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Abstract: The integrated energy system (IES) is an efficient method for improving the utilization of
renewable energy. This paper proposes an IES based on fuel, wind and solar energies, following
an optimization study focused on determining optimal device capacities. The study included
gas turbines, wind turbines, solar photovoltaic panels, ground source heat pumps, absorption
chillers/heaters, batteries, and thermal storage. Objectives were incorporated into the optimization
model for the overall performance of the IES; these included the primary energy saving rate, annual
cost-saving rate, and carbon dioxide emission reduction. Then, the nondominated sorting genetic
algorithm II was employed to solve the optimization problem for multiple objectives. Ultimately,
the verification and sensitivity analyses of the optimization method were achieved by a case study
of hospital buildings in Harbin. The optimization results indicated a primary energy saving rate,
annual cost saving rate, and carbon dioxide emission reduction rate of 17.3%, 39.8%, and 53.8%,
respectively. The total installed capacity for renewable energy generation accounted for 64.5% of
performance optimization. Moreover, the price of natural gas affected the economic indicators of the
IES–but failed to impact energy consumption indicators.

Keywords: integrated energy system; gas-wind-photovoltaic system; nondominated sorting genetic
algorithm II (NSGA-II); multi-objective optimization; sensitivity analysis

1. Introduction

Promoting the transformation of energy structures and improving the efficiency of
energy utilization are urgent issues, given the increasing rate of consumption of coal, oil
and other traditional energy sources [1]. Fortunately, the promotion and application of
integrated energy systems (IES) can effectively improve the utilization rate of renewable
energy sources, and actively promote the preservation of the environment [2]. However,
complex equipment capacity configurations and various system operation strategies limit
the further development of IES.

Optimization is one of the most effective methods to solve these problems [3]. Many
researchers have concentrated on the problem of IES systems through various optimization
goals, which are typically classified into single and multiple objective goals. Wei et al. [4]
established a set of integrated day-ahead coordination and optimization operation models
for multi energy power systems (MEPS) with economy, safety and renewable energy
consumption maximization as multiple optimization objectives. To realize sustainable
development of an IES, Wang et al. [5] extended the concept of demand response (DR) and
established a multi-objective optimization model with the goals of economic profit and
energy efficiency for the first time. By establishing different models, the results showed
that model 3 reduced costs by 3.74% compared with model 1. Model 1 considered using
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time-price, while in model 3, users participated in DR schemes incentivized by real-time
price and DR compensation. In that model, CO2, SO2 and NOx emissions were reduced by
0.26 kg, 0.45 kg and 0.05 kg, respectively.

Improving the utilization rate of energy has always been the core objective of optimiza-
tion. Hu et al. [6] used the energy quality coefficient (which measures the quality of various
forms of energy) to evaluate energy. The multi-objective programming model—with en-
ergy efficiency and economy as its objectives—was established. Emphasis was placed
on transforming nonconvex problems into convex problems. In addition, in order to
improve the comprehensive utilization efficiency of various types of energy and obtain
more economic benefits, the accurate prediction of various loads in the comprehensive
energy system must be considered key. Tan et al. [7] established various load combination
prediction models based on multitask learning and least-squares support vector machines.
The results showed that the average prediction accuracy of the model was improved by
18.60% in comparison with extreme learning.

Optimization problems can be divided into linear programming, nonlinear pro-
gramming and dynamic programming. In order to solve these problems, optimization
methods—including classical methods and artificial intelligence algorithms—were pro-
posed and developed. The structure, system scale and performance of integrated energy
systems were improved using the genetic algorithm [8], particle swarm optimization [9]
and artificial neural networks [10]. IES optimization research mainly focuses on system
integration design and operation management. The optimal energy output of the equip-
ment was obtained by using the fly optimization algorithm [11] with poor convergence.
The multi-objective particle swarm optimization [12] was used to find the appropriate
capacity and position of each component and increase system dependability. The genetic
algorithm [13] was used to realize the hourly optimal scheduling method of system compo-
nents and reduce the daily operation cost. The nondominated sorting genetic algorithm
II (NSGA-II) [14] was used to determine the appropriate component size, and the sys-
tem performance was greatly improved through reasonable operation management. As
highlighted in [15], multi-objective optimization is the process of finding as many Pareto
solutions as possible. NSGA-II can indeed find a diversified solution set, and select the
optimal solution according to subjective objective requirements. Converting the IES opti-
mization problem into mixed-integer quadratic programming can effectively simulate the
dynamic load and the randomness of the load. The strength Pareto evolutionary algorithm
was also stronger than NSGA in random simulation. Detailed comparisons of different
algorithms are listed in Table 1.

