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Abstract: By assimilating biological systems, both structural and functional, into multifractal ob-
jects, their behavior can be described in the framework of the scale relativity theory, in any of its
forms (standard form in Nottale’s sense and/or the form of the multifractal theory of motion). By
operating in the context of the multifractal theory of motion, based on multifractalization through
non-Markovian stochastic processes, the main results of Nottale’s theory can be generalized (specific
momentum conservation laws, both at differentiable and non-differentiable resolution scales, specific
momentum conservation law associated with the differentiable–non-differentiable scale transition,
etc.). In such a context, all results are explicated through analyzing biological processes, such as
acute arterial occlusions as scale transitions. Thus, we show through a biophysical multifractal model
that the blocking of the lumen of a healthy artery can happen as a result of the “stopping effect”
associated with the differentiable-non-differentiable scale transition. We consider that blood entities
move on continuous but non-differentiable (multifractal) curves. We determine the biophysical
parameters that characterize the blood flow as a Bingham-type rheological fluid through a normal
arterial structure assimilated with a horizontal “pipe” with circular symmetry. Our model has been
validated based on experimental clinical data.

Keywords: multifractality; non-Markovian stochastic process; scale relativity theory; Bingham fluid;
acute arterial occlusion

1. Introduction

Blood, just as the majority of biological fluids, is a “mysterious one”. This is due to
the highly complicated structures of the blood, which change depending on health and
life conditions [1]. From a physical perspective, blood is a viscoelastic, complex fluid. The
notion of a “complex fluid” usually means a non-Newtonian fluid, which means that the
shear stress and rate of strain are not directly proportional. The non-Newtonian trait of
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blood is mainly given by the various cells in it (usually making up 45% of the blood’s total
volume), which makes blood a suspension of particles [2,3]. When blood circulates, the
particles (cells) interact with plasma and among each other.

Blood rheology and modelling, fundamental issues concerning blood, still need a lot of
study. Extracting data from the rheological parameters of blood could help with the diagno-
sis of medical disorders. In addition, a good understanding of these parameters is necessary
for the mathematical modelling of blood flow and devising blood circulation equations.

However, blood modelling and rheological analysis is still incomplete [1]. Blood is
a highly concentrated, complex suspension of polydisperse cells. These cells are flexible
and have chemical and electrostatic activity. The cells are suspended in an electrolyte fluid
(plasma) of critical pH in which numerous proteins and organic substances can be found.

As the motions of a concentrated suspension have a high degree of complexity, no com-
prehensive theory has been developed to describe the flow of a general multi-component
system, blood included. Moreover, the shapes of this type of fluid’s interfaces are con-
voluted and fragmented, thereby making the application of classical numerical models
almost impossible (e.g., finite difference or finite element methods) [1].

The complex behavior of blood and its interactions with the blood vessels’ walls have
crucial roles in the physiology of blood flow. Blood interacts mechanically and chemically
with the vessel walls, which can get deformed by the action of blood pressure [4].

The usual models used to describe complex fluid dynamics (biological fluids, poly-
mers, foams, etc.) are based on a combination of fundamental theories, which were usually
derived from physics and computer models [5–8]. If the description of the complex fluid
dynamics implies computational simulations based on specific algorithms [8–10], then
their developments related to standard physics theories rely on various classes of models:

(i) Based on the usual conservation laws, developed on spaces with integer dimensions,
i.e., the ones from the differentiable class of models (differentiable models) [5–7];

(ii) Based on conservation laws, developed in spaces with non-integer dimensions and ex-
plicitly written through fractional derivatives, i.e., the ones from the non-differentiable
class of models (fractal or multifractal models) [9,10].

Recently, a new class of models is being developed, based on scale relativity theory,
either with the monofractal dynamics as in the case of Nottale [11], or with the multifractal
dynamics as in the case of the multifractal theory of motion [12].

In the context of scale relativity theory (in Nottale’s sense [11]), as well as in the context
of the multifractal theory of motion [12], supposing that any complex fluid dynamics are
structurally and functionally assimilated into a multifractal object, these dynamics can be
described through motions of the complex fluid’s structural units (dependent on the chosen
scale resolution) on continuous and non-differentiable curves (multifractal curves). Since
for a large temporal scale resolution with respect to the inverse of the highest Lyapunov
exponent [13,14], the deterministic trajectories of any structural units composing a complex
system can be replaced by a collection of potential (“virtual”) trajectories, the concept of
definite trajectory can be substituted by the one of probability density.

Then, multifractality expressed through stochasticity becomes operational in the
description of the dynamics of any complex fluid. This means that, instead of operating
with a single variable described by a strictly non-differentiable function, it is possible to
operate only with approximations of this mathematical function, obtained by averaging
them on different scale resolutions. Therefore, any variable aiming to describe complex
fluid dynamics will perform as the limit of a family of mathematical functions, being
non-differentiable for null scale resolutions and differentiable otherwise [11].

