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Abstract: Quantum cycles in established heat engines can be modeled with various quantum systems
as working substances. For example, a heat engine can be modeled with an infinite potential well
as the working substance to determine the efficiency and work done. However, in this method, the
relationship between the quantum observables and the physically measurable parameters—i.e., the
efficiency and work done—is not well understood from the quantum mechanics approach. A detailed
analysis is needed to link the thermodynamic variables (on which the efficiency and work done
depends) with the uncertainty principle for better understanding. Here, we present the connection of
the sum uncertainty relation of position and momentum operators with thermodynamic variables
in the quantum heat engine model. We are able to determine the upper and lower bounds on the
efficiency of the heat engine through the uncertainty relation.

Keywords: heat engine; uncertainty relation; infinite potential well; Stirling cycle

1. Introduction

Thermodynamics is a prominent theory in evaluating the performance of the engines.
It stands as a pillar of theoretical physics and even contributes to our understanding
of modern theories, e.g., black hole entropy and temperature [1], gravity [2,3]. Though
it is successful in the classical regime, the application of thermodynamics needs to be
reinvestigated in a quantum system, as the energy is discrete instead of continuous. So, we
can expect new thermodynamic effects to come up in the quantum world. However, while
dealing with thermodynamic laws in a quantum regime, a striking similarity between
the quantum–thermodynamic system and the macroscopic system (which are described
by classical thermodynamics) can be found. For example, in the case of thermal baths,
the Carnot efficiency of the engines is equally relevant for the quantum system (even
with a single particle) [4]. This raises a question: can all the thermodynamic effects
of heat engines of small quantum systems be analyzed and predicted by the known
classical thermodynamics? Various works have been performed on the analysis of generic
thermodynamic effects and dynamical behavior, which are purely quantum in their nature,
with no classical counterpart involved [5].

Quantum thermodynamics explores thermodynamic quantities like temperature,
entropy, heat, etc. for the microscopic system. It can even analyze the above parameters for
a single particle model. The study of quantum thermodynamics comprises of the analysis of
quantum thermal machines in the microscopic regime [6–13] and also in the thermalization
mechanism [14]. All of the various methods specified so far do not exploit quantum effects
in thermodynamics, i.e., there exists some classical analog in these methods.

A framework for quantum heat engine realization and its experimental setup has been
proposed [15–19]. Heat engines can be discrete or continuous in nature. Two-stroke and
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four-stroke engines belong to the discrete group whereas turbines belong to the continuous
engine. The Szilard engine was a seminal work [20] to solve the violation of the 2nd law of
thermodynamics by Maxwell’s demon. The quantum version of this engine was proposed
by Kim et al. [21]. This is an example of the quantum version of a four-stroke engine. During
the insertion and deletion of the barrier in the quantum Szilard engine, a certain amount of
work and heat exchange occurs in the system that does not occur in the classical system.
Different models and methods to explain the working principle of the Szilard engine have
been explored in various works [22–26]. Various models and working mediums for the
analysis of thermal machines has been recently explored in various works [27–38].

In this work, we study the engines from a more fundamental concept of quantum
mechanics and try to connect the efficiency of engines with the fundamental uncertainty
relation of two incompatible operators. We consider the one-dimensional potential well
as the working substance for the quantum heat engine. Here, we consider a specific
model for our analysis, though it is applicable globally to all the engines. We develop an
effective method to analyze the useful work using the uncertainty relation of the position
and the momentum of a particle in a box without performing any measurement, but
by applying two reservoirs of different temperatures. The thorough analysis performed
in this work is done in the nonrelativistic limit. A parallel analysis in the relativistic
limit is analyzed in our work [39]. During the evolution of quantum information, the
essence and importance of uncertainty relation in technology got enriched. It has various
applications in quantum technology like quantum cryptography [40–42], entanglement
detection [43–46], and even in quantum metrology [47] and quantum speed limit [48–51].
In recent times, the work [52–54] authenticated the uncertainty relation experimentally. The
thermal uncertainty relation that we will be applying here is a special case of the general
quantum uncertainty relations. The uncertainty relation of two incompatible observables is
given by

