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Abstract: Spherical hesitant fuzzy sets have recently become more popular in various fields. It was
proposed as a generalization of picture hesitant fuzzy sets and Pythagorean hesitant fuzzy sets in
order to deal with uncertainty and fuzziness information. Technique of Aggregation is one of the
beneficial tools to aggregate the information. It has many crucial application areas such as decision-
making, data mining, medical diagnosis, and pattern recognition. Keeping in view the importance
of logarithmic function and aggregation operators, we proposed a novel algorithm to tackle the
multi-attribute decision-making (MADM) problems. First, novel logarithmic operational laws are
developed based on the logarithmic, t-norm, and t-conorm functions. Using these operational laws,
we developed a list of logarithmic spherical hesitant fuzzy weighted averaging/geometric aggrega-
tion operators to aggregate the spherical hesitant fuzzy information. Furthermore, we developed the
spherical hesitant fuzzy entropy to determine the unknown attribute weight information. Finally,
the design principles for the spherical hesitant fuzzy decision-making have been developed, and a
practical case study of hotel recommendation based on the online consumer reviews has been taken to
illustrate the validity and superiority of presented approach. Besides this, a validity test is conducted
to reveal the advantages and effectiveness of developed approach. Results indicate that the proposed
method is suitable and effective for the decision process to evaluate their best alternative.

Keywords: spherical hesitant fuzzy sets; logarithmic aggregation operators; entropy measure;
decision making

1. Introduction

Suppose you are looking forward to visiting any city for a while and need to book a
hotel. You do not know where to stay, you think about how to make a decision about where
to stay. You may be able to ask your friends, go to a travel agency, or search the Internet.
All of these techniques have one thing in common: people always follow the advice of
others when making decisions [1]. It is generally accepted that social networking has
the potential to influence consumer purchasing decisions, both positively and negatively.
Thus, contact with social networking has been a concern for marketing staff for some
time [2,3]. The Internet makes it easy for consumers to share their own view of the hotel
they once stayed in. For passengers, consumers normally examine the hotel on the travel
website to make a comparison. Online reviews are increasingly becoming the reference
information that consumers can search before making decisions, thus playing a key role in
consumer decision-making.

With the rapid growth of internet technology [4], like Web 2.0, hotels can be easily
selected on the web site. Web 2.0 innovations have changed the way consumers search
for hotels significantly. It offers consumers the convenience of accessing the goods and
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services of hotels at any time and in any location. Therefore, with the advent of an
online booking system, travelers around the world are able to enter targeted hotels by
clicking [5]. The online sequence of hotels is very critical because it can influence consumers’
booking decisions [6]. In fact, the tourism website’s online reviews play a major role in
directing people’s everyday consumption [7]. In addition, each consumer relies on the hotel
evaluation requirements, and when sorting the hotels, it is best to take a detailed account.
That is why most of the new hotel sequences on the tourism website are constrained in terms
of meeting consumers’ expectations [8]. Researchers in this area are therefore starting
to concentrate on proposing a form of hotel recommendation that can help customers
easily and reliably locate the most suitable hotel [9]. At present, online reviews from both
theoretical and realistic viewpoints have been reviewed by several researchers. Online
reviews were listed in [10] and observed that online reviews are strongly skewed toward
positive scores. Ye et al. [11], Spark and Browning [1], and Simmons et al. [12] presented
the role of online reviews for hotel booking in different style. The customer satisfaction
of the hotel was obtained by Berezina et al. [13] through the process of text-link analysis.
Some application research on hotel recommendation problems is also available [10,14].
In addition, it is suggested that online feedback of similar groups can have a substantial
influence on decision-making. Moreover, granular computing [15–17] is commonly used in
related group clustering. While researchers have proposed the concept of fuzzy sets and
applied them to several fields [18–20], like hotel ranking [21,22], all of the details in online
reviews, in particular text types, cannot be protected. Actually, Thong [23] found out that
the emotions reflected in text reviews were expensive.

The multi-attribute group decision-making (MAGDM) process is a significant and
emerging issue that illustrates a method for selecting the best alternative with a group
of decision-makers (DMs) and situations. There are two severe goals in this technique:
The first goal is to describe the environment in which the values of a few attributes can be
effectively analyzed, while the second goal is to aggregate the described data. Generally,
the data that describe the substances are taken in the form of deterministic or crisp in nature.
However, as the structures become more difficult to manage, collecting data from records,
assets, and professionals in a clear and concise manner becomes increasingly difficult. Thus,
in order to express information more flexibly, the researchers employ the concept of fuzzy
sets [24] and their generalizations like intuitionistic fuzzy set (IFSs) [25–29], Pythagorean
fuzzy sets (PyFSs) [30,31], hesitant fuzzy sets (HFSs) [32], picture fuzzy sets [33–36], etc.

Spherical fuzzy sets (SFSs), proposed by Ashraf et al. [37–39], are a generalized
structure of the all existing structures of fuzzy sets. SFSs can handle vagueness more
successfully and competently in decision-making problems (DMPs). Ashraf et al. [40]
established the spherical fuzzy Dombi aggregation operators (AOs) under spherical fuzzy
information. Jin et al. [41] presented the linguistic spherical fuzzy AOs under SF infor-
mation. Rafiq et al. [42] presented the decision-making technique based on the cosine
similarity measures to tackle the uncertainty in real-life DMPs. Ashraf et al. [43] developed
the spherical distance measure under SF settings. Ashraf et al. [44] proposed the spheri-
cal fuzzy set representation using t-norm and t-conorm. Zeng et al. [45] established the
spherical fuzzy rough set structure and proposed the TOPSIS methodology to tackle the
inaccurate and uncertain information in the form of SFSs. Jin et al. [46] presented the loga-
rithmic function-based AOs under spherical fuzzy settings. Ashraf et al. [47] introduced
the novel AOs based on symmetric sum under spherical fuzzy settings. Barukab et al. [48]
established the advanced fuzzy TOPSIS tachnique under spherical fuzzy environment to
tackle the uncertainty in DMPs. Ashraf et al. [49,50] presented the spherical fuzzy set based
emergency decision-making methodology to tackle the uncertainty in emergency situation.

To overwhelm the hesitancy, Torra [51] recognized the notion of FSs with hesitancy.
By means of hesitant fuzzy set (HFS), many writers determined problems by aggregating
the operators in group decision-making: Liu and Sun [52] presented the power average AOs
under HFS environment and discussed their application in DMPs. Xia and Xu [53] devel-
oped the novel aggregation information to tackle the uncertainty in DMPs. Khan et al. [54]
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discussed the applications of probabilistic hesitant fuzzy rough set in decision aid sys-
tem. Afterwards, Khan et al. [55] recognized the idea of Pythagorean HFS (PyHFS).
They presented an assessment method and recognized operators to aggregate the data.
Khan et al. [56] recognized Pythagorean hesitant fuzzy weighted average and hybrid ag-
gregation operators and their application to DMPs. Recently, Naeem et al. [57] introduced
the novel concept of spherical hesitant fuzzy sets, which is the hybrid structure of hesitant
fuzzy sets and spherical fuzzy sets. Spherical hesitant fuzzy sets (SHFSs) is the triplet
having positive, neutral, and negative membership grades in the form of sets consider
some values in [0, 1]. As SHFS is very effective and reliable to tackle the hesitancy in real
life decision-making problems. Therefore, motivated by the concept of SHFSs, in this paper,
we developed the novel aggregation operators based on the logarithmic function. The main
contribution of the article is listed as follows:

(1) Novel logarithmic operational laws under spherical hesitant fuzzy numbers are devel-
oped.

(2) Based on the logarithmic operational laws, a novel list of algebraic aggregation op-
erators is introduced to aggregate the uncertain information in real word decision
making problems.

(3) A decision-making algorithm is presented to deal decision-making problems.
(4) A real-life decision-making problem of hotel selection is illustrated using proposed al-

gorithm.
(5) A validity test is given to show the effectiveness and reliability of the proposed

methodology.

The rest of this paper is organized as follows. In Section 2, basic studies on generaliza-
tions of fuzzy sets are briefly reviewed. In Section 3, the basic knowledge about logarithmic
operational laws are given. In Section 4, we propose list of novel logarithmic spherical
hesitant fuzzy aggregation operators and their related properties. In Section 5, we provide
a decision-making algorithm to tackle the real life decision-making problems. In Section 6,
a case study about hotel selection is illustrated to show the applicability of the proposed
methodology. In Section 7, a comparison study is presented, also a validity test is presented
in Section 8, to show the effectiveness and reliability of the developed approach. Finally,
conclusion is drawn in Section 9.

2. Preliminaries

In this section, studies on generalizations of fuzzy sets are briefly reviewed.

Definition 1. [24] Suppose the ground set N 6= φ. A fuzzy set (FS) C is described as below,

C = {〈q, EC(q)〉|q ∈ N}, (1)

where EC(q) ∈ [0, 1] indicate the membership grade of q in C.

Definition 2. [51] Suppose the ground set N 6= φ. A hesitant FS (HFS) C is described as below,

C = {〈q, hC(q)〉|q ∈ N}, (2)

where hC(q) be any set having the some values in [0, 1].

