vi =

∣∣∣∣∣u−i,α u−i,α
v−i,α v+i,α

∣∣∣∣∣,
Iα,(IV)
ui ,vi =

∣∣∣∣∣u+
i,α u+

i,α
v−i,α v+i,α

∣∣∣∣∣, Iα,(V)
ui ,vi =

∣∣∣∣∣u−i,α u+
i,α

v−i,α v−i,α

∣∣∣∣∣, Iα,(VI)
ui ,vi =

∣∣∣∣∣u−i,α u+
i,α

v+i,α v+i,α

∣∣∣∣∣,
then we define the following types I −VI with the (compact box) α-level set:

Type I. [u ∗ v]α = ×n
i=1
(
[u−i,α, u+

i,α] ◦ [v
−
i,α, v+i,α]

)
,

where [u−i,α, u+
i,α] ◦ [v

−
i,α, v+i,α] =

{
[u−i,αv+i,α, u+

i,αv−i,α] if Iα,(I)
ui ,vi ≤ 0,

[u+
i,αv−i,α, u−i,αv+i,α] if Iα,(I)

ui ,vi ≥ 0;
(28)

Type II. [u~ v]α = ×n
i=1
(
[u−i,α, u+

i,α]} [v−i,α, v+i,α]
)
,

where [u−i,α, u+
i,α]} [v−i,α, v+i,α] =

{
[u+

i,αv+i,α, u−i,αv−i,α] if Iα,(I I)
ui ,vi ≤ 0,

[u−i,αv−i,α, u+
i,αv+i,α] if Iα,(I I)

ui ,vi ≥ 0;
(29)

Type III. [u∗̂v]α = ×n
i=1
(
[u−i,α, u+

i,α]� [v−i,α, v+i,α]
)
,

where [u−i,α, u+
i,α]� [v−i,α, v+i,α] =

{
[u−i,αv+i,α, u−i,αv−i,α] if Iα,(I I I)

ui ,vi ≤ 0,

[u−i,αv−i,α, u−i,αv+i,α] if Iα,(I I I)
ui ,vi ≥ 0;

(30)

Type IV. [u~̂v]α = ×n
i=1
(
[u−i,α, u+

i,α]� [v−i,α, v+i,α]
)
,

where [u−i,α, u+
i,α]� [v−i,α, v+i,α] =

{
[u+

i,αv−i,α, u+
i,αv+i,α] if Iα,(IV)

ui ,vi ≤ 0,

[u+
i,αv+i,α, u+

i,αv−i,α] if Iα,(IV)
ui ,vi ≥ 0;

(31)

Type V. [u∗̃v]α = ×n
i=1
(
[u−i,α, u+

i,α]⊗ [v−i,α, v+i,α]
)
,

where [u−i,α, u+
i,α]⊗ [v−i,α, v+i,α] =

{
[u−i,αv−i,α, u+

i,αv−i,α] if Iα,(V)
ui ,vi ≤ 0,

[u+
i,αv−i,α, u−i,αv−i,α] if Iα,(V)

ui ,vi ≥ 0;
(32)

Type VI. [u~̃v]α = ×n
i=1
(
[u−i,α, u+

i,α]� [v−i,α, v+i,α]
)
,

where [u−i,α, u+
i,α]� [v−i,α, v+i,α] =

{
[u−i,αv+i,α, u+

i,αv+i,α] if Iα,(VI)
ui ,vi ≤ 0,

[u+
i,αv+i,α, u−i,αv+i,α] if Iα,(VI)

ui ,vi ≥ 0.
(33)

From Ref. [50], the interval multiplications (22)–(27) are well defined and have a well
inclusion isotonicity, and so do (28)–(33) (see Remark 2.14 from [50]).

Remark 6. For Iα,(I)
ui ,vi = 0 for all i = 1, 2, . . . , n, from (28), we have u−i,αv+i,α = u+

i,αv−i,α, then

[u ∗ v]α = ×n
i=1[u

−
i,α, u+

i,α] ◦ [v
−
i,α, v+i,α] = ×

n
i=1{u−i,αv+i,α} = ×

n
i=1{u+

i,αv−i,α}.

Similarly, for Iα,(I I)
ui ,vi = 0 for all i = 1, 2, . . . , n, from (29), we have

[u~ v]α = ×n
i=1
(
[u−i,α, u+

i,α]} [v−i,α, v+i,α]
)
= ×n

i=1{u+
i,αv+i,α} = ×

n
i=1{u−i,αv−i,α},

noticing that ×n
i=1[ai, ai] = ×n

i=1{ai} for any ai ∈ R. For example, given u = χ[−a,a] and
v = χ[−b,b] in RF , where a, b > 0, it follows that [u]α = [−a, a], [v]α = [−b, b] for all

α ∈ [0, 1]. Note that Iα,(I)
u,v = Iα,(I I)

u,v = 0, it indicates that [u ∗ v]α = {−ab} and [u~ v]α = {ab},
i.e., u ∗ v = χ{−ab} and u ~ v = χ{ab}. In fact, it is easy to see that, if there exists some
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Î ∈ {I, I I, . . . , VI} such that Iα,( Î)
ui ,vi = 0, then the corresponding product of α-levels defined

by (28)–(33) is a one-point set for Type Î.

Remark 7. Since the interval multiplications defined by (22) and (27) have a well inclusion
isotonicity, then (28) and (33) also has well inclusion isotonicity naturally. For example, given
u = χ[−1,0] and v = χ[−1,1], then we have Iα,(I)

u,v < 0 for all α ∈ [0, 1]. Therefore, u ∗ v is given by

[u ∗ v]α = [u−α , u+
α ] ◦ [v−α , v+α ] = [u−α v+α , u+

α v−α ] = [−1, 0]

for all α ∈ [0, 1]. For any given a ∈ [−1, 0] = [u−α , u+
α ] and b ∈ [−1, 1] = [v−α , v+α ], it implies that

a > b =


ab, ab ∈ [−1, 0],
−1, ab < −1,
0, ab > 0,

which indicates that, for any [a, b] ⊆ [u−α , u+
α ], [c, d] ⊆ [v−α , v+α ], we can obtain [a, b] ◦ [c, d] ⊆

[u−α , u+
α ] ◦ [v−α , v+α ].

Remark 8. Traditionally, the multiplication of compact intervals is induced by the ordinary
multiplication of real numbers, i.e, for the real compact intervals U = [u−, u+] and V = [v−, v+],
the interval C = [c−, c+] defining the multiplication C = UV is given by

c− = min{u−v−, u−v+, u+v−, u+v+}, c+ = max{u−v−, u−v+, u+v−, u+v+}.

In fact, C = UV = {ab : a ∈ U, b ∈ V}. However, note that such a multiplication of compact
intervals induced by ordinary multiplication of real numbers is completely different from the
multiplications of compact intervals induced by a > b above. In the example of Remark 7, given
− 1

2 ∈ [u−α , u+
α ], − 1

4 ∈ [v−α , v+α ], we have ab = (− 1
2 )(−

1
4 ) =

1
8 6∈ [−1, 0] = [−1, 0] ◦ [−1, 1]

but (− 1
2 )> (− 1

4 ) = 0 ∈ [−1, 0] = [−1, 0] ◦ [−1, 1].

Theorem 52 ([50]). If u, v ∈ [Rn
F ], then ‖u ∗ v‖F ≤ ‖u‖F · ‖v‖F and ‖u~ v‖F ≤ ‖u‖F ·

‖v‖F .

From Theorem 51 and the definition embedding j, we can prove the following proper-
ties easily.

Theorem 53 ([50]). For u, v, w ∈ [Rn
F ], if the gH-difference among them exist, then the following

properties hold:

(i) D∞(u±̃gHw, v±̃gHw) = D∞(u, v);
(ii) D∞(u±̃gHw, v±̃gHe) ≤ D∞(u, v) + D∞(w, e);
(iii) D∞(µ · u, µ · v) = |µ|D∞(u, v) for µ ∈ R;
(iv) D∞(u ∗ w, v ∗ w) ≤ ‖w‖F D∞(u, v) if (u−̃gHv) ∗ω = u ∗ω−̃gHv ∗ω;

D∞(u~w, v~w) ≤ ‖w‖F D∞(u, v) if (u−̃gHv)~ω = u~ω−̃gHv~ω;
(v) D∞(µ · u, ν · u) = |µ− ν|‖u‖F for µ, ν ≥ 0 or µ, ν ≤ 0.

In this part, we will establish some basic results of calculus of fuzzy vector-valued
functions on time scales.

For convenience, we introduce the following notations.
Let f , g : T → [Rn

F ], where f = ( f1, f2, . . . , fn), g = (g1, g2, . . . , gn) with the box
α-level sets (0 ≤ α < 1) as follows:

[ f (t)]α = [ f−1,α(t), f+1,α(t)]× [ f−2,α(t), f+2,α(t)]× . . .× [ f−n,α(t), f+n,α(t)] = ×n
i=1[ f−i,α(t), f+i,α(t)]
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and

[g(t)]α = [g−1,α(t), g+1,α(t)]× [g−2,α(t), g+2,α(t)]× . . .× [g−n,α(t), g+n,α(t)] = ×n
i=1[g

−
i,α(t), g+i,α(t)].

The following definition of the gH-∆-derivative of fuzzy vector-valued functions on
time scales was introduced to analyze the almost periodic fuzzy dynamic equations on
time scales.

Definition 60 ([50]). For f : T → [Rn
F ] and t ∈ Tκ , we define the gH-∆-derivative of

f (t), f ∆(t) = ( f ∆
1 , f ∆

2 , . . . , f ∆
n ), to be the fuzzy vector (if it exists) with the property that for

a given ε > 0, there exists a neighborhood U of t (i.e., U = (t − δ, t + δ)T for some δ > 0)
such that

D(i)
∞
(

fi(σ(t))−̃gH fi(s), f ∆
i (t)(σ(t)− s)

)
< ε|σ(t)− s|, i = 1, 2, . . . , n

for all s ∈ U. That is, the limit

f ∆
i (t) = lim

s→t

fi
(
σ(t)

)
−̃gH fi(s)

σ(t)− s

exists for each i = 1, 2, . . . , n.

The following definition is obviously equivalent to Definition 60.

Definition 61 ([50]). For f : T→ Rn
F and t ∈ Tκ , we define the gH-∆-derivative of f (t), f ∆(t) =

( f ∆
1 , f ∆

2 , . . . , f ∆
n ), to be the fuzzy vector (if it exists) with the property that for a given ε > 0, there

exists a δ > 0 such that |h| < δ implies

D(i)
∞
(

fi(σ(t))−̃gH fi(t + h), f ∆
i (t)(µ(t)− h)

)
≤ ε|µ(t)− h|,

i.e.,

lim
h→0

fi
(
σ(t)

)
−̃gH fi(t + h)

µ(t)− h
= f ∆

i (t)

exists for each i = 1, 2, . . . , n.

A sufficient and necessary condition for gH-∆-differentiability of functions is given
by the following theorem.

Theorem 54 ([50]). Let f : T → Rn
F be a function and [ f (t)]α = ×n

i=1[ f−i,α(t), f+i,α(t)], α ∈
[0, 1]. The function f (t) is gH-∆-differentiable if f−i,α(t) and f+i,α(t) are ∆-differentiable real-valued
functions for each i = 1, 2, . . . , n. Furthermore,

[ f ∆(t)]α = ×n
i=1
[

min{( f−i,α)
∆(t), ( f+i,α)

∆(t)}, max{( f−i,α)
∆(t), ( f+i,α)

∆(t)}
]
.

By Theorem 54, for the definition of gH-∆-differentiability, we distinguished two cases,
corresponding to (I) and (I I) of (20).

Definition 62 ([50]). Let f : T → Rn
F be a function and [ f (t)]α = ×n

i=1[ f−i,α(t), f+i,α(t)],
α ∈ [0, 1]. Let f−i,α(t) and f+i,α(t) be ∆-differentiable real-valued functions at t0 ∈ (a, b)T for
each i = 1, 2, . . . , n and α ∈ [0, 1]. We say that f is (I)-gH-∆-differentiable at t0 ∈ (a, b)T if
f ∆I (t) =

(
f ∆I
1 (t), f ∆I

2 (t), . . . , f ∆I
n (t)

)
with α-level set

[ f ∆I (t)]α = ×n
i=1[( f−i,α)

∆(t), ( f+i,α)
∆(t)], (34)
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and f is (I I)-gH-∆-differentiable at t0 ∈ (a, b)T if f ∆I I (t) =
(

f ∆I I
1 (t), f ∆I I

2 (t), . . . , f ∆I I
n (t)

)
with

α-level set
[ f ∆I I (t)]α = ×n

i=1[( f+i,α)
∆(t), ( f−i,α)

∆(t)]. (35)

Similar to Ref. [53], we will introduce and study the switch between the two cases (I)
and (I I) in Definition 62.

Definition 63 ([50]). We say a point t0 ∈ (a, b)T is a switching point for the gH-∆-differentiability
of f , if, in any neighborhood U of t0, there exists points t1 < t0 < t2 such that

(i) (type-I switch) at t1 (34) holds while (35) does not hold and at t2 (35) holds while (34) does
not hold, or

(ii) (type-II switch) at t1 (35) holds while (34) does not hold and at t2 (34) holds while (35) does
not hold.

Theorem 55 ([50]). If f , g : T→ Rn
F is gH-∆-differentiable at t ∈ Tk, then

(i) f (σ(t)) = f (t)+̃µ(t) · f ∆(t) or f (t) = f (σ(t))+̃(−1)µ(t) · f ∆(t), i.e., f
(
σ(t)

)
−̃gH f (t) =

µ(t) · f ∆(t).
(ii) Let f , g be (I)-gH-∆-differentiable at t ∈ (a, b)T or (I I)-gH-∆-differentiable at t ∈ (a, b)T,

then f +̃g : T→ Rn
F is gH-∆-differentiable at t and

( f +̃g)∆ = f ∆(t)+̃g∆(t).

(iii) For any nonnegative constant λ ∈ R, λ · f : T→ Rn
F is gH-∆-differentiable at t with

(λ · f )∆(t) = λ · f ∆(t).

