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Abstract: The interactive effect is significant in the Chinese stock market, exacerbating the abnormal
market volatilities and risk contagion. Based on daily stock returns in the Shanghai Stock Exchange
(SSE) A-shares, this paper divides the period between 2005 and 2018 into eight bull and bear market
stages to investigate interactive patterns in the Chinese financial market. We employ the Least
Absolute Shrinkage and Selection Operator (LASSO) method to construct the stock network, compare
the heterogeneity of bull and bear markets, and further use the Map Equation method to analyse
the evolution of modules in the SSE A-shares market. Empirical results show that (1) the connected
effect is more significant in bear markets than bull markets and gives rise to abnormal volatilities
in the stock market; (2) a system module can be found in the network during the first four stages,
and the industry aggregation effect leads to module differentiation in the last four stages; (3) some
stocks have leading effects on others throughout eight periods, and medium- and small-cap stocks
with poor financial conditions are more likely to become risk sources, especially in bear markets. Our
conclusions are beneficial to improving investment strategies and making regulatory policies.

Keywords: map equation; minimum information entropy theory; module detection; LASSO method;
industry aggregation; network analysis

1. Introduction

From June 2014 to June 2015, the Shanghai Stock Exchange (SSE) A-shares index
increased by 57%. The market then experienced three large-scale collapses during the
following half year from June 2015 to January 2016, where the index decreased by 49% [1].
During these events, the SSE A-shares market plummeted with high volatility and lost
about 36 trillion Renminbi (RMB). Such abnormal fluctuations in the stock market were
also accompanied by the highly synergistic effect of the rise and fall of the stock market,
further increasing the stock market’s volatility [2].

Although the China Securities Regulatory Commission has conducted a comprehen-
sive reform since 2005, there are repeated abnormal volatilities over the transition period
between the bull and bear market in the SSE A-shares market, partly due to the imma-
turity of the Chinese market in terms of the traders, trading system, market system, and
regulatory system [3]. During expansions (bull markets), stocks in the A-shares market
display blow-out increases, accumulating bubbles, and financial risks. During recessions
(bear markets), fire sale trading triggers the declines in stock liquidity and spreads the
financial risk throughout the entire financial system [4]. More importantly, this highly
volatile phenomenon is also prevalent in emerging stock markets, such as the dramatic
plunge of the Russian market in 2018 and multiple circuit breaks in the Brazilian market
between 2020 and 2021.

As the second-largest economy globally, China devotes itself to integrating into the
global finance market. Specifically, a series of policy measures—including establishing the
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Renminbi Qualified Foreign Institutional Investor (RQFII) program, opening the Shanghai–
Hong Kong Stock Connect, and continuously raising quotas in the Qualified Foreign
Institutional Investor (QFII) program and the Qualified Domestic Institutional Investor
(QDII) scheme—are adopted to significantly strengthen the connections between China
and the rest of the world [5]. The evolution of the SSE A-shares market over good and bad
periods is related to the reform of the Chinese stock market and has profound influences
on the international capital and cross-border spillover risk [6,7].

Traditional econometric measurements, including the Pearson’s correlation and Granger
causalities, qualify the pairwise relationship of two concerned stocks in a financial market
without considering the potential influence from rest ones in the same system [8–10]. Al-
though the multivariate regression model can characterise interactions between equities in
a systemic way, this framework may fail to effectively fit the financial data due to the high-
dimensional problem that limited observations are used to estimate a significant number of
parameters reflecting relationships of stocks [11–14]. To overcome these above issues, we
use the Least Absolute Shrinkage and Selection Operator (LASSO) method to model the SSE
A-shares market’s network by measuring statistically significant connections in the equities
system and shrinking insignificant ones into zeros [6,15]. More importantly, we also use
the Map Equation method to conduct a dynamic analysis of financial contagion patterns in
the SSE A-shares market. Empirical results reveal a gradually significant contagion pattern
(i.e., the industry differentiation) in the system since 2014, where stocks from the same
industry category tend to behave similarly. Compared with large-cap stocks, medium- and
small-cap stocks react to financial risks more distinctly and function as financial contagion
channels. Meanwhile, the long-term study based on spillover risks and critical nodes in
contagion paths can help investors and policy makers better understand the Chinese stock
market’s microstructure and the potential mechanism of the highly volatile phenomenon,
which is also meaningful to other emerging financial markets and the stability of the global
finance market.

2. Literature Review

The interactions between stocks and contagion risks are essential to understand the
stock market fluctuations and global financial crisis [16–18]. The classical econometric
methods rely on pairwise measurements including Pearson’s correlation to describe the
relationships within the network system [19–22]. Naoui et al. [23] used the DCC-GARCH
model to study the pairwise relationships of stock index returns of different regions over
the subprime mortgage crisis and found that the United States is an essential source
of contagion during this crisis. Selecting three fields—industry, banking, and public
utilities—as research objects, Grout and Zalewska [24] showed that industrial market risks
increase during the crisis. Bernal et al. [25] introduced the CoVaR method to measure the
relationships among stock returns in the banking, insurance, and other financial sectors
during the financial crisis. Das et al. [26] proposed a mixed-frequency-based regression
approach, derived from functional data theories, to analyse the influence of global crises
on stock market correlations between G7 countries.

Classical econometric approaches mainly focus on the direct relationship between two
financial agents but fail to reflect potential influences from the complex system on the direct
connection [27–30]. However, such underlying interactions can be well revealed under
the networking framework by investigating financial networks’ topological properties
and statistical characteristics. Liu and Tse [31] used five years of stock index data from 67
countries and use Pearson’s correlation to generate a complex network. Gong et al. [32]
employed the transfer entropy method to analyse interactions between national stock mar-
kets and discovered that countries affected by the crisis become closer to each other and the
total network connectedness rises during the crisis. Chen et al. [33] used complex network
theories to measure systemic risks in the stock market and developed dynamic topological
indicators to analyse financial contagion and qualify the magnitude of systemic risks.
Coquidé et al. [34] analysed the world trade network’s risk contagion during the global
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crisis and explored the structural trading dependencies between countries. Construct-
ing undirected and directed volatility networks of the global stock market, Lee et al. [35]
applied machine learning methods to study network indicators for establishing an inter-
national financial portfolio management approach. Liu et al. [36] investigated 6600 banks’
decision rules and behaviours reflected in quarterly balance sheets to construct interbank
networks and further examine how financial shocks spread through financial contagion.
Kumar and Deo [37] applied random matrix theories to study the topological properties of
a network consisting of 20 nations and analysed communities in the generated network
under different thresholds. Li et al. [38] discussed the relationships between listed energy
companies and their shareholders under the networking framework. Empirical studies
show that most energy investment is concentrated in a few countries, and some islands
or regions play irreplaceable roles in tax avoidance. Paltalidis et al. [39] employed the
maximum entropy method to study the systemic risk and analyse the vulnerability of
the Euro area’s financial network. Based on the United Nations COMTRADE database,
Coquidé et al. [40] used the simplified Google matrix (REGOMAX) algorithm to analyse
the multiproduct world trade network from 2004 to 2016 and provided a more detailed
analysis of trade influence propagation.

The structural differences between bull and bear markets have been widely discussed.
Zhang et al. [41] used VaR and CoVaR models to build a new investor sentiment index and
applied it to predict stock prices and estimate systematic risks in bull and bear markets.
Wen et al. [42] adopted Pearson’s correlation and the copula model to investigate the
structural characteristics of equity markets in Europe, Asia, and Africa. Empirical results
suggest that European markets are more influential than Asian and African markets during
booming and recession periods. Given the rapidly growing weight of the Chinese economy
globally, many researchers focus on the risk transmission mechanism during stock market
crashes. By constructing coattention networks for the Chinese stock market, Chen et al. [43]
discovered the structural differences of bull and bear markets and utilised such differences
to predict stock returns. Dividing the year 2015 into four periods (the tranquil, bull, crash,
and postcrash), Wang and Hui [44] used kernel estimation to build the information transfer
network for studying information transition before and after the 2015 crash. Adopting
the mutual information and symbolisation methods, Khoojine and Han [45] generated
minimum spanning trees of the top 110 companies listed on the China Securities Index 300
from January 2014 to December 2017 to study the differences in topological characteristics
of preturbulence, turbulence, and post-turbulence networks.