Definition 3. [25] Suppose the ground set N 6= φ. An intuitionistic FS C is described as below,

C = {〈q, EC(q), FC(q)〉|q ∈ N}, (3)

where EC : q → [0, 1] be positive and FC : q → [0, 1] be negative membership grades with the
constraint EC(q) + FC(q) ≤ 1, ∀ q ∈ N.
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Definition 4. [30] Suppose the ground set N 6= φ. A Pythagorean FS C is described as below,

C = {〈q, MC(q), KC(q)〉|q ∈ N}, (4)

where MC : g → [0, 1] be positive and KC : q → [0, 1] be negative membership grades with the
constraint (MC(q))

2 + (KC(q))
2 ≤ 1, ∀ q ∈ N.

Definition 5. [33] Suppose the ground set N 6= φ. A picture FS C is described as below,

C = {〈q, EC(q), FC(q), GC(q)〉|q ∈ N}, (5)

where EC : q → [0, 1] be positive, FC : q → [0, 1] be neutral, and GC : q → [0, 1] be negative
membership grades with the constraint (EC(q)) + (FC(q)) + (GC(q)) ≤ 1, ∀ q ∈ N.

Definition 6. [37–39] Suppose the ground set N 6= φ. A spherical FS C is described as below,

C = {〈q, EC(q), FC(q), GC(q)〉|q ∈ N}, (6)

where EC : q → [0, 1] be positive, FC : q → [0, 1] be neutral, and GC : q → [0, 1] be negative
membership grades with the constraint (EC(q))

2 + (FC(q))
2 + (GC(q))

2 ≤ 1, ∀ q ∈ N.

Definition 7. [57] Suppose the ground set N 6= φ. A spherical hesitant FS (SHFS) C is
described as below,

C = {〈q, EC(q), FC(q), GC(q)〉|q ∈ N}, (7)

where

EC(q) = {u|u ∈ [0, 1]}, FC(q) = {v|v ∈ [0, 1]} and GC(q) = {w|w ∈ [0, 1]},

are the three sets of some values in [0, 1], denoted the positive, neutral, and negative membership
grades with the constraint 0 ≤ (u+)

2
+ (v+)2

+ (w+)
2 ≤ 1, ∀ q ∈ N, such that

u+ =
⋃

u∈EC(q)

max{u}, v+ =
⋃

v∈FC(q)

max{v}, and w+ =
⋃

w∈GC(q)

max{w}.

For easiness, we signified SHFS(C) be the list of spherical hesitant FSs and the triplet
(EC, FC, GC) is called spherical hesitant fuzzy number (SHFN).

Definition 8. [57] Suppose Cq =
{

Eq, Fq, Gq
}
∈ SHFN(N) (q ∈ N). The basic operational

laws are described as below,
(1) (C1)

c =
⋃

(u1,v1,w1)∈(E1,F1,Gλ1)
{E1, F1, G1};

(2) C1 ∪C2 =
⋃

(uq ,vq ,wq)∈(Mq ,Fq ,Gq)

{
max

(
Eq
)
, min

(
Fq
)
, min

(
Gq
)}

;

(3) C1 ∩C2 =
⋃

(uq ,vq ,wq)∈(Mq ,Fq ,Gq)

{
min

(
Eq
)
, min

(
Fq
)
, max

(
Gq
)}

;

Definition 9. [57] Let C = {E, F, G}, C1 = {E1, F1, G1}, and C2 = {E2, F2, G2} be the three
SHFEs, β > 1. Then, the operational laws for SHFNs are described as

(1) C1 ⊕C2 =
⋃

u∈E1,v1∈F1,w1∈G1
u2∈E2,v2∈F,w2∈G1

{√
u2

1 + u2
2 − u2

1u2
2, v1v2, w1w2

}
;

(2) C1 ⊗C2 =
⋃

u∈E1,v1∈F1,w1∈G1
u2∈E2,v2∈F,w2∈G1

{
{u1u2, v1v2,

√
w2

1 + w2
2 − w2

1w2
2

}
;
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(3) βC =
⋃

u∈E,v∈F,w∈G

{√
1− (1− u2)β, (v)β, (w)β

}
;

(4) Cβ =
⋃

u∈E,v∈F,w∈G

{
(u)β, (v)β,

√
1− (1− w2)β

}
.

Definition 10. Let C = {E, F, G} be a SHFN, then the score function S of C is defined as

S(k) = 1
l(EC)

∑ EC −
1

l(FC)
∑ FC −

1
l(GC)

∑ GC . (8)

where l represented the number of elements in membership grades.

Definition 11. Let C = {E, F, G} be a SHFN, then the accuracy function H is defined as

H(C) = EC + FC + GC.

On the basis of score and accuracy functions, a comparison system is specified as

Definition 12. Let C1 and C2 be two SHFNs, S(Ci) is the score function and H(Ci) is the
accuracy function of Ci(i = 1, 2), then
(1) If S(C1) > S(C2), then C1 > C2;
(2) If S(C1) = S(C2), then
(a) If H(C1) > H(C2), then C1 > C2;
(b) If H(C1) = H(C2), then C1 = C2;
(c) If H(C1) < H(C2), then C1 < C2.

Definition 13. [38,39] Suppose Cq =
{

Eq, Fq, Gq
}
∈ SFN(N) (q ∈ N). Then, the weighted

averaging operator for SFNs is described as

SFWA(C1,C2, ...Cm) = β1C1 ⊕ β2Cn ⊕ ...⊕ βmCm

=
m

∑
q=1

βqCq (9)

where β = (β1, β2, ...βm)
T is weight information of (C1,C2, ...Cm) such that βq ≥ 0; ∑m

q=1 βq = 1.

Definition 14. [38,39] Suppose Cq =
{

Eq, Fq, Gq
}
∈ SFN(N) (q ∈ N). Then, ordered weighted

averaging operator for SFNs is described as

SFOWA(C1,C2, ...Cm) = β1C`(1) ⊕ β2C`(2) ⊕ ...⊕ βmC`(m)

=
m

∑
q=1

βqC`(q) (10)

where `(q) denote the order according to (`(1), `(2), `(3), ..., `(m)) and β = (β1, β2, ...βm)
T is

weight information of (C1,C2, ...Cm) such that βq ≥ 0; ∑m
q=1 βq = 1.

Definition 15. [38,39] Suppose Cq =
{

Eq, Fq, Gq
}
∈ SFN(N) (q ∈ N). Then, weighted geomet-

ric operator for SFNs is described as

SHFWG(C1,C2, ...Cm) = (C1)
β1 ⊗ (C2)

β2 ⊗ ...⊗ (Cm)
βm

=
m

∏
q=1

(
Cq
)βq (11)

where (β1, β2, ...βm)
T is weight information of (C1,C2, ...Cm) such that βq ≥ 0; ∑m

q=1 βq = 1.
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Definition 16. [38,39] Suppose Cq =
{

Eq, Fq, Gq
}
∈ SFN(N) (q ∈ N). Then, ordered weighted

geometric operator for SFNs is described as

SHFOWG(C1,C2, ...Cm) =
(
C`(1)

)β1 ⊗
(
C`(2)

)β2 ⊗ ...⊗
(
C`(m)

)βm

=
m

∏
q=1

(
C`(q)

)βq
(12)

where `(q) is represented the order according to (`(1), `(2), `(3), ..., `(m)) and (β1, β2, ...βm)
T is

weight information of (C1,C2, ...Cm) such that βq ≥ 0; ∑m
q=1 βq = 1.

3. Operational Laws for Logarithmic Spherical Hesitant Fuzzy Sets

Definition 17. Suppose Cq =
{

Eq, Fq, Gq
}
∈ SHFN(N). A Logarithmic spherical hesitant FS

(LSHFS) is described as below,

LogiCq = {
√

1− (Logi EC(q))
2, Logi

(√
1− F2

C(q)
)

, Logi

(√
1− G2

C(q)
)
|q ∈ N} (13)

where Logi EC(q) = {u|u ∈ [0, 1]}, Logi (1− FC(q)) = {v|v ∈ [0, 1]} and Logi (1− GC(q)) =
{w|w ∈ [0, 1]} are the three sets of some values in [0, 1], denoted the positive, neutral, and negative
membership grades with the constraint 0 ≤ (u+)

2
+ (v+)2

+ (w+)
2 ≤ 1, for all q ∈ N, such that

u+ =
⋃

u∈(1−Logi EC(q))
max{u}, v+ =

⋃
v∈Logi (1−FC(q)) max{v},

and
w+ =

⋃
w∈Logi (1−GC(q))

max{w}.

Definition 18. Suppose Cq =
{

Eq, Fq, Gq
}
∈ SHFN(N). If

LogiCq =




√

1− (Logi EC(q))
2,

Logi

(√
1− F2

C(q)
)

,

Logi

(√
1− G2

C(q)
)
 0 < i ≤ min

{
EC,

√
1− F2

C,
√

1− G2
C

}
< 1


√

1−
(

Log 1
i
EC(q)

)2
,

Log 1
i

(√
1− F2

C(q)
)

,

Log 1
i

(√
1− G2

C(q)
)
 0 < 1

i ≤ min
{

EC,
√

1− F2
C,
√

1− G2
C

}
< 1

then LogiCq is called logarithmic operator for spherical hesitant fuzzy set. Here, we take Logi0 = 0,
i > 0 and i 6= 1.

