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Abstract: In this paper, we present a novel blind signal detector based on the entropy of the power
spectrum subband energy ratio (PSER), the detection performance of which is significantly better than
that of the classical energy detector. This detector is a full power spectrum detection method, and does
not require the noise variance or prior information about the signal to be detected. According to
the analysis of the statistical characteristics of the power spectrum subband energy ratio, this paper
proposes concepts such as interval probability, interval entropy, sample entropy, joint interval entropy,
PSER entropy, and sample entropy variance. Based on the multinomial distribution, in this paper
the formulas for calculating the PSER entropy and the variance of sample entropy in the case of
pure noise are derived. Based on the mixture multinomial distribution, the formulas for calculating
the PSER entropy and the variance of sample entropy in the case of the signals mixed with noise
are also derived. Under the constant false alarm strategy, the detector based on the entropy of the
power spectrum subband energy ratio is derived. The experimental results for the primary signal
detection are consistent with the theoretical calculation results, which proves that the detection
method is correct.

Keywords: power spectrum subband energy ratio; sample entropy; interval entropy; PSER entropy;
sample entropy variance; multinomial distribution; signal detection

1. Introduction

With the rapid development of wireless communication, spectrum sensing has been
deeply studied and successfully applied in cognitive radio (CR). Common spectrum sensing
methods [1,2] can be classified as matched filter detection [3], energy-based detection [4],
and cyclostationary-based detection [5], among others. Matched-filtering is the optimum
detection method when the transmitted signal is known [6]. Energy detection is considered
to be the optimal method when there is no prior information of the transmitted signal.
Cyclostationary detection is applicable to signals with cyclostationary features [2]. Energy
detection can be classified into two categories: time domain energy detection [4] and
frequency domain energy detection [7,8]. The power spectrum subband energy ratio (PSER)
detector [9] is a local power spectrum energy detection technology. In order to enable PSER
to be used in full spectrum detection, a new detector-based PSER is proposed in this paper,
whose detection performance is higher than that of time domain energy detection.

In information theory, entropy is a measure of the uncertainty associated with a dis-
crete random variable, and differential entropy is a measure of uncertainty of a continuous
random. As the uncertainty of noise is higher than that of the signal, the entropy of the
noise is higher than that of the signal, which is the basis of using entropy to detect signals.
Information entropy has been successfully applied to signal detection [10–12]. The main
entropy detection methods can be classified into two categories: the time domain and the
frequency domain.
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In the time domain, a signal with a low signal-noise ratio (SNR) is annihilated in the
noise, and the estimated entropy is actually the entropy of the noise; therefore, the time
domain entropy-based detector does not have an adequate detection performance. Na-
garaj [12] introduced a time domain entropy-based matched-filtering for primary users
(PU) detection and presented a likelihood ratio test for detecting a PU signal. Gu et al. [13]
presented a new cross entropy-based spectrum sensing scheme that has two time-adjacent
detected data sets of the PU.

In the frequency domain, the spectral bin amplitude of the signal is obviously higher
than that of the noise. Therefore, the frequency domain entropy-based detector is widely
applied in many fields. Zhang et al. [10,14] presented a spectrum sensing scheme based
on the entropy of the spectrum magnitude, which has been used in many practical appli-
cations. For example, Jakub et al. [15] used this scheme to assist in blind signal detection,
Zhao [16] improved the two-stage entropy detection method based on this scheme, and
Waleed et al. [17] applied this scheme to maritime radar network. So [18] used the condi-
tional entropy of the spectrum magnitude to detect unauthorized user signals in cognitive
radio networks. Guillermo et al. [11] proposed an improved entropy estimation method
based on Bartlett periodic spectrum. Ye et al. [19] proposed a method based on the expo-
nential entropy. Zhu et al. [20] compared the performances of several entropy detectors in
primary user detection. In these papers, the mean of the test statistics based on entropy
could be calculated by differential entropy, however the variance of the test statistics based
on entropy was not given in these papers, that is, its calculation formula was unknown.
In detection theory, the variance of test statistics plays a very important role, therefore the
detection based on entropy has a major drawback.

In the above references, none of the entropy-based detectors made use of the PSER.
The PSER is a common metric used to represent the proportion of signal energy in a single
spectral line. It has been extensively applied in the fields of machine design [21], earthquake
modeling [22], remote communication [23,24], and geological engineering [25]. The white
noise power spectrum bin conforms to the Gaussian distribution, and its PSER conforms
to the Beta distribution [9]. Compared with the entropy detector based on spectral line
amplitude, the PSER entropy detector has special properties.

This paper is organized as follows. In Section 2, the theoretical formulas of PSER
entropy under pure noise and mixed signal case are deduced. The statistical characteristics
of PSER entropy are summarized and the computational complexity of the main statistics
are analyzed. Section 3 describes the derivation process of the PSER entropy detector under
the constant false alarm strategy in detail. In Section 4, experiments are carried out to verify
the accuracy of the PSER entropy detector, and the detection performance is compared
with other detection methods. Section 5 provides additional details concerning the research
process. The conclusions are drawn in Section 6.

2. PSER Entropy

PSER entropy takes the form of a classical Shannon entropy. Theoretically, the Shannon
entropy can be approximated by the differential entropy; therefore, this method is adopted
in the existing entropy-based signal detection methods [10]. However, this method has the
disadvantage that the actual value is not the same as the theoretical value in some cases.
Therefore, on the basis of analyzing the statistical characteristics of PSER entropy, this paper
proposes a new method to calculate PSER entropy without using differential entropy. Firstly,
the range of PSER [0,1] is divided into several equally spaced intervals. Then, under pure
noise, the PSER entropy and its variance are derived using the multinomial distribution.
Under signal mixed with noise, the PSER entropy and its variance are derived using the
mixed multinomial distribution.
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2.1. Probability Distribution for PSER

The signal mixed with additive Gaussian white noise (GWN) can be expressed as

s(n) =
{

z(n) H0
x(n) + z(n) H1

, n = 0, 1, · · · , L− 1 (1)

where L is the number of sampling points; s(n) is the signal to be detected; x(n) is the signal;
z(n) is the GWN with a mean of zero and a variance of σ2; H0 represents the hypothesis
corresponding to “no signal transmitted”; and H1 corresponds to “signal transmitted”.
The single-sided spectrum of s(n) is

⇀
S (k) =

L−1

∑
n=0

s(n)e−j 2π
L kn ,k = 0, 1, · · · ,

L
2
− 1 . (2)

where j is the imaginary unit, and the arrow superscript denotes a complex function.
The kth line in the power spectrum of s(n) can be expressed as

P(k) =
1
L

∣∣∣∣⇀S (k)∣∣∣∣2 =
1
L

(
(XR(k) + ZR(k))

2 + (XI(k) + ZI(k))
2
)

. (3)

XR(k) and XI(k) represent the real and imaginary parts of the signal, respectively. ZR(k)
and ZI(k) represent the real and imaginary parts of the noise, respectively.