In the following, we examine the relations between gH-∆-differentiability and the
integral of fuzzy vector-valued functions on time scales.

Definition 64 ([50]). The fuzzy Aumann ∆-integral (or ∆-integral for short) of f : [a, b]T → Rn
F

is defined level-wise by[ ∫ b

a
f (t)∆t

]α

=
∫ b

a

[
f (t)

]α∆t = ×n
i=1

[ ∫ b

a
[ fi(t)]α∆t

]
= ×n

i=1

[ ∫ b

a
f−i (t)∆t,

∫ b

a
f+i (t)∆t

]
, α ∈ [0, 1].

Some basic calculus results of fuzzy functions are established as follows.

Theorem 56 ([50]). Let f : [a, b]T → Rn
F be continuous with [ f (t)]α = ×n

i=1[ f−i , f+i ]α. Then,

(i) the function F(t) =
∫ t

a f (s)∆s is gH-∆-differentiable and F∆(t) = f (t);

(ii) the function F(t) =
∫ b

t f (s)∆s is gH-∆-differentiable and G∆(t) = − f (t);

Theorem 57 ([50]). If f : [a, b]T → Rn
F is ∆-integrable and c ∈ [a, b]T. Then,

∫ b

a
f (t)∆t =

∫ c

a
f (t)∆t+̃

∫ b

c
f (t)∆t.

Theorem 58 ([50]). Assume that function f is gH-∆-differentiable with n switching points at ci,
i = 1, 2 . . . , n, a = c0 < c1 < c2 < . . . < cn < cn+1 = b and exactly at these points. Then,

f (b)−̃gH f (a) =
n

∑
i=1

[ ∫ ci

ci−1

f ∆(t)∆t−̃gH(−1)
∫ ci+1

ci

f ∆(t)∆t
]

.
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In addition, ∫ b

a
f ∆(t)∆t =

n+1

∑
i=1

(
f (ci)−̃gH f (ci−1)

)
,

where summation denotes standard fuzzy addition in this statement.

Through our multiplication, the formula of integration by parts of fuzzy functions can
be derived below.

Theorem 59 ([50]). Assume f , g : [a, b]T → Rn
F are (I)-gH-∆-differentiable and f ∗ g is also

(I)-gH-∆-differentiable. If there is no switching point in [a, b]T and Iα,(I)
fi ,gi

> 0, Iα,(I)

f σ
i ,g∆I

i

> 0,

Iα,(I)

f ∆I
i ,gi

> 0 for each i = 1, 2, . . . , n, then

∫ b

a
f (t) ∗ g∆I (t)∆t =

(
f (b) ∗ g(b)−̃gH f (a) ∗ g(a)

)
−̃gHI

∫ b

a
f ∆I (t) ∗ g

(
σ(t)

)
∆t or

∫ b

a
f (t) ∗ g∆I (t)∆t =

∫ b

a
g
(
σ(t)

)
∗ f ∆I (t)∆t−̃gHI I

(
f (a) ∗ g(a)−̃gH f (b) ∗ g(b)

)
.

By adopting determinant algorithm of the multiplication of fuzzy vectors, some
arithmetic properties of the gH-∆-derivatives of the product of two fuzzy vector-valued
functions on time scales were obtained. For convenience, we adopt the notation f

(
σ(t)) =

f σ(t) in some statement.

Theorem 60 ([50]). Let f , g be (I)-gH-∆-differentiable, then

(i) if Iα,(I)
fi ,gi

< 0, Iα,(I)

f σ
i ,g∆I

i

< 0, Iα,(I)

f ∆I
i ,gi

< 0 and f ∗ g is (I)-gH-∆-differentiable, then

( f ∗ g)∆I = f σ ∗ g∆I +̃ f ∆I ∗ g.

(ii) if Iα,(I)
fi ,gi

< 0, Iα,(I)

f σ
i ,g∆I

i

> 0, Iα,(I)

f ∆I
i ,gi

> 0 and f ∗ g is (I I)-gH-∆-differentiable, then

( f ∗ g)∆I I = f σ ∗ g∆I +̃ f ∆I ∗ g.

(iii) if Iα,(I I)
fi ,gi

< 0, Iα,(I I)

f σ
i ,g∆I

i

< 0, Iα,(I I)

f ∆I
i ,gi

< 0 and f ~ g is (I)-gH-∆-differentiable, then

( f ~ g)∆I = f σ ~ g∆I +̃g~ f ∆I .

(iv) if Iα,(I I)
fi ,gi

< 0, Iα,(I I)

f σ
i ,g∆I

i

> 0, Iα,(I I)

f ∆I
i ,gi

> 0 and f ~ g is (I I)-gH-∆-differentiable, then

( f ~ g)∆I I = f σ ~ g∆I +̃ f ∆I ~ g.

(v) if Iα,(I)
fi ,gi

> 0, Iα,(I)

f σ
i ,g∆I

i

> 0, Iα,(I)

f ∆I
i ,gi

> 0 and f ∗ g is (I)-gH-∆-differentiable, then

( f ∗ g)∆I = f σ ∗ g∆I +̃ f ∆I ∗ g.

(vi) if Iα,(I)
fi ,gi

> 0, Iα,(I)

f σ
i ,g∆I

i

< 0, Iα,(I)

f ∆I
i ,gi

< 0 and f ∗ g is (I I)-gH-∆-differentiable, then

( f ∗ g)∆I I = f σ ∗ g∆I +̃ f ∆I ∗ g.
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(vii) if Iα,(I I)
fi ,gi

> 0, Iα,(I I)

f σ
i ,g∆I

i

> 0, Iα,(I I)

f ∆I
i ,gi

> 0 and f ~ g is (I)-gH-∆-differentiable, then

( f ~ g)∆I = f σ ~ g∆I +̃g~ f ∆I .

(viii)if Iα,(I I)
fi ,gi

> 0, Iα,(I I)

f σ
i ,g∆I

i

< 0, Iα,(I I)

f ∆I
i ,gi

< 0 and f ~ g is (I I)-gH-∆-differentiable, then

( f ~ g)∆I I = f σ ~ g∆I +̃ f ∆I ~ g.

In Ref. [50], the authors established the calculus of fuzzy vector-valued functions to
study the almost periodic fuzzy vector-valued functions on time scales.

Definition 65 ([50]). Let T be a bi-direction S-CCTS and f : T× D → Rn
F be continuous on

T× D.

(i) A function f ∈ C(T×D,Rn
F ) is called shift almost periodic fuzzy vector-valued function

in t ∈ T uniformly for x ∈ D with shift operators if the ε-shift number set of f

E{ε, f , S0} =
{

τ ∈ Π : D∞
(

f (δ±(τ, t), x), f (t, x)
)
< ε, for all t ∈ T∗ and x ∈ S0

}
is a relatively dense set with respect to the pair (Π, δ±) for all ε > 0 and for each compact
subset S0 of D; that is, for any given ε > 0 and each compact subset S0 of D, there exists
a constant l(ε, S0) > 0 such that each interval of length l(ε, S0) contains a τ(ε, S0) ∈
E{ε, f , S0} such that

D∞
(

f
(
δ±(τ, t), x

)
, f (t, x)

)
< ε, for all t ∈ T∗ and x ∈ S0.

Now, τ is called the ε-shift number of f and l(ε, S0) is called the inclusion length of
E{ε, f , S0}.

(ii) A function f ∈ C(T × D,Rn
F ) is called shift normal function if for any sequence Fn :

T × D → Rn
F of the form Fn(t, x) = f

(
δ+(hn, t), x

)
, n ∈ N, where (hn)n ⊂ Π is a

sequence of real numbers, one can extract a subsequence of (Fn)n, converging uniformly on
T× D (i.e., ∀(hn)n ⊂ Π, ∃(hn)k, ∃F : T→ Rn

F which may depend on (hn)n), such that

D∞
(

Fnk (t, x), F(t, x)
)
→ 0 as k→ ∞

uniformly with respect to (t, x) ∈ T× D.
(iii) Let δ±(s, t) be ∆-differentiable to its second argument. A function f ∈ C(T× D,Rn

F ) is
called shift ∆-almost periodic fuzzy vector-valued function in t ∈ T uniformly for x ∈ D
with shift operators if the ε-shift number set of f

E{ε, f , S0} =
{

τ ∈ Π : D∞
(

f (δ±(τ, t), x)δ∆
±(τ, t), f (t, x)

)
< ε, for all t ∈ T∗ and x ∈ S0

}
is a relatively dense set with respect to the pair (Π, δ±) for all ε > 0 and for each compact

subset S0 of D; that is, for any given ε > 0 and each compact subset S0 of D, there exists
a constant l(ε, S0) > 0 such that each interval of length l(ε, S0) contains a τ(ε, S0) ∈
E{ε, f , S0} such that

D∞
(

f
(
δ±(τ, t), x

)
δ∆
±(τ, t), f (t, x)

)
< ε, for all t ∈ T∗ and x ∈ S0.

Now, τ is called the ε-shift number of f and l(ε, S0) is called the inclusion length of
E{ε, f , S0}.

(iv) Let δ±(s, t) be ∆-differentiable to its second argument. A function f ∈ C(T× D,Rn
F ) is

called shift ∆-normal function if for any sequence Fn : T× D → Rn
F of the form Fn(t, x) =

f
(
δ+(hn, t), x

)
δ∆
+(hn, t), n ∈ N, where (hn)n ⊂ Π is a sequence of real numbers, one can
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extract a subsequence of (Fn)n, converging uniformly on T× D (i.e., ∀(hn)n ⊂ Π, ∃(hn)k,
∃F : T→ Rn

F which may depend on (hn)n), such that

D∞
(

Fnk (t, x), F(t, x)
)
→ 0 as k→ ∞

uniformly with respect to (t, x) ∈ T× D.

For convenience, we denote APS(T) the set of all shift almost periodic functions
in shifts on T and we introduce some notation. Let α = {αn} ⊂ Π and β = {βn} ⊂
Π be two sequences. Then, β ⊂ α means that β is a subsequence of α; δ±(α, β) =

{δ±(αn, βn)}; δ−(α, t0) = {δ−(αn, t0)}, α and β are common subsequences of α
′

and β
′
,

respectively, means that αn = α
′
n(k) and βn = β

′
n(k) for some given function n(k).

We introduce the moving-operator TS, TS
α f (t, x) = g(t, x) by

g(t, x) = lim
n→+∞

f
(
δ+(αn, t), x

)
and is written only when the limit exists. The mode of convergence, e.g., pointwise,
uniform, etc., will be specified at each use of the symbol.

In what follows, we establish some basic properties of S-almost periodic fuzzy vector-
valued functions.

Theorem 61 ([50]). Let T be a bi-direction S-CCTS with shifts δ± and f ∈ C(T× D,Rn
F ) be

S-almost periodic in t uniformly for x ∈ D, where δ+(τ, t) is continuous in t. Then, it is uniformly
continuous and bounded on T∗ × S0.

In the following, we obtained a shift-convergence theorem of S-almost periodic fuzzy
vector-valued functions.

Theorem 62 ([50]). Let f ∈ C(T × D,Rn
F ) be S-almost periodic in t uniformly for x ∈ D

under shifts δ±. Then, for any given sequence α
′ ⊂ Π, there exists a subsequence β ⊂ α

′
and

g ∈ C(T× D,Rn
F ) such that TS

β f (t, x) = g(t, x) holds uniformly on T∗ × S0 and g(t, x) is
S-almost periodic in t uniformly for x ∈ D under shifts δ±.

The concept of the S-hull of f (t, x) under shifts δ± was introduced related to fuzzy
almost periodic functions on time scales.

Definition 66 ([50]). Let f ∈ C(T× D,Rn
F ). Then, HS( f ) = {g(t, x) : T× D → Rn

F | and
there exists α ∈ Π such that TS

α f (t, x) = g(t, x) exists uniformly on T∗ × S0 } is called the S-hull
of f (t, x) under shifts δ±.

Theorem 63 ([50]). HS( f ) is compact if and only if f (t, x) is S-almost periodic in t uniformly for
x ∈ D.

Theorem 64 ([50]). If f ∈ C(T× D,Rn
F ) is S-almost periodic in t uniformly for x ∈ D under

shifts δ±, then, for any g(t, x) ∈ HS( f ), HS( f ) = HS(g).

From Definition 66 and Theorem 64, one can directly obtain the following theorem.

Theorem 65 ([50]). If f ∈ C(T× D,Rn
F ) is S-almost periodic in t uniformly for x ∈ D under

shifts δ±, then, for any g(t, x) ∈ HS( f ), g(t, x) is S-almost periodic in t uniformly for x ∈ D
under shifts δ±.

In what follows, a convergence theorem of S-almost periodic function sequences is
established.
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Theorem 66 ([50]). If fn ∈ C(T× D,Rn
F ), n = 1, 2, . . . are S-almost periodic in t for x ∈ D,

and the sequence { fn(t, x)} uniformly converges to f (t, x) on T∗ × S0, then f (t, x) is S-almost
periodic in t uniformly for x ∈ D.

Theorem 67 ([50]). Let f ∈ C(T× D,Rn
F ) and j be an embedding mapping in Theorem 51.

Then,

(i) j ◦ f is continuous on T if and only if f is continuous on T.
(ii) j ◦ f is S-almost periodic if and only if f is S-almost periodic.
(iii) If f is gH-∆-differentiable on T, then j ◦ f is ∆-differentiable on T and (j ◦ f )∆(t) =(

j ◦ f ∆)(t) for t ∈ T.

Theorem 68 ([50]). If f ∈ C(T× D,Rn
F ) is shift-∆-almost periodic in t uniformly for x ∈ D

under shifts δ±, denote

F(t, x) =
∫ t

t0

f (s, x)∆s, t0 ∈ T∗,

then F(t, x) is S-almost periodic in t uniformly for x ∈ D under shifts δ± if and only if F(t, x) is
bounded on T∗ × S0, where S0 is any compact subset of D.

A sufficient and necessary criterion for S-almost periodic functions was established.

Theorem 69 ([50]). A function f C(T× D,Rn
F ) is S-almost periodic in t uniformly for x ∈ D

under shifts δ± if and only if for every pair of sequences α
′
, β
′ ⊆ Π, there exist common subsequences

α ⊂ α
′
, β ⊂ β

′
such that

TS
δ+(α,β) f (t, x) = TS

α TS
β f (t, x).