Theorem 1. Let Cq =
{

Eq, Fq, Gq
}
∈ SHFN(N), then LogiCq is also a SHFN.

Proof. As we know that for Cq =
{

Eq, Fq, Gq
}

in N we have Eq : N → [0, 1], Fq : N →
[0, 1] and Gq : N → [0, 1] denote the positive, negative and neutral membership degrees.
Furthermore, the following constraint holds:

0 ≤ E2
C(q) + F2

C(q) + G2
C(q) ≤ 1.

The following two cases will also happen:
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Case-1 When

0 < i ≤ min
{

EC,
√

1− F2
C,
√

1− G2
C

}
< 1.i 6= 1,

since LogiCq is a decreasing function w.r.t i. Therefore,

0 ≤ LogiEC, Logi

(√
1− F2

C

)
, Logi

(√
1− G2

C

)
< 1,

and

0 ≤
√

1− (Logi EC)
2 ≤ 1, 0 ≤ Logi

(√
1− F2

C

)
≤ 1, 0 ≤ Logi

(√
1− G2

C

)
≤ 1,

and

0 ≤
√

1− (Logi EC)
2 + Logi

(√
1− F2

C

)
+ Logi

(√
1− G2

C

)
≤ 1.

Hence, LogiCq is a SHFN.
Case-2 When i > 1, 0 < 1

i < 1 and

1
i
≤ min

{
EC,

√
1− F2

C,
√

1− G2
C

}
< 1.

By the same approach as in case-1, we can prove that LogiCq is a SHFN.

Definition 19. Let LogiCq =

{√
1−

(
Logi Eq

)2, Logi

(√
1− F2

q

)
, Logi

(√
1− G2

q

)}
∈ SHFN(N), β > 1. Then, the operations for LSHFNs are described as

(1) LogiC1 ⊕ LogiC2 =
⋃

uq∈
(√

1−(Logi Eq)
2
)

,

vq∈Logi

(√
1−F2

q

)
, wq∈Logi

(√
1−G2

q

)


√

1− (Logi u1)
2(Logi u2)

2,

Logi

√(
1− v2

1
)
.Logi

√(
1− v2

2
)
,

Logi

√(
1− w2

1
)
.Logi

√(
1− w2

2
)
;

(2) LogiC1 ⊗ LogiC2

=
⋃

uq∈
(√

1−(Logi Eq)
2
)

, vq∈Logi

(√
1−F2

q

)
,

wq∈Logi

(√
1−G2

1

)



√
1− (Logi u1)

2
√

1− (Logi u2)
2,√

1−
(

1− Logi

(√
1− v2

1

))2
.
(

1− Logi

(√
1− v2

2

))2
,√

1−
(

1− Logi

(√
1− w2

1

))2
.
(

1− Logi

(√
1− w2

2

))2


;

(3) βLogiC1 =
⋃

u1∈
(√

1−(Logi E1)
2
)

, v1∈Logi (
√

1−F2),

w1∈Logi (
√

1−G2)


√

1− (Logi u1)
2β, Logi

(√
1− v2

1

)β
,

Logi

(√
1− w2

1

)β

;

(4) (LogiC1)
β =

⋃
u1∈

(√
1−(Logi E1)

2
)

, v1∈Logi (
√

1−F2),

w1∈Logi (
√

1−G2)



(√
1− (Logi u1)

2
)β

,√
1−

(
1−

(
Logi

√
1− v2

1

)2)β

,√
1−

(
1−

(
Logi

√
1− w2

1

)2)β


.
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Theorem 2. Suppose Cq =
{

Eq, Fq, Gq
}
∈ SHFN(N) with 0 < i ≤ min


EC,√

1− F2
C,√

1− G2
C < 1

,

i 6= 1, then
(1) iLogiC = C;
(2) Logi i

C = C.

Proof. (1) By using Definition 19, we have

iLogiC =
⋃

u∈
(√

1−(Logi E)
2
)

,v∈Logi (
√

1−F2),

w∈Logi (
√

1−G2)


i

√
1−
(√

1−(Logi u)
2
)2

,√
1− i2Logi

√
1−v2

,√
1− i2Logi

√
1−w2

;

=
⋃

u∈
(√

1−(Logi E)
2
)

,v∈Logi (
√

1−F2),

w∈Logi (
√

1−G2)

 i

√
1−
(

1−(Logi u)
2)

,√
1− (1− v2),√
1− (1− w2)

;

=
⋃

u∈
(√

1−(Logi E)
2
)

,v∈Logi (
√

1−F2),w∈Logi (
√

1−G2)

(
iLogi u, v, w

)
;

=
⋃

u∈
(√

1−(Logi E)
2
)

,v∈Logi (
√

1−F2),w∈Logi (
√

1−G2)

(u, v, w) = C.

(2) By using Definition 19, we have

Logi i
C =

⋃
u∈
(√

1−(Logi E)
2
)

,v∈Logi (
√

1−F2),

w∈Logi (
√

1−G2)

Logi


 i

√
1−u2 ,√

1− i2v,√
1− i2w


;

=
⋃

u∈
(√

1−(Logi E)
2
)

,v∈Logi (
√

1−F2),

w∈Logi (
√

1−G2)



√
1−

(
Logi i

√
1−u2

)2
,

Logi

√
1−

(√
1− i2v

)2
,

Logi

√
1−

(√
1− i2v

)2


;

=
⋃

u∈
(√

1−(Logi E)
2
)

,v∈Logi (
√

1−F2),

w∈Logi (
√

1−G2)

{ √
1− (1− u2), Logi

√
1− (1− i2v),

Logi

√
1− (1− i2v)

}
;

= (u, v, w) = C.

Proved
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Theorem 3. Let LogiCq =


√

1−
(

Logi Eq
)2, Logi

(√
1− F2

q

)
,

Logi

(√
1− G2

q

)
, (q = 1, 2) be any two

LSHFNs with 0 < i ≤ min
{

EC,
√

1− F2
C,
√

1− G2
C < 1

}
< 1, i 6= 1 then

(1) LogiC1 ⊕ LogiC2 = LogiC2 ⊕ LogiC1;
(2) LogiC1 ⊗ LogiC2 = LogiC2 ⊗ LogiC1.

Proof. Straightforward.

Theorem 4. Let LogiCq =


√

1−
(

Logi Eq
)2, Logi

(√
1− F2

q

)
,

Logi

(√
1− G2

q

)
, (q = 1, 2, 3) be any two

LSHFNs with 0 < i ≤ min
{

EC,
√

1− F2
C,
√

1− G2
C < 1

}
< 1, i 6= 1 then

(1) (LogiC1 ⊕ LogiC2)⊕ LogiC3 = LogiC1 ⊕ (LogiC2 ⊕ LogiC3),
(2) (LogiC1 ⊕ LogiC2)⊗ LogiC3 = LogiC1 ⊗ (LogiC2 ⊗ LogiC3).

Proof. Straightforward.

Theorem 5. Let LogiCq =


√

1−
(

Logi Eq
)2, Logi

(√
1− F2

q

)
,

Logi

(√
1− G2

q

)
(q = 1, 2) be any two

LSHFNs with 0 < i ≤ min
{

EC,
√

1− F2
C,
√

1− G2
C < 1

}
< 1, i 6= 1, β, β1, β2 > 0 are

any real numbers. Then,
(1) β(LogiC1 ⊕ LogiC2) = βLogiC1 ⊕ βLogiC2;
(2) (LogiC1 ⊗ LogiC2)

β = (LogiC1)
β ⊗ (LogiC2)

β;
(3) βLogiC1 ⊕ βLogiC1 = (β1 ⊕ β2)LogiC1;
(4) (LogiC1)

β1 ⊗ (LogiC1)
β2 = (LogiC1)

β1+β2 ;

(5)
(
(LogiC1)

β1
)β2

= (LogiC1)
β1β2 .

Proof. (1) As, from Definition 19, we have

LogiC1⊕ LogiC2 =
⋃

uq∈
(√

1−(Logi Eq)
2
)

,vq∈Logi

(√
1−F2

q

)
,

wq∈Logi

(√
1−G2

q

)


√

1− (Logi u1)
2(Logi u2)

2,

Logi

√(
1− v2

1
)
.Logi

√(
1− v2

2
)
,

Logi

√(
1− w2

1
)
.Logi

√(
1− w2

2
)


for any real number β > 1,

β(LogiC1 ⊕ LogiC2)

=
⋃

uq∈
(√

1−(Logi Eq)
2
)

,vq∈Logi

(√
1−F2

q

)
,

wq∈Logi

(√
1−G2

q

)



√
1−

(
(Logi u1)

2(Logi u2)
2
)β

,(
Logi

√(
1− v2

1
)
.Logi

√(
1− v2

2
))β

,(
Logi

√(
1− w2

1
)
.Logi

√(
1− w2

2
))β


,
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=
⋃

u1∈
(√

1−(Logi E1)
2
)

,v1∈Logi

(√
1−F2

1

)
,

w1∈Logi

(√
1−G2

1

)



√
1−

(
(Logi u1)

2
)β

,(
Logi

√(
1− v2

1
))β

,(
Logi

√(
1− w2

1
))β


⊕

⋃
u2∈

(√
1−(Logi E2)

2
)

,v2∈Logi

(√
1−F2

2

)
,

w2∈Logi

(√
1−G2

2

)



√
1−

(
(Logi u2)

2
)β

,(
Logi

√(
1− v2

2
))β

,(
Logi

√(
1− w2

2
))β


,

= βLogiC1 ⊕ βLogiC2.