In the present paper an extension of Nottale’s theory is given, which is based on
multifractalization through non-Markovian stochastic processes. Some consequences of
this model are explicated in the form of acute arterial occlusions as scale transitions.
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2. Multifractal Conservation Laws

Let us make the assumption that any complex fluid can be assimilated into a mul-
tifractal object. Then, its dynamics (in the multifractal theory of motion) are described
through continuous but non-differentiable curves (multifractal curves). This leads us to the
following consequences [11,12]:

(i) The lengths of multifractal curves tend to infinity when the scale resolution δt tends to
zero (according to the Lebesgue theorem [11]). Therefore, the space of such dynamics
becomes a multifractal in Mandelbrot’s sense [15].

(ii) During the zoom operation of δt, any dynamics are related to the behaviors of a set of
functions through the substitution principle δt ≡ dt.

(iii) Any dynamics are described by multifractal functions. Then, two derivatives can
be defined:

dQ+
dt = lim

∆t→0

Q(t,t+∆t)−Q(t,∆t)
∆t

dQ−
dt = lim

∆t→0

Q(t,∆t)−Q(t−∆t,∆t)
∆t

(1)

The sign “+” refers to the forward dynamics of the complex fluid. The sign “−” refers
to the backward dynamics of the complex fluid.

(iv) The differential of the spatial coordinates has the form:

d±Xi(t, dt) = d±xi(t) + d±ξ(t, dt) (2)

The differentiable part d±xi(t) does not depend on the scale resolution, while the
non-differentiable part d±ξ(t, dt) is scale resolution dependent.

(v) The quantities d±ξ(t, dt) satisfy the relation:

d±ξ i(t, dt) = λi
±(dt)[

2
f (α) ]−1, f (α) = f [α(DF)] (3)

where λi
± are constant coefficients associated with the differential-non-differential

transition, f [α(DF)] is the singularity spectrum of order α, α is the singularity index
and DF is the fractal dimension of the “motion curves”.

The fractal dimension can be defined in many ways. Thus, several fractal dimensions
may be employed, but the fractal dimension in the sense of Hausdorff–Besikovitch [15]
or the fractal dimension in the sense of Kolmogorov [15], are the most commonly used
ones. In the case of many models, selecting one of these definitions and using it in the
context of any complex fluid dynamics implies that the value of the fractal dimension
must be constant and arbitrary for the entirety of the dynamical analysis: for example, it
is regularly found that DF < 2 for correlative processes in the dynamics of any complex
fluid; DF > 2 for non-correlative processes. In the description of complex fluid’s dynamics,
we operate with f [α(DF)] (i.e., simultaneously operating with several fractal dimensions,
on multifractal manifolds, as in the multifractal theory of motion) instead of operating
with DF (i.e., with a single fractal dimension, on monofractal manifolds, as in the case of
Nottale’s model). This leads to a series of advantages [13], such as the possibility to identify
the areas of complex fluid’s dynamics that are characterized by certain individual fractal
dimensions (for example, blood components in healthy or pathological cases) or to identify
the number of areas in the complex fluid’s dynamics for which the fractal dimensions are
situated in an interval of values (for example, cholesterol particles dynamics from patients
with cardiac afflictions). Finally, one of the biggest advantages of the method is the ability
to identify classes of universality in the complex fluid’s dynamics, even when regular or
strange attractors have various aspects (for example, the diagnosis of some cardiac diseases
from regular or strange attractor dynamics [16]).
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(vi) The differential time reflection invariance is recovered by means of the operator:

d̂
dt

=
1
2

(
d+ + d−

dt

)
− i

2

(
d+ − d−

dt

)
(4)

In such context, applying this operator to Xi yields the complex velocity:

V̂i =
d̂Xi

dt
= Vi

D −Vi
F (5)

with

V̂i =
d̂Xi

dt
= Vi

D −Vi
F (6)

In this relation the differential velocity Vi
D is scale resolution independent, while the

non-differentiable one Vi
F is scale resolution dependent.

(vii) Since the multifractalization describing complex fluids dynamics implies stochas-
ticization, the whole statistic “arsenal” (averages, variances, covariances, etc.) is
operational. Thus, for example, let us select the subsequent functionality:〈

d±Xi
〉
≡ d±xi (7)

with 〈
d±ξ i

〉
= 0 (8)

We will use in the following such a selection.
(viii) Taking the above into account, the complex fluids dynamics can be described through

the scale covariant derivative given by the operator

d̂
dt

= ∂t + V̂i∂i + Dlk∂l∂k (9)

where
Dlp =

1
4
(dt)

2
f (α)−1

(
dlp + id

lp
)

, i =
√
−1 (10)

dlp = λl
+λ

p
+ − λl

−λ
p
− (11)

d
lp
= λl

+λ
p
+ − λl

−λ
p
− (12)

∂t =
∂

∂t
, ∂l =

∂

∂Xl , ∂l∂p =
∂

∂Xl
∂

∂Xp , l, p = 1, 2, 3 (13)

Now, by accepting the scale covariant principle (in the description of any complex
fluid dynamics), the conservation law of the specific momentum (geodesic equations on
multifractal manifolds) takes the form:

d̂V̂i

dt
= ∂tV̂i + V̂ l∂iV̂i +

1
4
(dt)[

2
f (α) ]−1Dlp∂l∂pV̂i = 0 (14)