∆a∆b∼ h̄
2

, (1)

where a and b are any two canonical variable pairs. No better lower bound was known to us
until it was explored in the work [55]. They have not only given a better lower bound than
the previously known Pati–Maccone uncertainty relation (PMUR), but also developed an
upper bound for the uncertainty relation. It is popularly known as the reverse uncertainty
relation. Using this principle, we will similarly develop the bound of efficiency and work
of the heat engine in terms of uncertainty relation.

We have organized the paper as follows. In Section 2, we develop the thermal uncer-
tainty relation for a one-dimensional potential well of length 2L. In Section 3, the bound on
the sum of variance from the thermal standpoint as well as the traditional one is established.
We have devoted Section 4 to develop the correlation between the thermodynamic variables
and the sum of variance of the position and momentum operator of one-dimensional poten-
tial. Section 5 is dedicated to discussing the Stirling cycle and establishing the work done
and efficiency in terms of the thermal uncertainty relation. In this section, we illustrate the
bound on the work done and efficiency of the quantum engine. The paper is concluded in
Section 6 with some discussions and future prospects of this work in the field of quantum
thermodynamics.

2. Thermal Uncertainty Relation

In the first phase of our analysis, we evaluate the thermal uncertainty relation (which is
one of the special cases of the general uncertainty relation) for a particle in one-dimensional
potential well. To do so, let us first revisit our textbook problem of the one-dimensional
potential well. The one-dimensional potential well is a well-known problem in quantum
mechanics [56,57]. Here, we consider a particle of mass m inside a one-dimensional
potential box of length 2L. The wave function of this system for the n-th level is

|ψn〉 =
√

1
L

sin(
nπx
2L

). (2)
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So, when the wave function of the model under study is known, we can calculate the
eigenvalue of the system. Eigenvalues of the 1-D potential well are

En =
n2π2}2

2m(2L)2 , (3)

where } is Planck’s constant.
With the wave function of the model in hand, we are all set to derive the uncertainty

relation of the position and the momentum for this system. The uncertainty relation for
our model is described as [56,57]

∆x∆p =
h̄
2

√( (nπ)2

3
− 2
)
≥ h̄

2
, (4)

where ∆x2 = 〈x2〉 − 〈x〉2 and ∆p2 = 〈p2〉 − 〈p〉2 and we have 〈p〉 = 0 for all eigenstates.
The expectation values of 〈x〉, 〈x2〉 and 〈p2〉 can be easily evaluated by considering the
defined wave function of the considered system.

We formulate the uncertainty relation of the system at a certain temperature T from
a thermodynamics viewpoint. The formulation of the thermal uncertainty relation is
performed by the analysis of the partition function of the system. The partition function [58],
Z, for the 1-D potential well is expressed as

Z =
∞

∑
n=1

e−βEn ≈ 1
2

√
π

βα
, (5)

where β = 1
kBT , kB is Boltzmann’s constant and α = π2 h̄2

2m(2L)2 . The expression of Z converges
to the form mentioned, as the product of β and α is a small quantity. We use the Gaussian
integral as the approximation considering that the error in the integration is negligible as
the product of β and α is a small quantity. The mean energy for this system evolves to
〈E〉 = −∂lnZ

/
∂β = 1

2β . The average of the quantum number for the system under study
can be conveyed as

n̄ =
∑n ne−βEn

∑n e−βEn
≈ 1√

παβ
. (6)

Having the mathematical form of the partition function in hand, we have all the
resources to develop the thermal uncertainty relation. Now, we focus on the development of
the dispersion relation of the position and the momentum operator at a certain temperature.
The dispersion in position can be expressed as