The PSER Bd,N(k) is defined as the ratio of the sum of the adjacent d bins from the kth
bin in the power spectrum to the entire spectrum energy, i.e.,

Bd,N(k) =
∑k+d−1

l=k P(l)

∑N−1
i=0 P(i)

, 1 ≤ d < N − 1, k = 0, 1, · · · , N − d , (4)

where N = L/2, ∑N−1
i=0 P(i) represents the total energy in the power spectrum and

∑k+d−1
l=k P(l) represents the total energy of the adjacent d bins. When there is noise in

the power spectrum, it is clear that Bd,N(k) is a random variable.
The probability distribution for Bd,N(k) is described in detail in [9]. Under H0, Bd,N(k)

follows a beta distribution with parameters d, N − d. Under H1, Bd,N(k) follows a doubly
non-central beta distribution with parameters d, N − d and non-centrality parameters λ′k,
and ∑N−1

i=0 λi−λ′, i.e., [9] (p. 7),

Bd,N(k) =
{

β(d, N − d) H0
βd,N−d(λ

′
k, ∑N−1

i=0 λi−λ′k) H1
.

where λi =
(
X2

R(k) + X2
I (k)

)
/
(

Nσ2), i.e., the SNR of the kth spectral bin; λ′k = ∑k+d−1
l=k λl ,

the SNR of the d spectral lines starting from the kth spectral line; ∑N−1
i=0 λi−λ′k is the SNR

of the spectral lines not contained in the selected subband. The probability density function
(PDF) for Bd,N(k) [9] (p. 7) is

fBd,N(k)(x) =


xd−1(1−x)N−d−1

B(d,N−d) H0

e−(δk,1+δk,2)
∞
∑

j=0

∞
∑

l=0

δ
j
k,1δl

k,2
j!l!

(1−x)N+l−d−3x
j+d−1

B(j+d,N−d+l) H1
,x ∈ [0, 1]. (5)

where δk,1 = λ′k/2, δk,2 =
(

∑N−1
i=0 λi−λ′k

)
/2. The cumulative distribution function (CDF)

for Bd,N(k) [9] (p. 7) is

FBd,N(k)(x) =


Ix(d, N − d) H0

e−(δk,1+δk,2)
∞
∑

j=0

∞
∑

l=0

δ
j
k,1δl

k,2
j!l! Ix(j + d, N + l − d) H1

,x ∈ [0, 1]. (6)
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The subband used in this paper only contains one spectral bin, i.e., d = 1; therefore,
B1,N(k) follows the distribution

B1,N(k) =
{

β(1, N − 1) H0
β1,N−1(λk, ∑N−1

i=0 λi−λk) H1
. (7)

The probability density function (PDF) for B1,N(k) is

fB1,N(k)(x) =


(N − 1)(1− x)N−2 H0

e−(δk,1+δk,2)
∞
∑

j=0

∞
∑

l=0

δ
j
k,1δl

k,2
j!l!

(1−x)N+l−4x
j

B(j+1,N−1+l) H1
,x ∈ [0, 1]. (8)

where δk,1 = λk/2, δk,2 =
(

∑N−1
i=0 λi−λk

)
/2.

The cumulative distribution function (CDF) for B1,N(k) is

FB1,N(k)(x) =


Ix(1, N − 1) H0

e−(δk,1+δk,2)
∞
∑

j=0

∞
∑

l=0

δ
j
k,1δl

k,2
j!l! Ix(j + 1, N + l − 1) H1

,x ∈ [0, 1]. (9)

For the convenience of description, B1,N(k) is replaced by Xk.

2.2. Basic Definitions

Xk is in the range of [0,1]. The range is divided into m intervals at 1/m, i.e., [0, 1/m),
[1/m, 2/m), . . . , [(m− 1)/m, 1]. Then the ith interval is [i/m, (i + 1)/m), where
i = 0, 1, 2 · · · , m− 1. The probability that Xk falls into the ith interval [26] is

pi =
∫ (i+1)/m

i/m
fXk (x)dx , (10)

where p0 + p1 + · · ·+ pm−1 = 1. pi is called the interval probability.
The PSER values of all spectral lines are regarded as a sequence X = (X0, X1, · · · , XN−1).

Let the number of times the data in X falls into the ith interval be ti, which is a random
variable, and ti = 0, 1, · · · , N, ∑m−1

i=0 ti = N. Let t = (t0, t1, · · · , tm−1). The frequency
of the data in sequence X falling into the ith interval is denoted as Ti, i.e., Ti = ti/N,
and ∑m−1

i=0 Ti = 1.
The random variable Yi is equal to −Ti log Ti, which is called the sample entropy of

PSER. The mean of the sample entropy of PSER in the ith interval is Hi = E(Yi) , and Hi is
the interval entropy. Notice that any two ti are not independent of each other; therefore,
any two Yi are not independent of each other as well. Let Z(t; X) = ∑m−1

i=0 Yi, i.e.,

Z(t; X) = −
m−1

∑
i=0

ti
N

log
(

ti
N

)
. (11)

Z(t; X) is called sample entropy of PSER. Z(t; X) can be abbreviated as Z(t) or Z.
By the definition of entropy, entropy is a mean, and it has no variance. However,

the sample entropy is the entropy of a PSER sequence sample; therefore the sample entropy
is a random variable, and it has a mean and a variance. The mean of the sample entropy is

H(m, N) = E(Z), (12)

where m and N are the numbers of intervals and spectral bins, respectively. H(m, N) can
be called the total entropy or PSER entropy. The variance of the sample entropy is denoted
as Var(Z). In signal detection, E(Z) and Var(Z) are very important, and the calculation of
E(Z) and Var(Z) is discussed in the following sections.
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2.3. Calculating PSER Entropy Using the Differential Entropy
2.3.1. The Differential Entropy for Xk

Under H0, by the definition of differential entropy, the differential entropy for Xk is

h(B1,N(k)) = −
∫ +∞
−∞ p(x) log p(x)dx

= −
∫ +∞

0 p(x) log
[
(N − 1)(1− x)N−2

]
dx

= −
∫ +∞

0 p(x)[log(N − 1) + (N − 2) log(1− x)]dx
= − log(N − 1)− (N − 1)(N − 2)

∫ 1
0 (1− x)N−2 log(1− x)dx

= N−2
(N−1) ln a − log(N − 1),

where a is the base of the logarithm. When a = e,

h(B1,N(k)) =
N − 2
N − 1

− ln(N − 1). (13)

2.3.2. PSER Entropy Calculated Using Differential Entropy

According to the calculation process of the spectrum magnitude entropy presented by
Zhang in [10] and the equation given in [27] (p. 247), when 1/m→ 0 , the PSER entropy
under H0 is

H(m, N) = −
m−1
∑

i=0
pi logpi = −

m−1
∑

i=0
fXk (x) 1

m ln
(

fXk (x) 1
m

)
' h(B1,N(k))− ln

(
1
m

)
= N−2

N−1 − ln
(

N−1
m

)
.

(14)

If (N − 1)/m < e, then H(m, N) is negative.

2.3.3. The Defect of the PSER Entropy Calculated Using Differential Entropy

PSER entropy is the mean of the sample entropy, and the sample entropy is nonnega-
tive, therefore, the PSER entropy is nonnegative too. However, the PSER entropy calculated
by Equation (14) is not always nonnegative. Especially when (N − 1)/m < e, the PSER
entropy is negative. The reason why Equation (14) is not always nonnegative is that the
differential entropy is not always nonnegative.