Table 1. Technical parameters involved in the system.

Algorithm Name Multi-Objective Advantages Source

Genetic algorithm
√ Multiple optimal solutions can be obtained

and provided by integrating simulation
models into optimization tools

[8]

Genetic algorithm and a nonlinear interior
point method × Hybrid optimization algorithm is more

effective for specific model [13]

Particle swarm optimization
√

The convergence speed is fast [9]

Artificial neural network × It has fault tolerance and can solve nonlinear
problems [10]

Sequential quadratic programming algorithm × More effective in solving nonlinear
constrained optimization problems [16]

The optimal IES usually operates under uncertain conditions, through system de-
sign [17]. Liu et al. [18] introduced subjective and cognitive uncertainties into the integrated
demand response (IDR) model based on price—and introduced evidence theory and credi-
bility levels to handle the double uncertainties. The final results showed that the risk of
system operation could be reduced by considering the uncertainty of IDR, but the cost
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increased slightly. Su et al. [19] established a two-stage optimization model to examine
the ability of an IES to meet energy demands under the uncertainty of coupling renewable
energy demand and operation. In view of the uncertainty of wind power, Turk et al. [20]
proposed a two-stage random scheduling scheme for IES, and a practical case was given to
prove the economy and the scheme’s improvements in wind power utilization efficiency.
Mohammadi et al. [21] used the fuzzy set method to study the uncertain modeling problem
which affects the energy hub operation (for the first time). The optimization studies showed
that the optimal operation cost of the scheme was effective when the membership degree
was 0.412. At that time, the system cost increased by 2.9% under uncertainty, but the
accuracy and reliability of the model were greatly improved.

This paper studied the optimization problem of an IES involving wind, solar, natural
gas cogeneration and multi-energy complementary power grid. The researchers evaluated
the IES on energy efficiency, economic operation and preservation of the environment
using the primary energy saving rate, annual cost-saving rate and carbon dioxide emission
reduction rate.

The innovation of this article lies in the following aspects:

1. Use multi-objective optimization algorithms to evaluate system performance.
2. Provide efficient system operation plan through energy dispatch analysis.
3. Conduct sensitivity analysis on main parameters to deal with changes in energy

fuel prices.

The structure of this paper is as bellow: Section 2 introduces the structure and op-
eration strategy of the IES. Section 3 presents optimized objects and solution algorithms.
Section 4 delivers the conclusions.

2. Gas-Wind-Photovoltaic Integrated Energy System
2.1. Modelling

Figure 1 describes the energy flow of the IES presented in this paper. There are
several main energy inputs, including: natural gas, solar, wind, coal, and geothermal
energy. The energy demands include electricity, heating, cooling, and domestic hot water.
IES consists of an electric grid, wind turbine (WT), gas turbine (GT), combined heat
and power (CHP) system, photovoltaic array (PV), ground source heat pump (GSHP),
absorption chiller/heater (AC/H), water storage tank for heat/cold energy and battery for
electricity storage.
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Power demand is mainly provided by the WT, PV, and GT to meet building consumer
needs—along with a GSHP for cooling or heating. When the electricity generated is
insufficient, it is assisted by the electric grid. Otherwise, the remaining electricity from the
WT, PV, and GT is returned to the electric grid. The role of the battery in the IES is to store
excess electricity or supplement insufficient electricity.