(∆X)2
T = 〈(∆X)2〉T = 〈X2〉T − 〈X〉2T

=
L2

3
− 2L2

π2 ×
e−αβ −

√
παβ× er f c(

√
αβ)

1
2

√
π
αβ

=
L2

3
−

4L2√αβ

π5/2 × (e−αβ −
√

παβ), (7)

where er f c is the complementary error function, which appears while solving 〈x2〉. The
dispersion relation of the momentum operator can be analyzed similarly. It is expressed as

(∆P)2
T = 〈(∆P)2〉T = 〈P2〉T − 〈P〉2T

=
π3h̄2n̄2

8L2 . (8)
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So, the thermal uncertainty relation for the system at temperature T can be evaluated
from Equations (7) and (8) as

(∆X)T(∆P)T =
h̄n̄π3/2

2
√

2

[1
3
− 4

n̄π3 (e
− 1

πn̄2 − 1
n̄
)
] 1

2

≥ h̄
2

. (9)

The product uncertainty relation loses its importance when the system under con-
sideration is an eigenstate of the observable under study. The sum of uncertainty [59]
was introduced to capture uncertainty in the observables when the system happens to be
an eigenstate of the observables. The sum of uncertainty for this system at a particular
temperature T is expressed as

(∆X)T + (∆P)T = L
[1

3
−

4
√

αβ

π5/2 (e−αβ −
√

παβ)
] 1

2

+
h̄n̄π3/2

2
√

2L
. (10)

The parameters that are considered for the analysis are expressed in Table 1.

Table 1. Details of the parameter values are listed.

Parameter Values

n̄ 1, 2

Length (L) 0–5 nm

Hot bath (T1) 320 K

Cold bath (T2) 80 K

In Figure 1, the variation of sum uncertainty relation (Equation (10)) with respect to
different temperatures is shown. The thermal uncertainty relation that we have developed
(Equation (10)) for the considered system encounters a negligible amount of variation when
the length of the potential well is small, whereas the difference is large for higher values of
L (length is considered in nanometers).

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
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2
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Sum uncertainty relation for different temperature
temp= 80K
temp=320K

Figure 1. The variation of sum uncertainty relation (Equation (10)) for different temperatures. The
dotted line is for lower and the solid line is for higher temperature.
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The variation of uncertainty relation for different levels is shown in Figure 2. Similar
to the case of temperature analysis, the variation is negligible for lower values of L and is
large for higher values.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Length L in nm

0

2
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6

8
Su

m
 u

nc
er

ta
in
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 (

X
2

+
P2 )

Sum uncertainty for different values of n
n=1
n=2

Figure 2. Similarly, this shows variation for different values of n.

3. Bound on Sum Uncertainty for the One-Dimension Potential Well

The product of variances is sometimes unable to capture the uncertainty for two
incompatible observables. If the state of the system is an eigenstate of one of the observables,
then the product of the uncertainties vanishes [55,60]. To overcome this, the sum of
variances is introduced to capture the uncertainty of two incompatible observables. For
any quantum model, the sum of variance of two incompatible observables that results in
the lower bound is defined as

∆A2 + ∆B2 ≥ 1
2 ∑

n

(∣∣∣〈ψn|Ā|ψ〉
∣∣∣+ ∣∣∣〈ψn|B̄|ψ〉

∣∣∣)2
. (11)

For our system, we calculate the lower bound of sum uncertainty for the position and
momentum operator. So, we replace A = X and B = P, which yields to

∆X2 + ∆P2 ≥ 1
2 ∑

n

(∣∣∣〈ψn|X̄|ψ〉
∣∣∣+ ∣∣∣〈ψn|P̄|ψ〉

∣∣∣)2
. (12)

The computation of the reverse uncertainty relation of two observables results to the upper
bound of uncertainty relation. To develop the upper bound, we have to utilize the definition
of the Dunkl–Williams inequality [61]. The mathematical form of this inequality is