4. The Quaternion Theory on Time Scales

To represent spatial orientations and rotations of elements in three-dimensional space,
quaternions provide a convenient mathematical notation. Particularly, an axis-angle ro-
tation about an arbitrary axis is encoded by the unit quaternion. In computer graphics,
computer vision, robotics, navigation, molecular dynamics, flight dynamics,orbital mechan-
ics of satellites and crystallographic texture analysis, rotation, and orientation quaternions
have wide applications (see [54–57]).

The study of quaternion dynamic equations is an interesting topic (see [58,59]). In [60],
Wang and Li firstly obtained the Cauchy matrix and Liouville formula of the quaternion
impulsive dynamic equations on time scales. In [61], nine questions were proposed and
solved in the quaternion dynamic equations on hybrid time scales as follows:

(1) By Euler’s rotation theory, one can represent a ring rotation through a corresponding
quaternion (see Figure 1). However, if a rotation depends on a hybrid time domain,
i.e., the ring’s rotation is intermittent, it is reasonable to consider the quaternion-
valued functions on a time scale. It is difficult to describe the intermittent rotation by
using a quaternion-valued functions on time scales.

(2) The direction of many conveyances are controlled by the gyroscope, for example,
plane, ship, rocket, etc. The process of their motion is based on a time scale if
the gyroscope does not work continuously. How should the work process of the
gyroscope controlled by a 2× 2 quaternion dynamic equation be depicted? When
does the phenomenon "Gimbal Lock" take place (see Figure 2)? What is expression
form of the solution to such quaternion dynamic equations?

(3) It is very common to see some phenomena described by a 2× 2 quaternion dynamic
equations on time scales. For example, in the process of a car going up a slope, the
time that is consumed for changing the direction of the car can be regarded as a time
scale which is located in the time interval from the bottom to the top of the hill (see
Figure 3). It is convenient to use a 2× 2 quaternion dynamic equations on a time scale
to accurately describe the orientations and rotations of the car on the slope. How can
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a 2× 2 quaternion dynamic equations to describe the process of the orientations and
rotations of this car be established? What is the representation form of the solution to
this dynamic equations?

(4) For the dynamic equation x∆(t) = f (t)x(t) with the initial value x(t0) = 1. The
quaternion exponential function

E f (t, s) = exp
( ∫ t

s
ξµ(τ̃)( f (τ̃)∆τ̃

)
from the previous literature is not a solution, this deficiency will lead to a great
difficulty to analyze some practical and theoretical problems. For example, the rocket
will deviate from its intended route (see Figure 4). Therefore, it is urgent to find the
quaternion exponential solution of this initial-valued problem.

(5) As is well known, three rings of the gyroscope work simultaneously such as warplane,
rocket (see Figure 5), etc. Unfortunately, it is impossible to depict the orientations
and rotations by a 2× 2 quaternion dynamic equations for this case. Hence, it is
necessary to consider the higher dimensional matrix quaternion dynamic equations.
The main problem is how to establish some basic results of the 2× 2 quaternion
dynamic equations based on the double determinant algorithm and extend the case
to n× n situation?

(6) Does the linear homogeneous n× n quaternion dynamic equations have a unique
solution on time scales? What form does it have? In fact, many objects’ orientations
and rotations can be described by n× n quaternion dynamic equations. If the solution
is not unique, some reality problems will emerge such as losing the direction of the
objects or suffering from the unexpected orientations and rotations.

Figure 1. The quaternion number and the rotation of the corresponding ring.

Figure 2. The phenomenon “Gimbal Lock”.
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Figure 3. The 2× 2 quaternion dynamic equations and the corresponding automobilism.

Figure 4. The obstacle of the presented quaternion exponential function application.

Figure 5. The 3× 3 quaternion dynamic equations and the corresponding working diagram of a
warplane.

(7) Letting X(t) be a solution of X∆(t) = A(t)X(t) and Y(t) be a solution of Y∆(t) =
B(t)Y(t), what are the commutativity conditions of X(t) and Y(t) on time scales?
Moreover, what is the connection between the quaternion functions with commu-
tativity conditions and the complex-valued function? What are the commutativity
conditions of the quaternion-valued functions on time scales?

(8) Based on the double determinant algorithm, what is the Liouville formula QTDE(t) of
the 2× 2 linear homogenous quaternion dynamic equations on time scales? Particu-
larly for QTDE(t) = 0, what kind of the orientations and rotations phenomena will
occur?

(9) We will encounter many problems in real applications in which the 2× 2 or 3× 3
quaternion dynamic equations are not sufficient. Taking the launching rocket as an
example, the process will be affected by many factors, for example, the continuously
changing earth gravity, the irregular wind power, the predictable and irregular air
temperature and the continuously changing atmospheric pressure, etc. All these
factors indicate that we must adopt the n× n quaternion dynamic equations on time
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scales. Therefore, some mathematical questions arise, such as what is the solution
expression of the n× n quaternion dynamic equations X∆(t) = Φ(t)X(t)? Do these
dynamic equations have a unique solution? How can the Liouville formula of the
n× n quaternion dynamic equations on time scales be obtained?

4.1. Basic Results of Quaternion Dynamic Equations on Time Scales

In [61], the two-dimensional linear homogenous quaternion dynamic equations on
time scales (or short for TQDEs) with the initial value were considered as follows:{

h∆(t) = Φ(t)h(t),
h(t0) = h0 ∈ H2,

(36)

i.e., [
h∆

1 (t)
h∆

2 (t)

]
=

[
p11(t) p12(t)
p21(t) p22(t)

][
h1(t)
h2(t)

]
,

where Φ(·) : T→ H2×2 is an rd-continuous quaternion-valued function on T.
The following Liouville formula for (36) through double determinant algorithm was

established.

Theorem 70 (Liouville Formula, [61]). If τ is regressive for any t ∈ T, then the Wronskian
QTDE(t) of (36) satisfies the following quaternion Liouville formula:

QTDE(t) = eτ(t, t0)QTDE(t0),

where

τ(t) = trΦ(t) + trΦ+(t) +
[
trΦ(t)trΦ(t) + detrΦ(t) + detrΦ(t)

]
µ(t) + detdΦ(t)µ3(t)

+
[
(p11(t)detrΦ(t) + detrΦ(t)p11(t) + p22(t)detcΦ(t) + detcΦ(t)p22(t))

]
µ2(t)

and
trΦ(t) = p11(t) + p22(t), trΦ+(t) = p11(t) + p22(t),

detrΦ = p11(t)p22(t)− p12(t)p21(t), detcΦ(t) = p11(t)p22(t)− p21(t)p12(t).

Definition 67 ([61]). Let A(·) : T→ Hn×m, where A(t) = [awv(t)]n×m, 1 ≤ w ≤ n, 1 ≤ v ≤
m. If every awv(t) is rd-continuous, then A(t) is said to be an rd-continuous quaternion-valued
matrix function.

Definition 68 ([61]). Let A(t), B(t) be n× n-quaternion-valued matrix function, A(t) and B(t)
are rd-continuous on T, and define derivatives

A∆(t) =
[
a∆

wv(t)
]

1≤w,v≤n, B∆(t) =
[
b∆

wv(t)
]

1≤w,v≤n.

Define the “circle plus" addition ⊕ as:

A(t)⊕ B(t) = A(t) + B(t) + µ(t)A(t)B(t).

Definition 69 ([61]). Let f : T→ H. We define the quaternion exponential function e f (t, t0) by
the solution of the initial value problem x∆(t) = f (t)x(t), x(t0) = 1, and e f (t, t0) can be given as

e f (t, t0) = 1 +
+∞

∑
n=1

∫ t

t0

f (tn)
∫ tn

t0

f (tn−1) . . .
∫ t2

t0

f (t1)∆t1 . . . ∆tn−1∆tn.
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Similarly, let Φ : T→ Hn×n. The quaternion matrix exponential function eΦ(t, t0) is defined by
the solution of the initial value problem H∆(t) = Φ(t)H(t), H(t0) = I, where I is n× n-identity
matrix, and eΦ(t, t0) can be given as

eΦ(t, t0) = I +
+∞

∑
n=1

∫ t

t0

Φ(tn)
∫ tn

t0

Φ(tn−1) . . .
∫ t2

t0

Φ(t1)∆t1 . . . ∆tn−1∆tn.

Consider the n-dimensional linear homogenous TQDEs with the initial value as
follows: {

h∆(t) = Φ̂(t)h(t),
h(t0) = h0 ∈ Hn,

(37)

where Φ̂(·) : T→ Hn×n is an rd-continuous quaternion n× n-matrix function on T.

Theorem 71 ([61]). If Φ̂(t) is uniformly bounded on T, i.e., there exists some constant M > 0
such that ‖Φ̂(t)‖ ≤ M for all t ∈ T, then the solution h(t) of the initial value problem of (37) is
rd-continuous and uniquely given by

h(t) =
(

I +
∞

∑
n=1

∫ t

t0

Φ̂(tn)
∫ tn

t0

Φ̂(tn−1) . . .
∫ t2

t0

Φ̂(t1)∆t1 . . . ∆tn−1∆tn

)
h0.

In the following, we provide a numerical iteration method of the linear homogenous
three-dimensional TQDEs on the time scale T = 2Z.

Example 2. Let T = 2Z, t ∈ [2−10, 25], the linear homogenous three-dimensional TQDEs with
the initial value as follows:

h∆(t) =

sin t2 + i sin t + j sin 2t + k cos t3 cos t + i sin(t + 1) + j cos t + k sin t k sin t
sin 2t + 3i + 2j + k sin t sin 4t + 4i + j j sin t
1 + 4i + j cos t + k sin t sin t + j sin 2t + 3k k sin t2

h(t), (38)

with the initial value h(2−10) = [1, 1, 1]T, where h(t) = [h11(t)+ h12(t)i+ h13(t)j+ h14(t)k, h21(t)
+h22(t)i+ h23(t)j+ h24(t)k, h31(t)+ h32(t)i+ h33(t)j+ h34(t)k]T and h∆(t) =

(
A+ Bi+Cj+

Dk
)
h(t). The numerical solution of (38) can be solved by the following MATLAB code:

c l e a r
syms h11 h21 h31 h12 h22 h32 h13 h23 h33 h14 h24 h34 t ;
h11 =1; h21 =1; h31 =1; h12 =0; h22 =0; h32 =0; h13 =0; h23 =0; h33 =0; h14 =0; h24 =0; h34 =0;
f o r n = − 1 0 : 1 : 4 ; t =2.^n ;
h =[ h11 h21 h31 ; h12 h22 h32 ; h13 h23 h33 ; h14 h24 h34 ] ;
A=[ s i n ( t . ^ 2 ) c o s ( t ) 0 ; s i n ( 2 . * t ) s i n ( 4 . * t ) 0 ; 1 s i n ( t ) 0 ] ’ ;
B=[ s i n ( t ) s i n ( t + 1) 0 ; 3 4 0 ; 4 0 0 ] ’ ;
C=[ s i n ( 2 . * t ) c o s ( t ) 0 ; 2 1 s i n ( t ) ; c o s ( t ) s i n ( 2 . * t ) 0 ] ’ ;
D=[ c o s ( t . ^ 3 ) s i n ( t ) s i n ( t ) ; s i n ( t ) 0 0 ; s i n ( t ) 3 s i n ( t . ^ 2 ) ] ’ ;
h= t . * [ h ( 1 , : ) * A−h ( 2 , : ) * B−h ( 3 , : ) * C−h ( 4 , : ) *D; h ( 2 , : ) * A + h ( 1 , : ) * B + h ( 4 , : ) * C−h ( 3 , : ) *D;

h ( 3 , : ) * A−h ( 4 , : ) * B + h ( 1 , : ) * C + h ( 2 , : ) *D; h ( 4 , : ) * A + h ( 3 , : ) * B−h ( 2 , : ) * C + h ( 1 , : ) *D] + h
end

The numerical iteration solution of (38) is given by Table 1. Notice that the existence of solutions
to quaternion homogeneous dynamic equations on time scales provides a prerequisite to study
the applications of quaternion dynamic equations on various hybrid domains, these significant
applications are demonstrated in [61] including the multi-dimensional rotations and transformations
of the submarine, gyroscope and planet whose dynamical behaviors are depicted by quaternion
dynamics on time scales.
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Table 1. The solution of (38).

t h11(t) h21(t) h31(t) h12(t) h22(t) h32(t) h13(t) h23(t) h33(t) h14(t) h24(t) h33(t)

9.7656 × 10−4 1 1 1 0 0 0 0 0 0 0 0 0

0.0020 1.0010 1.0000 1.0010 0.0008 0.0068 0.0039 0.0010 0.0029 0.0010 0.0010 0.0000 0.0029

0.0039 1.0020 1.0000 1.0020 0.0016 0.0137 0.0078 0.0020 0.0059 0.0020 0.0020 0.0000 0.0059

0.0078 1.0039 1.0001 1.0039 0.0033 0.0273 0.0156 0.0039 0.0117 0.0039 0.0039 0.0000 0.0117

0.0156 1.0078 1.0004 1.0079 0.0067 0.0547 0.0313 0.0079 0.0235 0.0079 0.0079 0.0001 0.0235

0.0313 1.0156 1.0015 1.0159 0.0135 0.1094 0.0625 0.0161 0.0471 0.0161 0.0161 0.0002 0.0471

0.0625 1.0313 1.0058 1.0322 0.0278 0.2188 0.1250 0.0332 0.0947 0.0332 0.0332 0.0010 0.0948

0.1250 1.0626 1.0233 1.0664 0.0585 0.4375 0.2500 0.0702 0.1914 0.0702 0.0703 0.0039 0.1916

0.2500 1.1260 1.0909 1.1406 0.1284 0.8750 0.5000 0.1550 0.3906 0.1550 0.1562 0.0156 0.3925

0.5000 1.2578 1.3302 1.3119 0.2991 1.7500 1.0000 0.3621 0.8119 0.3621 0.3737 0.0619 0.8275

1 1.5625 1.8754 1.7397 0.7385 3.5000 2.0000 0.8595 1.7397 0.8595 0.9755 0.2397 1.8634