Using networking methodologies to study stock markets may suffer from the high-
dimensional problem that traditional estimations are not consistent. The number of stocks
(N) in a market is comparable to that of observations (T) over a specific period (e.g., the
bull and bear market), hence, the size of unknown parameters (O(N2)) is comparable
to that of data (O(NT)). The LASSO method provides a promising solution to alleviate
the high-dimension problem when building financial networks. Xu et al. [46] utilised
the LASSO–CoVaR model to construct a financial network for the Chinese stock market
between 2010 and 2017 and analysed financial institutions’ status and role in crises. Using
the data on the subprime mortgage crisis, Demirer et al. [47] adopted the LASSO–VAR
method to analyse the global system’s static and dynamic connectedness.

Applying the LASSO method, we generate the stock networks and community struc-
tures to analyse financial systems’ evolution. We further introduce the Map Equation
method to study the SSE A-shares market’s dynamic changes and its differentiation in
industries. The Map Equation method is based on information theories and has been
further improved in subsequent studies [48–50], it is widely used in biological, information,
and social networks [51]. This method utilises the probability flow of random walks on a
network as a proxy for information flows in the entire system to decompose the network
into different modules by compressing the probability flow description. The Map Equation
approach is also adopted to investigate risk transmission in financial settings, which makes
it possible to analyse the overnight market risk path of commercial banks [52], the centrality
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of financial network institutions and measurements on systemic risks [53], and the financial
integration of banks in developed regions before the subprime crisis [54].

3. Methodologies
3.1. LASSO Estimation and Network Construction

Traditional econometric methods use pairwise measurements, such as Pearson’s
correlation and Granger causalities, to qualify interactions between stocks. However,
these approaches only measure the direct relationship between the two stocks without
considering the potential influence from rest stocks through a systematic perspective.
When using Pearson’s correlation, the correlation between stock A and B may indirectly
derive from stock C, which is highly correlated with stock A and B separately. Granger
causalities are also inappropriate for describing sophisticated linkages in financial markets
due to theoretical reasons. For any given stock pair, the white noise assumption in the
Granger causality test implies that there are no connections between the concerned two
stocks and the rest. In other words, these two stocks are presumed to be isolated from
the entire system, and this may contradict the networking structure in financial markets.
Although classic multivariate regression models can overcome the above two drawbacks,
they fail to fit data in the high-dimensional situation that the number of stocks (N) is
proportional to that of observations (T) (i.e., N = O(T)). As a promising solution, the
LASSO method chooses an absolute value function as the penalty term to screen significant
variables and shrinks insignificant ones into zeros, which can solve the fitting problem in
high-dimensional cases.

We consider a multivariate linear regression model to reveal relationships in the stock
market from a systemic way. For stock i, the model is

rit = r1tβi1 + r2tβi2 + · · ·+ ri−1,tβi,i−1 + ri+1,tβi,i+1 + · · ·+ rNtβiN + εit, (1)

where rit = ln Pit − ln Pi,t−1 is the log return of stock i, Pit is the stock price of i at time t,
N is the number of stocks, and εit is the error term. Since unknown parameters β−i =
{βij, j = 1, · · · , i− 1, i + 1, · · · , N} qualify the stock relationships in the financial market,
the LASSO method is adopted to estimate those statistically significant parameters and
shrink those insignificant ones into zeros. The LASSO estimate is

β̂−i = argmin
β−i

 1
2T

T

∑
t=1

(
rit −∑

j 6=i
rjtβij

)2

+ λ ∑
j 6=i

∣∣βij
∣∣, (2)

where T is the number of observations and λ is the tuning parameter preset by the cross-
validation method (This paper uses the glmnet package in R to obtain LASSO estimations).
We present the estimation of β−i in Appendix B. The above procedure was repeated for all
stocks. Then, the adjacency matrix A = {aij}N×N for the financial market is defined as

aij =

{
1, if β̂ ji 6= 0;
0, if β̂ ji = 0.

(3)

Equation (3) suggests that a direct link from stock i to j exists if and only if its corresponding
LASSO estimate β̂ ji is nonzero.

3.2. Module Detection Based on the Information Entropy Methods

This paper introduces the Map Equation method to detect modules in the SSE A-marker
network over different periods and further explores the evolution of modules. The Map
Equation algorithm (InfoMap algorithm), initially proposed by Rosvall and Bergstrom [48], is
based on a formula to evaluate the effectiveness of a module structure in describing the path
of a random walker around the network. The random walk is used to simulate information
(risk) transmission in the entire system (the stock market). Based on Huffman coding, the
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Map Equation algorithm adopts a two-level code to describe the random walk path: the
high-level codes distinguish modules in the network (i.e., index codes) and the low-level
codes represent node names that are unique in the same group (i.e., module codes). The Map
Equation algorithm aims to discover an information (risk) map that gets rid of unnecessary
details by minimising the amount of information needed to describe the random walk path
and highlights critical modules where nodes in the same group develop stronger interior
relationships than outside nodes.

Since the real relationships between stocks are not observable, we first examine the
discovered network structure in Equation (3) to simulate the real one and calculate the
visit frequencies of a random walker travelling in the system. Similar to the method used
in [54], we convert the adjacency matrix A defined in Equation (3) to the Markov transition
probability matrix Π to depict the random walk path. Since A may be nonsymmetric, we
consider the follow systemic matrix:

V = {vij} =
[

0N A
A> 0N

]
∈ R2N×2N , (4)

where 0N ∈ RN×N is a matrix with zeros. Then, the Markov transition probability matrix
is defined as

Π =
[
πij
]

2N×2N =

[
vij

∑2N
k=1 vkj

]
2N×2N

. (5)

Let pi be the visit frequency of a random walker to the node i. Mathematically, we can
calculate pi by considering the dominant eigenvector of the Markov transition probability
matrix,

P = ΠP, (6)

where P = (p1, · · · , p2N)
>.

Given the visit frequencies P and a module structure M with m modules, the exiting
frequency of the traveller from module α is given by

qαy = ∑
i∈module α

∑
j/∈module α

πij pi, (7)

and the exit frequency of the travel from any module is given by

qy =
m

∑
α=1

qiy. (8)

Moreover, the frequency at which the random walker uses module α’s codes is given by

pα
	 = qαy + ∑

i∈module α

pi. (9)

The probabilities pα
	 and qαy measure the frequency of using module codes. Next, we

need to know the costs to access these codes. According to Shannon’s coding theorem, for
a random variable z having n states with probabilities pk, the average length of the code
word cannot be less than the entropy of z, defined by

H(z) = −
n

∑
k=1

pk log(pk). (10)
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Then, the minimum average length for index codes and module codes are given by

H(Q) = −
m

∑
α=1

qαy
qy

log
(

qαy
qy

)
(11)

and

H(Pα) = − qαy
p	

log
(

qαy
p	

)
− ∑

i∈module α

pi
pα
	

log
(

pi
pα
	

)
, (12)

where H(·) is the entropy function defined in Equation (10) and H(Q) and H(Pα) reflect
the encoding effectiveness of the entire module structure M and the specific module α,
respectively.

Consequently, the minimum average length of the random-walk path under the given
module structure M is given by

L(M) = qyH(Q) +
m

∑
α=1

pα
	H(Pα). (13)

Here, L(M) is the weighted sum of two information entropy parts. One is the average
code length of the module name (index codes) and the other one is the average code
length of node names in different modules (module codes). The weights are proportions of
average code lengths of module and node names. When minimising the L(M), the network
achieves the minimum entropy and the corresponding module division is stable. The map
equation algorithm uses these criteria to compare different module divisions in practice
and select the optimal one.