The difference between the real PSER entropy calculated by simulation experiment
and that calculated by differential entropy is shown in Figure 1. At least 104 Monte Carlo
simulation experiments were carried out under N = 256 and different values of m.
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In Figure 1, the solid line is the PSER entropy calculated by the differential entropy,
while the dotted line is the PSER entropy. When m is very large (1/m < 0.005), the results
are close. However, when m is small (1/m > 0.005), the difference between the two
methods is large, and even the total entropy calculated by the differential entropy is
negative, which is inconsistent with the actual result. Therefore, in this paper a more
reasonable method to calculate the PSER entropy is.

2.4. PSER Entropy under H0

2.4.1. Definitions and Lemmas

Under H0, all Xk obey the same beta distribution. According to (10), the interval
probability in ith interval is

pi =
∫ (i+1)/m

i/m
(N − 1)(1− t)N−2dt =

(
1− i

m

)N−1
−
(

1− i + 1
m

)N−1
. (15)

pi is essentially the area of the ith interval on the probability density map. Figure 2 shows
p0 and p1 when m is 200, and N is 128.
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Let Tm,N = {t = (t0, t1, · · · , tm−1) : ti ∈ {0, 1, 2, · · · , N}, t0 + · · · tm−1 = N}. It is a
typical multinomial distribution problem that N data fall into m intervals. By the probability
formula of multinomial distribution, the probability of t = (t0, t1, · · · , tm−1) is

Pr(t) = Pr(t0, t1, · · · , tm−1) =

(
N

t0, t1, · · · , tm−1

)
pt0

0 pt1
1 · · · p

tm−1
m−1, (16)

where (
N

t0, t1, · · · , tm−1

)
=

N!
t0!t1! · · · , tm−1!

,

which is the multinomial coefficient. The following lemmas are used in the following analysis.

Lemma 1. If k is a non-negative integer, then [28] (p. 183)

Pr(ti = k, t ∈ Tm,N) =
N!

k!(N − k)!
pk

i
(1− pi)

N−k. (17)

Lemma 2. If j is a non-negative integer, then

∑
t∈Tm,N

Pr(t) =
N

∑
j=0

Pr(ti = j, t ∈ Tm,N). (18)
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Proof. The left side of Equation (18) is ∑
t∈Tm,N

Pr(t) = 1. From Lemma 1, the right side of

Equation (18) is

N

∑
j=0

Pr(ti = j, t ∈ Tm,N) =
N

∑
j=0

N!
j!(N − j)!

pj
i
(1− pi)

N−j = 1.

Lemma 3. If k and l are a non-negative integer, and k + l ≤ N, then [28] (p. 183)

Pr
(
ti = k, tj = l, t ∈ Tm,N

)
=

N!
k!l!(N − k− l)!

pk
i
pl

j

(
1− pi − pj

)N−k−l . (19)

Lemma 4. If k and l are a non-negative integer, and k + l ≤ N, then

∑
t∈Tm,N

Pr(t) =
N

∑
k=0

N−k

∑
l=0

Pr
(
ti = k, tj = l, t ∈ Tm,N

)
. (20)

Proof. From Lemma 3, the right side of Equation (20) is

N
∑

k=0

N−k
∑

l=0
Pr
(
ti = k, tj = l, t ∈ Tm,N

)
=

N
∑

k=0

N−k
∑

l=0

N!
k!l!(N−k−l)! pk

i
pl

j

(
1− pi − pj

)N−k−l

=
N
∑

k=0

N!
k!(N−k)! pk

i
(1− pi)

N−k N−k
∑

l=0

(N−k)!
l!(N−k−l)!

( pj
1−pi

)l( 1−pi−pj
1−pi

)N−k−l

=
N
∑

k=0

N!
k!(N−k)! pk

i
(1− pi)

N−k = 1.

2.4.2. Statistical Characteristics of Ti

The mean of Ti [28] (p. 183) is

E(Ti) =
N

∑
j=0

Pr(ti = j, t ∈ Tm,N)
j

N
=

N

∑
j=0

N!
j!(N − j)!

pj
i(1− pi)

N−j j
N

= pi. (21)

The mean-square value of Ti [28] (p. 183) is

E(T2
i ) =

N

∑
j=0

Pr(ti = j, t ∈ Tm,N)

(
j

N

)2
=

Np2
i + pi − p2

i
N

. (22)

The variance of Ti [28] (p. 183) is

Var(Ti) = E
(

T2
i

)
− E2(Ti) =

pi(1− pi)

N
. (23)

2.4.3. Statistical Characteristics of Yi

For the convenience of description, let

hN(l) = −
l
N

log
(

l
N

)
,l = 0, 1 · · ·N .
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The mean of the Yi is the mean of all the entropy values of Yi in the ith interval, that is,

Hi = E(Yi) =
N
∑

j=0
Pr(ti = j, t ∈ Tm,N)hN(j)

=
N
∑

j=0

(
N
j

)
pj

i(1− pi)
N−jhN(j).

(24)

Hi is the interval entropy. The following definition is not used to define the interval entropy
in this paper:

Hi = E(Yi) = −
N

∑
j=0

Pr(ti = j, t ∈ Tm,N) log(Pr(ti = j, t ∈ Tm,N)),

as this definition is the entropy of all probabilities of Yi in the ith interval.
The mean-square value of Yi is

E
(
Yi

2) = N
∑

j=0
Pr(ti = j, t ∈ Tm,N)h2

N(j)

=
N
∑

j=0

(
N
j

)
pj

i(1− pi)
N−jh2

N(j).
(25)

The variance of Yi is
Var(Yi) = E

(
Yi

2
)
− E2(Yi). (26)

when i 6= j, the joint entropy of two interval is

Hi,j = E(YiYj) = ∑
t∈Tn,N

Pr(t)hN(ti)hN
(
tj
)

=
N
∑

k=0

N−k
∑

l=0
Pr
(
ti = k, tj = l, t ∈ Tm,N

)
hN(k)hN(l)

=
N
∑

k=0

N−k
∑

l=0

N!
k!l!(N−k−l)! pk

i
pl

j

(
1− pi − pj

)N−k−lhN(k)hN(l).

(27)

when i = j, Hi,i = E
(
Yi

2), i.e., the mean-square value of Yi.

2.4.4. Statistical Characteristics of Z(t)
The total entropy with m intervals and N spectral bins is

H(m, N) = E(Z) = ∑
t∈Tm,N

Pr(t)Z. (28)

Theorem 1. The PSER entropy is equal to the sum of all the interval entropy, i.e.,

H(m, N) =
m−1

∑
i=0

Hi. (29)
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Proof. According to Lemma 2,

H(m, N) = ∑
t∈Tm,N

Pr(t)Z = ∑
t∈Tm,N

(
Pr(t)×

m−1
∑

i=0
hN(ti)

)
=

m−1
∑

i=0

N
∑

j=0
Pr(ti = j, t ∈ Tm,N)hN(ti)

=
m−1
∑

i=0

N
∑

j=0

N!
j!(N−j)! pj

i (1− pi)
N−jhN(ti)

=
m−1
∑

i=0
Hi.