The explicit form of Dlp depends on the type of multifractalization used. It can be
admitted, according to the previously presented consequences of non-differentiability,
that the multifractalization process can take place through various stochastic processes.
Usually, stochastic Markovian (thus memoryless) processes are utilized when describ-
ing any complex fluid dynamics (see, in particular, the scale relativity theory in Nottale
sense [11], i.e., complex fluids’ dynamics on monofractal manifolds described through
fractal curves with DF → 2-Peano-type curves [11]). However, since natural processes
exhibit memory-like qualities, it is necessary to employ stochastic non-Markovian pro-
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cesses. In this case, wherein it is possible to generalize many of the previous results [11],
the following constraints are admitted:

1
4
(dt)[

2
f (α) ]−1dlp = αδlp,

1
4
(dt)[

2
f (α) ]−1d

lp
= βδlp (15)

where α and β are two constant coefficients associated with the differentiable–non-different-
iable scale transitions, and δlp is Kronecker’s pseudotensor. Thus, Equation (14) with the
restriction Equation (15) yields:

∂tV̂i + V̂ l∂iV̂i + (α + iβ)∂l∂
lV̂i = 0 (16)

After Equation (16), the separation of complex fluid dynamics at various scale resolu-
tions implies either a conservation law for the specific momentum at differentiable scale
resolutions, (

∂t + V l
D∂l + α∂l∂

l
)

Vi
D =

[
V l

F∂l − β∂l∂
l
]
Vi

F, (17)

or a conservation law for the specific momentum at non-differentiable scale resolutions,(
∂t + V l

D∂l + α∂l∂
l
)

Vi
F =

[
V l

F∂l − β∂l∂
l
]
Vi

D (18)

Thus, any geodetic motion on multifractal manifolds (i.e., non-constrained free mo-
tions on multifractal manifolds—see Equation (16)) is found as correlated with non-geodetic
motions on Euclidean manifolds (i.e., constrained motions on Euclidean manifolds—see
Equations (17) and (18)), induced either through a specific multifractal force at differentiable
scale resolution,

f i
D =

(
V l

F∂l − β∂l∂
l
)

Vi
F, (19)

or through a specific multifractal force at non-differentiable scale resolution:

f i
F =

(
V l

F∂l − β∂l∂
l
)

Vi
D (20)

In order to correlate the non-geodetic dynamics on Euclidean manifolds, constraints
arising from the multifractal-non-multifractal transition must be exploited. In this case,
the velocity field associated with the differentiable–non-differentiable scale transitions
(multifractal–non-multifractal scale transitions):

V l
= V l

D −V l
F (21)

satisfies, by substracting Equations (17) and (18), the conservation law of the relative
specific momentum:[

∂t + V l
∂i + (α + β)∂l∂

l
]
Vi

= 2
(

V l
F∂l − β∂l∂

l
)

Vi
F (22)

In the case
f i = 2

(
V l

F∂l − β∂l∂
l
)

Vi
F ≡ 0 (23)

and for an incompressible complex fluid

∂iV
i
= 0 (24)

the differential Equations (22) and (24) constitute non-stationary Navier–Stokes type sys-
tems at differentiable–non-differentiable scale transitions. In the particular case of a sta-
tionary Navier–Stokes type system, these differential equations, in dimensionless plane



Entropy 2021, 23, 444 6 of 20

coordinates, with adequate initial and boundary conditions, admit the following solu-
tions [17]:

U =
1.5

(νξ)
1
3

sec h2

[
0.5η

(νξ)
2
3

]
(25)

V =
1.9

(νξ)
1
3

{
η

(νξ)
2
3

sec h2

[
0.5η

(νξ)
2
3

]
− tan h

[
0.5η

(νξ)
2
3

]}
(26)

where ξ and η are nondimensional spatial coordinates; U and V are the nondimensional
components of the velocity field along the Oξ and Oη axes; and ν is the multifractality
degree.

Therefore, the velocity field along the Oξ axis is described by the multifractal soliton
Equation (25), while the velocity field along the Oη axis is described by the multifractal
soliton—kink Equation (26). For details on the nonlinear classical solution of soliton and
kink types, see [13,14].

In such a context, when investigating the dynamics of a complex fluid’s expansion
in a multifractal medium, there are two types of scales that need to be considered. Firstly,
there are the internal interaction scales, which are amalgams of dynamics induced by the
properties of the complex fluid and by its nature. Secondly, the external interaction scales
contain the dynamics between the complex fluid and the multifractal medium in which the
fluid is embedded.

In the following, let us analyze the influence of the multifractality degree on each of
the two components (U and V) of the complex fluid, for a 2D flow. In Figure 1, the velocity
component (U) of Oξ, for three multifractality degrees (0.3, 1 and 3), is presented in 3D
and contour plots. For a low multifractality degree we can notice a very directional flow
mainly across the Oξ, with little spatial expansion. An increase in multifractality in the
system leads to a decrease of the velocity and a strong lateral expansion. It is important
to note that the main expansion direction does not change; only the contributions in Oη
direction do. The multifractality degree of the system on this velocity component acts as a
multifractal-like dispersion phenomenon. In Figure 2, the velocity component (V) of Oη
for three multifractality degrees (0.3, 1 and 3) is presented in 3D and contour plots. When
investigating the absolute value of the velocity, this component of the velocity is not influ-
enced by the multifractality degree, thereby remaining quasi constant. There is however
a strong influence on the direction of the component. For a low multifractality degree,
there is a small angle with respect to the Oξ axis. Higher values of multifractality induce a
change in the expansion angle, transitioning towards higher angles. The multifractality
degree of the complex fluid on this velocity component acts towards the uniformization
of the V component, as the distribution tends to reach the maximum expansion velocity
available for the complex fluid.