3.3. Network Topological Indicators

Based on the detected module structures, we further investigate the topological prop-
erties of generated networks to study the contagion effect in the SSE A-shares market.

Average shortest path length L = 2
N(N−1) ∑j 6=i dij, where i and j are two stocks (nodes)

in the SSE A network and dij is the shortest path between nodes i and j. A smaller
length means faster information or risk transmission in the network.

Clustering coefficient Ci =
2ni

ki(ki−1) , where ki is the number of nodes directly connecting
to node i and ni is the number of edges between ki neighbours of node i. A higher
value implies better network connectivity.

Network diameter Diameter = max1≤i,j≤N dij. A smaller value implies faster information
or risk transmission speed.

Network density Density =
∑i,j aij

N(N−1) , where aij is defined in Equation (3). A higher density
implies a closer relationships between nodes.

Relative degree centrality CRD(i) =
ki

N−1 . The high relative degree centrality implies an
important influence from the corresponding node on the network.

Relative betweenness centrality CRB(i) = 2
(N−1)(N−2) ∑j<k

gjk(i)
gjk

, where gjk(i) is the num-
ber of shortest paths connecting nodes j and k and passing through node i. This
indicator measures the “bridge” role of node i in the network.

Relative closeness centrality CRC(i) = N−1
∑N

j=1 dij
that measures how close node i is to all

other nodes in the network. The high value of relative closeness centrality implies
close connections between node i and other nodes.

Degree centralisation CD = ∑N
i=1(CRD(max)−CRD(i))

max[∑N
i=1(CRD(max)−CRD(i))]

, where the numerator is the sum of

differences between the maximum degree centrality CRD(max) = max1≤i≤N CRD(i)
and the degree centrality of each node CRD(i), and the denominator is the maximum
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value of the numerator in theories. This indicator describes the centrality of the whole
network.

Betweenness centralisation CB = 1
N−1 ∑N

i=1(CRB(max)− CRB(i)), where the numerator
theoretically represents the sum of the difference between the maximum interme-
diate centrality and the intermediate centrality of each node, and the denominator
represents the maximum of the sum of the differences. This indicator describes the
degree to which the network relies excessively on a node to transfer relations.

Closeness centralisation CC = 2(N−3)
(N−1)(N−2) ∑N

i=1(CRC(max)− CRC(i)), which describes
the centralised trend in the network.

4. Empirical Results
4.1. Stock Market Data

This paper uses the SSE A-shares market’s weekly closing prices from 2005 to 2018
and refers to important financial events and policies to divide the entire period into eight
stages according to bull and bear markets.

As shown in Table 1, stages 1 and 5 are typical rapidly rising bull markets and
stages 2 and 6 are steeply declining bear markets. By contrast, stages 3 and 7 witness
moderate increases in the market, and the market experiences a fluctuating decline in
stages 4 and 8. Overall, the surge and plummet can be found in the bull market (stages
1 and 5) and the bear market (stages 2 and 6), respectively, whereas the stock market
consistently fluctuates in stages 3, 4, 7, and 8. Based on the above division, we aim to utilise
information entropy to discover the evolution of modules in the SSE A-shares market in
expansions and recessions.

Table 1. Period division from 2005 to 2018 for the Shanghai Stock Exchange (SSE) A-shares market according to bull and
bear markets.

Eight Stages Code Start Time End Time Reasons

Stage 1 Bull 1 Jun. 2005 Oct. 2007 Reforms in the market and other capital dividends.
Stage 2 Bear 1 Oct. 2007 Oct. 2008 The subprime mortgage crisis and other external factors.
Stage 3 Bull 2 Oct. 2008 Jul. 2009 Rescue policies from the government.
Stage 4 Bear 1 Jul. 2009 Mar. 2014 Combined influences from the crisis and stimulus policies

result in market ups and downs.
Stage 5 Bull 3 Mar. 2014 Jun. 2015 Deepen reforms of state-owned enterprises and arising

financial leverages increase the market.
Stage 6 Bear 3 Jun. 2015 Jan. 2016 Deleveraging and other factors cause the collapse of

the stock market.
Stage 7 Bull 4 Jan. 2016 Jan. 2018 The slight rise in the market due to factors like stable leverage

and financial stimulus.
Stage 8 Bear 4 Jan. 2018 Dec. 2018 Overseas factors like the trade war leads to the fluctuating

decline in the stock market.

The SSE A-shares backward closing prices from 2005 to 2018 are downloaded from
the wind database. Given the long period of research data, some stocks are out of the
discussion in this paper because of the following reasons.

1. Missing values. Until 18 December 2019, 1547 stocks were traded on the SSE A-shares
market. Due to the late listing and suspension of trading, some of these stocks were
removed in advance to compare stock market networks in different stages.

2. Stocks prefixed with “ST” or “*ST”. Designated as Special Treatment (ST) by the stock
exchanges for warning investors, these stocks face delisting risks and show distinct
patterns from normal stocks.

3. Stocks whose returns maintain at zeros over a long period for the long-term suspen-
sion or other reasons were excluded in this paper to prevent misleading information.
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As a result, 716 stocks were selected to construct the SSE A-shares network. For the
stock i, its log return is calculated by

rit = ln Pit − ln Pi,t−1, (14)

where Pit is the price of stock i at time t.

4.2. Module Analysis of the SSE A-Shares Network Based on the Minimum Entropy

To analyse the characteristics of modules in the SSE A-shares market, we employed
the Map Equation method to detect modules in the financial system in different periods
and present visualisation results in Figure 1 (Figures A1 and A2 in Appendix A provide
the full-size version of Figure 1). Each module is represented by a node whose area is
proportional to its information flow, reflecting its status in the network. The information
flow of a module includes two parts: the information flow out of the module, which is
proportional to its boundary thickness and can represent the probability of risk passing
from the module to other modules; and the information flow staying in the module, which
is proportional to the area of the inner circle area that can indicate the probability that
the risk remains in the module. The connection thickness among modules suggests the
probability of risk transmission in different sectors. The thicker the connection, the greater
the contagion probability. Besides, the arrow indicates the direction of the risk of contagion.

Figure 1. Module divisions in eight periods based on the Map Equation algorithm. Nodes represent
modules, directed links indicate directions of the information flow, and the thickness of links demonstrates
the transmission probability of risk between different modules. The node size is proportional to the
information flow in a module that includes the information flow out of and within the module. Specifically,
the node’s boundary thickness is proportional to the information flow out of the module, corresponding
to the probability that risks transmit to other modules. The interior area of a node is proportional to the
module’s information flow, corresponding to the probability that risks stay in the module.

As shown in Figure 1, the module numbers in bear markets are generally smaller
than those in bull markets, and more stocks belong to the same module in bear periods,
indicating closer interior connections and higher internal contagion in modules. The
number of modules in the stock market gradually increases, implying that the continuous
development of the capital market leads to differentiation in the patterns of stock returns
and the risk of contagion.

To investigate how modules develop and evolve over the eight periods, we consider
stock categories in different modules and present results of Bear 1, Bull 4, and Bear 4 in
Tables 2–4, respectively.

As shown in Table 2, the SSE A-shares network in Bear 1 can be divided into nine
modules, and three modules are left out of the discussion as they only include one stock.
M1 has the largest size (608 stocks) in the network, and includes and captures 85.87% of
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the network’s information. Conversely, the remaining modules contain less information,
and the differentiation effect caused by industry aggregation is not significant. More
importantly, the industry distribution of M1 in Bear 1 is analogous to that of the entire SSE
A-shares market distribution. Consequently, M1 can be viewed as a system module, and
other stocks that are not in the first module are peripheral in the stock market. Similar
patterns can also be found in the other first four stages.

Table 2. Industry categories of stocks in top six modules during Bear 1.