Theorem 2. The mean of the mean-square value of the sample entropy is equal to the sum of all the
joint entropy of two intervals, i.e.,

E
(

Z2
)
=

m−1

∑
i=0

E
(

Yi
2
)
+ 2

m−2

∑
i=0

m−1

∑
j=i+1

Hi,j. (30)

Proof. From Lemmas 2 and 4,

E
(
Z2) = ∑

t∈Tm,N

Pr(t)Z2 = ∑
t∈Tm,N

(
Pr(t)×

m−1
∑

i=0

m−1
∑

j=0
hN(ti)hN

(
tj
))

= ∑
t∈Tm,N

(
Pr(t)×

(
m−1
∑

i=0
h2

N(ti) + 2
m−2
∑

i=0

m−1
∑

j=i+1
hN(ti)hN

(
tj
)))

=
m−1
∑

i=0
∑

t∈Tm,N

(
Pr(t)h2

N(ti)
)
+ 2

m−2
∑

i=0

m−1
∑

j=i+1
∑

t∈Tm,N

Pr(t)hN(ti)hN
(
tj
)

=
m−1
∑

i=0
E
(
Yi

2)+ 2
m−2
∑

i=0

m−1
∑

j=i+1
Hi,j.

Theorem 3. The variance of the sample entropy is

Var(Z) = E
(

Z2
)
− E2(Z) =

m−1

∑
i=0

E
(

Yi
2
)
+ 2

m−2

∑
i=0

m−1

∑
j=i+1

Hi,j −
(

m−1

∑
i=0

Hi

)2

. (31)

For the convenience of description, H(m, N) and Var(Z) under H0 are replaced by µ0
and σ2

0 , respectively.

2.4.5. Computational Complexity

The calculation time of each statistic is mainly consumed in factorial calculation and
the traversal of all cases.

Factorial calculation involves two cases: N!
j!(N−j)! and N!

k!l!(N−k−l)! . They both have a
time complexity of O(N).

There are two methods to traverse all cases: the traversal of one selected interval
and the traversal of two selected intervals. The corresponding expressions for these two

methods are
N
∑

j=0
Pr(ti = j, t ∈ Tm,N) and

N
∑

k=0

N−k
∑

l=0
Pr
(
ti = k, tj = l, t ∈ Tm,N

)
, respectively.
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The traversal of one selected interval requires that j take all the values from 0 to
N. Considering the time spent computing the factorial, its time complexity is O

(
N2).

Therefore, the time complexity of calculating the interval entropy is O
(

N2).
The traversal of two selected intervals requires firstly selection of k spectral bins from

all N spectral bins, and then select l spectral bins from the remaining N − k spectral bins.
If k and l are fixed, then the time complexity is

O
(

N
N!

k!l!(N − k− l)!

)
.

N
∑

k=0

N−k
∑

l=0
Pr
(
ti = k, tj = l, t ∈ Tm,N

)
requires listing all the combinations of k and l, and its

time complexity is

N
((

N
0, 0, N

)
+

(
N

0, 1, N − 1

)
+ · · ·

(
N

N, 0, 0

))
= N3N ,

i.e., O
(

N3N). The time complexity of calculating the interval joint entropy Hi,j is O
(

N3N).
Calculating the total entropy H(m, N) requires computation of all m interval entropies,

so its time complexity is O
(
mN2).

It takes the most time to calculate the variance of the sample entropy Var(Z). As all
m(m− 1)/2 interval joint entropies have to be computed, the time complexity of calculating
Var(Z) is O

(
Nm23N). In the following experiments, in order to ensure better detection

performance, the values of m and N should not be too small, such as m ≥ 500 and N ≥ 256,
and therefore the calculation time will be very long.

2.5. PSER Entropy under H1
2.5.1. Definitions and Lemmas

Under H1, Xk obey β1,N−1(λk, ∑N−1
i=0 λi−λk), and different Xk have different non-

centrality parameters, and therefore the calculation of total entropy and sample entropy
variance under H1 is much more complicated than that under H0. According to Equation
(10), the interval probability in ith interval is

pk,i = e−(δk,1+δk,2)
∞

∑
j=0

∞

∑
l=0

δ
j
k,1δl

k,2

j!l!

(
I(i+1)/m(j + 1, N + l − 1)− Ii/m(j + 1, N + l − 1)

)
. (32)

where ∑m−1
i=0 pk,i = 1. The subscript k stands for the label of Xk. Figure 3 shows p0 and p1

when m = 200, N = 128, δk,1 = 1, and δk,2= 2.
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Under H1, different Xk obey different probability distributions, therefore this is a
multinomial distribution problem under mixture distributions. Let

T′m,N =
{

t
′
= (t0,0, · · · t0,m−1, · · · tN−1,0, · · · tN−1,m−1) : tk,i ∈ {0, 1, 2, · · · , N}, ti = ∑N−1

k=0 tk,i, ∑m−1
i=0 ti = N

}
,

where tk,i is the number of times of Xk falls into the ith interval. ti represents the times of
all Xk falls into the ith interval. In a sample, since Xk can only fall into one interval, tk,i only
can be 0 or 1, and ∑m−1

i=0 tk,i = 1.
By the probability formula of multinomial distribution, the probability when t

′
=

(t0,0, · · · t0,m−1, · · · tN−1,0, · · · tN−1,m−1) is

Pr(t
′
) =

(
N

t0,0, · · · t0,m−1, · · · tk,0, · · · tk,m−1 · · · tN−1,0, · · · tN−1,m−1

)
pt0,0

0,0 · · · p
t0,m−1
0,m−1 · · · p

tk,0
k,0 · · · p

tk,m−1
k,m−1 · · · p

tN−1,0
N−1,0 · · · p

tN−1,m−1
N−1,m−1

= N!pt0,0
0,0 · · · p

t0,m−1
0,m−1 · · · p

tk,0
k,0 · · · p

tk,m−1
k,m−1 · · · p

tN−1,0
N−1,0 · · · p

tN−1,m−1
N−1,m−1 = N!

N−1
∏

k=0

m−1
∏
i=0

ptk,i
k,i .

(33)

The following lemmas are used in the following analysis.

Lemma 5. If j is a non-negative integer, then

Pr
(

ti = ∑N−1
k=0 tk,i = j, t

′ ∈ T′m,N

)
= N!

(N−j)! ∑
ti=j

pt0,i
0,i · · · p

tk,i
k,i · · · p

tN−1,i
N−1,i(1− p0,i)

1−t0,i · · · (1− pk,i)
1−tk,i · · · (1− pN−1,i)

1−tN−1,i .

(34)
Proof.