(2) We know from from def C,

LogiC1 ⊗ LogiC2

=
⋃

uq∈
(√

1−(Logi Eq)
2
)

,vq∈Logi

(√
1−F2

q

)
,

wq∈Logi

(√
1−G2

q

)



√
1− (Logi u1)

2.
√

1− (Logi u2)
2,√√√√√√ 1−

(
1− Logi

(√
1− v2

1

))2
.(

1− Logi

(√
1− v2

2

))2 ,

√√√√√√ 1−
(

1− Logi

(√
1− w2

1

))2
.(

1− Logi

(√
1− w2

2

))2


for any real number β > 0, we have

(LogiC1 ⊗ LogiC2)
β

=
⋃

uq∈
(√

1−(Logi Eq)
2
)

,vq∈Logi

(√
1−F2

q

)
,

wq∈Logi

(√
1−G2

q

)



(√
1− (Logi u1)

2
)β

.
(√

1− (Logi u2)
2
)β

,√√√√√√√√
1−

((
1− Logi

(√
1− v2

1

))2)β

.((
1− Logi

(√
1− v2

2

))2)β ,

√√√√√√√√
1−

((
1− Logi

(√
1− w2

1

))2)β

.((
1− Logi

(√
1− w2

2

))2)β


= (LogiC1)

β ⊗ (LogiC2)
β.

(3–5) can be proven in a similar way.



Entropy 2021, 23, 432 11 of 28

Definition 20. Suppose the LSHFN LogiCq =


√

1−
(

Logi Eq
)2,

Logi

(√
1− F2

q

)
,

Logi

(√
1− G2

q

)
, then the score and

accuracy functions are described as below,

S
(

LogiCq
)

=
1

lEq(C)
∑
(

1−
(

Logi Eq
)2
)
− 1

lFq(C)
∑
(

Logi

√
1− F2

q

)2

− 1
lGq(C)

∑
(

Logi

√
1− G2

q

)2
(14)

and an accuracy function H is described as

S
(

LogiCq
)

=
1

lEq(C)
∑
(

1−
(

Logi Eq
)2
)
+

1
lFq(C)

∑
(

Logi

√
1− F2

q

)2

+
1

lGq(C)
∑
(

Logi

√
1− G2

q

)2
. (15)

On the basis of score and accuracy functions, a comparison system is described as

Definition 21. Let LogiCq =


√

1−
(

Logi Eq
)2,

Logi

(√
1− F2

q

)
,

Logi

(√
1− G2

q

)
, (q = 1, 2) be any two LSHFNs. Then,

the comparison procedure is given as
(1) If S(LogiC1) > S(LogiC2), then LogiC1 > LogiC2;
(2) If S(LogiC1) = S(LogiC2) and H(LogiC1) > H(LogiC2), then LogiC1 > LogiC2;
(3) If S(LogiC1) = S(LogiC2) and H(LogiC1) = H(LogiC2), then LogiC1 = LogiC2.

4. Logarithmic Spherical Hesitant Fuzzy Aggregation Operators

Here, we express certain logarithmic aggregation operators, namely logarithmic spher-
ical hesitant fuzzy weighted averaging/geometric aggregation operators. Furthermore,
their features have been conferred in detail.

4.1. Logarithmic Averaging Aggregation Operators

Definition 22. Suppose Cq = {Eq, Fq, Gq}(q = 1, 2...m) be the set of SHFN. If

0 < i ≤ min
{

EC,
√

1− F2
C,
√

1− G2
C < 1

}
< 1, i 6= 1.

Then, Log− SHFWA is described as

Log− SHFWA(C1,C2...Cm) =
m

∑
q=1

βq .LogiqCq (16)

where βq = (q = 1, 2...m) is the weight vector of Log-SHFWA such that βq ∈ [0, 1]
and ∑m

q=1 βq = 1.

Theorem 6. Suppose Cq = {Eq, Fq, Gq}(q = 1, 2...m) be the set of SHFN. If

0 < iq ≤ min
{

EC,
√

1− F2
C,
√

1− G2
C < 1

}
< 1, i 6= 1.
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Then

Log− SHFWA(C1,C2...Cm) =



√
1−

m
∏

q=1

(
Logiq uq

)2βq
,

m
∏

q=1

(
Logiq

(√
1− v2

q

))βq
,

m
∏

q=1

(
Logiq

(√
1− w2

q

))βq


where βq = (q = 1, 2...m) is the weight vector of Log-SHFWA such that βq ∈ [0, 1]
and ∑m

q=1 βq = 1.

Proof. To prove the given result, we use the principal of mathematical induction.
Step-1: For q = 2,

Log− SHFWA(C1,C2) = β1 .Logi1C1 ⊕ β2 .Logi2C2

where

β1 Logi1C1

=
⋃

(u1,v1,w1)∈

 Logi1 E1, Logi1

(√
1− F2

1

)
,

Logi1

(√
1− G2

1

)




√
1− (

(
Logi1 u1

)2
)β1 ,(

Logi1

(√
1− v2

1

))βq
,(

Logi1

(√
1− w2

1

))βq

;

and

β2 Logi2C2

=
⋃

(u2,v2,w2)∈

 Logi2 E2, Logi2

(√
1− F2

2

)
,

Logi2

(√
1− G2

2

)




√
1− (

(
Logi2 u2

)2
)β2 ,(

Logi2

(√
1− v2

2

))β2
,(

Logi2

(√
1− w2

2

))β2

;

Log− SHFWA(C1,C2)

=
⋃

(u1,v1,w1)∈

 Logi1 E1, Logi1

(√
1− F2

1

)
,

Logi1

(√
1− G2

1

)




√
1− (

(
Logi1 u1

)2
)β1 ,(

Logi1

(√
1− v2

1

))β1
,(

Logi1

(√
1− w2

1

))β1

⊕

⋃
(u2,v2,w2)∈

 Logi2 E2, Logi2

(√
1− F2

2

)
,

Logi2

(√
1− G2

2

)




√
1− (

(
Logi2 u2

)2
)β2 ,(

Logi2

(√
1− v2

2

))β2
,(

Logi2

(√
1− w2

2

))β2


By using Definition 19, we get
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Log− SHFWA(C1,C2)

=
⋃

(uq ,vq ,wq)∈

 Logiq Eq, Logiq

(√
1− F2

q

)
,

Logiq

(√
1− G2

q

) 



√
1− (

(
Logi1 u1

)2
)β1 .(

(
Logi2 u2

)2
)

β2 ,(
Logi1

(√
1− v2

1

))β1
.
(

Logi2

(√
1− v2

2

))β2
,(

Logi1

(√
1− w2

1

))β1
.
(

Logi2

(√
1− w2

2

))β2

.

Log− SHFWA(C1,C2)

=
⋃

(uq ,vq ,wq)∈

 Logiq Eq, Logiq

(√
1− F2

q

)
,

Logiq

(√
1− G2

q

) 



√
1−

2
∏

q=1

(
Logiq uq

)2βq
,

2
∏

q=1

(
Logiq

(√
1− v2

q

))βq
,

2
∏

q=1

(
Logiq

(√
1− w2

q

))βq


.

Step-2: Suppose that given result is true for q = x, i.e.,

Log− SHFWA(C1,C2, ...Cx)

=
⋃

(uq ,vq ,wq)∈

 Logiq , Logiq

(√
1− F2

q

)
,

Logiq

(√
1− G2

q

) 



√
1−

x
∏

q=1

(
Logiq uq)

)2βq
,

x
∏

q=1

(
Logiq

(√
1− v2

q

))βq
,

x
∏

q=1

(
Logiq

(√
1− w2

q

))βq


;

Step-3: Now, we have to prove that result is true for q = x + 1.