2 2.3818 1.1525 2.8415 1.7508 7.0000 4.0000 1.4496 3.8415 1.4496 2.2232 0.8415 4.6829

4 −1.3459 1.4651 4.8186 2.1008 14.0000 8.0000 −2.3459 7.8186 −2.3459 3.3462 1.8186 6.3050

8 −2.7662 3.8058 1.9728 −6.8629 28.0000 16.0000 1.3429 8.9728 1.3429 −4.4870 −3.0272 7.8212

16 7.1962 3.1082 16.9149 11.2118 56.0000 32.0000 −3.4672 31.9149 −3.4672 7.8551 7.9149 39.2751

32 −30.3099 24.5432 12.3935 −19.9888 112.0000 64.0000 −6.4997 43.3935 −6.4997 3.6509 −4.6065 27.4062

step t h1(t) h2(t) h3(t)

0 9.7656 × 10−4 1 1 1

1 0.0020 1.0010 + 0.0008i + 0.0010j + 0.0010k 1.0000 + 0.0068i + 0.0029j + 0.0000k 1.0010 + 0.0039i + 0.0010j + 0.0029k

2 0.0039 1.0020 + 0.0016i + 0.0020j + 0.0020k 1.0000 + 0.0137i + 0.0059j + 0.0000k 1.0020 + 0.0078i + 0.0020j + 0.0059k

3 0.0078 1.0039 + 0.0033i + 0.0039j + 0.0039k 1.0001 + 0.0273i + 0.0117j + 0.0000k 1.0039 + 0.0156i + 0.0039j + 0.0117k

4 0.0156 1.0078 + 0.0067i + 0.0079j + 0.0079k 1.0004 + 0.0547i + 0.0235j + 0.0001k 1.0079 + 0.0313i + 0.0079j + 0.0235k

5 0.0313 1.0156 + 0.0135i + 0.0161j + 0.0161k 1.0015 + 0.1094i + 0.0471j + 0.0002k 1.0159 + 0.0625i + 0.0161j + 0.0471k

6 0.0625 1.0313 + 0.0278i + 0.0332j + 0.0332k 1.0058 + 0.2188i + 0.0947j + 0.0010k 1.0322 + 0.1250i + 0.0332j + 0.0948k

7 0.1250 1.0626 + 0.0585i + 0.0702j + 0.0703k 1.0233 + 0.4375i + 0.1914j + 0.0039k 1.0664 + 0.2500i + 0.0702j + 0.1916k

8 0.2500 1.1260 + 0.1284i + 0.1550j + 0.1562k 1.0909 + 0.8750i + 0.3906j + 0.0156k 1.1406 + 0.5000i + 0.1550j + 0.3925k

9 0.5000 1.2578 + 0.2991i + 0.3621j + 0.3737k 1.3302 + 1.7500i + 0.8119 j + 0.0619jk 1.3119 + 1.0000i + 0.3621j + 0.8275k

10 1 1.5625 + 0.7385i + 0.8595j + 0.9755k 1.8754 + 3.5000i + 1.7397j + 0.2397k 1.7397 + 2.0000i + 0.8595j + 1.8634k

11 2 2.3818 + 1.7508i + 1.4496j + 2.2232k 1.1525 + 7.0000i + 3.8415j + 0.8415k 2.8415 + 4.0000i + 1.4496j + 4.6829k

12 4 −1.3459 + 2.1008i − 2.3459j + 3.3462k 1.4651 + 14.0000i + 7.8186j + 1.8186k 4.8186 + 8.0000i − 2.3459j + 6.3050k

13 8 −2.7662 − 6.8629i + 1.3429j − 4.4870k 3.8058 + 28.0000i + 8.9728j − 3.0272k 1.9728 + 16.0000i + 1.3429j + 7.8212k

14 16 7.1962 + 11.2118i − 3.4672j + 7.8551k 3.1082 + 56.0000i + 31.9149j + 7.9149k 16.9149 + 32.0000i − 3.4672j + 39.2751k

15 32 −30.3099 − 19.9888i − 6.4997j + 3.6509k 24.5432 + 112.0000i + 43.3935j − 4.6065k 12.3935 + 64.0000i − 6.4997j + 27.4062k

Next, we will introduce a new Liouville algorithm of n× n quaternion-valued matrix
which is an extension of the double determinant algorithm.

Definition 70 ([61]). Let M be a n× n quaternion matrix, we define the Liouville algorithm of M
by

Lioudn(M) :=
n

∏
w=1

n

∏
v=w+1

detr

[
MT

w

MT
v

][
Mw Mv

]
=

n

∏
w=1

n

∏
v=w+1

detr


n
∑

c=1
mcwmcw

n
∑

c=1
mcwmcv

n
∑

c=1
mcvmcw

n
∑

c=1
mcvmcv

,

where M = [M1, M2, . . . , Mn] = [mwv]n×n.

By Definition 70, the following conclusion is immediate.
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Remark 9. Lioudn(M) = detd(M) for n = 2.

Next, we will show the Liouville algorithm of the n× n quaternion-valued matrix is
well-defined, i.e., Lioudn(M) is real.

Theorem 72 ([61]). Let M be a n × n quaternion matrix, M = [Mwv]n×n, n ≥ 2, then
Lioudn(M) ∈ R.

Now, we will prove the Liouville formula of the linear homogenous n× n quaternion
dynamic equations based on the fundamental matrix solution M(t) as follows.

Consider the n× n linear homogenous matrix TQDEs with the initial value as follows:{
H∆(t) = Φ̂(t)H(t),
H(t0) = H0 ∈ Hn×n.

(39)

Theorem 73 ([61]). The Wronskian of (39) can be given as

QTDEn(t) =
n

∏
w=1

n

∏
v=w+1

( n

∑
c=1

hcw(t)hcw(t)
n

∑
c=1

hcv(t)hcv(t)−
n

∑
c=1

hcw(t)hcv(t)
n

∑
c=1

hcv(t)hcw(t)
)

.

4.2. Applied Quaternion Dynamic Equations

In Ref. [61], some real applications of the quaternion dynamic equations were demon-
strated as follows.

In a three-dimensional case, Euler’s rotation theory demonstrates that any rotation
can be represented as a combination of a scalar θ (called the Euler angle) and a vector −→e
(the direction vector of Euler axis) (see Figure 6a), which indicates that we can regard a
quaternion number as the result of a point that is described by the shift of a vector −→e
which starts at the origin of R3 and the Euler angle θ which moves round −→e , i.e., we can
define q ∈ H as q = q(θ,−→e ). In a similar way, one can define the quaternion-valued matrix
function Φ̂(t) by

Φ̂(t) =


q11
(
θ11(t),

−→e 11(t)
)

q12
(
θ12(t),

−→e 12(t)
)

. . . q1n
(
θ1n(t),

−→e 1n(t)
)

q21
(
θ21(t),

−→e 21(t)
)

q22
(
θ22(t),

−→e 22(t)
)

. . . q2n
(
θ2n(t),

−→e 2n(t)
)

...
...

. . .
...

qm1
(
θm1(t),

−→e m1(t)
)

qm2
(
θm2(t),

−→e m2(t)
)

. . . qmn
(
θmn(t),

−→e mn(t)
)


m×n

.

Consider the rotation of a circular ring, there are two approaches to form this rotation,
i.e., rotate r(θ,−→e ) to r1(θ1,−→e 1) or to r2(θ2,−→e 2) (see Figure 6b), which implies that we can
represent the result of difference between two quaternion numbers as the rotation of a
circular ring. Moreover, we can consider a quaternion dynamic equation

h∆(t) = a(t)h(t), where a : T→ H

with the initial value h(t0) = r(θ,−→e ) to track the rotation that is from r(θ,−→e ) to r1(θ1,−→e 1).
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(a) A graphical representation of
Euler axis and Euler angle

(b) Schematic diagram of rotation of the ring in the
three-dimensional space

Figure 6. The diagram of the Euler’s rotation principle.

Next, some further results will be shown on the rotation of gyroscope. For the
gyroscope, we shall consider this rotation in an ideal state with the rotations α(Roll),
β(Pitch) and γ(Yaw)(see Figure 7). Noticing that the rotation dynamical behavior of the
gyroscope is dependent on the operation of the three related rings, we can describe the
rotation of gyroscope by the quaternion dynamic equations

h∆(t) = Φ̂(t)h(t) (40)

with the initial value h(t0) = (h1(t0), h2(t0), h3(t0))
T , where Φ̂(t) is a 3× 3 quaternion-

valued matrix function, h1(t0) is the quaternion number corresponding to the initial state
of the α(Roll)-axis, h2(t0) is the quaternion number corresponding to the initial state of
the β(Pitch)-axis, h3(t0) is the quaternion number corresponding to the initial state of
the γ(Yaw)-axis. Indeed, the dynamical behavior of the submarine can be represented
by the rotation of gyroscope (see Figure 8). Moreover, let −→e 0 = (0, 0, 0), −→e 1 = (0, 0, 1),
−→e 2 = (1, 0, 0),

Φ̂(t) =

q1(θ1(t),
−→e 0) 0 q3(θ3(t),

−→e 0)
0 q2(θ2(t),

−→e 0) 0
q1(θ1(t),

−→e 0) 0 q3(θ3(t),
−→e 0)

,

with the initial value h1(t0) = h3(t0) = h3(θ(t0),
−→e 1) and h2(t0) = h2(θ̃(t0),

−→e 2). Then,
h1(t) = h3(t) = h3(θ(t),

−→e 1) and h2(t) = h2(θ̃(t),
−→e 2), a phenomenon of “Gimbal Lock”

in Euler’s rotation principle indicates that there are two equivalent vector components
in the vector solutions to the homogeneous equations (40). (see Figure 9). In the real
applications, some monomer ships, including submarines, have a center of gravity and a
center of buoyancy to maintain lateral stability, which indicates that we can consider the
steering operation of submarines by the quaternion dynamic equations with the form (36).

Figure 7. Initial state diagram of a submarine controlled by a gyroscope.
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Figure 8. A working diagram of a submarine controlled by a gyroscope.

Figure 9. “Gimbal Lock”.

Time scale plays a powerful role in dealing with the current problems under the
quaternion background. For example, the gyroscope will move from the state S1 to the state
S2 by a continuous rotational force for T = R; it may be also subjected to a discontinuous
rotational force for T = {hZ} and then revoking the force on R\{hZ}, by inertia, the
gyroscope will move from the state S3 to the state S4 (see Figure 10). The similar cases
will frequently occur on the quantum time scales T = qZ and the hybrid time scales
such as T = {hZ} ∪ {qZ}, etc. All these problems belong to the quaternion problems on
time scales.

Commutativity of the quaternion-matrix-valued functions is an important property.
For instance, a rotation can be denoted by an Euler angle θ and a unit vector defined by

−→u = (ux, uy, uz) = uxi + uy j + uzk,

i.e., this rotation can be represented by a quaternion. In this paper, we have established
some results of the commutativity of quaternion-valued functions. Based on it, two
quaternion-valued functions can commutate with each other implies that the directional
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vectors of Euler axis are parallel to each other, which can contribute to studying the rela-
tionship between two particular status (or solutions) of the quaternion dynamic equations.

(a) A diagram of the continuous forces on a
gyroscope

(b) Gyroscope is subjected to discontinuous
and inertial forces from state S3 to sate S4

Figure 10. The gyroscope working diagram marked on different time scales.

Another application is about the rotation of the planet. The rotation direction −→e 1(t0)
and the rotation angle θ1(t0) of the planet α at time t0 describe the space state of the planet
α at t0, i.e., a quaternion number h1(θ1(t0),

−→e 1(t0)) represents the state. Similarly, we can
consider the planet β at time t0 and planets α, β at time t as well. By using the similar
analysis of the gyroscope above, the rotation of two planets have an impact on each other,
thus we can use dynamic Equation (36) to depict such a rotation which is from the state at
time t0 to the state at time t (see Figure 11). Notice that the dynamic Equation (36) can be
given as:

h∆(t) = Φ(t)h(t)

i.e.,[
h∆

1
(
θ1(t),

−→e 1(t)
)

h∆
2
(
θ2(t),

−→e 2(t)
)] = [q11

(
θ11(t),

−→e 11(t)
)

q12
(
θ12(t),

−→e 12(t)
)

q21
(
θ21(t),

−→e 21(t)
)

q22
(
θ22(t),

−→e 22(t)
)][h1

(
θ1(t),

−→e 1(t)
)

h2
(
θ2(t),

−→e 2(t)
)],

with the initial condition

h(t0) =

[
h1(t0)
h2(t0)

]
=

[
h1
(
θ1(t0),

−→e 1(t0)
)

h2
(
θ2(t0),

−→e 2(t0)
)].

In what follows, a rotation of the planets α, β by a concrete dynamic equation is
demonstrated, and the state of the planet at the same time of each day is considered. For
this case, the time intervals that we assume are equivalent. Therefore, we consider the
dynamic equations on the time scale T = Z as follows (see Example 3).