Pr
(

ti = ∑N−1
k=0 tk,i = j, t

′ ∈ T′m,N

)
= ∑

t′∈T′m,N ,j=∑N−1
k=0 tk,i

Pr
(

t
′
)

= ∑
t′∈T′m,N ,ti=j

(
N

t0,0, · · · t0,m−1, · · · tk,0, · · · tk,m−1 · · · tN−1,0, · · · tN−1,m−1

)
pt0,0

0,0 · · · p
t0,m−1
0,m−1 · · · p

tk,0
k,0 · · · p

tk,m−1
k,m−1 · · · p

tN−1,0
N−1,0 · · · p

tN−1,m−1
N−1,m−1

= ∑
t′∈T′m,N ,ti=j

(
N

t0,i, · · · tk,i · · · tN−1,i, N − j

)
pt0,i

0,i · · · p
tk,i
k,i · · · p

tN−1,i
N−1,i(1− p0,i)

1−t0,i · · · (1− pk,i)
1−tk,i · · · (1− pN−1,i)

1−tN−1,i×(
N − j

t0,0, · · · t0,i−1, t0,i+1, · · · t0,m−1, · · · tN−1,0, · · · tN−1,i−1, tN−1,i+1 · · · tN−1,m−1

)
×
(

p0,0
1−p0,i

)t0,0 · · ·
(

p0,i−1
1−p0,i

)t0,i−1

(
p0,i+1
1−p0,i

)t0,i+1 · · ·
(

p0,m−1
1−p0,m−1

)t0,m−1 · · ·
(

pN−1,0
1−pN−1,i

)tN−1,0 · · ·
(

pN−1,i−1
1−pN−1,i

)tN−1,i−1
(

pN−1,i+1
1−pN−1,i

)tN−1,i+1 · · ·
(

pN−1,m−1
1−pN−1,i

)tN−1,m−1

= N!
(N−j)! ∑

ti=j
pt0,i

0,i · · · p
tk,i
k,i · · · p

tN−1,i
N−1,i(1− p0,i)

1−t0,i · · · (1− pk,i)
1−tk,i · · · (1− pN−1,i)

1−tN−1,i .

�
Lemma 6. If j is a non-negative integer, then

∑
t′∈T′m,N

Pr
(

t
′
)
=

N

∑
j=0

Pr
(

ti = j, t
′ ∈ T′m,N

)
. (35)

Proof. The left side of Equation (35) is ∑
t∈Tm,N

Pr(t) = 1. From Lemma 5, the right side of

Equation (35) is

N
∑

j=0
Pr
(

ti = j, t
′ ∈ T′m,N

)
=

N
∑

j=0

N!
(N−j)! ∑

ti=j
pt0,i

0,i · · · p
tk,i
k,i · · · p

tN−1,i
N−1,i(1− p0,i)

1−t0,i · · · (1− pk,i)
1−tk,i · · · (1− pN−1,i)

1−tN−1,i = 1.



Entropy 2021, 23, 448 12 of 28

Lemma 7. If g and l are a non-negative integer, and g + l ≤ N, then

Pr
(
ti = g, tj = l, t′ ∈ T′m,N

)
= N!

(N−g−l)! ∑
ti=g,tj=l

pt0,i
0,i · · · p

tk,i
k,i · · · p

tN−1,i
N−1,i p

t0,j
0,j · · · p

tk,j
k,j · · · p

tN−1,j
N−1,j×

(1− p0,i)
1−t0,i · · · (1− pk,i)

1−tk,i · · · (1− pN−1,i)
1−tN−1,i

(
1− p0,j

)1−t0,j · · ·
(

1− pk,j

)1−tk,j · · ·
(
1− pN−1,j

)1−tN−1,j .
(36)

Proof.

Pr
(
ti = g, tj = l, t′ ∈ T′m,N

)
= ∑

t′∈T′m,N ,ti=g,tj=l
Pr
(

t
′
)

= ∑
t′∈T′m,N ,ti=g,tj=l

(
N

t0,0, · · · t0,m−1, · · · tk,0, · · · tk,m−1 · · · tN−1,0, · · · tN−1,m−1

)
pt0,0

0,0 · · · p
t0,m−1
0,m−1 · · · p

tk,0
k,0 · · · p

tk,m−1
k,m−1 · · · p

tN−1,0
N−1,0 · · · p

tN−1,m−1
N−1,m−1

= ∑
t′∈T′m,N ,ti=g,tj=l

(
N

t0,i, · · · tk,i · · · tN−1,i, t0,j, · · · tk,j · · · tN−1,j, N − g− l

)
pt0,i

0,i · · · p
tk,i
k,i · · · p

tN−1,i
N−1,i p

t0,j
0,j · · · p

tk,j
k,j · · · p

tN−1,j
N−1,j×

(1− p0,i)
1−t0,i · · · (1− pk,i)

1−tk,i · · · (1− pN−1,i)
1−tN−1,i

(
1− p0,j

)1−t0,j · · ·
(

1− pk,j

)1−tk,j · · ·
(
1− pN−1,j

)1−tN−1,j(
N − g− l
t0,0, · · · t0,i−1, t0,i+1, · · · t0,j−1, t0,j+1, · · · t0,m−1, · · · tN−1,0, · · · tN−1,i−1, tN−1,i+1 · · · tN−1,j−1, tN−1,j+1 · · · tN−1,m−1

)
×
(

p0,0
1−p0,i

)t0,0 · · ·
(

p0,i−1
1−p0,i

)t0,i−1

(
p0,i+1
1−p0,i

)t0,i+1 · · ·
(

p0,m−1
1−p0,m−1

)t0,m−1 · · ·
(

pN−1,0
1−pN−1,j

)tN−1,0 · · ·
(

pN−1,i−1
1−pN−1,j

)tN−1,i−1
(

pN−1,i+1
1−pN−1,j

)tN−1,i+1 · · ·
(

pN−1,m−1
1−pN−1,j

)tN−1,m−1

= ∑
ti=g,tj=l

(
N
t0,i, · · · tk,i · · · tN−1,i, t0,j, · · · tk,j · · · tN−1,j, N − g− l

)
pt0,i

0,i · · · p
tk,i
k,i · · · p

tN−1,i
N−1,i p

t0,j
0,j · · · p

tk,j
k,j · · · p

tN−1,j
N−1,j×

(1− p0,i)
1−t0,i · · · (1− pk,i)

1−tk,i · · · (1− pN−1,i)
1−tN−1,i

(
1− p0,j

)1−t0,j · · ·
(

1− pk,j

)1−tk,j · · ·
(
1− pN−1,j

)1−tN−1,j

= N!
(N−g−l)! ∑

ti=g,tj=l
pt0,i

0,i · · · p
tk,i
k,i · · · p

tN−1,i
N−1,i p

t0,j
0,j · · · p

tk,j
k,j · · · p

tN−1,j
N−1,j×

(1− p0,i)
1−t0,i · · · (1− pk,i)

1−tk,i · · · (1− pN−1,i)
1−tN−1,i

(
1− p0,j

)1−t0,j · · ·
(

1− pk,j

)1−tk,j · · ·
(
1− pN−1,j

)1−tN−1,j .

�

2.5.2. Statistical Characteristics of Ti

The mean of Ti is

E(Ti) =
N
∑

j=0
Pr
(

ti = j, t
′ ∈ T′m,N

)
j

N

=
N
∑

j=0
∑

ti=j

(
N

t0,i, · · · tk,i · · · tN−1,i, N − j

)
pt0,i

0,i · · · p
tk,i
k,i · · · p

tN−1,i
N−1,i(1− p0,i)

1−t0,i · · · (1− pk,i)
1−tk,i · · · (1− pN−1,i)

1−tN−1,i j
N

=
N
∑

j=0

j
N

N!
(N−j)! ∑

ti=j
pt0,i

0,i · · · p
tk,i
k,i · · · p

tN−1,i
N−1,i(1− p0,i)

1−t0,i · · · (1− pk,i)
1−tk,i · · · (1− pN−1,i)

1−tN−1,i .