By extrapolating these results in the case of blood flow in the circulatory system, an
explanation for low density lipoprotein (LDL) cholesterol deposition on blood vessels’ walls
can be given (due to the fact that, having a lower velocity at the wall, LDL can penetrate the
intima). Moreover, in pathological cases where LDL values are high, corresponding thus
to a high fractality degree, according to the same dynamics (an increase in multifractality
induces an expansion towards the wall), the probability of LDL deposition on blood vessels’
walls increases [2,3].

Let us remember the fact that, in the case of blood’s laminar flow (with constant
velocities of blood’s components), taking into account the average dimensions of LDL and
HDL cholesterol (18–25 nm for LDL and 5–12 nm for HDL), LDL particles move slower
with respect to HDL particles. Consequently, LDL can “accumulate” in the intima, while
HDL has a different behavior [2,3].
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Figure 1. (a–c). 3D and contour plot representations of the velocity component on the Oξ for three multifractality de-
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Figure 1. (a–c). 3D and contour plot representations of the velocity component on the Oξ for three
multifractality degrees: (a) 0.3; (b) 1; and (c) 3. The velocity increases from purple to red.
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0.3, (b) 1 and (c) 3. The velocity increases from purple to red. 

Figure 2. 3D and contour plot representations of the velocity component on the Oη for
three multifractality degrees: (a) 0.3, (b) 1 and (c) 3. The velocity increases from purple
to red.

Let us note that a multifractal minimal vortex can be associated with the velocity field
given through Equations (25) and (26):
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Ω =
(
∂ηU − ∂ξV

)
= 0.57η

(νξ)2 +
0.63ξ

(νξ)
4
3

tan h
[

0.5η

(νξ)
2
3

]
+ 1.9η

(νξ)2 sec h2
[

0.5η

(νξ)
2
3

]
−− 0.57η

(νξ)2 tan h2
[

0.5η

(νξ)
2
3

]
−
[

1.5
νξ + 1.4η

ξ(νξ)
5
3

]
sec h2

[
0.5η

(νξ)
2
3

]
tan h

[
0.5η

(νξ)
2
3

] (27)

In Figure 3, we present 3D and contour plots of the multifractal minimal vortex.
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Thus, the multifractal soliton Equation (24) and the soliton-kink multifractal mixture
Equation (25) are responsible, through the multifractal minimal vortex Equation (27), for
turbulences management at non-differentiable scale resolutions. Although they are non-
manifested at differentiable scale resolutions, these turbulences can become manifest at the
same scale through the “synchronization” (self-structuring) of multifractal minimal vortices
in the form of vortices streets. As we will show in the following, such a self-structuring
can be responsible, for example, in the case of blood as a complex fluid, for thrombus
generation with serious implications for arterial occlusions. This self-structuring can be
assimilated into the differentiable–non-differentiable scale transition, a situation in which
the specific multifractal force Equation (23) must be identified with a pressure gradient in
the form

f i
D =

(
V l

F∂l − β∂l∂
l
)

Vi
F = −1

ρ
∂i p (28)

3. Model Application for Blood as a Complex Fluid. Arterial Occlusions as a Result of
the Differentiable-Non-Differentiable Scale Transition

An acute arterial occlusion (peripheral vessels or coronary artery) of an artery that
has no significant pre-existent lesions leads to dramatic consequences due to the lack of
collateral substitutive circulation, as this kind of circulation usually develops within years,
in the presence of hemodynamic significant stenosis [18,19].

Classical biophysical models which explain this phenomenon take into account the
cracking of an intimal atheroma plaque, which is hemodynamic insignificant, the activation
of the pro-thrombogenic cascade through the denudation of the endothelium and the
formation in certain circumstances (the nature of this circumstances is, however, not clearly
stated, making us discuss the not very scientific term “bad luck”) of a completely occlusive
thrombus [20–22]. At least one counterargument should be taken into consideration due to
its simplicity: why does an occlusive thrombus form so quickly in the absence of a stenosis,
when the sanguine flux is unaltered? Why does the “wash-out” phenomenon not appear?

3.1. Premises and Purposes

Without contradicting the above stated theory, which is sustained by some morph-
pathological evidence, we will prove through a biophysical fractal model that the blocking
of the lumen of an absolutely healthy artery can happen as a result of the “stopping effect”
(even in the absence of—at least disputably—the cracked and non-protrusive atheroma
plaque), in the conditions of a normal sanguine circulation.

This happens due to the fact that blood is a complex non-Newtonian fluid made of
plasma and formed cells, cholesterol vesicles and other suspended elements [23]; thus, the
laws of fractal physics are completely applicable to sanguine circulation. For conformity,
the perfect Newtonian fluid is a fluid in which viscosity is independent of the shear stress,
thus having no relation to the sanguine fluid. However, not only does the complex structure
of blood justify the use of fractality, but so does the complex structure of the arterial system,
with its multiple ramifications, which generate turbulence areas and interruptions of the
linear flowing that make classical physics not applicable in this context. We actually discuss
multifractality: a morphological one due to complex structure of the arterial tree as well as
a functional one due to blood flow “regimes”.