Log− SHFWA(C1,C2, ...Cx+1) =
m

∑
q=1

βq LogiqCq + βm+1 Logim+1Cm+1



Entropy 2021, 23, 432 14 of 28

Log− SHFWA(C1,C2, ...Cx+1)

=
⋃

(uq ,vq ,wq)∈

 Logiq Eq, Logiq

(√
1− F2

q

)
,

Logiq

(√
1− G2

q

) 



√
1−

x
∏

q=1

(
Logiq uq)

)2βq
,

x
∏

q=1

(
Logiq

(√
1− v2

q

))βq
,

x
∏

q=1

(
Logiq

(√
1− w2

q

))βq


⊕

⋃
(ux+1,vx+1,wx+1)∈

 Logix+1 Ex+1, Logix+1

(√
1− F2

x+1

)
,

Logix+1

(√
1− G2

x+1

)




√
1−

(
Logiq ux+1

)2βx+1
,(

Logiq

√
1− v2

x+1

)βx+1
,(

Logiq

√
1− w2

x+1

)βx+1



=
⋃

(uq ,vq ,wq)∈

 Logiq Eq, Logiq

(√
1− F2

q

)
,

Logiq

(√
1− G2

q

) 



√
1−

x+1
∏

q=1

(
Logiq uq)

)2βq
,

x+1
∏

q=1

(
Logiq

(√
1− v2

q

))βq
,

x+1
∏

q=1

(
Logiq

(√
1− w2

q

))βq


Therefore, the given result is true for all positive integers, i.e.,

Log− SHFWA(C1,C2...Cm)

=
⋃

(uq ,vq ,wq)∈

 Logiq Eq, Logiq

(√
1− F2

q

)
,

Logiq

(√
1− G2

q

) 



√
1−

m
∏

q=1

(
Logiq uq)

)2βq
,

m
∏

q=1

(
Logiq

(√
1− v2

q

))βq
,

m
∏

q=1

(
Logiq

(√
1− w2

q

))βq


.

Similarly, if

0 <
1
iq
≤ min

{
EC,

√
1− F2

C,
√

1− G2
C < 1

}
< 1, i 6= 1.

We can prove

Log− SHFWA(C1,C2...Cm)

=
⋃

(uq ,vq ,wq)∈


Log 1

iq
Eq, Log 1

iq

(√
1− F2

q

)
,

Log 1
iq

(√
1− G2

q

)




√
1−

m
∏

q=1

(
Log 1

iq
uq)

)2βq

,

m
∏

q=1

(
Log 1

iq

(√
1− v2

q

))βq

,

m
∏

q=1

(
Log 1

iq

(√
1− w2

q

))βq


.

Proved.

Remark 1. If i1 = i2 = i3 = ...im = i, that is,

0 < i ≤ min
{

EC,
√

1− F2
C,
√

1− G2
C < 1

}
< 1, i 6= 1,
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then the Log− SHFWA operator can be reduced as below,

Log− SHFWA(C1,C2...Cm)

=
⋃

(uq ,vq ,wq)∈

 LogiEq, Logi

(√
1− F2

q

)
,

Logi

(√
1− G2

q

) 



√
1−

m
∏

q=1

(
Logiuq)

)2βq ,

m
∏

q=1

(
Logi

(√
1− v2

q

))βq
,

m
∏

q=1

(
Logi

(√
1− w2

q

))βq


.

The following properties are satisfied by the Log− SHFWA:
(1) Idempotency: Let Cq = {Eq, Fq, Gq}(q = 1, 2...m) be the set of SHFN. if all Cq = C =
{u, v, w}, (q ∈ N) Then,

Log− SHFWA(C1,C2...Cm) = C

(2) Boundedness: Let Cq = {Eq, Fq, Gq} ∈ SHFS (q ∈ N). If C−q =
{

min
(
Eq
)}

,{
min

(
Fq
)
, max

(
Gq
)}

and C+
q =

{
max

(
Eq
)
, min

(
Fq
)
, min

(
Gq
)}

, then we have

C−q ⊆ Log− SHFWA(C1,C2...Cm) ⊆ C+
q .

(3) Monotonicity: Let Cq = {Eq, Fq, Gq} & C∗q =
{

E∗q , F∗q , G∗q
}
∈ SHFS (q ∈ N).

If Cq ⊆ C∗q , then

Log− SHFWA(C1,C2...Cm) ⊆ Log− SHFWA(C∗1 ,C∗2 ...C∗m).

Definition 23. Let Cq = {Eq, Fq, Gq}(q = 1, 2...m) be the set of SHFN.

If 0 < i ≤ min


EC,√

1− F2
C,√

1− G2
C

 < 1, i 6= 1. Then, Log− SHFOWA is described as

Log− SHFOWA(C1,C2...Cm) = β1C`(1) ⊕ β2C`(2) ⊕ ...⊕ βmC`(q)

=
m

∑
q=1

βq .LogiqC`(q)

where βq = (q = 1, 2...m) is weight information with βq ≥ 0, ∑m
q=1 βq = 1 and the qth biggest

weighted value is C`(q) so by total order C`(1) ≥ C`(2) ≥ ... ≥ C`(m).

Theorem 7. Let Cq = {Eq, Fq, Gq}(q = 1, 2...m) be the set of SHFN. If

0 < i ≤ min
{

EC,
√

1− F2
C,
√

1− G2
C < 1

}
< 1, i 6= 1.
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Then,

Log− SHFOWA(C1,C2...Cm)

=
⋃

(uq ,vq ,wq)∈

 Logi Eq, Logi

(√
1− F2

q

)
,

Logi

(√
1− G2

q

) 



√
1−

m
∏

q=1

(
Logi E`(q)

)2β`(q)
,

m
∏

q=1

(
Logiq

(√
1− F2

`(q)

))β`(q)
,

m
∏

q=1

(
Logiq

(√
1− F2

`(q)

))β`(q)


.

where βq = (q = 1, 2...m) is weight information with βq ≥ 0, ∑m
q=1 βq = 1 and the qth biggest

weighted value is C`(q) so by total order C`(1) ≥ C`(2) ≥ ... ≥ C`(m).

Proof. The proof follows from Theorem 6.

The following properties are satisfied by the Log− SHFOWA:
(1) Idempotency: Let Cq = {Eq, Fq, Gq}(q = 1, 2...m) be the set of SHFN.
If all Cq = C = {u, v, w}, (q ∈ N) Then,

Log− SHFOWA(C1,C2...Cm) = C

(2) Boundedness: Let Cq = {Eq, Fq, Gq} ∈ SHFS (q ∈ N).
If C−q =

{
min

(
Eq
)
, min

(
Fq
)
, max

(
Gq
)}

and C+
q =

{
max

(
Eq
)
, min

(
Fq
)
, min

(
Gq
)}

, then
we have

C−q ⊆ Log− SHFOWA(C1,C2...Cm) ⊆ C+
q .

(3) Monotonicity: Let Cq = {Eq, Fq, Gq} & C∗q =
{

E∗q , F∗q , G∗q
}
∈ SHFS (q ∈ N).

If Cq ⊆ C∗q , then

Log− SHFOWA(C1,C2...Cm) ⊆ Log− SHFOWA(C∗1 ,C∗2 ...C∗m).

4.2. Logarithmic Geometric Aggregation Operators

Definition 24. Let Cq = {Eq, Fq, Gq} ∈ SHFS(q ∈ N). Then, weighted geometric can be defined
as in the following:

Log− SHFWG(C1,C2...Cm) = (C1)
β1 ⊗ (C2)

β2 ⊗ ...⊗ (Cn)
βm

=
m

∏
q=1

(
LogiqCq

)βq

where (β1, β2, ...βm)
T is weight information of (C1,C2...Cm) such that βq ≥ 0; ∑m

q=1 βq = 1.

Theorem 8. Suppose Cq = {Eq, Fq, Gq}(q = 1, 2...m) be the set of SHFN. If

0 < iq ≤ min
{

EC,
√

1− F2
C,
√

1− G2
C < 1

}
< 1, i 6= 1.

Then,
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Log− SHFWG(C1,C2...Cm)

=
⋃

(uq ,vq ,wq)∈
(

1− Logi Eq, Logi

(
1− Fq

)
,

Logi

(
1− Gq

) )



(
m
∏

q=1

√
1−

(
Logi uq

)2
)β

,√√√√1−
(

1−
m
∏

q=1

(
Logi

√
1− v2

q

)2
)β

,√√√√1−
(

1−
m
∏

q=1

(
Logi

√
1− w2

q

)2
)β


.

Proof. The proof follows from Theorem 6.

The following properties are satisfied by the Log− SHFWG:
(1) Idempotency: Let Cq = {Eq, Fq, Gq}(q = 1, 2...m) be the set of SHFN. if all Cq = C =
{u, v, w}, (q ∈ N) Then,

Log− SHFWG(C1,C2...Cm) = C

(2) Boundedness: Let Cq = {Eq, Fq, Gq} ∈ SHFS (q ∈ N).
If C−q =

{
min

(
Eq
)
, min

(
Fq
)
, max

(
Gq
)}

and C+
q =

{
max

(
Eq
)
, min

(
Fq
)
, min

(
Gq
)}

, then
we have

C−q ⊆ Log− SHFWG(C1,C2...Cm) ⊆ C+
q .

(3) Monotonicity: Let Cq = {Eq, Fq, Gq} & C∗q =
{

E∗q , F∗q , G∗q
}
∈ SHFS (q ∈ N).

If Cq ⊆ C∗q , then

Log− SHFWG(C1,C2...Cm) ⊆ Log− SHFWG(C∗1 ,C∗2 ...C∗m).