(37)

The mean-square value of Ti is

E(T2
i ) =

N
∑

j=0
Pr
(

ti = j, t
′ ∈ T′m,N

)(
j

N

)2

=
N
∑

j=0

(
j

N

)2 N!
(N−j)! ∑

ti=j
pt0,i

0,i · · · p
tk,i
k,i · · · p

tN−1,i
N−1,i(1− p0,i)

1−t0,i · · · (1− pk,i)
1−tk,i · · · (1− pN−1,i)

1−tN−1,i .
(38)

The variance of Ti is
Var(Ti) = E

(
T2

i

)
− E2(Ti).

2.5.3. Statistical Characteristics of Yi

The mean of the Yi is

Hi = E(Yi) =
N
∑

j=0
Pr
(

ti = j, t
′ ∈ T′m,N

)
hN(j)

=
N
∑

j=0

j
N

N!
(N−j)! hN(j) ∑

ti=j
pt0,i

0,i · · · p
tk,i
k,i · · · p

tN−1,i
N−1,i(1− p0,i)

1−t0,i · · · (1− pk,i)
1−tk,i · · · (1− pN−1,i)

1−tN−1,i .
(39)
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The mean-square value of Yi is

E
(
Yi

2) = N
∑

j=0
Pr
(

ti = j, t
′ ∈ T′m,N

)
h2

N(j)

=
N
∑

j=0

j
N

N!
(N−j)! h

2
N(j) ∑

ti=j
pt0,i

0,i · · · p
tk,i
k,i · · · p

tN−1,i
N−1,i(1− p0,i)

1−t0,i · · · (1− pk,i)
1−tk,i · · · (1− pN−1,i)

1−tN−1,i .
(40)

The variance of Yi is
Var(Yi) = E

(
Yi

2
)
− E2(Yi).

when i 6= j, the joint entropy of two interval is

Hi,j = E(YiYj) = ∑
t′∈T′m,N

Pr
(

t
′
)

hN(ti)hN
(
tj
)

=
N
∑

g=0

N−g
∑

l=0
Pr
(

ti = g, tj = l, t
′ ∈ T′m,N

)
hN(g)hN(l)

(41)

when i = j, Hi,i = E
(
Yi

2), i.e., the mean-square value of Yi.

2.5.4. Statistical Characteristics of Z
(

t
′
)

Under H1, the PSER entropy is

H(m, N) = ∑
t′∈T′m,N

Pr
(

t
′
)

Z
(

t
′
)

.

Theorem 4. UnderH1, the PSER entropy is equal to the sum of all the interval entropy, i.e.,

H(m, N) =
m−1

∑
j=0

Hj. (42)

Proof.

∑
t′∈T′m,N

Pr
(

t
′
)

Z = ∑
t′∈T′m,N

(
Pr
(

t
′
)
×

m−1
∑

i=0
hN(ti)

)
=

m−1
∑

i=0
∑

t′∈T′m,N

Pr
(

t
′
)

hN(ti) =
m−1
∑

i=0

N
∑

j=0
Pr
(

ti = j, t
′ ∈ T′m,N

)
hN(ti)

=
m−1
∑

i=0
Hi.

The mean of the mean-square value of Z
(

t
′
)

is

E
(
Z2) = ∑

t′∈T′m,N

Pr
(

t
′
)

Z2 = ∑
t′∈T′m,N

(
Pr
(

t
′
)
×

m−1
∑

i=0

m−1
∑

j=0
hN(ti)hN

(
tj
))

=
m−1
∑

i=0
E
(
Yi

2)+ 2
m−2
∑

i=0

m−1
∑

j=i+1
Hi,j.

(43)
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The variance of Z
(

t
′
)

is

Var(Z) = E
(

Z2
)
− E2(Z) =

m−1

∑
i=0

E
(

Yi
2
)
+ 2

m−2

∑
i=0

m−1

∑
j=i+1

Hi,j −
(

m−1

∑
i=0

Hi

)2

. (44)

For the convenience of description, H(m, N) and Var(Z) are denoted as µ1 and σ2
1

under H1.

2.5.5. Computational Complexity

Under H1, many statistics take a much longer time than under H0. The calculation
time is mainly consumed in two aspects: calculation of pk,i, and the factorial calculation
and the traversal of all cases.

1. Calculation of pk,i

As seen from Equation (32), pk,i is expressed by infinite double series under H1, and its
value could only be obtained by numerical calculation. Since the number of calculation
terms is set to be large, it will take a significant amount of calculation time.

2. Factorial calculation

Similar to the analysis under H0, the time complexity of the factorial calculation is O(N).

3. The traversal of all cases

There are two methods to traverse all cases: the traversal of one selected interval and
the traversal of two selected intervals. The corresponding expressions for these two meth-

ods are ∑N
j=0 Pr

(
ti = j, t

′ ∈ T′m,N

)
and

N
∑

g=0

N−g
∑

l=0
Pr
(

ti = g, tj = l, t
′ ∈ T′m,N

)
, respectively.

Calculating Pr
(

ti = j, t
′ ∈ T′m,N

)
is a process of choosing j of N lines, and its time

complexity is O
(

NCj
N

)
. Similar to the analysis under H0, the computational complexity of

∑N
j=0 Pr

(
ti = j, t

′ ∈ T′m,N

)
is O

(
N2N). Therefore, the time complexity of calculating the

interval entropy is O
(

N2N).
The computational complexity of

N
∑

k=0

N−k
∑

l=0
Pr
(
ti = k, tj = l, t ∈ Tm,N

)
is O

(
N33N). There-

fore the time complexity of calculating the interval joint entropy Hi,j is O
(

N33N). The time
complexity of calculating the PSER entropy is O

(
mN33N). The time complexity of calculat-

ing the variance of the sample entropy Var(Z) is O
(
m2N33N).

3. Signal Detector Based on the PSER Entropy

In this section, a signal detection method based on PSER entropy is deduced under the
constant false alarm (CFAR) strategy according to the PSER entropy and sample entropy
variance derived in Section 2. This method is also called full power spectrum subband
energy ratio entropy detector (FPSED), because it detects on the full power spectrum.

3.1. Principle

Signal detection based on PSER entropy takes the sample entropy as a detection
statistic to judge whether there is a signal in the whole spectrum. The sample entropy is

Z =
m−1

∑
i=0

Yi

The PSER entropy of GWN is obviously different from that of the mixed signal. In gen-
eral, the PSER entropy of the mixed signal will be less than that of GWN, but sometimes it
will also be greater than that of GWN. This can be seen in Figure 4.
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Under the CFAR strategy, the false alarm probability fP  can be expressed as fol-
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1 0
1 0

0
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η μ

P Z η H Q
σ

 (46) 
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Figure 4. Comparison of the PSER entropy between GWN and the mixed signal (N = 1024, signal–noise ratio (SNR) = 0 dB).
(a) m = 1000; (b) m = 500. The blue broken line is the sample entropy of GWN, and the red broken line is the sample entropy
of the Ricker signal. The black line is the PSER entropy of GWN, and the blue line is the PSER entropy of the Ricker signal.

In Figure 4a, the PSER entropy of GWN is higher than that of the noisy Ricker sig-
nal. However, the PSER entropy of GWN is lower than that of the noisy Ricker signal
in Figure 4b. Therefore, when setting the detection threshold of the PSER entropy de-
tector, the relationship between the PSER entropy of the signal and that of noise should
be considered.