Fractal physics and mathematics (“of non-integral objects”) conceptually defined
by Benoît Mandelbrot [15] manages to explain the complex biophysical phenomena by
accepting and defining the permanent interrelations between the components of a structural
unit: organ/organism.

Hence, fluids with nonlinear viscous behaviors and viscoelastic materials are complex
fluids [1]. A great variety of materials can be assimilated into complex fluids: polymers
(elastomers, thermoplastics and composites), biological fluids (DNA, which creates cells
by means of simple but very elegant language and it is responsible for the remarkable
way in which individual cells organize into complex systems, such as organs; and these
organs form even more complex systems, such as organisms, proteins, cells, dispersions
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of biopolymers and cells and human blood), colloidal fluids, foams, suspensions, gels,
emulsions, micellar and liquid-crystal phases and molten materials.

Standard theoretical biophysical models normally used in complex fluid dynamics,
and particularly those of blood flow through blood vessels, are ambiguous. The assessment
that the entities contained by blood move along continuous and differentiable curves
proves to be false, as it cannot comprise the entire variety of dynamics that are induced
by the flowing of blood through the circulatory system (from the separation of blood
components through turbulence regimes to blood–blood vessel interactions).

In this context, the hypothesis according to which blood entities move on continuous
but non-differentiable curves (and particularly on fractal/multifractal curves) becomes
natural, and moreover, lacks any contradictions. We cannot predict the entirety of the
blood vessel system interactions, blood–organic tissue interactions, etc., or at an elementary
level, blood entity-blood entity (lymphocyte-granulocyte, etc.) interactions. That is why
accepting the above-stated hypothesis is a simple, elegant and efficient solution, with the
impossibility of predicting all these interactions that take place being substituted by the
use of fractality/multifractality [6].

We are thus concentrated to the dynamics of a special type of fluid, free of interactions,
in which the streamlines are continuous and non-differentiable curves (denoted from this
point on as a fractal/multifractal fluid). When analyzing these types of dynamics, the scale
relativity theory (SRT), in any of its forms, becomes operational.

In the present section, we propose a biophysical fractal/multifractal model in the form
of a SRT approach to analyze the blood flow dynamics. Particularly, we determine the
biophysical parameters that characterize the blood flow as a Bingham-type rheological fluid
through an abnormal arterial structure assimilated with a horizontal “pipe” with circular
symmetry, under the action of a pressure gradient induced by ventricular inotropic force
as well as by the arterial wall elasticity for a given site. The study contains an analytical
solution using fractal/multifractal Navier-Stokes-type equations with cylindrical symmetry
in the SRT approach. Our model differs than other models used to describe Bingham-type
rheological fluids.

3.2. Blood Behaviors as a Bingham-Type Rheological Fluid

Biological fluids that have a fluid continuous phase can also have a discontinuous
phase given by solid or fluid particles with different properties, such as density, granulom-
etry and shape. The discontinuous phase of these biological fluids, in different working
conditions (depositing, transport or phase separation), do not have unitary behavior that
could exactly be characterized [5,6]. In the majority of cases, the discontinuous phases
in a biological fluid with laminar flow through a circular pipe or linear flow with flow
direction change (bends, velocity limiters and reductions) concentrate towards the axis
of the pipe with a distribution that is proportional to the size particle. Therefore, these
fluids are complex molecular structures that do not obey Newton’s law, which are called
rheological fluids (complex fluids) [5,6]. Bingham fluids are included in this category.

In such context, the flow properties of blood as a Bingham-type rheological fluid differ
from those of blood as a Newtonian fluid. Indeed, the viscosity tangential unitary effort
variation law in the blood has the expression

τ = τ0 + η
dv
dr

, (29)

so that the velocities’ distribution field in a normal arterial structure assimilated with a
horizontal pipe with circular symmetry covers two sub-domains. We present in Figure 4
the pressure gradient flow induced by the ventricular inotropic force as well as by the
arterial wall elasticity for a given zone of the blood as a Bingham-type rheological fluid
through a normal arterial structure assimilated with a circular pipe; in Figure 5, the velocity
and viscosity tangential unitary effort diagrams of the blood that flows in an elastic arterial
wall are shown.



Entropy 2021, 23, 444 12 of 20

Entropy 2021, 23, x FOR PEER REVIEW 13 of 21 
 

 

through a normal arterial structure assimilated with a circular pipe; in Figure 5, the veloc-
ity and viscosity tangential unitary effort diagrams of the blood that flows in an elastic 
arterial wall are shown. 

 
Figure 4. Pressure gradient flow induced by ventricular inotropic force as well as by the arterial 
wall (hatched area) elasticity for a given zone of the blood as a Bingham-type rheological fluid 
through a normal arterial structure assimilated with a circular pipe. l—the length of the stopper; S1 
and S2—the lateral surfaces of the solid stopper; p1 and p2—the pressures along the solid stopper; 
R—the radius of the artery; r0—the radius of the solid stopper; r—a specific distance along which 
the velocity gradient field is manifested; 0τ —deformation tangential unitary effort; z—the flow 
direction. 