Figure 11. The motion diagram of the planet rotation described by (36) which describe (the state at t0

to the state at t by (36)).
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Example 3 ([61]). Letting T = Z, we consider the linear homogenous two-dimensional TQDEs
as follows:

h∆(t) = Φ(t)h(t), Φ(t) = A + Bi + Cj + Dk =

[
Φ11 Φ12
Φ21 Φ22

]
, (41)

with the initial value h(0) = [1, 1]T , where
Φ11 = 15 sin t sin 23.5 + 15i cos t sin 23.5 + 15j sin t cos 23.5 + 15k cos t sin 23.5,
Φ12 = 15 sin2 t sin 23.5 + 15i cos t sin t sin 23.5 + 15j sin t cos t cos 23.5 + 15k cos2 t sin 23.5,
Φ21 = 3.8 sin t + 3.8i cos t + 2j sin t + 2k cos t,
Φ22 = 3.8 sin2 t + 3.8i cos t sin t + 2j sin t cos t + 2k cos2 t.

h(t) = [h11(t) + h12(t)i + h13(t)j + h14(t)k, h21(t) + h22(t)i + h23(t)j + h24(t)k]T = [ĥ1(t),
ĥ2(t)]. Assume that h(t) = h1 + h2i + h3 j + h4k, then

hT(t + 1) = hT(t)ΦT(t) + hT(t) = hT
1 AT − hT

2 BT − hT
3 CT − hT

4 DT + (hT
2 AT + hT

1 BT + hT
4 CT − hT

3 DT)i

+(hT
3 AT − hT

4 BT + hT
1 CT + hT

2 DT)j + (hT
4 AT + hT

3 BT − hT
2 CT + hT

1 DT)k + hT(t),

i.e., 
hT

1 (t + 1) = hT
1 AT − hT

2 BT − hT
3 CT − hT

4 DT + hT
1 ,

hT
2 (t + 1) = hT

2 AT + hT
1 BT + hT

4 CT − hT
3 DT + hT

2 ,
hT

3 (t + 1) = hT
3 AT − hT

4 BT + hT
1 CT + hT

2 DT + hT
3 ,

hT
4 (t + 1) = hT

4 AT + hT
3 BT − hT

2 CT + hT
1 DT + hT

4 ,

where h(t+ 1) = h1(t+ 1)+ h2(t+ 1)i+ h3(t+ 1)j+ h4(t+ 1)k, hwv ∈ R, hv, hv(t+ 1) ∈ R2,
w, v ∈ {1, 2, 3, 4} and A, B, C, D ∈ R2×2. Hence, the numerical solution of (41) can be calculated
by the following MATLAB code:

c l e a r
syms h11 h21 h12 h22 h13 h23 h14 h24 t ;
h11 =1; h21 =1; h12 =0; h22 =0; h13 =0; h23 =0; h14 =0; h24 =0;
f o r n = 0 : 1 : 1 4 ; t =n
h =[ h11 h21 ; h12 h22 ; h13 h23 ; h14 h24 ] ;
A=[15* s i n ( 2 3 . 5 ) * s i n ( t ) 15* s i n ( t ) * s i n ( t ) * s i n ( 2 3 . 5 ) ;

3 . 8 * s i n ( t ) 3 . 8 * s i n ( t ) * s i n ( t ) ] ’ ;
B=[15* s i n ( 2 3 . 5 ) * c o s ( t ) 15* c o s ( t ) * s i n ( t ) * s i n ( 2 3 . 5 ) ;

3 . 8 * c o s ( t ) 3 . 8 * c o s ( t ) * s i n ( t ) ] ’ ;
C=[15* c o s ( 2 3 . 5 ) * s i n ( t ) 15* s i n ( t ) * c o s ( t ) * c o s ( 2 3 . 5 ) ; 2 * s i n ( t ) 2* s i n ( t ) * c o s ( t ) ] ’ ;
D=[15* s i n ( 2 3 . 5 ) * c o s ( t ) 15* c o s ( t ) * c o s ( t ) * s i n ( 2 3 . 5 ) ; 2 * c o s ( t ) 2* c o s ( t ) * c o s ( t ) ] ’ ;
h = 1 . * [ h ( 1 , : ) * A−h ( 2 , : ) * B−h ( 3 , : ) * C−h ( 4 , : ) *D; h ( 2 , : ) * A + h ( 1 , : ) * B + h ( 4 , : ) * C−h ( 3 , : ) *D;

h ( 3 , : ) * A−h ( 4 , : ) * B + h ( 1 , : ) * C + h ( 2 , : ) *D; h ( 4 , : ) * A + h ( 3 , : ) * B−h ( 2 , : ) * C + h ( 1 , : ) *D] + h
end

The numerical solution of (41) is demonstrated at Table 2. Next, in real application, we will show
the solution h(t) with the planets α, β corresponding state (see Figure 11), without loss of generality,
for t = 10, we have

h(10) =

[
−7.7127 + 19.2623i− 0.0340j + 1.2122k

3.2114− 4.8892i + 0.0732j− 0.1619k

]
=

[
ĥ1(10)
ĥ2(10)

]

=

[
|ĥ1(10)|[cos θ1(10) + (i, j, k)−→e 1(10) sin θ1(10)]
|ĥ2(10)|[cos θ2(10) + (i, j, k)−→e 2(10) sin θ2(10)]

]
=

|ĥ1(10)|
[R(ĥ1(10))
|ĥ1(10)| + =(ĥ1(10))

|=(ĥ1(10))|
|=(ĥ1(10))|
|ĥ1(10)|

]
|ĥ2(10)|

[R(ĥ2(10))
|ĥ2(10)| + =(ĥ2(10))

|=(ĥ2(10))|
|=(ĥ2(10))|
|ĥ2(10)|

]


=

[
20.78443

( −7.7127
20.78443 + 19.2623i−0.0340j+1.2122k

19.30043
19.30043
20.78442

)
5.88431

( 3.2114
5.88431 + −4.8892i+0.0732j−0.1619k

4.93072
4.93072
5.88431

) ],

i.e., the rotation direction of the planet α in three-dimensional space is −→e 1(10) = (0.99802,
−0.00176, 0.06281) and the rotation angle is θ1(10), where cos θ1(10) = −0.37108 and
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sin θ1(10) = 0.9286. Similarly, the rotation direction of the planet β is −→e 2(10) = (−0.99158,
0.00754,−0.03283) and the rotation angle is θ2(10), where cos θ2(10) = 0.54575 and
sin θ2(10) = 0.83794.

In the following, a comprehensive application is provided including the rotation
theory of quaternions, the Liouville formula, the commutativity of quaternion-matrix-
valued functions, the existence and uniqueness of solution for TQDEs, and the quaternion
exponential function, and we apply the theory of time scales to show the feasibility of the
main results stated in this article.

Table 2. The solution of (41).

step t h11(t) h21(t) h12(t) h22(t) h13(t) h23(t) h14(t) h24(t)

0 0 1 1 0 0 0 0 0 0

1 1 1.0000 1.0000 −14.9712 3.8000 0 0 −29.9425 4.0000

2 2 −22.1986 6.8883 −14.8956 3.7808 −1.2036 2.5922 −12.4595 1.6645

3 3 −24.9918 7.5973 11.8954 −3.0193 −0.4930 1.0618 3.6375 −0.4859

4 4 −1.4109 1.6119 16.9130 −4.2929 −0.0013 0.0028 0.1483 −0.0198

5 5 3.7555 0.3006 2.3799 −0.6041 0.2434 −0.5242 3.3894 −0.4528

6 6 1.5897 0.8503 −0.1744 0.0443 1.1430 −2.4619 −5.4514 0.7283

7 7 4.0143 0.2349 -10.3584 2.6292 0.5086 −1.0954 −28.1773 3.7642

8 8 −15.2980 5.1367 −18.7021 4.7470 −1.0700 2.3046 −19.7960 2.6445

9 9 −28.4662 8.4791 4.3334 −1.0999 −0.7850 1.6908 1.8614 −0.2487

10 10 −7.7127 3.2114 19.2623 −4.8892 −0.0340 0.0732 1.2122 −0.1619

11 11 4.7138 0.0574 5.7280 −1.4539 0.0813 −0.1751 2.0216 −0.2701

12 12 1.0001 1.0000 −0.0000 0.0000 0.9327 −2.0088 −0.0666 0.0089

13 13 4.7228 0.0551 −5.8547 1.4860 0.9187 −1.9787 −23.2944 3.1119

14 14 −7.9334 3.2675 −19.2938 4.8972 7 − 0.7442 1.6029 −25.9138 3.4618

15 15 −28.5219 8.4933 −4.0750 1.0343 −1.0456 2.2521 −2.3270 0.3109

step t h1(t) h2(t)

0 0 1 1

1 1 1.0000 − 14.9712i − 29.9425k 1.0000 + 3.8000i + 4.0000k

2 2 −22.1986 − 14.8956i − 1.2036j − 12.4595k 6.8883 + 3.7808i + 2.5922j + 1.6645k

3 3 −24.9918 + 11.8954i − 0.4930j + 3.6375k 7.5973 − 3.0193i + 1.0618j − 0.4859k

4 4 −1.4109 + 16.9130i − 0.0013j + 0.1483k 1.6119 − 4.2929i + 0.0028j − 0.0198k

5 5 3.7555 + 2.3799i + 0.2434j + 3.3894k 0.3006 − 0.6041i − 0.5242j − 0.4528k

6 6 1.5897 − 0.1744i + 1.1430j − 5.4514k 0.8503 + 0.0443i − 2.4619j + 0.7283k

7 7 4.0143 −10.3584i + 0.5086j − 28.1773k 0.2349 + 2.6292i − 1.0954j + 3.7642k

8 8 −15.2980 − 18.7021i − 1.0700j − 19.7960k 5.1367 + 4.7470i + 2.3046j + 2.6445k

9 9 −28.4662 + 4.3334i − 0.7850j + 1.8614k 8.4791 − 1.0999i + 1.6908j − 0.2487k

10 10 −7.7127 + 19.2623i − 0.0340j + 1.2122k 3.2114 − 4.8892i + 0.0732j − 0.1619k

11 11 4.7138 + 5.7280i + 0.0813j + 2.0216k 0.0574 − 1.4539i − 0.1751j − 0.2701k

12 12 1.0001 − 0.0000i + 0.9327j − 0.0666k 1.0000 + 0.0000i − 2.0088j + 0.0089k

13 13 4.7228 − 5.8547i + 0.9187j − 23.2944k 0.0551 + 1.4860i − 1.9787j + 3.1119k

14 14 −7.9334 − 19.2938i − 0.7442j − 25.9138k 3.2675 + 4.8972i + 1.6029j + 3.4618k

15 15 −28.5219 − 4.0750i − 1.0456j − 2.3270k 8.4933 + 1.0343i + 2.2521j + 0.3109k



Entropy 2021, 23, 450 49 of 66

Example 4 ([61]). In this application, we will consider the motion of submarines by the quaternion
dynamic equations under time scales background. We use h1(t) to represent the orientations and
rotations of α(Roll), h2(t) to represent the orientations and rotations of γ(Yaw) (see Figure 8).
Since the submarines have a center of gravity and a center of buoyancy to maintain lateral stability,
the function β(Picth) is a constant, which means that we can use (36) to present this submarine’s
motion. The initial value h(t0) = [1, k]T represents the initial state of the orientations and rotations
of the submarine (see Figure 7). For convenience, the black ring is called roll ring, and the red
ring is called yaw ring in Figure 7. Indeed, p11(t) represents the difference value of the roll ring
variable. We take p11(t) = t− 1 + 2t cos λπ

2 i + 2t sin λπ
2 k, which implies the roll ring rotates

left for λ = 0, upward for λ = 1. During the voyage of the submarine, the roll ring is affected
by the yaw ring. Hence, we take p12(t) = t, i.e., the yaw ring changes the speed of the roll ring
instead of its direction. For the yaw ring, it is not subject to the effect of the roll ring. Hence, we
take p21(t) = 0 and p22(t) = t− 1 + 3tk. On the other hand, if QTDE(t) = 0, then h1(t) and
h2(t) are right dependent, i.e., the roll ring and the yaw ring are in the same plane. Furthermore,
for h1(θ1(t),

−→e 1(t)) and h2(θ2(t),
−→e 2(t)), if −→e 1(t),

−→e 2(t) are parallel to each other and they
are perpendicular to the horizon simultaneously, then the phenomenon of “Gimbal Lock" happens.
For QTDE(t) 6= 0, h1(t) and h2(t) are right independent, i.e., the roll ring and the yaw ring are
not in the same plane.

As the quaternion dynamic equations are considered on times scales, we shall show the influence
of time scales for the motion of submarine as follows. If we steer the submarines from the place A to
the place B, there are two routes that can be chosen, i.e., L1 or L2 (see Figure 12). For the route L1,
we steer the submarine in an ideal state, i.e., the orientations and rotations of the submarine are
continuously changed by considering the corresponding quaternion dynamic equations in T = R
case. For the route L2, we steer the submarine from the place A to the place C by the continuous
change of the orientations and rotations of the submarine, then steer straight ahead from the place C
to the place D, which indicates that the corresponding quaternions value are different at the places
A and C, and are equivalent at the places C and D. We denote the interval [t0, t] the time of passing
places AB. Obviously, the time that is consumed to change the orientations and rotations of the
submarine is a closed subset of [t0, t], i.e., the corresponding quaternion dynamic equations are
considered on T∩ [t0, t], which is a time scale. Now, we will calculate the solution, the fundamental
matrix, and the Liouville formula for the T = Z case.

Let λ ∈ [0, 1], T = Z, t0 = 1, Φ(t) =
[

t− 1 + 2ti cos λπ
2 + 2tk sin λπ

2 t
0 t− 1 + 3tk

]
, the

initial value h(t0) = [1, k]T . Then, the solution of (36) can be given as

h(t) = eΦ(t, 1)h(1) = h(1) +
+∞

∑
n=1

∫ t

1
Φ(tn)

∫ tn

1
Φ(tn−1) . . .

∫ t2

1
Φ(t1)∆t1 . . . ∆tn−1∆tnh(1)

= h(1) +
t

∑
n=1

∫ t

1
Φ(tn)

∫ tn

1
Φ(tn−1) . . .

∫ t2

1
Φ(t1)∆t1 . . . ∆tn−1∆tnh(1)

=
{

I + Φ(t− 1) + Φ(t− 2) + . . . + Φ(1) + Φ(t− 1)[Φ(t− 2) + . . . + Φ(1)]

+Φ(t− 2)[Φ(t− 3) + . . . + Φ(1)] + . . . + Φ(t− 1)Φ(t− 2) . . . Φ(1)
}

h(1)

= [I + Φ(t− 1)][I + Φ(t− 2)] . . . [I + Φ(1)]h(1)

=

(t− 1)!(1 + i cos λπ
2 + k sin λπ

2 )t−1 (t− 1)!
t−1
∑

l=0
(1 + i cos λπ

2 + k sin λπ
2 )l [1 + 3k]t−1−l

0 (t− 1)!(1 + 3k)t−1

h(1)

=

(t− 1)!(1 + i cos λπ
2 + k sin λπ

2 k)t−1 + k(t− 1)!
t−1
∑

l=0
(1 + i cos λπ

2 + k sin λπ
2 )l [1 + 3k]t−1−l

(t− 1)!(1 + 3k)t−1k

.