3.1.1. The PSER Entropy of a Signal Less Than That of GWN

When the PSER entropy of signal is less than that of GWN, let the threshold be η1
which tests the decision statistic. If the test statistic is less than η1, the signal is deemed to
be present, and it is absent otherwise, i.e.,{

Z > η1 H0
Z < η1 H1

. (45)

The distribution of Z is regarded as Gaussian in this paper, so

Z ∼
{
N
(
µ0, σ2

0
)
, H0

N
(
µ1, σ2

1
)
, H1

. (46)

Under the CFAR strategy, the false alarm probability Pf can be expressed as follows:

Pf = Pr(Z < η1 |H0 ) = 1−Q
(

η1 − µ0

σ0

)
. (47)

η1 can be derived from Equation (47)

η1 = Q−1(1− Pf )σ0 + µ0. (48)

The detection probability Pd can be expressed as follows:

Pd = Pr(Z < η1 |H1 ) = 1−Q
(

η1 − µ1

σ1

)
. (49)

Substituting Equation (48) into Equation (49), Pd can then be evaluated as follows:

Pd = 1−Q

(
Q−1(1− Pf )σ0 + µ0 − µ1

σ1

)
. (50)
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3.1.2. The PSER Entropy of a Signal Larger Than That of GWN

When the PSER entropy of a signal is larger than that of GWN, let the threshold be
η2. If the test statistic is larger than η2, the signal is deemed to be present, and it is absent
otherwise, i.e., {

Z < η2 H0
Z > η2 H1

. (51)

The false alarm probability Pf is

Pf = Pr(Z > η2 |H0 ) = Q
(

η2 − µ0

σ0

)
, (52)

and
η2 = Q−1(Pf )σ0 + µ0. (53)

The detection probability Pd is

Pd = Pr(Z > η2 |H1 ) = Q
(

η2 − µ1

σ1

)
. (54)

Substituting Equation (53) into Equation (54), Pd can then be evaluated as follows:

Pd = Q

(
Q−1(Pf )σ0 + µ0 − µ1

σ1

)
. (55)

3.2. Other Detection Methods

In the following experiment, the PSER entropy detector compare with the commonly
used full spectrum energy detection (FSED) [29] and matched-filtering detector (MFD)
methods, under the same condition. In this section, we introduce these two detectors.

3.2.1. Full Spectrum Energy Detection

The performance of FSED is exactly the same as that of classical energy detection (ED).
The total spectral energy is measured by the sum of all spectral lines in the power spectrum,
that is,

TFD =
N−1

∑
k=0

P(k). (56)

Let γ be the SNR, that is, γ = 1
N2σ2

N−1
∑

k=0

(
X2

R(k) + X2
I (k)

)
. When the detection length N

is large enough, TFD obeys a Gaussian distribution:

TFD ∼
{
N
(

Nσ2, Nσ4) H0
N
(
(1 + γ)Nσ2, (1 + 2γ)Nσ4) H1

. (57)

Let the threshold be ηFD. The false alarm probability and detection probability can be
expressed as follows:

Pf = Pr(TFD ≥ ηFD) = Q
(

ηFD − Nσ2
√

Nσ2

)
, (58)

Pd = Pr(TFD > ηFD|H1) = Q

(
Q−1(Pf )− γ

√
N

√
1 + 2γ

)
. (59)

where ηFD =
(

Q−1(Pf )
√

N + N
)

σ2.
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3.2.2. Matched Filter Detection

The main advantage of matched filtering is the short time to achieve a certain false
alarm probability or detection probability. Hence, it requires perfect knowledge of the
signal. In the time domain, the detection statistic of matched filtering is

TMFD =
L−1

∑
n=0

s(n)x(n), (60)

where s(n) is the transmitted signal, and x(n) is signal to be detector. Let E = ∑L−1
n=0 x2(n),

i.e., all energy of the signal, and ηMFD is the threshold. The false alarm probability and
detection probability can be expressed as follows:

Pf = Pr(TMFD ≥ ηMFD|H0 ) = Q
(

ηMFD

σ
√

E

)
, (61)

Pd = Pr(TMFD ≥ ηMFD|H1) = Q
(

ηMFD − E
σ
√

E

)
. (62)

and ηMFD = Q−1(Pf )σ
√

E.

4. Experiments

For this section, we verified and compared the detection performances of the FPSED,
FSED, and MTD discussed in Section 3 through Monte Carlo simulations. The primary
signal was a binary phase shift keying(BPSK) modulated signal with symbol ratio 1kbit/s,
carrier frequency 1000 Hz, and sampling frequency 105 Hz.

We performed all Monte Carlo simulations for at least 104 independent trials. We set
Pf to 0.05. We used mean-square error (MSE) to measure the deviation between the
theoretical values and actual statistical results. All the programs in the experiment were
run in MATLAB set up on a laptop with a Core i5 CPU and 16GB RAM.

Since the PSER entropy µ1, and the sample entropy variance σ2
0 and σ2

1 cannot be
calculated, a large number of simulation data were generated in the experiment to obtain
µ̂1, σ̂2

0 , and σ̂2
1 , which replace µ1, σ2

0 , and σ2
1 , respectively.

4.1. Experiments under H0

This section verifies whether the calculation results of each statistic is correct by
comparing the statistical results with the theoretical calculation result. The effects of noise
intensity, the number of spectral lines and the number of intervals on interval probability,
interval entropy, PSER entropy, and the variance of sample entropy are analyzed.

4.1.1. Influence of Noise

According to the probability density function of PSER, PSER has nothing to do with
noise intensity. Therefore, noise intensity has no effect on each statistic under H0. In the fol-
lowing experiment, the variance of noise has 10 values ranging from 0.1 to 1 at 0.1 intervals,
N = 512, and m = 500.

In Figures 5 and 6, the theoretical and actual values of interval probability and interval
entropy under different noise intensities are compared. The results show that the theoretical
values are in good agreement with the statistical values, and the noise intensity has no
effect on interval probability. In the first few intervals (i < 7), the interval probabilities are
large, so the interval entropies are also large, contributing more to the total entropy.
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Figure 6. Comparison of the theoretical interval entropy and the actual interval entropy.

In Figure 7, the theoretical values of PSER entropies are compared with the actual
values. It can be seen that the theoretical values are basically consistent with the actual
values, but the actual values are slightly smaller than the theoretical values. The actual
values do not change with noise intensity, indicating that noise intensity has no effect on
PSER entropy.

Since the theoretical variance of sample entropy cannot be calculated, only the vari-
ation of the actual variance of sample entropy with noise intensity is shown in Figure 8.
It can be seen that the variance of sample entropy does not change with the noise intensity.

The above experiments show that the actual statistical results are consistent with the
theoretical calculation results, indicating that the calculation methods of interval probability,
interval entropy, PSER entropy, and sample entropy variance determined in this paper
are correct.
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4.1.2. Influence of N

In Figure 9, the effect of N on the interval probability is shown. When m is fixed,
the larger N is, the larger p0 is, and the interval probabilities in other intervals will be
smaller. The reason for that is that the larger N is, the smaller the energy ratio of each line
to the entire power spectrum.
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Figure 9. The effect of N on the interval probability (m = 500, N = 256, 512, 1024).