∆A + ∆B ≤
√

2∆(A− B)√
1− Cov(A,B)

∆A.∆B

. (13)

Squaring both sides of the Equation (13), we get the upper bound of the sum of variance
for two variables as

∆A2 + ∆B2 ≤ 2∆(A− B)2

1− Cov(A,B)
∆A∆B

− 2∆A∆B , (14)

where Cov(A, B) is defined as Cov(A, B) = 1
2 〈{A, B}〉 − 〈A〉〈B〉, and ∆(A− B)2 = 〈(A−

B)2〉 − 〈(A− B)〉2. ∆(A− B)2 is the variance of the difference of the two incompatible
observables.
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For our one-dimensional potential well system, which we have considered as a work-
ing substance, we calculate the upper bound of the sum of variance for the position and
momentum operator. So, we have to replace A = X and B = P in Equation (14) and it
results to

∆X2 + ∆P2 ≤ 2∆(X− P)2

1− Cov(X,P)
∆X∆P

− 2∆X∆P

≤ L2

3
− 2L2

(nπ)2 +
π2h̄2n2

4L2 . (15)

In the above equation, i.e., Equation (15), the upper bound of the system from the
standard method is developed using the definition described in Equation (14). Now, we
develop the sum of variance of the same incompatible observables from the thermodynamic
standpoint. The expression for the sum of variance of the system at a particular temperature
evolves as

∆X2 + ∆P2 ≤ 4L2

3
−

8L2√αβ

π5/2 × (e−αβ −
√

παβ) +
h̄2n̄2π3

4L2 . (16)

The bounds of sum uncertainty relation (from the thermodynamic perspective de-
veloped using Equation (12) for the lower bound and Equation (16) for the upper bound
for the considered system) with a particular temperature for different levels are shown
in Figure 3. The upper part of the plot is for n = 1 and the lower part is for n = 2. From
Figure 3, we can infer that the effect of the bounds of uncertainty relation are prominent for
higher values of the length of the potential well. The bounds are less prominent for lower
values of L.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
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Bounds on sum uncertainty relation
Lower bound for n=1
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Figure 3. The bound of uncertainty relation (Equations (12) and (16)) for a particular temperature for
different values of n from a thermodynamic standpoint.

4. Connection of Thermodynamic Quantities with Uncertainty

In the next phase of our analysis, we want to establish a bridge between the ther-
modynamic quantities with the uncertainty relation. We consider the sum of variance to
overcome the flaw that will appear if we consider the product form of uncertainty and if
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the system is an eigenstate of the observables. We will first demonstrate a connection of
partition function with our uncertainty relation. The mathematical form of this is given by

Z =
πn̄
2

=
L
√

2
h̄
√

π

(
∆XT + ∆PT + CT

)
, (17)

where CT = − L
3 +

2L
π5/2
√

αβT
[αβT−

√
π(αβT)

3/2− 1] is a constant for a specific temperature,

which is derived by expanding Equation (10), and neglecting the higher order terms as the
products of α and β are small.

Since we are to able to bridge a relationship between the uncertainty relation and
the partition function, we are set to explain all the thermodynamic variables in terms of
uncertainty relations. We develop the Helmholtz free energy [58], F, from the uncertainty
viewpoint which takes the form of

F =
−1
β

lnZ

=
−1
β

ln
[ L
√

2
h̄
√

π

(
∆XT + ∆PT + CT

)]
. (18)

Entropy is expressed in terms of Helmholtz free energy. So, we uncover the relation-
ship between the variance of position and momentum with entropy. The mathematical
form for entropy from the uncertainty viewpoint is

S = − ∂F
∂T

= kB ln
[ L
√

2
h̄
√

π

(
∆XT + ∆PT + CT

)]
+

h̄
√

πkB(ν + γ)√
2Lβ(∆XT + ∆PT + CT)

,

(19)

where ν =

L2√α√
βπ5/2

(
e−αβ−

√
παβ

)
− 2L2√αβ

π5/2

(
αe−αβ−1/2

√
πα
β

)
[

L2
3 −

4L2√αβ

π5/2

(
e−αβ−

√
παβ

)] 1
2

and γ is expressed as

γ = − L
π5/2√αβ3/2 (αβ−

√
π(αβ)3/2 − 1) + 2L

π5/2
√

αβ
(α−

√
πβα3/2).