We say that λ is the steering parameter, i.e., through taking the different values of λ, one can
control the submarine’s motion by choosing the corresponding parameter that reflects the different
submarine’s states. Assume that
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h(t) =

[
h1(t)
h2(t)

]
=

|h1(t)|
(R(h1(t))
|h1(t)|

+ =(h1(t))
|=(h1(t))|

|=(h1(t))|
|h1(t)|

)
|h2(t)|

(R(h2(t))
|h2(t)|

+ =(h2(t))
|=(h2(t))|

|=(h2(t))|
|h2(t)|

)


=

|h1(t)|
(

cos Arg(h1(t)) +
=(h1(t))
|=(h1(t))|

sin Arg(h1(t))
)

|h2(t)|
(

cos Arg(h2(t)) +
=(h2(t))
|=(h2(t))|

sin Arg(h2(t))
)


=

[
|h1(t)|

(
cos θ1(t) +

−→e 1(t)(i, j, k) sin θ1(t)
)

|h2(t)|
(

cos θ2(t) +
−→e 2(t)(i, j, k) sin θ2(t)

)]
=

[
h10(t) + h11(t)i + h12(t)j + h13(t)k
h20(t) + h21(t)i + h22(t)j + h23(t)k

]
.

For λ ∈ [0, 1), h1(t) and h2(t) are non-commutative. The roll ring rotates to the left for λ = 0,
and it rotates to left and upward at the same time for λ ∈ (0, 1). For λ = 1, we have

h(t) =

(t− 1)![1 + k]t−1 + k(t− 1)!
t−1
∑

l=0
(1 + k)l [1 + 3k]t−1−l

(t− 1)!(1 + 3k)t−1k

,

thus 
h11(t)h22(t) = h12(t)h21(t)
h12(t)h23(t) = h13(t)h22(t)
h11(t)h23(t) = h13(t)h21(t)

,

−→e 1(t),
−→e 2(t) ∈ {(0, 0, 1), (0, 0, 0)}. Hence, h1(t), h2(t) are commutative and−→e 1(t),

−→e 2(t) are
parallel vectors. Moreover, if QTDE(t0) = 0, −→e 1(t0) =

−→e 2(t0) = (0, 0, 1), then −→e 1(t),
−→e 2(t)

are perpendicular to the horizontal plane and the phenomenon of "Gimbal Lock" happens. The
fundamental solution matrix can be formulated as

M(t) =

(t− 1)!(1 + i cos λπ
2 + k sin λπ

2 )t−1 (t− 1)!
t−1
∑

l=0
(1 + i cos λπ

2 + k sin λπ
2 )l [1 + 3k]t−1−l

0 (t− 1)!(1 + 3k)t−1

.

By Theorem 70, we have

τ(t) = p11(t) + p11(t) + p22(t) + p22(t) +
[
p11(t)p11(t) + p22(t)p22(t) + (p11(t) + p11(t))(p22(t) + p22(t))

−(p12(t)p21(t) + p21(t)p12(t))
]
µ(t) +

[
p11(t)p11(t)(p22(t) + p22(t)) + (p11(t) + p11(t))p22(t)p22(t)

−(p11(t)p21(t)p12(t) + p12(t)p21(t)p11(t))− (p12(t)p22(t)p21(t) + p21(t)p22(t)p12(t))
]
µ2(t)

+
[
p11(t)p11(t)p22(t)p22(t) + p12(t)p12(t)p21(t)p21(t)

−p12(t)p22(t)p21(t)p11(t)− p11(t)p21(t)p22(t)p12(t)
]
µ3(t)

= p11(t) + p11(t) + p22(t) + p22(t) + p11(t)p11(t) + p22(t)p22(t) + (p11(t) + p11(t))(p22(t) + p22(t))

+p11(t)p11(t)(p22(t) + p22(t)) + (p11(t) + p11(t))p22(t)p22(t) + p11(t)p11 p22(t)p22(t)

= 2t− 2 + 2t− 2 + (t− 1)2 + 4t2 + (t− 1)2 + 9t2 + 4(t− 1)2 + [(t− 1)2 + 4t2](2t− 2)

+[(t− 1)2 + 9t2](2t− 2) + [(t− 1)2 + 4t2][(t− 1)2 + 9t2] = 15t4 − 1.

Hence, the Wronskian of TQDEs with QTDE(t0) = 1 can be calculated as:
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QTDE(t) = eτ(t, 1)QTDE(1) = 1 +
+∞

∑
n=1

∫ t

1
τ(tn)

∫ tn

1
τ(tn−1) . . .

∫ t2

1
τ(t1)∆t1 . . . ∆tn−1∆tn

= 1 +
t

∑
n=1

∫ t

1
τ(tn)

∫ tn

1
τ(tn−1) . . .

∫ t2

1
τ(t1)∆t1 . . . ∆tn−1∆tn

= 1 + τ(t− 1) + τ(t− 2) + . . . + τ(1) + τ(t− 1)[τ(t− 2) + . . . + τ(1)]

+τ(t− 2)[τ(t− 3) + . . . + τ(1)] + . . . + τ(t− 1)τ(t− 2) . . . τ(1)

= [1 + τ(t− 1)][1 + τ(t− 2)] . . . [1 + τ(1)] = [15× (t− 1)!]t−1.

On the other hand, τ(t) = 4t− 4 and QTDE(t) = e2t2−4t−6QTDE(1) for T = R.

Figure 12. The motion diagram of submarine.

5. The Coupled-Jumping Theory on Time Scales

In 2020, Wang, Li, Agarwal, and O’Regan proposed the coupled-jumping theory. It
is an interesting topic and can include the Hilger theory and can be used to solve the
problems on more general hybrid time scales (see [62,63]).

5.1. Vertical Evolution of Time Scales

In Figure 13, let {T1,T2,T3,T4} be a timescale group. By Hilger theory, this time
scale group will induce a continuous dynamic equation, a piecewise continuous dynamic
equation, a discrete dynamic equation, and a quantum dynamic equation in sequence.
Starting with the evolution process of these time scales, T varies from the form T1 to the
form T4 in the timescale group, such a vertical evolution in the timescale group acts as
a direct factor which leads to the four different types of dynamic equations during the
changing process of the time scale T. Only when T is fixed in this timescale group can the
concrete dynamic equation be determined. From the viewpoint of the evolution process
of time scales, the essence of Hilger’s theory depends on the vertical evolution of time
scales; accordingly, the unification of various types of dynamic equation can be achieved
when the form of T is fixed in a timescale group. In other words, the related analysis and
applications on Hilger theory are purely based on a single time scale during this evolution.
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Figure 13. The vertical evolution diagram of dynamical behavior from T1 to T4 under Hilger theory.

5.2. Hybrid-Timescale Problems—A Horizontal Evolution of Time Scales

The other natural and significant evolution of time scales that must be referred to is
horizontal evolution of time scales. The related problems caused by horizontal evolution
of time scales cannot be solved by Hilger theory and they still belong to the problems of
timescale category. In Figure 14, let

T1 =
{

qn : q > 1, n ∈ Z− ∪ {0}
}

, T2 = [1.1, 3.7], T3 =
5⋃

k=2

[2k, 2k + 1],

T4 = {12.1, 13.1, 14.1, 15.1, 16.1}, T5 = {(1.5)n : n ≥ 7}, . . . .

For convenience, let a timescale group be formed by {T1,T2,T3,T4,T5, . . .}. It is easy to
observe that the dynamical behavior described by Figure 14 exists on the time scale T
formed by five districts, and each district is a time scale, i.e., T = T1 ∪T2 ∪T3 ∪T4 ∪T5 ∪
. . .. Therefore, the switch of the dynamical behavior in four timescale districts is directly
caused by a horizontal evolution of all the time scales in this timescale group.
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Figure 14. The horizontal evolution diagram of dynamical behavior from T1 to T4 under coupled-
jumping timescale theory.

Usually, all the similar problems described by Figures 14 are called the hybrid-
timescale problems. Essentially, the hybrid-timescale problems are formed by the prob-
lems on multiple time scales, and this class of problems can be precisely depicted by a
horizontal evolution of time scales in a timescale group.

By comparison, the related hybrid-timescale problems are more comprehensive and
will strictly include the problems on a single time scale as their particular cases (see
Figure 15 for their detailed relations). Moreover, the dynamical behavior on hybrid time
scales cannot be effectively studied purely on a single time scale through Hilger theory.
Therefore, it is very necessary to establish a theory (we call it coupled-jumping timescale
theory) to solve the hybrid-timescale problems.
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Figure 15. The relation among hybrid-timescale problems, single-timescale problems, Hilger theory
and coupled-jumping timescale theory.

5.3. The Description of the Hybrid-Timescale Initial-Value Problems

For understanding the idea to solve the hybrid-timescale problems, we will adopt
Figure 14 to illustrate our methods and the framework of the solving steps. Let a timescale
group be {T1,T2,T3,T4,T5, . . .}. To break through the limitation of the Hilger theory
and to establish a coupled-jumping timescale theory, demonstrating a distinct dynamical
behavior on time scales, firstly, we must consider the formation process of the dynamical
behavior in Figure 14. Assume that the dynamical behavior in Figure 14 corresponds
to a solution x(t) of a dynamic equation on the hybrid time scales with the initial point
(t0, x(t0)), where t0 = 0 ∈ T1. According to the continuous dependence on initial values
of solutions and the continuation theorem, there is a solution on the district T1 such that
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(t1, x(t1)) is the right boundary point on the district T1, where t1 = 1 6∈ T2. Now taking
(t1, x(t1)) as the initial point, there is a solution on the district T2 such that (t2, x(t2)) is the
right boundary point on the district T2, where t2 = 3.7 6∈ T3. Next, by taking (t2, x(t2))
as the initial point, there is a solution on the district T3 such that (t3, x(t3)) is the right
boundary point on the district T3, where t3 = 11 6∈ T4. Repeating the process, by taking
(t3, x(t3)) as the initial point, there is a solution on the district T4 such that (t4, x(t4)) is the
right boundary point on the district T4, where t4 = 16.1 6∈ T5. Finally, the solution on the
district T5 is determined by the initial point (t4, x(t4)). If there are more time scales after
T5, for instance, T6,T7, . . ., the process above can be continued until the solution exists on
T1 ∪T2 ∪T3 . . . :=

⋃+∞
i=1 Ti.

In the above process, a key problem appears. Note that t1 6∈ T2, but the solution on
district T2 is continuously dependent on (t1, x(t1)); similarly, t2 6∈ T3, but the solution on
district T3 is continuously dependent on (t2, x(t2)),. . . , t4 6∈ T5, but the solution on district
T5 is continuously dependent on (t4, x(t4)), . . .. Therefore, the first problem we must solve
is that we should introduce an initial value problem of a dynamic equations whose initial
value is given in one time scale and the unique solution is located in another. In Ref. [62],
the coupled-jumping timescale theory (or hybrid-timescale theory) was proposed.

5.4. The Coupled-Jumping Timescale Space (CJTS) and Calculus

A notion of coupled-jumping timescale space and a concept of the hybrid-composition
integral was introduced.

Definition 71 ([62]). For t̂ ∈ Tk, we define the forward jump operator σk : Tk → Tk by σk(t̂) =
inf{s ∈ Tk : s > t̂}; the backward jump operator ρk : Tk → Tk by ρk(t̂) = sup{s ∈ Tk : s < t̂};
and the graininess function µk : Tk → [0,+∞) by µk(t̂) = σk(t̂)− t̂, where k = 1, 2.

The jumping construction of the coupled-jumping timescale space T1 − T2 was de-
fined.

Definition 72 ([62]). Let T1 and T2 be a pair of time scales. For t ∈ T1 ∪ T2, we define the
coupled-forward jump operator between T1 and T2 by σT2(t) = inf{s ∈ T2 : s ≥ t}, and define
the coupled-backward jump operator between T1 and T2 by ρT2(t) = sup{s ∈ T2 : s ≤ t}. We
say t is a coupled right-dense point iff σT2(t) = t; t is a coupled right-scattered point iff σT2(t) > t;
t is a coupled left-dense point iff ρT2(t) = t; t is a coupled left-scattered point iff ρT2(t) < t; t is a
coupled isolated point iff ρT2(t) < t < σT2(t) (see Figure 16).

Figure 16. Schematic diagram of all types of coupled-jumping points.
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Remark 10. In Definition 72, one can obtain σT2(t2) = ρT2(t2) = t2 for t2 ∈ T2; ρT1

(
σT2(t)

)
≥

t for t ∈ T1; σT2

(
ρT1(t2)

)
≤ t2 for t2 ∈ T2. Note that ρT1

(
σT2(t)

)
= t if and only if

(
t, σT2(t)

)
∩

T1 = ∅; σT2

(
ρT1(t2)

)
= t2 if and only if

(
ρT1(t2), t2

)
∩ T2 = ∅, where ∅ is an empty set (see

Figure 17).

 

① 
② 

① 

② 

① 
② ② 

① 

Figure 17. The jump of coupled-jumping points in Remark 10.

Definition 73 ([62]). Let T1 and T2 be a pair of time scales. We define Tκ́
k and Tκ̀

k as follows:

Tκ́
k =

{
Tk\(supTj,+∞) if supTj is a finite number,
Tk otherwise,

Tκ̀
k =

{
Tk\(−∞, infTj) if infTj is a finite number,
Tk otherwise,

where k, j ∈ {1, 2} and k 6= j.

Definition 74 ([62]). Let T1 and T2 be a pair of time scales. We define Tκ
k as follows:

Tκ
k =


Tk\(−∞, infTj) ∪ (supTj,+∞) if infTj, supTj are finite numbers,
Tk\(−∞, infTj) if infTj is a finite number, supTj = +∞,
Tk\(supTj,+∞) if supTj is a finite number, infTj = −∞,
Tk otherwise,

where k, j ∈ {1, 2} and k 6= j.

Remark 11. In Definition 74, if T1 = T2 = T, then Tκ = T and a Hilger time scale is obtained.

Remark 12. In Definitions 73 and 74, we obtain that Tκ
k = Tκ́

k ∩T
κ̀
k .