Definition 25. Let Cq = {Eq, Fq, Gq} ∈ SHFS(q ∈ N). Then, the logarithmic spherical hesitant
ordered weighted geometric operator is described as

Log− SHFOWG(C1,C2...Cm) =
(
C`(1)

)β1 ⊗
(
C`(2)

)β2 ⊗ ...⊗
(
C`(n)

)βm

=
m

∏
q=1

(
LogiqC`(q)

)βq

where `(q) denote the order according to (`(1), `(2), `(3), ..., `(m)) and (β1, β2, ...βm)
T is weight

information of (C1,C2...Cm) such that βq ≥ 0; ∑m
q=1 βq = 1.

Theorem 9. Suppose Cq = {Eq, Fq, Gq}(q = 1, 2...m) be the set of SHFN. If

0 < iq ≤ min
{

EC,
√

1− F2
C,
√

1− G2
C < 1

}
< 1, i 6= 1.
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Then

Log− SHFOWG(C1,C2...Cm)

=
⋃

(uq ,vq ,wq)∈
(

1− Logi Eq, Logi

(
1− Fq

)
,

Logi

(
1− Gq

) )



(
m
∏

q=1

√
1−

(
Logi u`(q)

)2
)β

,√√√√1−
(

1−
m
∏

q=1

(
Logi

√
1− v2

`(q)

)2
)β

,√√√√1−
(

1−
m
∏

q=1

(
Logi

√
1− w2

`(q)

)2
)β


.

Proof. Prove is follow from Theorem 6.

The following properties are satisfied by the Log− SHFOWG:
(1) Idempotency: Let Cq = {Eq, Fq, Gq}(q = 1, 2...m) be the set of SHFN. if all Cq = C =
{u, v, w}, (q ∈ N) Then,

Log− SHFOWG(C1,C2...Cm) = C

(2) Boundedness: Let Cq = {Eq, Fq, Gq} ∈ SHFS (q ∈ N).
If C−q =

{
min

(
Eq
)
, min

(
Fq
)
, max

(
Gq
)}

and C+
q =

{
max

(
Eq
)
, min

(
Fq
)
, min

(
Gq
)}

, then
we have

C−q ⊆ Log− SHFOWG(C1,C2...Cm) ⊆ C+
q .

(3) Monotonicity: Let Cq = {Eq, Fq, Gq} & C∗q =
{

E∗q , F∗q , G∗q
}
∈ SHFS (q ∈ N).

If Cq ⊆ C∗q , then

Log− SHFOWG(C1,C2...Cm) ⊆ Log− SHFOWG(C∗1 ,C∗2 ...C∗m).

5. Algorithm for Decision Making Problems

Here, we have established a framework for addressing improbability/uncertainty in
decision-making (DM) under spherical hesitant fuzzy information. Consider a DM problem
with a set of m alternatives

{
A1, A2, ......, Ag

}
and {B1, B2, ...., Bh} be a set of attributes with

weights (β1, β2, ...βm)
T such that βq ∈ [0, 1], ∑m

q=1 βq = 1. To assess the performance of qth
alternative Aq under the qth attribute Bq, let

{
D̊1, D̊2, ...., D̊ ̂

}
be a set of decision-makers

(DMs) and (η1, η2, ...., η ̂)
T be DMs weights such that ηs ∈ [0, 1], ∑

̂
s=1 ηs = 1. The expert

evaluation matrix is described as

(E11(q), F11(q), G11(q)) (E12(q), F12(q), G12(q)) · · · (E1h(q), F1h(q), G1h(q))
(E21(q), F21(q), G21(q)) (E22(q), F22(q), G22(q)) · · · (E2h(q), F2h(q), G2h(q))
(E31(q), F31(q), G31(q)) (E32(q), F32(q), G32(q)) · · · (E3h(q), F3h(q), G3h(q))

...
...

. . .
...(

Eg1(q), Fg1(q), Gg1(q)
) (

Eg2(q), Fg2(q), Gg2(q)
)
· · ·

(
Egh(q), Fgh(q), Ggh(q)

)


where

(
Egh(q), Fgh(q), Ggh(q)

)
are the three sets of some values in [0, 1], denoted the

positive, neutral, and negative membership grades with the constraint 0 ≤ (u+)
2
+ (v+)2

+

(w+)
2 ≤ 1, for all q ∈ N, such that

u+ =
⋃

u∈EC(g)

max{u}, δ+ =
⋃

v∈FC(g)

max{v}, and ∂+ =
⋃

w∈GC(g)

max{w}.

Step-1 Construct the expert evaluation matrix (R) ̂ .
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(
E ̂

11(q), F ̂

11(q), G ̂

11(q)
) (

E ̂

12(q), F ̂

12(q), G ̂

12(q)
)
· · ·

(
E ̂

1h(q), F ̂

1h(q), G ̂

1h(q)
)(

E ̂

21(q), F ̂

21(q), G ̂

21(q)
) (

E ̂

22(q), F ̂

22(q), G ̂

22(q)
)
· · ·

(
E ̂

2h(q), F ̂

2h(q), G ̂

2h(q)
)(

E ̂

31(q), F ̂

31(q), G ̂

31(q)
) (

E ̂

32(q), F ̂

32(q), G ̂

32(q)
)
· · ·

(
E ̂

3h(q), F ̂

3h(q), G ̂

3h(q)
)

...
...

. . .
...(

E ̂

g1(q), F ̂

g1(q), G ̂

g1(q)
) (

E ̂

g2(q), F ̂

g2(q), G ̂

g2(q)
)
· · ·

(
E ̂

gh(q), F ̂

gh(q), G ̂

gh(q)
)


where ̂ represents the number of expert.

Step-2 Construct the normalized decision matrix (L) ̂. Where

(L) ̂ =


(

E ̂

gh(q), F ̂

gh(q), G ̂

gh(q)
)

i f Benefit type criteria(
G ̂

gh(q), F ̂

gh(q), E ̂

gh(q)
)

i f Cost type criteria

Step-3 Aggregate the individual decision matrices based on the spherical hesitant fuzzy
aggregation operators to construct the collective matrix as follows.



(E11(q), F11(q), G11(q)) (E12(q), F12(q), G12(q)) · · · (E1h(q), F1h(q), G1h(q))
(E21(q), F21(q), G21(q)) (E22(q), F22(q), G22(q)) · · · (E2h(q), F2h(q), G2h(q))
(E31(q), F31(q), G31(q)) (E32(q), F32(q), G32(q)) · · · (E3h(q), F3h(q), G3h(q))

...
...

. . .
...(

Eg1(q), Fg1(q), Gg1(q)
) (

Eg2(q), Fg2(q), Gg2(q)
)
· · ·

(
Egh(q), Fgh(q), Ggh(q)

)


Step-4 In this step, we find the weights of each of the attribute by using the spherical

hesitant fuzzy entropy.

γq =

1 + 1
n

h
∑

i=1
(Ei ln(Ei) + Fi ln(Fi) + Gi ln(Gi))

h
∑

q=1

(
1 + 1

n

h
∑

i=1
(Ei ln(Ei) + Fi ln(Fi) + Gi ln(Gi))

)

Step-5 Exploit the established aggregation operators to achieve the SHFNXq(q = 1, 2, ...., m)
for the alternatives Aq, that is, the established operators to obtained the collec-
tive overall preference values of Xq(q = 1, 2, ...., m) for the alternatives Aq, where
(β1, β2, ...βm)

T is the weight vector of the attributes.

Step-6 Compute the score (According to Definition 15) of all the overall values
Xq(q = 1, 2, ...., m) for the alternatives Aq.

Step-7 Rank the alternatives Aq(q = 1, 2, ...., m) and select the best one having the greater
value.

6. Illustrative Example

The hotel recommendation approach and its case study:
TripAdvisor.com is one of the leading travel communities in the world, covering

restaurants in more than 190 countries, with about 200 million global tourist ratings and
reviews. TripAdvisor.com offers reviews and views of travel related content, such as
hotels, restaurants, and attractions, as an American tourism website. In general, few local
travelers use TripAdvisor.com to find restaurants instead of regional sites for catering
services (like Yelp). Ultimately, when suggesting hotels, TripAdvisor.com does not further
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differentiate between independent visitors and local customers. The suggested model
aims to help visitors find satisfactory restaurants at their destinations on TripAdvisor.com.
This case study, as with TripAdvisor.com, is also carried out without distinguishing these
two categories of users, and “tourist” applies to subjective users of the TripAdvisor.com
website. In addition, TripAdvisor.com enables tourists to score restaurants on four distinct
aspects of a 5-star marking system: atmosphere, food, service, and cleanliness [58].

A realistic MCGDM example of a new hotel recommendation approach based on
customer online feedback using spherical hesitant fuzzy numbers SHFNs will be presented
to demonstrate the effectiveness and supremacy of the investigated approach. Multi-
criteria decision-making (MCDM) methods, as studied by many scholars, are frequently
used in field research [58,59]. Indeed, various groups of consumers concentrate on different
hotel characteristics, such as price, service, comfort level, etc. [60]. The most important
factors were divided by Sohrabi et al. [59] into ten dimensions. In addition, some other
studies indicate their views on the factors that have their own factors for customers to
compare hotels on each tourism website. While various groups of consumers concentrate
on different hotel requirements, the reason lies in the fact that getting a good rest is the main
objective of consumers booking a hotel. It is therefore irrational to disregard the importance
of both of the two classes and to combine the data using the weighted averaging (WA)
and geometric (WG) method. We employ the Log− SHFWA and Log− SHFWG operator,
an extension of SHFN, to combine the information in this study to cover this defect.