In Figure 4, the variation of entropy in terms of the uncertainty relation is shown. We
can observe an increase in the entropy with an increase in the uncertainty for different
temperatures. With an increase in uncertainty, the disorder in the system increases, causing
an increase in the entropy.

We know that entropy is a measure of entanglement. So, from this relation, we are
able to bridge a connection between the uncertainty relation with entanglement. So, we
can measure the entanglement property of the system from the uncertainty relation if we
are able to model our system with any well-known quantum systems.

Knowing the Helmholtz free energy [58,62] F, for a given system, all the relevant
thermodynamic quantities can be computed from it. Here, the correlation of F with
the uncertainty in the measure of the position and momentum is established. Hence,
this replaces the explicit requirement of computing the internal energy of the system for
deriving the thermodynamic quantities. In addition, it also raises the question of whether
phase transition (Landau theory and its multimode coupling) can be analyzed from an
uncertainty perspective.
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Entropy in terms of uncertainty for different values of temperature
temp= 320k
temp= 80K

Figure 4. The variation of entropy (Equation (19)) for different values of temperature. The scattered
plot is for higher temperature and solid line is for lower temperature.

5. Stirling Cycle and Bound on Efficiency

A Stirling cycle [63–66] is composed of four stages, two isothermal processes, and two
isochoric processes. During the first stage, we insert a barrier isothermally in the middle of
the well. While this quasi-static insertion process is being done, the working medium stays
at an equilibrium condition with a hot bath at a temperature T1. During the second stage,
we perceive an isochoric heat extraction of the working medium by connecting it with a
bath at a lower temperature of T2. In the next stage of the cycle, there is an isothermal
removal of the barrier where we retain the engine in equilibrium at temperature T2. In the
final stage, we bridge the engine to the hot bath at temperature T1 and this give rise to
isochoric heat absorption. It is represented pictorially in Figure 5.

Figure 5. The figure shows the four stages (two isothermal and two isochoric processes) of the Stirling
cycle modeled using the potential well.

Similar to [67], we calculate the work done and the efficiency but in terms of uncer-
tainty relation. To determine the work done of the engine, a one-dimensional well of length
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2L is considered with a particle of mass m at a temperature T1. The energy of this system
is En = n2π2}2

2m(2L)2 . The partition function ZA for the system is Z ≈ 1
2

√
π
βα . Then, a wall is

inserted isothermally that converts the potential well into an infinite double well potential.
Due to this insertion of the wall, the energy level for even values of n remain unchanged
but the odd ones shift and overlap with their nearest neighboring energy level. So, the
energy of the newly formed partitioned one-dimensional potential box is

E2n =
(2n)2π2}2

2m(2L)2 . (20)

So, the new partition function stands as

ZB = ∑
n

2e−β1E2n . (21)

The internal energies for the system are calculated from the partition function. The
internal energy UA and UB is defined as Ui = −∂lnZi

/
∂β1, where i = A, B and β1 = 1

kBT1
.