 
Figure 5. Velocity and viscosity tangential unitary effort diagrams of the blood that flows in an 
elastic arterial wall. R—the radius of the artery; r0—the radius of the solid stopper; r—a specific 
distance along which the velocity gradient field is manifested; 0τ —deformation tangential uni-
tary effort; z—the flow direction; vz0—the velocity of the solid stopper (blood moves as an appar-
ently undistorted rigid system); vz(r)—the velocity of the blood (normal flow). 

Figure 4. Pressure gradient flow induced by ventricular inotropic force as well as by the arterial wall
(hatched area) elasticity for a given zone of the blood as a Bingham-type rheological fluid through a
normal arterial structure assimilated with a circular pipe. l—the length of the stopper; S1 and S2—the
lateral surfaces of the solid stopper; p1 and p2—the pressures along the solid stopper; R—the radius
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elastic arterial wall. R—the radius of the artery; r0—the radius of the solid stopper; r—a specific
distance along which the velocity gradient field is manifested; τ0—deformation tangential unitary
effort; z—the flow direction; vz0—the velocity of the solid stopper (blood moves as an apparently
undistorted rigid system); vz(r)—the velocity of the blood (normal flow).

In relation (29), τ0 is the deformation tangential unitary effort, dv/dr is the blood
velocity gradient with respect to the normal on the transversal section and η is the blood
viscosity coefficient assimilated into the multifractal degree.

The restriction τ0 = 0 in Equation (29) describes the blood behaviors as a Newtonian
fluid:

τ0 = η
dv
dr

(30)



Entropy 2021, 23, 444 13 of 20

In subdomain 0 ≤ r ≤ r0, the viscosity tangential unitary effort, τ, is lower in value
than the deformation tangential unitary effort τ0. As a consequence, blood as a Bingham-
type rheological fluid moves as an apparently undistorted rigid system. The solid stopper
flows with constant velocity in the central area of the artery, without changing its structure.

In subdomain r0 ≤ r ≤ R, the viscosity tangential unitary effort,τ, exceeds the defor-
mation tangential unitary effort τ0. As a consequence, blood as a Bingham-type rheological
fluid flows so that layers with finer “particles” and various concentrations appear. We
note that the radius r0 and the two sub-domains border depending on the rheological
characteristic of the blood as a Bingham-type rheological fluid. The mathematical model
used in the blood flow dynamics is presented in the following.

3.3. Mathematical Procedure

The momentum Equation (29) with constriction Equation (39), together with the
continuity type Equation (24) allow the solving of movement problems of biological fluids
if the limit conditions are known.

Let us consider the unidirectional flow of blood through a cylindrical blood vessel,
with radius R, under the action of a pressure gradient.

Under these circumstances, the velocity field Equation (10) is V l ≡ (vr = 0, vϕ = 0,
vz 6= 0). Moreover, if we use the continuity equation in the imposed conditions, the
dynamic equilibrium equation is:

η
d2vz

dr2 +
1
r

dvz

dr
=

dp
dz

(31)

Considering the expression of the friction effort for blood, we get:

∂τ

∂r
+

τ

r
=

∂p
∂z

(32)

Let us calculate the relations of flowing velocity in the two areas of the blood’s flow
regime, under the action of the pressure gradient, through the boundary conditions, both
for the flowing velocity vz and the shear velocity dvz/dr.

The solution of Equation (31) is:

vz(r) =
∆p

4·η·l r2 +
τ0

η
r + a ln r + b (33)

where a and b are integration constants. The values of these constants are established by
the following boundary conditions:

(i) For r = r0, i.e., on the stopper borderline, dvz/dr = 0, so we will have:

dvz

dr
=

2·r·∆p
4·η·l +

τ0

η
+

a
r

(34)

r2
0·∆p
2·η·l +

τ0·r0

η
+ a = 0 (35)

a = − ∆p
2 · η · l r2

0 −
τ0

η
r0 (36)

vz(r) =
∆p

4 · η · l r2 +
τ0

η
r− ∆p

2 · η · l r2
0 ln r +

τ0

η
r0 ln r + b (37)

(ii) For r = R, i.e., at the vessel wall, vz(R) = 0.

∆p
2 · η · l

[
R2

2
− r2

0 ln R
]
+

τ0

η
[R− r0 ln R] + b = 0 (38)
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b = − ∆p
2 · η · l

[
R2

2
− r2

0 ln R
]
− τ0

η
[R− r0 ln R] (39)

The velocity vz(r) for r ∈ [r0; R] has the following expression:

vz(r) =
∆p

2 · η · l

[
R2

2
− r2

2
+ r2

0 ln
R
r

]
+

τ0

η

[
R− r + r0 ln

R
r

]
(40)

In order to determine the radius r0 of the stopper, we take into account a cylinder of
radius r0 placed inside the vessel, which is at equilibrium under pressure and shear forces’
actions.

From the dynamic equilibrium equation of pressure and friction forces on the stopper
(of radius r0 and length l), i.e.,

(p1 − p2)πr2
0 = 2τ0r0πl (41)

for the radius r0 of the fluid stopper, the following expression results:

r0 =
2τ0l
∆p

, ∆p = p1 − p2 (42)

The movement velocity of the fluid stopper is obtained by imposing in relation
Equation (33) the condition r = r0. We find the relation:

v0z(r) =
∆p

2 · η · l

[
R2

2
− r0

2

2
+ r2

0 ln
R
r0

]
+

τ0

η

[
R− r0 + r0 ln

R
r0

]
(43)

Let us note that the previous results are extensions of the ones from [24,25], in the sense
that blood has been assimilated into a multifractal object, both structurally and functionally.