Module Name M1 M2 M3 M4 M5 M6

Materials 102 6 0 6 1 0
Telecommunication service 2 0 0 0 0 0

Real estate 27 6 21 3 1 0
Industrials 146 7 7 4 1 0

Utilities 38 0 1 2 0 0
Finance 13 1 2 0 0 4

Consumer staples 107 12 1 1 0 0
Energy 20 1 1 1 1 0

Consumer discretionary 54 2 0 0 0 0
Information technology 45 4 0 2 0 0

Health care 55 5 0 0 0 0

Unlike the first four stages, the last four stages except for Bear 3 present the significant
industry differentiation of the modules, as shown in Tables 3 and 4.

Table 3. Industry categories of stocks in the top nine modules during Bull 4.

Module Name M1 M2 M3 M4 M5 M6 M7 M8 M9

Materials 2 1 8 2 1 3 2 25 1
Real estate 1 0 1 1 4 1 2 0 29
Industrials 1 2 5 21 14 7 7 2 1

Utilities 2 1 8 6 4 1 0 0 4
Finance 0 0 1 6 0 2 1 0 0

Consumer staples 5 4 2 1 1 3 11 5 3
Energy 0 0 0 0 0 0 0 0 0

Consumer discretionary 0 14 4 1 1 2 2 4 0
Information technology 1 3 1 0 2 10 0 0 0

Health care 28 8 0 1 2 1 2 0 0

Table 4. Industry categories of stocks in top nine modules during Bear 4.

Module Name M1 M2 M3 M4 M5 M6 M7 M8 M9

Materials 15 3 1 1 1 18 5 0 1
Telecommunication service 0 0 0 1 0 0 0 0 0

Real estate 9 0 1 2 1 5 9 0 2
Industrials 22 4 19 16 4 3 7 4 7

Utilities 8 0 0 0 1 0 6 1 0
Finance 1 0 0 0 0 4 0 1 0

Consumer staples 20 10 3 1 18 2 1 10 0
Energy 3 0 0 0 1 8 0 0 0

Consumer discretionary 3 15 1 0 5 0 1 0 2
Information technology 7 0 27 1 2 1 1 1 0

Table 3 suggests the nine largest modules in the Bull 4 stage network, and the remain-
ing 42 modules are out of discussion due to involving few stocks. The differentiation of
the modules displays a significant industry aggregation phenomenon. Health care is the
dominant industry category in M1 and is key to the information flow and spillover risk.
Given by Figure 1, the closed connections between M1 and M2 imply the high potential
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risk of contagion between the health care and consumer discretionary industries because
of the distinct overlap of these two industries in the industry chain.

The Bear 4 stage can be divided into 46 modules, and the top nine modules with the
largest sizes capture 57.44% of the network information. The industry categories of stocks
in these nine modules are provided in Table 4. M1 mainly consists of stocks from materials,
industry, and consumer staples. The dominant industries in M2, M3, M4, M5, and M6 are
consumer discretionary and consumer staples, information technology and industrials,
industrials, consumer staples, and materials.

Tables 3 and 4 demonstrate the significant industry aggregation effect in the Bull 4
and Bear 4 period. With the development of the stock market, the industry aggregation
results in module differentiation in SSE A-shares because stocks from the same industry
category share similar macro fundamentals.

Based on the Map Equation method and minimum information entropy, we discuss
the module divisions in eight periods and further analyse the risk spillover among modules.

Table 5 compares the top five modules with the highest proportion of information in
bull and bear periods. The first column of Table 5 shows the modules ranked by information
flow from high to low, the second column represents the number of stocks (nodes) involved
in the module, and the third column represents the number of information transmission
linkages (links) within the module. Table 5 suggests that significant structural differences
exist between the first four stages and the latter four stages. In the first four stages, the
proportions of stock and link numbers within the largest module account for more than
70% of the entire SSE A-shares network, whereas the proportions in other modules are low.
In other words, the SSE A-shares market does not show significant differentiation in the
first four stages: the largest module, having the highest information flow, largely represents
the entire network, and more than 70% of the stocks belong to this module. However, the
SSE A-shares market experiences significant structural differentiation in the last four stages.
Specifically, the largest five modules in Bull 3, Bull 4, and Bear 4 share comparable sizes in
node and link numbers. Compared with the other three stages, the Bear 3 period is closer
to the first four stages because the rapid deleveraging effect in this stage leads to abnormal
fluctuations and increases the system’s connected effect.

We use the information flow to illustrate the spillover effect of risks within and
between modules in Table 6: the first column represents the modules ranked by information
flow from high to low; the second column represents the proportions of information within
modules to the total information; the third (fourth) column represents the proportion of
information flowing into (out of) each module. Table 6 presents similar results to Table 5. In
the first four stages, the information in the largest module accounts for at least 70% of the
entire market, indicating that most stocks can be grouped and insignificant differentiation
exists in the stock market. Conversely, in the last four stages, except for the Bear 3 stage,
the most extensive module merely contains approximately 10% information, suggesting
significant differentiation in the stock market. Such differentiation derives from industry
agglomeration in that stocks from the same industry are more likely to form modules
(See details in Tables 3 and 4). Moreover, Bear 3 can be viewed as a transition period
between the first and last four stages since the information proportion of M1 is about
50%. During this period, given the excessive accumulation of preleverage and the speed
of the deleveraging process, abnormal fluctuations occurred in the stock market, and the
strengthened connected effect in the system further increases the abnormal volatility of the
stock market, resulting in a more significant loss in the financial system.

In summary, more than 70% of stocks in the SSE A-shares market belong to the same
module in the first four periods, which can be viewed as the system module. Stocks in the
system module are less connected with others, and those outside the system module are
pericardial in the network, implying the relatively low contagion risk and weak connections.
As China’s financial market develops, the system module is gradually differentiated into
several small parts based on industry categories. Stocks’ from the same or related industries
grouping in modules make the industry aggregation phenomenon more significant. In an
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extreme situation like the Bear 3 stage, abnormal fluctuations and large-scale declines in
the market lead to the formation of a small system module whose higher status accelerates
risk contagion.

Table 5. Node and link numbers of the top five modules with the highest proportion of information in eight periods.

Bull 1 Bear 1

Module Name Node Numbers Link Numbers Module Name Node Numbers Link Numbers

M1 488 9637 M1 608 10,887
M2 86 688 M2 44 307
M3 61 468 M3 33 224
M4 26 161 M4 19 49
M5 11 33 M5 4 8

Bull 2 Bear 2

Module Name Node Numbers Link Numbers Module Name Node Numbers Link Numbers

M1 528 11,755 M1 612 14,331
M2 47 329 M2 52 802
M3 51 797 M3 15 50
M4 43 533 M4 8 18
M5 20 166 M5 10 23

Bull 3 Bear 3

Module Name Node Numbers Link Numbers Module Name Node Numbers Link Numbers

M1 53 231 M1 306 3750
M2 47 264 M2 119 1147
M3 31 119 M3 70 500
M4 27 119 M4 72 503
M5 27 123 M5 69 504

Bull 4 Bear 4

Module Name Node Numbers Link Numbers Module Name Node Numbers Link Numbers

M1 40 256 M1 95 668
M2 33 211 M2 68 476
M3 30 122 M3 52 328
M4 39 201 M4 22 61
M5 29 108 M5 36 126

4.3. Topological Properties of SSE A-Shares Networks

We utilise topological indicators in Section 3.3 to investigate the SSE A-shares market’s
characteristics over bull and bear markets. Details are presented in Tables 7 and 8.

As shown in Tables 7 and 8, network densities of bear markets are higher than those of
bull markets, and network diameters of bear markets are lower than those of bull markets,
suggesting that stocks have stronger connections with others in the bear market. Affected
by the subprime mortgage crisis and the deleveraging of capital allocation, the SSE A-
shares market experiences large-scale collapses and shows a significant connected effect.
Meanwhile, investors are more sensitive to market information in these two periods, and
hence, tend to adopt similar strategies to avoid risks.