In Figure 10, the effect of N on the interval entropy is shown. The larger N is,
the smaller Hi.
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In Figure 11, the effect of N on the interval entropy is shown. When m is fixed,
the larger N is, the smaller H(m, N) becomes. When N is the same, the larger m is,
the larger the PSER entropy is.
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In Figure 12, the effect of N on the variance of the sample entropy is shown. When m
is fixed, the larger N is, the smaller Var(Z) becomes.
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4.1.3. Influence of m

In Figure 13, the effect of m on the PSER entropy is shown. When N is fixed, the larger
m is, the larger H(m, N) becomes.
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In Figure 14, the effect of N on the variance of the sample entropy is shown. When N
is fixed, the larger m is, the variance of sample entropy increases first, then decreases,
and then increases slowly.
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4.1.4. The Parameters for the Next Experiment

After theoretical calculations and experimental statistical analysis, the PSER entropy
and sample entropy variance used in the following experiments were obtained, as shown
in Table 1.
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Table 1. The parameters under H0.

N m 200 500 1000

256 µ0= 0.809521,
σ̂2

0= 0.000453
µ0= 1.652905,
σ̂2

0= 0.000169
µ0= 2.313999,
σ̂2

0= 0.000192

512 µ0= 0.291461,
σ̂2

0= 0.000466
µ0= 1.011005,
σ̂2

0= 0.000159
µ0= 1.665232,

σ̂2
0= 6.54× 10−5

1024 µ0= 0.035906,
σ̂2

0= 0.000130
µ0= 0.439132,
σ̂2

0= 0.000202
µ0= 1.014594,

σ̂2
0 = 7.7× 10−5

4.2. Experiments under H1

When N is fixed, the change of PSER entropy of the BPSK signal with noise under
H1 is shown in Figure 15. It can be seen that the PSER entropy of BPSK signal decreases
gradually with the increase of SNR. When the SNR is less than −15 dB, the PSER entropy
of noise and that of the BPSK signal are almost the same; therefore, it is impossible to
distinguish between noise and the BPSK signal.
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Figure 15. The change of PSER entropy of the binary phase shift keying (BPSK) signal with noise
when N is fixed (m = 200, 500, 1000, N = 512).

Since the PSER entropy of the BPSK signal is always less than that of noise, the thresh-
old η1 should be used in BPSK signal detection.

As can be seen from Figure 16, with the increase of SNR, the sample entropy variance
of the BPSK signal first increases and then gradually decreases.
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When m is fixed, the change of PSER entropy and sample entropy variance of BPSK
signal with noise under H1 is shown in Figures 17 and 18. It can be seen that the PSER
entropy of BPSK signal decreases gradually with the increase of SNR.
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As can be seen from Figure 18, with the increase of SNR, the sample entropy variance
of the BPSK signal first increases and then gradually decreases.

4.3. Comparison of Detection Performance

When N is 512, m is 200, 500 and 1000, respectively. The detection results of the BSPK
signal are shown in Figures 19–21.

In Figure 19, the actual false alarm probabilities fluctuate slightly and do not change
with the SNR, which is consistent with the characteristics of constant false alarm.

It can be seen from Figures 20 and 21 that the detection probability of the PSER entropy
detector is obviously better than that of the FSED method when m is 1000. However,
when m is 200, the detection performance is lower than that of FSED. There is no doubt
that the detection performance of matched filtering is the best.

The MSEs of the actual and theoretical probabilities of these experiments are given in
Table 2.
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Table 2. Mean-square errors (MSEs) between actual and theoretical probabilities (N = 512).

Probability m = 200 m = 500 m = 1000

Pf 0.3059 × 10−4 0.3887 × 10−4 2.6785 × 10−4

Pd 0.5723 × 10−4 0.2777 × 10−4 1.1280 × 10−4
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The deviation between the actual and theoretical detection probabilities was very
small, which indicated that the PSER entropy detector was accurate.

When m is 500, N is 256, 512, and 1024, respectively. The detection results for the
BSPK signal are shown in Figures 22–24.
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It can be seen from Figures 23 and 24 that when m is fixed, a larger N does not
necessarily imply a better detection performance. The detection probability when N is
1024 is lower than that when N is 512. However, the detection performance of the full
spectrum energy detection method will improve with the increase of N.

The MSEs of the actual and theoretical probabilities of these experiments are given in
Table 3. The deviations between the actual and theoretical detection probabilities was very
small when was 512 or 1024, however were higher when N was 256.

Table 3. MSEs between actual and theoretical probabilities (m = 500).

Probability N = 256 N = 512 N = 1024

Pf 4.687958 × 10−4 0.622887 × 10−4 0.125177 × 10−4

Pd 2.067099 × 10−4 0.398899 × 10−4 0.145410 × 10−4

5. Discussions
5.1. Theoretical Calculation of Statistics

In Section 2, we analyzed the computational time complexity of each statistic. When m
and N are large, the theoretical values of some statistics, such as Var(Z) under H0, Hi, Hi,j,
H(m, N), and Var(Z) under H1, cannot be calculated. This restricts the further analysis on
the detection performance of the PSER entropy detector.

There are two ways to solve this problem: reducing the computational complexity
and finding an approximate solution. Which way is feasible requires further study.

5.2. Experience of Selecting Parameters

The detection probability Pd of PSER entropy detection is related to the number
of intervals m, the number of power spectrum lines N, and the SNR of the spectrum
lines. Since the mathematical expressions of many statistics are too complex, the influence
of the three factors on Pd cannot be accurately analyzed at present. Based on a large
number of experiments, we summarize the following experiences as recommendations for
setting parameters.

(1) m cannot be too small. It can be seen from Figure 20, that, if m is too small, then the
detection performance of the PSER entropy detector will be lower than that of energy
detector. We suggest that m ≥ 500.

(2) N must be close to m. It can be seen from Figure 23, that N is not better when
bigger. A large number of experiments show that when N is close to m, the detection
probability is good.

(3) When N is fixed, m can be adjusted appropriately through experiments.
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5.3. Advantages of the PSER Entropy Detector

When using PSER entropy detection, the noise intensity does not need to be estimated
in advance, and prior information of the signal to be detected is not needed. Therefore,
the PSER entropy detector is a typical blind signal detection method.

5.4. Further Research

The detection performance of the PSER entropy detector will be further improved
if some methods are used to improve the SNR of signals. In future research, a denoising
method can be used to improve the SNR, the Welch or autoregressive method can be
used to improve the quality of power spectrum estimation, and multi-channel cooperative
detection can be used to increase the accuracy of detection.

6. Conclusions

In this paper, the statistical characteristics of PSER entropy are derived through strict
mathematical analysis, and the theoretical formulas for calculating the PSER entropy and
sample entropy variance from pure noise and mixed signals are obtained. In the process
of derivation, we do not use the classical method of approximating PSER entropy using
differential entropy, but use interval division and the multinomial distribution to calculate
PSER entropy. The calculation results of this method are consistent with the simulation
results, which shows that this method is correct. This method is not only suitable for
a large number of intervals, but also suitable for a small number of intervals. A signal
detector based on the PSER entropy was created according to these statistical characteristics.
The performance of the PSER entropy detector is obviously better than that of the classical
energy detector. This method does not need to estimate the noise intensity or require
any prior information of the signal to be detected, and therefore it is a complete blind
signal detector.

The PSER entropy detector can not only be used in spectrum sensing, but also in
vibration signal detection, seismic monitoring, and pipeline safety monitoring.
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