Many tourism websites nowadays allow consumers to perform online surveys. For
example, on TripAdvisor.com, consumers are permitted to assess the hotel on the basis
of four criteria, respectively, assigned to the atmosphere, food, service, and cleanliness.
Correspondingly, in relation to these four criteria, we will receive online feedback from
consumers and perform the data through logrithmic-SHFSs. The main aim of this study
is to create a systematic model for decision support to help independent tourists choose
restaurants on TripAdvisor.com using social information. For example, with respect to four
requirements, tourists on TripAdvisor.com will rate restaurants, including atmosphere,
food, service, and cleanliness [60].

Consider tourists choose a restaurant based on four alternatives {A1, A2, A3, A4} which
are consider for further evaluation to choose the best optimal hotel for stay a night or
two or so on days. Tourists on TripAdvisor.com can rate restaurants with respect to four
criteria, which are B1 = atmosphere, B2 = food, B3 = service, and B4 = cleanliness with
weight vector (0.1, 0.2, 0.5, 0.2)T . The professional experts assessed their assessment report
for each alternative against their corresponding criteria in the form of spherical hesitant
fuzzy values. Now, we use the developed approach of SHF logarithmic weighted average
operator to get the best SHPP system by utilizing the above step wise decision algorithm.

Solution using by the developed Algorithm:

Step-1 The expert evaluation information in the form of the spherical hesitant fuzzy sets is
enclosed in Table 1:

Table 1. Expert Evaluation Information.

B1 B2 B3 B4

A1 {(0.25, 0.32, 0.35)} {(0.27, 0.26, 0.42)} {(0.38, 0.25, 0.61)} {(0.26, 0.25, 0.41)}
A2 {(0.34, 0.15, 0.17)} {(0.43, 0.33, 0.52)} {(0.36, 0.21, 0.41)} {(0.42, 0.14, 0.61)}
A3 {(0.23, 0.11, 0.54)} {(0.26, 0.21, 0.31)} {(0.33, 0.23, 0.43)} {(0.35, 0.32, 0.44)}
A4 {(0.37, 0.25, 0.62)} {(0.43, 0.22, 0.51)} {(0.43, 0.34, 0.52)} {(0.43, 0.24, 0.62)}

Step-2 Normalized logarithmic spherical hesitant fuzzy decision matrix calculated in
Table 2:
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Table 2. Normalized Expert Evaluation Information.

B1 B2 B3 B4

A1 {(0.35, 0.32, 0.25)} {(0.42, 0.26, 0.27)} {(0.61, 0.25, 0.38)} {(0.41, 0.25, 0.26)}
A2 {(0.34, 0.15, 0.17)} {(0.52, 0.33, 0.43)} {(0.41, 0.21, 0.36)} {(0.61, 0.14, 0.42)}
A3 {(0.54, 0.11, 0.23)} {(0.31, 0.21, 0.26)} {(0.43, 0.23, 0.33)} {(0.44, 0.32, 0.35)}
A4 {(0.62, 0.25, 0.37)} {(0.51, 0.22, 0.43)} {(0.52, 0.34, 0.43)} {(0.62, 0.24, 0.43)}

Step-3 As, in this problem, we consider only one expert, so we do not need to find the
overall preference of the experts.

Step-4 The expert weight are given in this case study are (0.1, 0.2, 0.5, 0.2)T .

Step-5 Now, we calculate the aggregated values of each alternative under criteria weight
vector using proposed list of logarithmic spherical hesitant fuzzy aggregation opera-
tors as follows:
Case-1: Using Log− SHFWA aggregation operator;

Log− SHFWA(C1,C2...Cm)

=
⋃

(uq ,vq ,wq)∈

 LogiEq, Logi

(√
1− F2

q

)
,

Logi

(√
1− G2

q

) 



√
1−

m
∏

q=1

(
Logiuq)

)2βq ,

m
∏

q=1

(
Logi

(√
1− v2

q

))βq
,

m
∏

q=1

(
Logi

(√
1− w2

q

))βq


The aggregated values of each alternative using Log− SHFWA aggregation operator
is enclosed in Table 3:

Table 3. Aggregated Values (Log− SHFWG).

A1 0.9089, 0.2071, 0.2557
A2 0.8818, 0.1636, 0.2920
A3 0.8420, 0.1792, 0.2483
A4 0.9282, 0.2272, 0.3506

Case-2: Using Log− SHFWG aggregation operator;

Log− SHFWG(C1,C2...Cm)

=
⋃

(uq ,vq ,wq)∈
(

1− Logi Eq, Logi

(
1− Fq

)
,

Logi

(
1− Gq

) )



(
m
∏

q=1

√
1−

(
Logi uq

)2
)β

,√√√√1−
(

1−
m
∏

q=1

(
Logi

√
1− v2

q

)2
)β

,√√√√1−
(

1−
m
∏

q=1

(
Logi

√
1− w2

q

)2
)β


.

The aggregated values of each alternative using Log− SHFWG aggregation operator
is enclosed in Table 4:
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Table 4. Aggregated Values (Log− SHFWG).

A1 0.4320, 0.1858, 0.9667
A2 0.3839, 0.1434, 0.9563
A3 0.3340, 0.1586, 0.9687
A4 0.4926, 0.2066, 0.9365

Step-6 Now, Score values of each alternative of aggregated information are enclosed in
Table 5:

Table 5. Score Values.

Operators Sc(A1) Sc(A2) Sc(A3) Sc(A4)

Log− SHFWA 0.9958 0.9930 0.9880 0.9959
Log− SHFWG 0.0107 0.0623. −0.2138 0.3823

Step-7 The rank of the alternatives Aq(q = 1, 2, 3, 4) is enclosed in Table 6:

Table 6. Ranking of the alternatives.

Operators Score Best Alternative

Log− SHFWA Sc(A4) > Sc(A1) > Sc(A2) > Sc(A3) A4
Log− SHFWG Sc(A4) > Sc(A2) > Sc(A1) > Sc(A3) A4

7. Comparison Study

In this section, we established the comparison of the propose logarithmic aggregation
operators based decision-making methodology and the existing technique based on sine
trigonometric-based spherical hesitant fuzzy aggregation operators. For this purpose, we
take the spherical hesitant fuzzy information form Naeem et al. [57] in Table 7. The attribute
weight vector is (0.2, 0.4, 0.1, 0.3)T .

Step-1 The expert evaluation information [57] in the form of spherical hesitant fuzzy sets
is enclosed in Table 7:

Table 7. Expert Evaluation Information.

V1 V2 V3 V4

G1 {(0.3, 0.2, 0.4)} {(0.2, 0.6, 0.5)} {(0.1, 0.5, 0.3)}
{

(0.1, 0.5, 0.6),
(0.3, 0.4, 0.5)

}
G2 {(0.1, 0.5, 0.2)} {(0.2, 0.3, 0.4)}

{
(0.1, 0.1, 0.6),
(0.3, 0.1, 0.4)

}
{(0.1, 0.4, 0.2)}

G3 {(0.4, 0.1, 0.5)}
{

(0.1, 0.1, 0.6),
(0.3, 0.2, 0.4)

}
{(0.4, 0.2, 0.5)} {(0.4, 0.2, 0.5)}

G4 {(0.2, 0.2, 0.3)} {(0.1, 0.2, 0.3)} {(0.2, 0.4, 0.3), (0.4, 0.4, 0.6)} {(0.2, 0.4, 0.3)}

Step-2 The normalized expert evaluation information in enclosed in Table 8:
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Table 8. Normalized Expert Evaluation Information.

V1 V2 V3 V4

G1 {(0.4, 0.2, 0.3)} {(0.5, 0.6, 0.2)} {(0.3, 0.5, 0.1)}
{

(0.6, 0.5, 0.1),
(0.5, 0.4, 0.3)

}
G2 {(0.2, 0.5, 0.1)} {(0.4, 0.3, 0.2)}

{
(0.6, 0.1, 0.1),
(0.4, 0.1, 0.3)

}
{(0.2, 0.4, 0.1)}

G3 {(0.5, 0.1, 0.4)}
{

(0.6, 0.1, 0.1),
(0.4, 0.2, 0.3)

}
{(0.5, 0.2, 0.4)} {(0.5, 0.2, 0.4)}

G4 {(0.3, 0.2, 0.2)} {(0.3, 0.2, 0.1)} {(0.3, 0.4, 0.2), (0.6, 0.4, 0.4)} {(0.3, 0.4, 0.2)}

Step-3 As, in this problem, we consider only one expert, we do not need to find the overall
preference of the experts.

Step-4 The expert weight are given in this case study are (0.2, 0.4, 0.1, 0.3)T .