In the entire period, the lengths of the average shortest path in the SSE A-shares
networks are between two and three, meaning that approximately two or three intermediate
stocks can connect any stock pairs. The clustering coefficients of bear markets are generally
higher than those of bull markets, reflecting the more distinct connected effect in recessions.
Bear 1 was during the subprime mortgage crisis, Bear 1 was affected by the European
debt crisis, and Bear 3 experienced the “thousand-share limit-down" after the stock market
deleverages in 2015, which reflects that a financial crisis enhances the small-world effect of
the SSE A-shares network.
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Table 6. Information flows within and between modules over eight periods.

Bull 1 Bear 1

Module Within Flow in Flow Out Module Within Flow in Flow Out
Name Modules Modules Modules Name Modules Modules Modules

M1 66.13% 8.58% 10.82% M1 85.87% 5.29% 5.94%
M2 13.32% 6.00% 5.41% M2 6.80% 3.14% 2.75%
M3 10.91% 3.38% 2.29% M3 4.65% 2.60% 2.47%
M4 3.57% 1.99% 1.87% M4 1.89% 1.22% 1.10%
M5 2.03% 1.32% 1.14% M5 0.58% 0.45% 0.41%

Bull 2 Bear 2

Module Within Flow in Flow Out Module Within Flow in Flow Out
Name Modules Modules Modules Name Modules Modules Modules

M1 71.35% 9.17% 10.60% M1 82.16% 6.24% 7.36%
M2 11.49% 4.95% 3.57% M2 6.92% 2.90% 3.11%
M3 6.82% 2.85% 3.08% M3 3.91% 2.40% 1.83%
M4 5.04% 2.43% 2.56% M4 2.13% 1.40% 1.14%
M5 1.92% 1.11% 1.23% M5 2.01% 1.29% 1.05%

Bull 3 Bear 3

Module Within Flow in Flow Out Module Within Flow in Flow Out
Name Modules Modules Modules Name Modules Modules Modules

M1 8.34% 5.05% 5.08% M1 46.54% 11.75% 11.49%
M2 6.58% 3.81% 3.95% M2 18.76% 8.26% 8.20%
M3 4.59% 3.18% 3.30% M3 10.13% 5.21% 5.08%
M4 4.41% 2.85% 2.85% M4 8.70% 4.27% 4.31%
M5 3.15% 1.87% 1.98% M5 7.09% 3.17% 3.43%

Bull 4 Bear 4

Module Within Flow in Flow Out Module Within Flow in Flow Out
Name Modules Modules Modules Name Modules Modules Modules

M1 7.45% 4.30% 4.43% M1 13.18% 7.55% 8.91%
M2 6.46% 2.60% 2.17% M2 12.64% 4.35% 3.85%
M3 5.49% 3.72% 3.71% M3 7.57% 3.72% 3.83%
M4 4.47% 2.45% 2.63% M4 4.91% 3.02% 2.58%
M5 4.28% 2.71% 2.77% M5 4.53% 2.21% 2.05%

Table 7. Characteristics of the SSE A-shares networks during the first four stages.

Topological Properties Bull 1 Bear 1 Bull 2 Bear 1

Network diameter 7 6 6 7
Network density 0.0195 0.0252 0.02 0.0342

The average shortest path length 2.72 2.7 2.85 2.59
Clustering coefficient 0.071 0.078 0.055 0.097

Mean of relative degree centrality 0.02 0.0252 0.02 0.0342
Mean of relative betweenness centrality 0.23 0.234 0.255 0.22

Mean of relative closeness centrality 0.3815 0.3909 0.3699 0.4138
Out-degree centralisation 0.11404 0.05463 0.04857 0.11844
In-degree centralisation 0.03841 0.13446 0.11719 0.06242

Betweenness centralisation 0.012 0.0167 0.0308 0.0162
Out-degree closeness centralisation 0.2976 0.1937 0.1891 0.275
In-degree closeness centralisation 0.1742 0.345 0.336 0.1831



Entropy 2021, 23, 434 13 of 25

Table 8. Characteristics of the SSE A-shares networks during the last four stages.

Topological Properties Bull 3 Bear 3 Bull 4 Bear 4

Network diameter 8 6 6 8
Network density 0.0165 0.022 0.0193 0.0157

The average shortest path length 3.1 2.84 3.08 3.23
Clustering coefficient 0.066 0.076 0.084 0.075

Mean of relative degree centrality 0.0165 0.022 0.0193 0.0157
Mean of relative betweenness centrality 0.28 0.255 0.278 0.296

Mean of relative closeness centrality 0.3326 0.3748 0.3389 0.3209
Out-degree centralisation 0.09127 0.01859 0.15156 0.07114
In-degree centralisation 0.04645 0.09201 0.06052 0.05434

Betweenness centralisation 0.0361 0.0172 0.0448 0.025
Out-degree closeness centralisation 0.2952 0.083 0.4127 0.2957
In-degree closeness centralisation 0.2062 0.2378 0.2306 0.2169

Regarding the difference between bull and bear markets, the average degrees of stocks
in bear markets are greater than those in bull markets. In the bear market, the core stocks
have more leading influence, and more synchronous changes appear in the market. Further,
closeness centralities are relatively high, which means that the reachable distances of risk
propagation are relatively short and risks can transmit to most stocks from the source via a
short distance.

From the structural differences between bear markets, Bear 1 and Bear 3 show rapid
declines with large volatility, while Bear 1 and Bear 4 fall with fluctuations and have small
volatility. Therefore, structural differences exist between these two types of bear markets.
The low out-degree centralisations of Bear 1 and Bear 3 reflect the marginal differences
between the out-degree centrality of each node and the maximum out-degree centrality.
Therefore, most stocks in these two periods have relatively high out-degrees, and risks are
more likely to transmit to other stocks through these stronger connections, accelerating the
propagation of risks. By contrast, the Bear 1 and Bear 4 markets show different patterns.
The low in-degree centralisation and high out-degree centralisations reflect that most stocks
have relatively high in-degrees but low out-degrees, suggesting that stocks in the network
absorb risks and prevent the spread of risks. Bear 1 and Bear 3 are periods with abnormal
fluctuations due to the impact of the subprime mortgage crisis and rapid deleveraging
in 2015. In Bear 1 and Bear 1, it is hard to identify critical stocks leading to the massive
collapse, making the supervision of risks more challenging. Conversely, the less-connected
structure of the SSE A-shares networks in Bear 1 and Bear 4 lowers the transmission risks
and benefits of identifying the risk source and restraining the network’s spread of risk.

4.4. Analysis of Core Stocks in Bull and Bear Markets

We use three types of centralities to measure stocks’ influence in the SSE A-shares
market to identify core stocks in the network and investigate how these stocks transmit risks
over different periods. Tables 9–11 list stocks with the top five relative degrees, betweenness,
and closeness centralities in eight stages, respectively, where the first column reports stock
codes in the SSE A-share market and the second column gives the corresponding industry
categories. Stocks in these tables are referred to as core stocks due to their distinct influence
in specific periods.

Tables 9–13 present the top five stock lists in terms of the relative degree centrality,
relative betweenness centrality, relative closeness centrality, PageRank, and CheiRank.
First, mutual components of industry categories in Tables 9–11 demonstrate that high-
influence stocks are mainly from four industry categories: consumer discretionary, health
care, materials, and industrials, corresponding to the system module and the industry
aggregation phenomenon demonstrated in Tables 2–4. Second, the overlap proportions of
three stock lists measured by different centralities are relatively high in the same period,
about 90% of stocks in degree and closeness centralities lists are the same. Compared with
degree centralities and closeness centralities measuring direct connections and transmission
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distances, betweenness centralities reflect the importance of stocks in contagion paths.
Therefore, distinct aspects of the three types of centralities decrease the three stock lists’
overlap proportions. It is worth noting that a few stocks simultaneously appear in three
centrality lists in the same stage, which implies that these stocks play irreplaceable roles in
the financial system and are the main driving factors of significantly increasing the network
connectivity. Third, although bull and bear markets share noticeably different core stocks,
about 22.5% of stocks (e.g., codes 600861 and 600356) are ranked in the top 20 centrality
lists over the entire period, playing unique roles in leading the SSE A-shares market.
Lastly, PageRank reflects how likely a given stock is influenced by other stocks, while
CheiRank measures the impact of a given stock on the rest ones (We adopted methods
from Coquidé et al. [34,40] to compute the PageRank and CheiRank). Table 12 shows
different results from other measurements and lists those vulnerable stocks in eight stages.
By contrast, Table 13 shares a similar list with Table 9, suggesting that core stocks’ high
connectivity mainly derives from their profound influence on the rest of stocks.