4. Results

Our biophysical fractal model was used for in vivo analyses of 15 clinical cases of
patients with an acute occlusive thrombus on an absolutely healthy artery. These cases
were selected during a 2-year period (2018–2020). Patients with atrial fibrillation were
excluded for preventing mismatch with thromboembolic acute coronary occlusion. Pa-
tients with patent foramen ovale (transoesophageal echocardiography study performed)
were excluded in order to avoid a paradoxical coronary embolism. IVUS (intravascular
ultrasound) or coronary angio-CT were not performed for these patients; even if some
irregularities could be seen via angiography, it was clear that there were no significant
ulcerated atheroma plaques or major signs of parietal atherosclerosis. Additionally, in
patients older than fifty, an absolutely normal coronary wall is probably a fantasy. We had
EKG holter monitoring in all patients for exclusion of paroxysmal atrial fibrillation.

We present here the three most relevant cases, with thrombus dimensions of fourty or
more millimeters cubed (for the other 12 cases, the thrombus dimensions were between
20 and 60 mm3). For all the cases, our theoretical results were verified by coronarography
images. Images were obtained by courtesy of the Interventional Catheterization Laboratory,
Institute of Cardiovascular Disease “G.I.M. Georgescu” Iasi).

(i) Patient 1, a 49 year-old male patient, who was diagnosed with acute infer lateral
ischemia; the coronary angiography revealed an acute occlusive thrombus (4–4.5 mm
diameter and 60–80 mm length) at the junction between segments I and II of his
right coronary artery (belatedly we can observe retrograde loading of the left anterior
descending artery) (Figure 6a); after thrombus aspiration, a distal thrombotic em-
bolism appeared with an apparently healthy artery (or possible minimal lesion—no
sign of plaque dissection) at the initial thrombus level (Figure 6b); repeated throm-
bus aspiration at the level of secondary occlusion revealed the posterior descending
branch (Figure 6c) and subsequently the posterolateral branch (Figure 6d); finally
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there is thrombolysis in myocardial infarction (TIMI) 3 flow; also, there was no evident
coronary lesion responsible for the above-mentioned pathological phenomena.

(ii) Patient 2, a 67 year-old male patient who was diagnosed with acute inferior, poster
lateral and right ventricle ischemia; coronary angiography revealed an acute occlusive
thrombus just at the origin of the right coronary artery (5.5–6 mm diameter and
approximately 40 mm length); after thrombus aspiration, satisfactory results were
obtained with TIMI 3 flow and no evidence of significant atherosclerotic disease at
the level of culprit zone was present—see Figure 7a,b.

(iii) Patient 3, a 61 year-old female patient who was diagnosed with acute inferior and
poster lateral ischemia; coronary angiography revealed an acute occlusive thrombus
extending from the beginning of right coronary artery segment II to crux (4.5–5 mm
diameter and approximately 80–100 mm length), possibly with extensions to right
posterior descending artery and poster lateral branches; repeated thrombus aspiration
with unsatisfying results in terms of distal TIMI flow (0–1), but with no evidence of
significant atherosclerotic disease at the level of culprit zone—see Figure 8a–d.
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We present in Table 1 the average experimental parameters of blood flow through the
right coronary artery, used in our study. We must mention that the values for the average
experimental stress as a function of diastolic pressure (τ0), the average experimental dias-
tolic velocity (vd), the average experimental systolic velocity (vS), the average experimental
blood density (ρ) and the average experimental kinetic viscosity coefficient (η) were not
directly measured in vivo, but they were estimated through methods found in specialized
literature [26,27].

Table 1. Average experimental parameters of blood flow through the right coronary artery for the three clinical cases.

Patient De
1 (mm) L 2 (mm) τ0

3 (N/m2) vd
4 (cm/s) vS

5 (cm/s) ρ 6 (kg/m3) η 7 (m2/s)

Patient 1 4 70 9/75 mm Hg 35 ± 11 24 ± 7 1060 3.04 × 10−6 at
36.5 ◦C

Patient 2 6 40 6/90 mm Hg 35 ± 11 24 ± 7 1060 3.04 ×10−6 at
36.5 ◦C

Patient 3 5 90 7/90 mm Hg 35 ± 11 24 ± 7 1060 3.04 × 10−6 at
36.5 ◦C

Observations The method from
[26] was used

The method from
[26] was used

The method from
[27] was used

The method from
[27] was used

The method from
[26] was used

1 Average experimental thrombus diameter. 2 Average experimental thrombus length. 3 Average experimental stress as a function of
diastolic pressure. 4 Average experimental diastolic velocity. 5 Average experimental systolic velocity. 6 Average experimental blood
density. 7 Average experimental kinetic viscosity coefficient.