This results to
UA = UB =

1
2β1

. (22)

The heat exchanged in this isothermal process can be expressed as

QAB = UB −UA + kBT1lnZB − kBT1lnZA. (23)

Then, the system is connected to a heat bath at a lower temperature T2. The partition
function for this lower temperature, where the energy remains the same, is defined as

ZC = ∑
n

2e−β2E2n . (24)

The heat exchanged for this stage of the cycle is the difference of the average energies of
the initial and the final states, i.e.,

QCB = UC −UB, (25)

where UC = −∂lnZC
/

∂β2 and β2 = 1
kBT2

. While the system is connected to the heat bath at
temperature T2, we remove the wall isothermally, which we call stage 3. The energy is now
of the form En = n2π2}2

2m(2L)2 . The corresponding partition function is given by

ZD = ∑
n

e−βEn . (26)

We can calculate the internal energy UD similarly as UC. The heat exchanged during this
process is given by

QCD = UD −UC + kBT2lnZD − kBT2lnZC. (27)

In the fourth stage of the cycle, the system is connected back to the heat bath at temperature
T1. The corresponding energy exchange for this stage can be expressed as

QDA = UA −UD. (28)

So, the total work done for the process in terms of variance of the position and the momen-
tum operator evolves to

W = QAB + QBC + QCD + QDA

=
8L2α

h̄2π2

[
D ln

( ZB
ZA

)
+ E ln

(ZD
ZC

)]
. (29)
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The efficiency of the Stirling cycle engine stands as

η = 1 +
QBC + QCD
QDA + QAB

=

(
n̄2

T2
ln
(

ZD
ZC

)
+ n̄2

T1
ln
(

ZB
ZA

))
(
− n̄2

T2
/2 + n̄2

T1

(
ln
(

ZB
ZA

)
+ 1/2

))
=

[
D ln

(
ZB
ZA

)
+ E ln

(
ZD
ZC

)]
[
− E/2 + D

(
ln
(

ZB
ZA

)
+ 1/2

)] , (30)

where D = 8L2

π3 h̄2 (∆XT1 + ∆PT1 + CT1)
2 and E = 8L2

π3 h̄2 (∆XT2 + ∆PT2 + CT2)
2.

In Equation (30), the upper and lower bound of the efficiency are evaluated in terms
of the bound that is being analyzed for the thermal uncertainty relation of the position
and the momentum operator. Here, the expression of D and E (for the working model
considered for the analysis of the heat engine) gives the required uncertainty relation for
the illustration of the bound of the efficiency.

In this paper, we are able to bridge a connection between the efficiency of the heat
engine with the variance of the position and the momentum operator. The upper bound of
the efficiency for the heat engine is near-constant when the uncertainty is high, whereas
it dips a little when uncertainty is low. As shown in Figure 6, the lower bound of the
efficiency is high when the uncertainty in measurement is less and dips gradually with
the increase in uncertainty. Thus, with an increase in uncertainty, we can visualize that
the lower bound of the efficiency decreases. From Figure 6, one can infer that the lower
and the upper bound of the efficiency are near about the same when the uncertainty in the
position and the momentum operator is quite small. The decrease in the efficiency with the
uncertainty is due to the fact that the conversion ratio of the thermal machine decrease with
the increase in the thermal energy of the system, which has a relation with the uncertainty
of the working medium. The asymptotic behavior for the higher values of the uncertainty
is due to the fact that the conversion rate gets saturated. Computing the error margins
would help us understand this behavior better, which we intend to do in a future paper.

With the increase in uncertainty, the conversion ratio of the heat engine decreases as
the thermal energy of the system is directly proportional to the uncertainty of the system. In
the case of the upper bound of the efficiency, which is depicted in terms of the uncertainty
relation defined in Equation (22), the decrease in the efficiency is more prominent due
to the presence of the exponential component, which causes exponential growth in the
thermal energy of the engine and the dissipated heat over the work output.

The Carnot efficiency for the low temperature limit is expressed as
(

1− T2
T1

)
, where

T2 and T1 are the temperature of the cold and hot bath, respectively. The upper bound of
the efficiency from an uncertainty viewpoint is consistent with the bound given by Carnot
cycle. So, we can infer that the position and the momentum of the particle has a direct link
with the thermodynamic variables. The work [68] suggests that the efficiency of engines
that are powered by nonthermal baths can be higher than the usual convention. This can
be testified from an uncertainty viewpoint.