Table 9. Stocks with top five relative degree centralities in eight periods.

Bull 1 Bear 1

Stock code Industry category Stock code Industry category

600624 Health care 600340 Real estate
600218 Industrials 600085 Health care
600373 Consumer discretionary 600088 Consumer discretionary
600172 Materials 600006 Consumer discretionary
600626 Consumer discretionary 600590 Industrials

Bull 2 Bear 2

Stock code Industry category Stock code Industry category

600405 Industrials 600370 Consumer discretionary
600967 Industrials 600853 Industrials
600665 Real estate 600522 Information technology
600692 Real estate 600590 Industrials
600601 Industrials 600360 Information technology

Bull 3 Bear 3

Stock code Industry category Stock code Industry category

600460 Information technology 600410 Information technology
600439 Consumer staples 600502 Industrials
660360 Information technology 600271 Information technology
600131 Utilities 600749 Consumer discretionary
600345 Information technology 600531 Materials

Bull 4 Bear 4

Stock code Industry category Stock code Industry category

600229 Consumer discretionary 600168 Utilities
600561 Industrials 600331 Materials
600356 Materials 600292 Industrials
600757 Consumer discretionary 600713 Health care
600422 Health care 600269 Industrials

We present the averages of financial indicators of stocks with the top 20 centralities
in different stages in Table 14 to further investigate the characteristics of core stocks.
For comparisons, Table 14 also provides the financial indicator averages of all SSE A-shares
in parentheses.

Table 14 suggests that 67% of the top 20 stocks in the core nodes from different perspec-
tives belong to small and mid-cap stocks rather than large-cap stocks, and further analysing
their financial status through Table 14 shows that although high market capitalisation stocks
such as PetroChina and ICBC have a greater influence on the index due to the index weighting
design, their correlation with other stocks is not strong. Further summarising the financial
characteristics of the core nodes, in terms of solvency, the average short-term solvency of the
core nodes is weak. The current ratio and a quick ratio of two-thirds of the core nodes are
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lower than the average of all SSE A-share stocks in the same period, with nearly one-third of
the core nodes having a current ratio below 1; in terms of profitability, the return on net assets
of the core nodes declines year by year and is much lower than the average of SSE A-shares
in the same period. In terms of profitability, the ROE of two-thirds of the core nodes is lower
than 10% and the profitability is lower. On the contrary, many large-cap stocks, although
they have a greater role in guiding the stock index, have less influence on the system-wide
resonance and linkage effect, which is consistent with the frequent occurrence of the Chinese
stock market. This is in line with the “two-eight divergence” that often occurs in the Chinese
stock market, i.e., when the heavyweight stocks show significant gains, small- and mid-cap
stocks tend to be less volatile or even decline. This phenomenon tends to be different from
the performance of financial markets in developed countries, and Bosma et al. [55] found
through a correlation network among as many as 186 financial institutions in the 2007–2008
U.S. financial crisis that systemically important financial institutions with large sizes and
market capitalisations are also at a more central position in terms of the correlation status of
their stock returns. Overall, there tends to be a higher overlap between “too big to fail” and
“too correlated to fail” institutions and stocks in developed country stock markets, i.e., stocks
with larger market capitalisations tend to be at the centre of correlation and connectivity in
stock markets.

Table 10. Stocks with top five relative betweenness centralities in eight periods.

Bull 1 Bear 1

Stock code Industry category Stock code Industry category

600373 Consumer discretionary 600798 Industrials
600353 Information technology 600088 Consumer discretionary
600624 Health care 600811 Consumer staples
600138 Consumer discretionary 600736 Real estate
600426 Materials 600565 Real estate

Bull 2 Bear 2

Stock code Industry category Stock code Industry category

600692 Real estate 600480 Consumer discretionary
600967 Industrials 600131 Utilities
600665 Real estate 600370 Consumer discretionary
600229 Consumer discretionary 600585 Materials
600662 Industrials 600004 Industrials

Bull 3 Bear 3

Stock code Industry category Stock code Industry category

600131 Utilities 600719 Utilities
600439 Consumer staples 600410 Information technology
600460 Information technology 600533 Real estate
600166 Consumer discretionary 600502 Industrials
600879 Industrials 600501 Industrials

Bull 4 Bear 4

Stock code Industry category Stock code Industry category

600135 Materials 600331 Materials
600561 Industrials 600594 Health care
600422 Health care 600713 Health care
600757 Consumer discretionary 600375 Industrials
600730 Consumer discretionary 600390 Finance

The main reason for this discrepancy is that, as a representative of the emerging stock
market, the composition of investors in Chinese A-shares differs significantly from that of
developed economies. The share of individual investors is more than 80%, which, together
with the immaturity of the regulator, has contributed to the speculative atmosphere in the
market. On the one hand, when the market rises, shareholders follow the trend, and these
stocks are particularly favoured by ordinary investors because of their relatively small
capitalisation, which makes them vulnerable to capital control and higher increases in the
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short term, thus further boosting share prices; on the other hand, however, because such
share price increases do not come from the company’s own performance improvement,
it is difficult to receive long-term investors’ attention, and only blind increases will occur
only. As this kind of stock price increase does not originate from the company’s own
performance improvement, it is difficult to receive long-term investors’ attention, and
the blind rise will only accumulate bubbles rapidly in the short term, laying a hidden
danger for the outbreak of financial risks. After speculators sell at high stock prices, it
will trigger an avalanche of ordinary stockholders to withdraw, eventually leading to a
precipitous decline in stock prices—coupled with the immaturity of China’s capital market
itself, market sentiment is susceptible to influence, investors are prone to overreaction, and
the risk of individual stocks quickly spread throughout the market, leading to a sharp rise
and fall in the entire market phenomenon.

Table 11. Stocks with top five relative closeness centralities in eight periods.

Bull 1 Bear 1

Stock code Industry category Stock code Industry category

600624 Health care 600085 Health care
600172 Materials 600790 Real estate
600983 Consumer discretionary 600006 Consumer discretionary
600373 Consumer discretionary 600811 Consumer staples
600985 Energy 600590 Industrials

Bull 2 Bear 2

Stock code Industry category Stock code Industry category

600405 Industrials 600370 Consumer discretionary
600967 Industrials 600522 Information technology
600692 Real estate 600853 Industrials
600665 Real estate 600480 Consumer discretionary
600787 Industrials 600861 Consumer staples

Bull 3 Bear 3

Stock code Industry category Stock code Industry category

600439 Consumer staples 600410 Information technology
600460 Information technology 600749 Consumer discretionary
600131 Utilities 600502 Industrials
600345 Information technology 600271 Information technology
600166 Consumer discretionary 600661 Consumer discretionary

Bull 4 Bear 4

Stock code Industry category Stock code Industry category

600229 Consumer discretionary 600331 Materials
600561 Industrials 600168 Utilities
600218 Industrials 600713 Health care
600757 Consumer discretionary 600292 Industrials
600422 Health care 600320 Industrials

Table 12. Stocks with top five PageRanks in eight periods.

Bull 1 Bear 1

Stock code Industry category Stock code Industry category

600984 Industrials 600340 Financials
600426 Materials 1 600088 Consumer discretionary
600312 Industrials 600739 Industrials
600517 Industrials 600085 Health care
600313 Industrials 600681 Utilities
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Table 12. Cont.