Remark 13. Note that a, b ∈ T1 ∪ T2 and [a, b] ∩ Tj 6= ∅, for a < b and j = 1, 2, one
can obtain [a, b] ∩ T1 =

[
σT1(a), ρT1(b)

]
T1

and [a, b] ∩ T2 =
[
σT2(a), ρT2(b)

]
T2

. Let ã =

max
{

σT1(a), σT2(a)
}

and b̃ = min
{

ρT1(b), ρT2(b)
}

. Then,
[
σTj(a), ρTj(b)

]κ́
Tj

=
[
σTj(a),

ρTj(b̃)
]
Tj

,
[
σTj(a), ρTj(b)

]κ̀
Tj

=
[
σTj(ã), ρTj(b)

]
Tj

,
[
σTj(a), ρTj(b)

]κ
Tj

=
[
σTj(ã), ρTj(b̃)

]
Tj

,

where j ∈ {1, 2} (see Figure 18). Notice that, for any â, b̂ ∈ Tj, the intervals [â, b̂)Tj , (â, b̂)Tj

with â ≥ b̂ are always regarded as the empty sets. According to the ∆-measure theory on time
scales [25], it is well-known that the ∆-integral of a function f (t) equals to zero on the empty set
since µ∆(∅) = 0.
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Figure 18. The jump of coupled-jumping points in Remark 13.

Theorem 74 ([62]). Let t1 ∈ Tκ̀
1. If ρT2

(
σ1(t1)

)
= σ2

(
ρT2(t1)

)
and µ1(t1) = µ2

(
ρT2(t1)

)
, then

ρT2(t1) ≤ t1 ≤ ρT2

(
σ1(t1)

)
≤ σ1(t1).

Remark 14. In Theorem 74, if t1 ∈ T1 ∩T2, then ρT2(t1) = t1 and ρT2

(
σ1(t1)

)
= σ1(t1).

Theorem 75 ([62]). Assume ρT2

(
σ1(t1)

)
= σ2

(
ρT2(t1)

)
and µ1(t1) = µ2

(
ρT2(t1)

)
for any

t1 ∈ Tκ̀
1. Then, ρT2

(
σT1(t2)

)
= t2 for any t2 ∈ Tκ́

2 (see Figure 19).

Definition 75 ([62]). Let f : T1 ∪T2 → R. We define a hybrid-composition integral (or short for
HC-integral) of f (t) on CJTS as follows:

∫ b

a
f (τ)∆mτ =

α
∫
[σT1

(a),ρT1
(b)]T1

f (τ)∆1τ + (1− α)
∫
[σT2

(a),ρT2
(b)]T2

f (τ)∆2τ, a < b,

−α
∫
[σT1

(b),ρT1
(a)]T1

f (τ)∆1τ − (1− α)
∫
[σT2

(b),ρT2
(a)]T2

f (τ)∆2τ, a > b,

where a, b ∈ T1 ∪T2, 0 ≤ α ≤ 1 and α is called the hybrid-composition proportion coefficient.
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Figure 19. The jump situation for the coupled-jumping points in Theorem 75.

Theorem 76 ([62]). If a, b, c ∈ T1 ∪T2, α̃ ∈ R, f , g : T1 ∪T2 → R, then

(i) Let [ak, ak+1] ∩ Tl 6= ∅, k, l ∈ {1, 2} and {a, b, c} = {aj|j = 1, 2, 3, a1 < a2 < a3}.
Then,

∫ b
a f (τ)∆mτ =

∫ c
a f (τ)∆mτ +

∫ b
c f (τ)∆mτ if a2 ∈ T1 ∩ T2;

∫ b
a f (τ)∆mτ 6=∫ c

a f (τ)∆mτ +
∫ b

c f (τ)∆mτ if a2 /∈ T1 ∩T2;

(ii)
∫ b

a
(

f (τ) + g(τ)
)
∆mτ =

∫ b
a f (τ)∆mτ +

∫ b
a g(τ)∆mτ;

(iii)
∫ b

a α̃ f (τ)∆mτ = α̃
∫ b

a f (τ)∆mτ;

(iv)
∫ b

a f (τ)∆mτ = −
∫ a

b f (τ)∆mτ;
(v)

∫ a
a f (τ)∆mτ = 0;

(vi)
∫ b

a f (τ)∆mτ ≥ 0 if f ≥ 0 for all a ≤ τ < b.

In the following, we introduce the exponential function on coupled-jumping time
scales and describe the basic theory of time-hybrid dynamic equations.

Definition 76 ([62]). Let ť, s ∈ T1 ∪T2. We introduce the HC-exponential function by

e f (ť, s) :=
exp

{
α
∫
[σT1

(s),ρT1
(ť)]T1

Log(1+µ1(τ) f (τ))
µ1(τ)

∆1τ + (1− α)
∫
[σT2

(s),ρT2
(ť)]T2

Log(1+µ2(τ) f (τ))
µ2(τ)

∆2τ
}

s < ť,

exp
{
− α

∫
[σT1

(ť),ρT1
(s)]T1

Log(1+µ1(τ) f (τ))
µ1(τ)

∆1τ − (1− α)
∫
[σT2

(ť),ρT2
(s)]T2

Log(1+µ2(τ) f (τ))
µ2(τ)

∆2τ
}

s > ť.

Next, we demonstrate the HC-exponential solution of the homogeneous time-hybrid
dynamic equation.

Theorem 77 ([62]). Let t ∈ Tκ
1, s ∈ Tκ

2, t ≥ s. Then, e f (t, s) is the solution of the initial value
problem

µ1(t)x∆t(t) =
{(

1 + µ1(t) f (t)
)α exp

{
(1− α)

∫ ρT2
(σ1(t))

ρT2
(t)

Log(1 + µ2(τ) f (τ))
µ2(τ)

∆2τ

}
− 1
}

x(t), (42)

with the initial value x(s) = 1, where x∆t(t) denotes the ∆-derivative at t on T1.
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The theorem below is the existence and uniqueness theorem of the HC-exponential
solution to the homogeneous time-hybrid dynamic equation on CJTS.

Theorem 78 (Existence and Uniqueness of Solutions, [62]). For the initial value problem of
(42), there exists a unique solution x(t) = x0e f (t, s).

Based on the theory, the time-hybrid dynamic equations, convolution, and Laplace
transforms were proposed and studied in [62] in detail.

6. Combined Measure Theory on Time Scales

The measure theory on time scales was considered in [64,65]. The combined theory on
time scales was initiated in [66], and it was widely used in mathematical analysis. In [67],
the authors obtained the non-eigenvalue form of Liouville’s formula and α-matrix exponen-
tial solutions for combined matrix dynamic equations on time scales. In 2020, Wang, Qin,
Agarwal, and O’Regan (see [68]) established the ♦α-measurability and combined measure
theory on time scales.

6.1. ♦α-Measurability and ♦α-Measure

Definition 77 ([68]). Let T be a time scale, σ and ρ be the forward and back jumping operators,
and a combined interval (or α-interval) be

[a, b]α :=


(a, b] ∩T, α = 0,
(a, b) ∩T, 0 < α < 1,
[a, b) ∩T, α = 1,

where (a, b] ∩ T = {t ∈ T : a < t 6 b, a, b ∈ T}, (a, b) ∩ T = {t ∈ T : a < t < b, a, b ∈ T},
[a, b) ∩T = {t ∈ T : a 6 t < b, a, b ∈ T}. Let K be the family of all combined intervals.

Then, we present the set function m�α corresponding to [a, b]α as

m�α([a, b]α) =


b− a, α = 0,
α(b− σ(a)) + (1− α)(ρ(b)− a), α ∈ (0, 1),
b− a, α = 1.

For a = b, we appoint that [a, b]α = ∅, and m�α([a, b]α) = 0.

Definition 78 ([68]). Let E ⊂ T. If there exists at least one finite or countable system of
intervals [an, bn]α ∈ K(n = 1, 2, ...) such that E ⊂ ⋃

n∈N0

[an, bn]α, then we call m∗�α
(E) =

inf ∑
n∈N0

m�α([an, bn]α) the outer ♦α-measure of E, where the infimum is taken over all coverings of

E by a finite or countable system of intervals [an, bn]α ∈ K. If there is no such covering of E, we say
m∗�α

(E) = ∞.

Definition 79 ([68]). We say a property that holds everywhere except for a null set is ♦α-almost
everywhere, briefly ♦α-a.e. in combined measure theory on time scales.

Theorem 79 ([68]). Let A ⊂ T, B ⊂ T and m∗�α
(A), m∗�α

(B) be the outer ♦α-measure of A and
B, respectively. Then,

(1) m∗�α
(A) > 0, if A = ∅, then m∗�α

(E) = 0;
(2) let A ⊂ B, then m∗�α

(A) 6 m∗�α
(B);

(3) m∗�α
(

∞⋃
i=1

Ai) 6
∞
∑

i=1
m∗�α

(Ai).
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Definition 80 ([68]). A set E ⊂ T is called ♦α-measurable (or m∗�α
-measurable) if

m∗�α
(Pα) = m∗�α

(Pα ∩ E) + m∗�α
(Pα ∩ Ec)

holds for all Pα ∈ K, where Ec = T− E. We letN (m∗�α
) be the family of all m∗�α

-measurable sets as

N (m∗�α
) = {E ⊂ T : E is m∗�α

-measurable}.

The following sufficient and necessary condition for ♦α-measurability can be estab-
lished.

Theorem 80 ([68]). Letting E ⊂ T is ♦α-measurable if and only if for any A ⊂ E, B ⊂ Ec,
we have

m∗�α
(A ∪ B) = m∗�α

(A) + m∗�α
(B).

Theorem 81 ([68]). Let {Ei} be a sequence pairwise disjoint ♦α-measurable sets, then
∞⋃

i=1
Ei is

♦α-measurable, and

m∗�α
(

∞⋃
i=1

Ei) =
∞

∑
i=1

m∗�α
(Ei).

Now, the Lebesgue ♦α-measure denoted by µ�α is m∗�α
restricted toN (m∗�α

), and it is a
countably additive measure.

Theorem 82 ([68]). Let {Ei} be an increasing sequence of ♦α-measurable set in T, such that

E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ · · · , then let E =
∞⋃

i=1
Ei = lim

n→∞
En, and we have

µ�α(E) = lim
n→∞

µ�α(En).

If {En} is a decreasing sequence of ♦α-measurable set in T such that E1 ⊃ E2 ⊃ · · · ⊃ En ⊃ · · · ,
let E =

∞⋂
i=1

Ei = lim
n→∞

En, then, when µ�α(E1) < ∞, we have

µ�α(E) = lim
n→∞

µ�α(En).

Some basic theorems and lemmas were obtained.

Theorem 83 ([68]). If a, b ∈ T− {minT, maxT} and a < b, then

(i) µ�α((a, b)) = α(b− σ(a)) + (1− α)(ρ(b)− a).
(ii) µ�α((a, b]) = α(σ(b)− σ(a)) + (1− α)(b− a).
(iii) µ�α([a, b)) = α(b− a) + (1− α)(ρ(b)− ρ(a)).
(iv) µ�α([a, b]) = α(σ(b)− a) + (1− α)(b− ρ(a)).

Remark 15. Notice that µ�α = µ∇ when α = 0, and µ�α = µ∆ when α = 1, and if α ∈ (0, 1),
µ�α is a linear combination of µ∇ and µ∆. Thus, for any interval E ⊂ T, we can conclude as
follows:

µ�α(E) = αµ∆(E) + (1− α)µ∇(E), α ∈ [0, 1].

6.2. Lebesgue Measurable and Lebesgue ♦α-Measurable Sets

In this subsection, we denote the usual Lebesgue measure on R by L and the corre-
sponding outer measure by L∗, i.e.,

L∗(E) = inf
{

∑
j∈J

(β j − αj) : E ⊂
⋃
j∈J

(αj, β j), αj, β j ∈ R, αj 6 β j, J ∈ N0

}
.
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From the above, we can easily see that the set of all left-scattered points of T is also
countable; then, the set of all isolate points is countable. For the convenience, we define the
following sets:

A := {t ∈ T : t is left-dense and right-scattered},
B := {t ∈ T : t is left-scattered and right-dense},
C := {t ∈ T : t is left-scattered and right-scattered},
D := {t ∈ T : t is left-dense and right-dense}.

(43)

Theorem 84 ([68]). If E ⊂ T− {maxT, minT}, then the following properties are satisfied:

(a) L∗(E) 6 m∗�α
(E).

(b) If E has no scattered points, then L∗(E) = m∗�α
(E).

(c) The sets A, B, C, D defined in (43) are Lebesgue measurable. Moreover L∗(A) = L∗(B) =
L∗(C) = 0. In addition,

µ�α(E ∩ A) = α ∑
i∈IE∩A

(σ(ti)− ti), µ�α(E ∩ B) = (1− α) ∑
i∈IE∩B

(ti − ρ(ti)),

µ�α(E ∩ C) = α ∑
i∈IE∩C

(σ(ti)− ti) + (1− α) ∑
i∈IE∩C

(ti − ρ(ti)),

where IE∩A, IE∩B, IE∩C indicates the indices set for all right-scattered and left-dense points, the
indices set for all left-scattered and right-dense points, and the indices set for all left-scattered
and right-scattered points in E, respectively.

(d) m∗�α
(E) = L∗(E) + α ∑

i∈IE∩(A∪C)

(σ(ti)− ti) + (1− α) ∑
i∈IE∩(B∪C)

(ti − ρ(ti)).

(e) m∗�α
(E) = µ∗L(E) if and only if E has no scattered points.

Theorem 85 ([68]). Let E ⊂ T, then E is Lebesgue ♦α-measurable if and only if it is Lebesgue
measurable. In such a case, for E ⊂ T− {maxT, minT}, the following is true:

(i) µ�α(E) = L(E)+ α ∑
i∈IE∩SR

(σ(ti)− ti)+ (1− α) ∑
i∈IE∩SL

(ti− ρ(ti)), where IE∩SR and IE∩SL

denote the index set of all right-scattered points of E and the index set of all left-scattered
points of E, respectively.

(ii) L(E) = µ�α(E) if and only if maxT 6∈ E, minT 6∈ E and E has no scattered points.