Taking these into account, the mathematical procedure we developed using our
theoretical model had the following steps:

(i) Determining the values of the Reynolds’ number for blood flow through the right
coronary artery, using the following relation:

Re =
vSD

ν

where vS is the minimum value of the average experimental systolic velocity of blood,
D is the average experimental diameter of the right coronary artery and ν is the
average kinetic viscosity coefficient of blood. For

Re < 2400

blood flow through the right coronary artery is laminar, while for

Re > 2400

blood flow becomes turbulent;
(ii) Determining the values of the loss coefficient of blood flow through the right coronary

artery, using Darcy’s coefficient [4]:

λ =
64
Re

=
64ν

vSD

(iii) Determining the values of the pressure loss for blood flow through the right coronary
artery, using the following relation:

∆p = λ
L
D

ρ
v2

d
2

= 32νρ
L

D2
v2

d
vS

where L is the average length of the experimental thrombus, ρ is the average experi-
mental blood density and vd is the maximum value of blood’s average experimental
systolic velocity;
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(iv) Determining the theoretical value of a right coronary artery thrombus, using the rela-
tion:

Dt =
4τ0L
∆p

=
1
8

vSτ0D2

υρv2
d

where τ0 is the average experimental deformation effort of blood. We can see that the
thrombus’s theoretical diameter is not dependent on the thrombus’s length, but it is
directly proportional to the product of the minimum average experimental systolic
blood velocity, the average experimental stress of blood and the square of the average
experimental diameter of the right coronary artery; also, it is inversely proportional
to the product of the average experimental viscosity coefficient of blood, the average
experimental density of blood and the square of the maximum value of the average
experimental diastolic velocity of blood.

We present in Table 2 the average theoretical parameters of blood flow through the
right coronary artery, obtained using our theoretical model.

Table 2. Average theoretical parameters of blood flow through the right coronary artery for the three
clinical cases, determined using our theoretical model.

Patient Re
1 Λ 2 ∆p 3 (N/m) Dt

4 (mm)

Patient 1 226 0.283 634 4.54
Patient 2 140 0.457 341 6.82
Patient 3 283 0.226 457 5.52

1 Reynolds number. 2 Darcy’s loss coefficient. 3 Pressure loss. 4 Thrombus diameter determined
using our model.

We can thus see a good conformity between the values from the theoretical model
with the experimental values we found in the three cases presented above. Therefore: (i)
for patient 1 we calculated a thrombus diameter of 4.54 mm, while the experimentally
measured thrombus diameter was 4 mm; (ii) for patient 2 we calculated a thrombus
diameter of 6.82 mm, while the experimentally measured thrombus diameter was 6 mm;
(iii) for patient 3 we calculated a thrombus diameter of 5.52 mm, while the experimentally
measured thrombus diameter was 5 mm.

5. Conclusions

The main conclusions of our paper are the following:

(i) The main results of Nottale’s theory were extended based on multifractalization
through non-Markovian stochastic processes. In this context, some specific conserva-
tion laws were obtained (specific momentum conservation laws, both at differentiable
and non-differentiable resolution scales, a specific momentum conservation law asso-
ciated with the differentiable–non-differentiable scale transition, etc.).

(ii) From the analysis of the conservation laws, both at differentiable and at non-differentiable
resolution scales, we found that the complex fluid’s dynamics are constrained. Elim-
inating these constraints implies, in the stationary case, both for differentiable and
non-differentiable scale resolutions, Navier–Stokes type systems, for which dynamics
with plane symmetry can be explicated in the form of multifractal soliton-kink solu-
tions for the velocity field. The presence of such fields implies the “synchronization”
(self-structuring) of multifractal minimal vortices in the form of vortices streets. Such
self-structuring can be responsible, for example, in the case of blood as a complex
fluid, for thrombus generation with serious implications for arterial occlusions.

(iii) In this framework, we prove the existence of the “stopping effect” in a normal arterial
portion, an effect which appears through the self-structuring of the normal sanguine
flux. The cracking of the atheroma plaque can be integrated in our demonstration, like
a trigger of the solid self-structuring on the flowing axis of the complex fluid, even
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if, as we have proved, this “stopping effect” can appear without any predisposing
pathological factor.

(iv) Those points presented above prove the existence of the stopping effect in a cylinder
(comparable to a non-ramified arterial portion), an effect which appears through the
auto structuring of the normal sanguine flux complex through the normal composition
of human blood itself. This happens in the absence of any lesion of the cylinder’s wall.
Taking into consideration the temperature and viscosity variations that define the
normal functioning of the human body, we can easily understand the phenomenon
described. Therefore, this stopping effect which manifests in the artery could be a
possible explanation for the premises mentioned at the beginning of our biological:
why does an occlusive thrombus form so quickly in the absence of a stenosis, when
the sanguine flux is unaltered? Why does the “wash-out” phenomenon not appear?

(v) Despite the fact that this theory does not want to annul the classic modelling of
the cracking of an atheroma plaque with major thrombosis added in explaining the
acute arterial occlusion, we consider that the mathematical modelling offers at least a
thoroughly explained and hard to contradict alternative.

(vi) Moreover, our model could offer a plausible explanation for the much discussed
but surely proven phenomenon called MINOCA (myocardial infarction with non-
obstructive coronary arteries)—an acute occlusion in normally arteries with sponta-
neous but late thrombus dissolution, with the damage developing despite the normal
appearance of the vessels via coronary angiography.
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