Bull 2 Bear 2

Stock code Industry category Stock code Industry category

600405 Industrials 600733 Consumer discretionary
600967 Industrials 600083 Consumer discretionary
600665 Financials 600585 Materials
600208 Financials 600860 Industrials
600692 Financials 600175 Energy

Bull 3 Bear 3

Stock code Industry category Stock code Industry category

600879 Industrials 600410 Information technology
600458 Materials 600749 Consumer discretionary
600131 Information technology 600502 Industrials
600746 Materials 600271 Information technology
600439 Consumer staples 600490 Materials

Bull 4 Bear 4

Stock code Industry category Stock code Industry category

600135 Consumer discretionary 600961 Materials
600843 Industrials 600351 Health care
600056 Health care 600438 Consumer staples
600439 Consumer staples 600233 Industrials
600571 Information technology 600594 Health care

Table 13. Stocks with top five CheiRanks in eight periods.

Bull 1 Bear 1

Stock code Industry category Stock code Industry category

600624 Health care 600006 Consumer discretionary
600218 Industrials 600126 Materials
600626 Industrials 600418 Consumer discretionary
600567 Materials 600866 Consumer staples
600237 Information technology 600976 Health Care

Bull 2 Bear 2

Stock code Industry category Stock code Industry category

600020 Industrials 600219 Materials
600601 Information technology 600808 Materials
600308 Materials 600362 Materials
600814 Consumer discretionary 600308 Materials
600360 Information technology 600853 Industrials

Bull 3 Bear 3

Stock code Industry category Stock code Industry category

600460 Information technology 600099 Consumer discretionary
600360 Information technology 600643 Financials
600345 Telecommunication services 600763 Health Care
600166 Consumer discretionary 600809 Consumer staples
600216 Health care 600167 Utilities

Bull 4 Bear 4

Stock code Industry category Stock code Industry category

600229 Consumer discretionary 600168 Utilities
600561 Industrials 600713 Health Care
600356 Materials 600292 Industrials
600218 Industrials 600269 Industrials
600327 Consumer discretionary 600353 Information technology
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Table 14. Financial characteristics of stocks in the SSE A-shares network over eight periods. Numbers in cells and
parentheses report the financial indicator averages of stocks with the top 20 centralities and all SSE A-shares.

Period Current Quick Debt to Asset Total Assets Return on Margin Trading
Ratio Ratio Ratio Turnover Ratio Equity Balance

Bull 1 1.42 (1.38) 1.02 (1.43) 59.33 (43.03) 0.69 (0.81) 15.26 (6.05) - (-)
Bear 1 1.42 (1.22) 0.98 (0.71) 60.09 (55.94) 0.78 (0.78) 11 (11.23) - (-)
Bull 2 1.45 (1.55) 0.92 (0.85) 62.47 (44.29) 0.79 (0.86) 5.30 (7.40) - (-)
Bear 1 1.71 (1.08) 1.14 (1.51) 58.95 (47.17) 0.79 (0.60) 10.18 (3.30) 1.25 (0.48)
Bull 3 1.65 (1.81) 1.26 (1.03) 54.93 (43.48) 0.77 (0.57) 10.86 (5.98) 5.14 (2.31)
Bear 3 1.94 (1.83) 1.48 (1.41) 49.28 (55.78) 0.71 (0.54) –0.07 (–4.09) 6.52 (6.64)
Bull 4 1.95 (2.54) 1.48 (2.16) 49.84 (43.20) 0.64 (0.71) 6.82 (4.57) 4.76 (4.00)
Bear 4 1.95 (1.66) 1.50 (1.28) 50.13 (48.31) 0.66 (0.76) –11.39 (–3.98) 4.34 (3.08)

The abnormal stock market volatility in 2015 was the superimposed effect of such
highly leveraged funding and the financial market’s herding effect. In the first half of 2015,
driven by multiple favourable factors such as the central bank’s interest rate cut, lowering
of quotas, and speeding up of IPO approval, the stock market rose and surged under
the boost of financing, financing business, and over-the-counter funding. The network
structure of the first half of the year not only increased the financial risk but also made
the stock market more tightly structured; with the increase in the proportion of financing
leverage, the risk of blowout increased simultaneously, after which the liquidity turned
from high to low due to the rapid strengthening of financial supervision in the short term
and the malicious shorting by some investors in spite of the market risk, the systemic
risk increased steeply, the stock price bubble was punctured, and there were many times
when a thousand shares fell, which further intensified the forced closure of positions in
the field financing and over-the-counter matching. This caused the stock price to cycle
down, which eventually led to a dramatic fluctuation of the stock index falling by almost
half within six months. With the reform and continuous improvement of China’s financial
market, the market capitalisation of individual investors on the SSE dropped from 63% to
55% between 2015 and 2018, so the microstructure of the market has been differentiated
in various aspects such as sectors, but overall, the institutionalisation of China’s A-share
market needs to be improved in terms of both market capitalisation and trading volume.

5. Discussion

Our paper investigates the rise and fall of China’s stock market and explores the char-
acteristics of this phenomenon that not only recurred during the subprime mortgage crisis
in 2015 but also occurred in 2018 and 2021. As one of the most important emerging markets,
the stock market in China plays a vital role in the global financial markets. Therefore, our
paper also has universal significance and research value in the worldwide market. Our
paper has made significant improvements in delineating the economic relevance of stocks.
Using the LASSO model, economic relevance can be described from the entire stock system.
The traditional measurement, such as Granger causality and Pearson relevance, is based on
the pairwise relationship. Our paper is more objective and reasonable in terms of economics
methodology and more in line with the accurate fitting of the measurement method. At the
same time, we lay a reliable foundation for the division of research modules based on the
entropy method to describe the stock correlation and to explain the important improvement
and significance of the LASSO method compared with traditional methods. In the module
division study based on the entropy method, we analyse the risk spillovers within and
between modules, combine the entropy method to apply to the Chinese financial market,
and carry out a financial analysis of the corresponding module division. We explain the
correlation between these modules and the phenomenon of industry rotation. We also
explore industry rotation characteristics that SMEs may establish a guiding relationship
with more stocks and explain the financial indicators of this type of SME. We further show
that, based on the division of social structure by entropy, China has better excavated the
financial meaning behind the community’s structure.
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Our results highlight that the system module is gradually differentiated into several
small parts based on 249 industry categories as China’s financial market develops. There
is no industry differentiation in the first four stages because of investors’ immaturity
and the relative lack of depth in industry analysis. Industry differentiation emerges in the
subsequent multiple stages because stocks from various industries have different degrees of
consistency. As stock information is mined, investors can better identify stocks supported
by policies, so significant differences emerge in stocks’ aggregation between different
industries. Stocks in the same sector show a higher degree of correlation. During the
risk transfer of industries, related upstream and downstream industries also show closer
correlation with each other, as evidenced by the latter four stages in modules 1 and 2. The
risk transmission between them can be shown, which further proves the driving effect of
stock information mining on industry module differentiation. In the 2015 stock market
crash, as there were several thousand stock drops, the market’s industry differentiation
effect weakened and systemic risk increased again, more similar to the first four modules.
The market showed a more substantial investor herding effect and irrational selling.

Our results also shed new insights on the stock markets. As is the case in China, 67% of
the top 20 stocks in the core nodes from different perspectives belong to small- and mid-cap
stocks rather than large-cap stocks, although high market capitalisation stocks such as
PetroChina and ICBC have a greater influence on the index due to the index weighting
design, their correlation with other stocks is not strong. Further summarising the financial
characteristics of the core nodes, in terms of solvency, the average short-term solvency of
the core nodes is weak. The current ratio and a quick ratio of two-thirds of the core nodes
are lower than the average of all SSE A-share stocks in the same period, with nearly one-
third of the core nodes having a current ratio below 1; in terms of profitability, the return
on net assets of the core nodes declines year by year and is much lower than the average of
SSE A-shares in the same period. In terms of profitability, the ROE of two-thirds of the core
nodes is lower than 10% and the profitability is lower. On the contrary, many large-cap
stocks, although they have a greater role in guiding the stock index, have less influence
on the system-wide resonance and linkage effect, which is consistent with the frequent
occurrence of the Chinese stock market. This is in line with the “two-eight divergence”
that often occurs in the Chinese stock market, i.e., when the heavyweight stocks show
significant gains, small- and mid-cap stocks tend to be less volatile or even decline. This
phenomenon tends to be different from the performance of financial markets in developed
countries, and Bosma et al. (2019) finds through a correlation network among as many as
186 financial institutions in the 2007–2008 U.S. financial crisis that systemically important
financial institutions with large sizes and market capitalisations are also at a more central
position in terms of the correlation status of their stock returns. Overall, there tends to be a
higher overlap between “too big to fail” and “too correlated to fail” institutions and stocks
in developed country stock markets, i.e., stocks with larger market capitalisations tend to
be at the centre of correlation and connectivity in stock markets.