In the quantum regime, after measurement, the system collapses to one of its eigen-
states. So, to describe and analyze the efficiency of the engine for different conditions,
we must have multiple copies of the system, whereas if we know the uncertainty relation
of the model considered for analysis, we can describe and analyze different conditions
without any measurement being done on the system. So, multiple copies of the system
are not required for our analysis. This also reduces the measurement cost for analysis of
the system.
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Figure 6. The bounds on the efficiency by heat engine in terms of the uncertainty relation. The dotted
line represents the upper bound and the solid line represents the lower bound of the efficiency.

6. Discussion

The quantum heat engine has a predominant role in better understanding of the
quantum engines, information, and quantum thermodynamics. This work develops a
relationship between the thermodynamic variables with the position and momentum of
the particle in the system. We give the analytic formulation of the work and efficiency
of the engine in terms of the thermal uncertainty relation. Though we have considered
a specific model for our analysis, this analysis can cater to a spectrum of global effects,
i.e., it can be used to explain the efficiency of the various engines with different quantum
models as the working substance. Based on these formulations, the physical properties of
the heat engine and the thermodynamic variables that we have encountered are as follows:

(a) Every quantum thermodynamic variable has a direct connection with the uncertainty
relation. Helmholtz free energy shows the dependence of the internal energy of the
thermodynamic system with the uncertainty relation of the incompatible observables.
The detailed analysis of entropy with the uncertainty relation shows that entropy
increases when the uncertainty of any one of the observables increases for a definite
temperature. The rate of increase is different for different temperatures (Figure 4).

(b) The total work and the efficiency depends on the position and momentum of the
particle. The change in the uncertainty of the position and the momentum has a
direct impact on the efficiency rate and the work of the engine. The lower bound of
the efficiency of the engine drops gradually when the uncertainty of the observable
increases (Figure 6). The upper bound of the efficiency (Figure 6) shows a small
variation for higher uncertainty relation, which conveys that the conversion rate of
work input to output is near-constant for higher uncertainty.

(c) The uncertainty relation, which is the fundamental principle of quantum mechanics,
is able to predict the efficiency and the total work of the engine without performing
any measurement. So, the measurement cost for the system gets reduced if we are able
to model the system under study with a quantum model for which we can develop
the uncertainty relation.

7. Conclusions

The bridge of the uncertainty relation with thermodynamic variables raises a ques-
tion of whether we can analyze the phase transition (Landau theory) from an uncer-
tainty perspective.
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Most of the known methods for the measurement of entanglement converge to the
analysis of entropy [69]. If we can model the system that is being analyzed with a quantum
model, we can construct the entanglement from the uncertainty relation of the system. This
would be a standard method to measure the entanglement property of the system, which
might be a solution to the open problem of entanglement measure.

The 1-D problem in the nonrelativistic case is a standard problem. However, in the
relativistic case it is not a standard problem. The study of the heat engine with a relativistic
particle can be analyzed. The mapping of the entropy with uncertainty to explain the
entanglement property for the relativistic system [70] is an open area to explore. Even the
holographic interpretation of entanglement entropy of anti-de Sitter (ADS)/conformal field
theory (CFT) [71] can be mapped with uncertainty relation.

This work can be extended to the development of quantum engines in deformed
space structures [72–74] through the correlation of the generalized uncertainty relation and
thermodynamic variables. In the paper [75], the authors mentioned the noncommutativity
of kinetic and potential energy of the quantum harmonic heat engine. Therefore, the
possibility of a connection between the deformed space structures [60] and the heat engines
can be further explored in the future. One can even study the anharmonic oscillator models
through the uncertainty standpoint.

The study of other thermodynamic cycles and procuring the bound for different
thermodynamic parameters is a wide open area to explore. As entropy can be mapped
with the uncertainty relation, this leaves us with questions for future study as to whether
all thermodynamic analyses can be mapped with the uncertainty of the observables.
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