Remark 16. Using Theorem 85, we get

µ�α(E) = αL(E�1) + (1− α)L(E�2),

where E ⊂ T− {minT, maxT}, α ∈ [0, 1] and E�1 , E�2 are the extension of E. In fact, through
direct calculation, we have

µ�α(E) = α ∑
i∈IE∩(A∪C)

(σ(ti)− ti) + (1− α) ∑
i∈IE∩(A∪C)

(ti − ρ(ti)) + L(E)

= α ∑
i∈IE∩(A∪C)

L((ti, σ(ti))) + (1− α) ∑
i∈IE∩(A∪C)

L((ρ(ti), ti)) + αL(E) + (1− α)L(E)

= α(L(
⋃

i∈IE

(ti, σ(ti))) + L(E)) + (1− α)(L(
⋃

j∈JE

(ρ(tj), tj))) + L(E)

= αL(
⋃

i∈IE

(ti, σ(ti)) ∪ E) + (1− α)L(
⋃

j∈JE

(ρ(ti), tj) ∪ (E)) = αL(E�1) + (1− α)L(E�2).

Theorem 86 ([68]). Let E ⊂ T, then E is Lebesgue ♦α-measurable if and only if it is Lebesgue
measurable. In such a case, for E ⊂ T− {maxT, minT}, the following is true:
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(i) µ�α(E) = L(E)+ α ∑
i∈IE∩SR

(σ(ti)− ti)+ (1− α) ∑
i∈IE∩SL

(ti− ρ(ti)), where IE∩SR and IE∩SL

denote the index set of all right-scattered points of E and the index set of all left-scattered
points of E, respectively.

(ii) L(E) = µ�α(E) if and only if maxT 6∈ E, minT 6∈ E and E has no scattered points.

6.3. Lebesgue–Stieltjes ♦α-measurability

Definition 81 ([69]). The function mβ
�α : JT→[0,+∞) is called a pre-measure if the following

equalities are satisfied:

(i) mβ
�α

(
[a, b)

)
= α

(
β(b−)− β(a−)

)
+ (1− α)

(
β(ρ(b)−)− β(ρ(a)−)

)
,

(ii) mβ
�α

(
[a, b]

)
= α

(
β(σ(b)+)− β(a−)

)
+ (1− α)

(
β(b+)− β(ρ(a)−)

)
,

(iii) mβ
�α

(
(a, b]

)
= α

(
β(σ(b)+)− β(σ(a)+)

)
+ (1− α)

(
β(b+)− β(a+)

)
,

(iv) If b > σ(a), mβ
�α

(
(a, b)

)
= α

(
β(b−)− β(σ(a)+)

)
+ (1− α)

(
β(ρ(b)−)− β(a+)

)
,

where α ∈ [0, 1], JT denotes the family of all intervals of T, β : T→R is a monotone increasing
function.

Then, the notion of Lebesgue–Stieltjes ♦α-outer measure
(
mβ
�α

)∗ was introduced as
follows.

Definition 82 ([69]). The function
(
mβ
�α

)∗ : JT → [0,+∞) associated with β defined by

(
mβ
�α

)∗
(E) = inf

∞

∑
i=1

mβ
�α(In),

is called a Lebesgue–Stieltjes ♦α-outer measure of E if there exists at least one finite or countable
covering system of intervals In ⊂ JT of E satisfies E ⊂ ⋃∞

n=1 In. We say
(
mβ
�α

)∗
(E) = ∞ if there

is no such a covering of E. If(
mβ
�α

)∗
(A) =

(
mβ
�α

)∗
(A ∩ E) +

(
mβ
�α

)∗
(A ∩ Ec)

holds for all A ⊂ T, then we say E is
(
mβ
�α

)∗-measurable (or β�α -measurable).

In the following, the symbolM
(
(mβ
�α)
∗) denotes the family of all

(
mβ
�α

)∗-measurable

subsets of T, then it forms a σ-algebra. We will use the symbols µ
β
∆, µ

β
∇ to denote the

Lebesgue–Stieltjes ∆-measure and the Lebesgue–Stieltjes ∇-measure, respectively.

Definition 83 ([69]). The function
(
mβ
�α

)∗ : JT → [0,+∞) restricted toM
(
(mβ
�α)
∗) is called a

Lebesgue–Stieltjes ♦α-measure and denoted by µ
β
�α .

We know that each interval on T can be covered by itself, which is the smallest
cover, i.e., any interval is β�α -measurable, thus for any interval I , pre-measure mβ

�α(I) and
β�α -measure µ

β
�α(I) coincide, i.e.,

(i) µ
β
�α

(
[a, b)

)
= α

(
β(b−)− β(a−)

)
+ (1− α)

(
β(ρ(b)−)− β(ρ(a)−)

)
,

(ii) µ
β
�α

(
[a, b]

)
= α

(
β(σ(b)+)− β(a−)

)
+ (1− α)

(
β(b+)− β(ρ(a)−)

)
,

(iii) µ
β
�α

(
(a, b]

)
= α(β(σ(b)+)− β(σ(a)+)) + (1− α)(β(b+)− β(a+)),

(iv) If b > σ(a), µ
β
�α

(
(a, b

)
) = α

(
β(b−)− β(σ(a)+)

)
+ (1− α)

(
β(ρ(b)−)− β(a+)

)
.

Remark 17. Note that the µ
β
�α measure value of a set E ⊂ T is the following combination

µ
β
�α

(
E
)
= αµ

β
∆(E) + (1− α)µ

β
∇(E),
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and we can obtain the µ
β
∆ measure if α = 1 and the µ

β
∇ measure if α = 0.

Theorem 87 ([69]). Let {c} ⊂ T. Then, it is µ
β
�α -measurable and

µ
β
�α

(
{c}
)
= µ

β
�α

(
[c, c]

)
= α

(
β(σ(c)+)− β(c−)

)
+ (1− α)

(
β(c+)− β(ρ(c)−)

)
.

Remark 18. There is a fact that [c, c], (ρ(c), c] and [c, σ(c)) all have the same ♦α-measure, but
their µ

β
�α -measures are completely different. For µ

β
�α -measure, we need to consider one-sided limits

of a monotone increasing function β at the endpoints of a given interval.

Example 5 ([69]). Let T = [0, 3] ∪ {7} ∪ [8, 9], and

β(t) =


x + 1 i f 0 6 t 6 3,
5 i f 3 < t < 8,
x2 i f 8 6 t 6 9.

Now, we calculate µ�α -measure and µ
β
�α -measure of the following sets:(

ρ(7), 7
]
, [7, 7],

[
7, σ(7)

)
.

(1) Consider the µ�α -measure of the above sets:

1. µ♦α

(
(ρ(7), 7]

)
= α

(
σ(7)− 7

)
+ (1− α)(7− ρ(7)) = 4− 3α.

2. µ♦α

(
[7, 7]

)
= α

(
σ(7)− 7

)
+ (1− α)(7− ρ(7)) = 4− 3α.

3. µ♦α

(
[7, σ(7))

)
= α

(
σ(7)− 7

)
+ (1− α)(7− ρ(7)) = 4− 3α.

(2) Consider the µ
β
�α -measure of the above sets:

1. µ
β
�α

(
(ρ(7), 7]

)
= α

(
β(σ(7)+)− β(7+)

)
+ (1− α)

(
7+ − β(ρ(7)+)

)
= 59α.

2. µ
β
�α

(
[7, 7]

)
= α

(
β(σ(7)+)− β(7−)

)
+ (1− α)

(
7+ − β(ρ(7)−)

)
= 58α + 1.

3. µ
β
�α

(
[7, σ(7))

)
= α

(
β(σ(7)−)− β(7−)

)
+ (1− α)

(
7− − β(ρ(7)−)

)
= 1− α.

Example 6 ([69]). (1) Let T = R, then µ
β
�α and µβ measures coincide since for all t ∈ T, σ(t) =

ρ(t) = t.
(2) Let T = Z, then

1. µ
β
�α

(
[a, b)

)
= α

(
β(b)− β(a)

)
+ (1− α)

(
β(b− 1)− β(a− 1)

)
,

2. µ
β
�α

(
[a, b]

)
= α

(
β(b + 1)− β(a)

)
+ (1− α)

(
β(b)− β(a− 1)

)
,

3. µ
β
�α

(
(a, b]

)
= α

(
β(b + 1)− β(a + 1)

)
+ (1− α)

(
β(b)− β(a)

)
,

4. For b > a + 1, µ
β
�α

(
(a, b)

)
= α

(
β(b)− β(a + 1)

)
+ (1− α)

(
β(b− 1)− β(a)

)
.

(3) Let β : T→T and β(t) = t, then µ
β
�α -measure turns into ♦α-measure as follows:

1. µ
β
�α

(
[a, b)

)
= α(b− a) + (1− α)

(
ρ(b)− ρ(a)

)
,

2. µ
β
�α

(
[a, b]

)
= α

(
σ(b)− a

)
+ (1− α)

(
b− ρ(a)

)
,

3. µ
β
�α

(
(a, b]

)
= α

(
σ(b)− σ(a)

)
+ (1− α)(b− a),

4. If b > σ(a), µ
β
�α

(
(a, b)

)
= α

(
b− σ(a)

)
+ (1− α)

(
ρ(b)− a

)
,

which is equivalent to Theorem 80.

Example 7 ([69]). Let T = [0, 4] ∪ {5} ∪ [7, 10] and

β(t) =


1 + e−t i f 0 6 t 6 2,
5 i f 2 < t < 4,
3t− 4 i f 4 6 t < 8,
2t2 + 3 i f 8 6 t 6 10.
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Now, we calculate µ
β
∆-measure, µ

β
∇-measure and µ

β
�α -measure of the following sets:

{3}, {4}, [4, 7), (8, 9], {5}, [0, 1).

(1) Consider the µ
β
∆-measures of the above sets:

1. µ
β
∆
(
{3}

)
= β

(
σ(3)+

)
− β

(
3−
)
= β(3)− β(3) = 0,

2. µ
β
∆
(
{4}

)
= β(σ(4)+)− β(4−) = β(5+)− β(4−) = 11− 5 = 6,

3. µ
β
∆
(
[4, 7)

)
= β(7−)− β(4−) = 17− 5 = 12,

4. µ
β
∆
(
(8, 9]

)
= β(σ(9)+)− β(σ(8)+) = β(9)− β(8) = 34,

5. µ
β
∆
(
{5}

)
= β(σ(5)+)− β(5−) = β(7)− β(5) = 6,

6. µ
β
∆
(
[0, 1)

)
= β(1−)− β(0−) = ∞, since the limit from the left-hand side of β at t = 0 is not

defined.

(2) Consider the µ
β
∇-measure of above sets:

1. µ
β
∇
(
{3}

)
= β(3+)− β(ρ(3)−) = β(3)− β(3) = 0,

2. µ
β
∇
(
{4}

)
= β(4+)− β

(
ρ(4)−

)
= 8− 5 = 3,

3. µ
β
∇
(
[4, 7)

)
= β

(
ρ(7)−

)
− β

(
ρ(4)−

)
= 11− 5 = 6,

4. µ
β
∇
(
(8, 9]

)
= β(9+)− β(8+) = β(9)− β(8) = 34,

5. µ
β
∇
(
{5}

)
= β(5+)− β(ρ(5)−) = 11− 5 = 6,

6. µ
β
∇
(
[0, 1)

)
= β

(
ρ(1)−

)
− β

(
ρ(0)−

)
= ∞ since the limit from the left-hand side of β at

t = 0 is not defined.

(3) Consider the µ
β
�α -measure of the above sets:

1. µ
β
�α

(
{3}

)
= µ

β
�α

(
[3, 3]

)
= α(β(σ(3)+) − β(3−)) + (1 − α)(β(3+) − β(ρ(3)−)) =

α(β(3+)− β(3−)) + (1− α)(β(3+)− β(3−)) = 0,
2. µ

β
�α

(
{4}

)
= µ

β
�α

(
[4, 4]

)
= α(β(σ(4)+) − β(4−)) + (1 − α)(β(4+) − β(ρ(4)−)) =

α(β(5+)− β(4−)) + (1− α)(β(4+)− β(4−)) = 6α + 3(1− α) = 3 + 3α,
3. µ

β
�α

(
[4, 7)

)
= α

(
β(7−)− β(4−)

)
+(1− α)(β

(
ρ(7)−

)
− β
(
ρ(4)−)

)
= α

(
β(7−)− β(4−)

)
+(1− α)

(
β(5−)− β(4−)

)
= 12α + 6(1− α) = 6 + 6α,

4. µ
β
�α

(
(8, 9]

)
= α

(
β(σ(9)+

)
− β
(
σ(8)+)

)
+(1− α)

(
β(9+)− β(8+)

)
= α

(
β(9+)− β(8+)

)
+(1− α)

(
β(9+)− β(8+)

)
= 34,

5. µ
β
�α

(
{5}

)
= µ

β
�α([5, 5]) = α(β(σ(5)+)− β(5−)) + (1− α)(β(5+)− β(ρ(5)−)) = 6,

6. µ
β
�α

(
[0, 1)

)
= α

(
β(1−)− β(0−)

)
+ (1− α)

(
β(ρ(1)−)− β(ρ(0)−)

)
= ∞ since the limit

from left-hand side of β at t = 0 and β(ρ(0)−) are not defined.

Remark 19. Through Example 7, one can obtain that the µ
β
�α measure value of a set E ⊂ T is the

following combination
µ

β
�α

(
E
)
= αµ

β
∆(E) + (1− α)µ

β
∇(E),

and we can obtain the µ
β
∆ measure if α = 1 and the µ

β
∇ measure if α = 0.

7. Conclusions

In this review article, we present a survey of abstract analysis and applied dynamic
equations on hybrid time scales. The content is divided into five sections including the
almost periodic and almost automorphic theory, the uncertainty theory, the quaternion
theory, coupled-jumpping theory, and combined measure theory on hybrid time scales. In
each section, we demonstrate the very recent new results on both pure and applied mathe-
matics, which is mainly in function analysis and applied dynamic equations. Moreover,
the framework of knowledge and the idea of each section is clearly presented, and the
potential future work is illustrated. The results presented in this article can be extended
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and generalized to study both pure mathematical analysis and real applications such as
mathematical physics, biological dynamical models, and neural networks, etc.
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