The main reason for this discrepancy is that, as a representative of the emerging stock
market, the composition of investors in Chinese A-shares differs significantly from that of
developed economies. The share of individual investors is more than 80%, which, together
with the immaturity of the regulator, has contributed to the speculative atmosphere in the
market. On the one hand, when the market rises, shareholders follow the trend, and these
stocks are particularly favoured by ordinary investors because of their relatively small
capitalisation, which makes them vulnerable to capital control and higher increases in the
short term, thus further boosting share prices; on the other hand, however, because such
share price increases do not come from the company’s own performance improvement, it
is difficult to receive long-term investors’ attention, and blind increases will occur only. As
this kind of stock price increase does not originate from the company’s own performance
improvement, it is difficult to receive long-term investors’ attention, and the blind rise
will only accumulate bubbles rapidly in the short term, laying the hidden danger for
the outbreak of financial risks. After speculators sell at high stock prices, it will trigger
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an avalanche of ordinary stockholders to withdraw, eventually leading to a precipitous
decline in stock prices—coupled with the immaturity of China’s capital market itself,
market sentiment is susceptible to influence, investors are prone to overreaction, and the
risk of individual stocks quickly spread throughout the market, leading to a sharp rise and
fall in the entire market phenomenon.

The abnormal stock market volatility in 2015 was the superimposed effect of such
highly leveraged funding and the financial market’s herding effect. In the first half of
2015, driven by multiple favourable factors such as the central bank’s interest rate cut
and lowering of quotas and the speeding up of IPO approval, the stock market rose and
surged under the boost of financing, financing business, and over-the-counter funding.
The network structure of the first half of the year not only increased the financial risk but
also made the stock market more tightly structured. With the increase in the proportion of
financing leverage, the risk of blowout increased simultaneously, after which the liquidity
turned from high to low due to the rapid strengthening of financial supervision in the short
term and the malicious shorting by some investors in spite of the market risk, the systemic
risk increased steeply, the stock price bubble was punctured, and there were many times
when a thousand shares fell, which further intensified the forced closing of positions in
field financing and over-the-counter matching. This caused the stock price to cycle down,
which eventually led to a dramatic fluctuation of the stock index falling by almost half
within six months. With the reform and continuous improvement of China’s financial
market, the market capitalisation of individual investors on the SSE dropped from 63% to
55% between 2015 and 2018, so the microstructure of the market has been differentiated
in various aspects such as sectors, but overall, the institutionalisation of China’s A-share
market needs to be improved in terms of both market capitalisation and trading volume.

6. Conclusions

Based on the daily closing prices of SSE A-shares from 2005 to 2018, this paper utilises
the minimum entropy method and topological properties of networks to investigate the
evolution of the SSE A-shares market from macro- and microperspectives. The main
research conclusions are listed as follows:

First, stocks in the SSE A-shares market are closely connected over all periods, and the
connected effect is more significant in bear markets. As a result, the degree of declines in
bear markets is much greater than that of rises in bull markets. No apparent risk sources
exist in the rapidly falling bear markets, but those sources can be identified in the slowly
falling bear markets, which is beneficial to control.

Second, the SSE A-shares network shows the industry differentiation in the last four
stages. In the first four stages, most stocks belong to the same module, referred to as the
system module, which implies that risk contagion mainly appears in this module and risks
transmission from the central module to peripheral modules. As the Chinese financial market
develops, the growing industry aggregation in the SSE A-shares market gives rise to module
differentiation and gradually undermines the system module’s status. Consequently, risks are
more likely to spread in modules with similar industry categories.

Third, some stocks have consistent influences on the SSE A-shares market over eight
periods, and most of them belong to health care, consumer discretionary, industrials, and
materials. Status analyses suggest that a few stocks have leading effects on others and play
irreplaceable roles in the network. Further, medium- and small-cap stocks with poor financial
conditions are more likely to become risk sources in the SSE A-shares network, especially in
the bear stage.

The Chinese financial system’s development increases investors’ risk awareness, the num-
ber of institutional investors, fundamental analysis abilities, and industry policies’ sensitivity.
As a result, the SSE A-shares market is expected to increase systematic differentiation and
industry aggregation. The SSE A-shares market’s long-term study reveals dynamic changes
in the capital market’s microstructure, discovers the evolution of emerging financial markets,
and further discusses targeted supervision on high-risk stocks. Not only can our work help
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investors improve asset allocations and portfolio strategies, but it can also give advice to policy
makers from the view of improving market supervision and reducing market speculation.
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Appendix A

Figure A1. Module divisions in eight periods based on the Map Equation algorithm. Nodes rep-
resent modules, directed links indicate directions of the information flow, and the thicknesses of
links demonstrate the transmission probability of risk between different modules. The node size
is proportional to the information flow in a module that includes the information flow out of and
within the module. Specifically, the boundary thickness of a node is proportional to the information
flow out of the module, corresponding to the probability of risk of transmission to other modules.
The interior area of a node is proportional to the information flow within the module, corresponding
to the probability that risks stay in the module.
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Figure A2. Module divisions in eight periods based on the Map Equation algorithm. Nodes rep-
resent modules, directed links indicate directions of the information flow, and the thicknesses of
links demonstrate the transmission probability of risk between different modules. The node size
is proportional to the information flow in a module that includes the information flow out of and
within the module. Specifically, the boundary thickness of a node is proportional to the information
flow out of the module, corresponding to the probability of risk of transmission to other modules.
The interior area of a node is proportional to the information flow within the module, corresponding
to the probability that risks stay in the module.

Appendix B

For the LASSO estimate

β̂−i = argmin
β−i

 1
2T

T

∑
t=1

(
rit −∑

j 6=i
rjtβij

)2

+ λ ∑
j 6=i

∣∣βij
∣∣, (A1)

the cyclical coordinate descent algorithm [56] is used to solve the L1 optimisation problem.
Computing along a regularisation path, Friedman et al. [56] also suggested that this
algorithm is faster than competing methods, can handle large problems, and can efficiently
address sparse features.

A coordinate descent step is considered to solve Equation (A1). Specifically, suppose
the estimates for βij (j 6= i, k) have been achieved, denoted as β̂−i, and the objection is to
partially optimise with respect to βik. Compute the gradient at βik = β̂ik, which only exists
if β̂ik 6= 0. Denote Rλ(β−i) as the objection function in Equation (A1). If β̂ik > 0, then
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∂Rλ

∂βik

∣∣∣∣
β−i=β̂−i

= − 1
T

T

∑
t=1

rkt

(
rit − ∑

j 6=i,k
β̂ijrjt

)
+ λ.

A similar expression exists if β̂ik < 0, and β̂ik = 0 is treated separately. Simple calculus [57]
shows that the coordinatewise update has the form

β̂ik = S

(
1
T

T

∑
t=1

rkt

(
rit − r̂(k)it

)
, λ

)
,

where r̂(k)it = ∑j 6=i,k β̂ijrjt is the fitted value excluding the contribution from rkt, and S(z, γ)
is the soft-threshold operator with value

sign(z)(|z| − γ)+ =


z− γ if z > 0 and γ < |z|;
z + γ if z < 0 and γ < |z|;

0 if γ ≥ |z|.

Next, iteratively update the rest estimates and obtain the final estimates β̂−i.
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