Step-5 Now, we calculate the aggregated values of each alternative under criteria weight
vector using logarithmic spherical hesitant fuzzy weighted averaging aggregation
operators as follows:

Log− SHFWA(C1,C2...Cm)

=
⋃

(uq ,vq ,wq)∈
(

LogiEq ,Logi

(√
1−F2

q

)
,Logi

(√
1−G2

q

))



√
1−

m
∏

q=1

(
Logiuq)

)2βq ,

m
∏

q=1

(
Logi

(√
1− v2

q

))βq
,

m
∏

q=1

(
Logi

(√
1− w2

q

))βq


The collective overall preference values of each alternative using Log − SHFWA
aggregation operator is enclosed in Table 9:

Table 9. Overall Preference Value (Log− SHFWA).

G1 {0.8984, 0.3797, 0.1308}, {0.8766, 0.3523, 0.1830}
G2 {0.7026, 0.2654, 0.1046}, {0.6564, 0.2654, 0.1170}
G3 {0.9245, 0.1046, 0.1860}, {0.8765, 0.1384, 0.2912}
G4 {0.6637, 0.2129, 0.1203}, {0.7270, 0.2129, 0.1294}

Step-6 Ranking result is enclosed in Table 10:

Table 10. Score Values.

Operators Sc(G1) Sc(G2) Sc(G3) Sc(G4) Ranking of the Alternatives

ST − SHFWA [57] 0.4505 0.2463 0.4983 0.2332 Sc(A3) > Sc(A1) > Sc(A2) > Sc(A4)
Log− SHFWA 0.3646 0.3033 0.5404 0.3576 Sc(A3) > Sc(A1) > Sc(A4) > Sc(A2)

Discussion

Here, we conducted a comparison of the established logarithmic function-based
aggregation operators with existing sine trigonometric spherical hesitant fuzzy aggregation
operators presented in [57], showing the strength to handle uncertainty in real-life decision-
making problems (DMPs). The impressive point of this method is that it covers the
valuation spaces of PyHFSs, PFSs, and SFSs because of its generalized structure. From Table-
10, results shows that the proposed decision-making technique is valid and reliable to
tackle the uncertainty in decision making problems. Our proposed method is applicable
and appropriate for input data of all types. The model suggested is effective for addressing
uncertainties. With the consideration of hesitation, this approach covers the area of IFS,
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PyFS, PFS, SFSs, and SHFSs. We may use our method effectively in different circumstances,
in present work we apply it for best hotel selection. The proposed decision-making method
is clear and simple, and can be easily extended to various results.

8. Reliability and Validity Test

Generally, it is enormously challenging to identify the optimum probable alternative
among the specified group decision matrices. Wang and Triantaphyllou [61] started the
model to evaluate the applicability and legitimacy of decision making procedures. The test
stages are below.

Test Step-1: The suitable and active MAGDM methodology is that we interchange
the normalized component for the worse component of the alternative by validating the
preeminent probable alternative without any alteration and also without adjusting the
relative status of every decision criterion.

Test Step-2: Transitive property must be met through an operative and proper
MAGDM method.

Test Step-3: When a MAGDM problem is converted into minor problems. To rank the
alternative, we put on alike method on minor problems which is used in MAGDM problem,
a combined alternative rank should be identical with actual rank of un-decomposed problem.

Changed the specified MAGDM problem into a minor one and put on the similar
suggested decision-making procedure to discover the finest outcome. The proper and
active MAGDM methodology is that, if we put on the similar procedure to a minor problem,
the outcome will be the identical as the MAGDM problem.

Validity Test for Proposed Methodology

In this segment, we check the appropriation and authentication of the our suggested
approach by utilizing validity and reliability test [61] conferred above. The normalized
spherical hesitant fuzzy material is enclosed in the Table 11 as follows:

Table 11. Normalized Expert Evaluation Information (as Table 2).

B1 B2 B3 B4

A1 {(0.35, 0.32, 0.25)} {(0.42, 0.26, 0.27)} {(0.61, 0.25, 0.38)} {(0.41, 0.25, 0.26)}
A2 {(0.34, 0.15, 0.17)} {(0.52, 0.33, 0.43)} {(0.41, 0.21, 0.36)} {(0.61, 0.14, 0.42)}
A3 {(0.54, 0.11, 0.23)} {(0.31, 0.21, 0.26)} {(0.43, 0.23, 0.33)} {(0.44, 0.32, 0.35)}
A4 {(0.62, 0.25, 0.37)} {(0.51, 0.22, 0.43)} {(0.52, 0.34, 0.43)} {(0.62, 0.24, 0.43)}

Test step-1 In this step, we exchange the normalized element for the worse element of
the alternative by demonstrating the best possible alternative without any adjust-
ment and also without modifying the comparative status of each decision criterion.
The updated decision matrix is calculated in Table 12:

Table 12. Updated Normalized Expert Evaluation Information.

B1 B2 B3 B4

A1 {(0.35, 0.32, 0.25)} {(0.27, 0.26, 0.42)} {(0.61, 0.25, 0.38)} {(0.26, 0.25, 0.41)}
A2 {(0.34, 0.15, 0.17)} {(0.43, 0.33, 0.52)} {(0.41, 0.21, 0.36)} {(0.42, 0.14, 0.61)}
A3 {(0.23, 0.11, 0.54)} {(0.31, 0.21, 0.26)} {(0.33, 0.23, 0.43)} {(0.44, 0.32, 0.35)}
A4 {(0.37, 0.25, 0.62)} {(0.51, 0.22, 0.43)} {(0.43, 0.34, 0.52)} {(0.62, 0.24, 0.43)}

Now, we calculate the aggregated value of the each alternative under attribute weight
vector is (0.1, 0.2, 0.5, 0.2)T using proposed list of logarithmic spherical hesitant fuzzy
aggregation operators as follows:
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Case-1: Using Log− SHFWA aggregation operator: The aggregated values of each
alternative using Log− SHFWA aggregation operator is enclosed in Table 13:

Table 13. Aggregated Value (Log− SHFWA).

A1 {0.8707, 0.2071, 0.3095}
A2 {0.8316, 0.1636, 0.3328}
A3 {0.7382, 0.1792, 0.3143}
A4 {0.8906, 0.2272, 0.4147}

Case-2: Using Log− SHFWG aggregation operator: The aggregated values of each
alternative using Log− SHFWA aggregation operator is enclosed in Table 14:

Table 14. Aggregated Value (Log− SHFWG).

A1 {0.3459, 0.1858, 0.9509}
A2 {0.3262, 0.1434, 0.9430}
A3 {0.2529, 0.1586, 0.9493}
A4 {0.4003, 0.2066, 0.9099}

Now, the Score of the aggregated values of each alternative is enclosed in Table 15:

Table 15. Score.

Operators Sc(A1) Sc(A2) Sc(A3) Sc(A4)

Log− SHFWA 0.9914 0.9854 0.9632 0.9911
Log− SHFWG 0.0337 0.0481 −0.2466 0.377

Rank the alternatives Aq(q = 1, 2, 3, 4) is enclosed in Table 16:

Table 16. Ranking of the alternatives.

Operators Score Best Alternative

Log− SHFWA Sc(A1) > Sc(A4) > Sc(A2) > Sc(A3)
Log− SHFWG Sc(A4) > Sc(A2) > Sc(A1) > Sc(A3)

After applying the Test step-1, we obtained the same best alternative A4 as we
obtained in our proposed numerical case study.

Test Step-2 & 3 Now, we check the step-2 and -3 of the validity test to show that the
proposed methodology is effective and appropriate. For this, first we transformed
the consider MAGDM problem into three smaller sub-problems as {A2, A3, A4},
{A3, A4, A1}, and {A3, A1, A2}. Now, we apply the our proposed decision-making
methodology on the smaller transformed problems and obtained the following rank-
ing of the alternatives: A3 > A2 > A4, A2 > A4 > A1, and A3 > A4 > A1,
respectively. While assigning a comprehensive ranking, we find that A3 > A2 >
A4 > A1 is the same as the standard decision-making methodology results.

9. Conclusions

This study introduces a comprehensive model for supporting decisions that uses
social information to help independent tourists find satisfactory hotels on TripAdvisor.com.
In general, the developed scheme fully utilizes social data, such as online reviews and
social relationships, and it considers interdependence among criteria by utilizing novel
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logarithmic spherical fuzzy aggregation operators, as do traditional decision support
modeling techniques. In addition, the proposed study presented the list of novel operation
laws using logarithmic function to develop the list of logarithmic spherical hesitant fuzzy
aggregation operators to tackle the uncertainty in real life decision making problems.
A generalized decision-making algorithm is developed to address the multi-attribute
decision-making problems. This study considers a case study of hotel selection based on
the proposed logarithmic spherical hesitant fuzzy aggregation operators. The suggested
hotel recommendation technique turns out to be more acceptable and reliable from the
comparison study than the comparative methods. It also shows that our approach to hotel
reviews is successful in addressing consumers’ customized demands. We concluded that
customers pay more attention to two criteria—atmosphere and service—through the study
of online reviews. Because of this, if it focuses on fixing the current problems in these two
areas, the hotel will significantly increase hotel satisfaction.

In a future study, we will develop fuzzy decision-making techniques such as TOPSIS,
TODAM, VIKOR, GRY, and EDAS methodologies to evaluate the appropriate hotel in any
venue based on customer demand.
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