Chilled and hot water are produced by the absorption cycle driven by the waste heat
of the high-temperature flue gases. The GSHP consumes electricity to generate chilled
water or heating water required by building loads—which effectively balances the heat
and electricity ratio between the system and users. If the waste heat cannot meet the heat
demand, natural gas is directly burned into the AC/H to supplement heat; otherwise,
the excess heat can be stored in the water storage tank to supplement the insufficient
heat. The grid, water storage tank and battery also serve as auxiliary equipment to store
excess energy or compensate for deficiencies, further increasing the flexibility and stability
of the system.

2.1.1. Coal Power Plant with National Grid

The electricity provided to buildings is determined by the amount of coal consumed
by the national grid, EIES

gird (kW), and can be expressed as Equation (1)

EIES
grid(t) = ηceFcoal(t), ∀ t ∈ T (1)

where Fcoal (kW) is the coal consumption of the power plant; ηce is power
generation efficiency.

2.1.2. Wind Turbine

Wind speed restricts the power generation of the WT in real time; however, the power
output of the WT usually approximately satisfies Weibull distribution, and its power output
can be expressed as [22]:

E′wt(t) =


E′wt(t)= 0, V < Vci
E′wt(t) = aV3 − bEr, Vci < V < Vco
E′wt(t) = Pr, Vr < V < Vco
E′wt(t) = 0, Vco < V

(2)

where the ratios represented by a and b are defined as: a = Pr
V3

r −V3
ci

, b =
V3

ci
V3

r −V3
ci

, respectively;

Vr, Vci, Vco and Pr denote the rated wind speed, cut-in wind speed, cut-off wind speed and
rated power of the wind turbine, respectively.

Total power generation from the WT is calculated according to [22]:

Ewt(t) = E′wt(t)AW NWηW−inv (3)

where AW is the swept area of the WT; NW denotes the number of WT installed; and ηW−inv
is the inverter efficiency.

2.1.3. Gas Turbine CHP

The power generated by the GT, Egt (kW), is expressed as:

Egt(t) = νηe
gtFgas(t), ∀ t ∈ T (4)

and the waste heat of the exhaust gas from the GT, Qgt (kW), is estimated as:

Qgt(t) = νηh
gtFgas(t), ∀ t ∈ T (5)
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where Fgas (kW) is the natural gas consumption, ηe
gt and ηh

gt are the power generation and
waste heat conversion efficiency, respectively, and the factor ν is used to express the ratio
of Fgas consumed by the GT to the total consumption.

2.1.4. PV

The power generation from the PV is related to ambient temperature and solar radia-
tion intensity, and the power generation, EPV , is expressed as [23]:

Epv = f Npv

[
Gp

Gstc

][
1 + α

(
Tpv,p − Tpv,stc

)]
(6)

where f is power reduction factor caused by air fouling and material physical properties
change; Npv (kW) is the equipment capacity of PV; Gp (kW/m2) is the solar radiation
intensity; Gstc (1 kW/m2) is the solar radiation intensity under standard test conditions;
α (%/◦C) is the temperature coefficient; Tpv,p (◦C) is the PV surface temperature; Tpv,stc
(25 ◦C) is the PV temperature under standard test conditions. In addition, Tpv,stc can be
calculated by the following formula [23]:

Tpv,p =

Ta,p +
(
Tpv,soc − Ta,soc

)( Gp
Gsoc

)[
1− ηe,pv(1−αTpv,stc)

τβ

]
1 +

(
Tpv,soc − Ta,soc

)( Gp
Gsoc

)(
αηe,pv

τβ

) (7)

where Ta,p (◦C) is the ambient temperature; Tpv,soc is the PV surface temperature under
standard operating conditions (45~48 ◦C); ηe,pv is the PV efficiency under standard test
conditions; τ is the transmittance of solar energy; β is the solar energy absorptivity of PV;
the default value of τβ is 0.9; standard operating conditions are standard light intensity of
(Gsoc) 0.8 kW/m2, and standard ambient temperature (Ta,soc) of 20 ◦C.

2.1.5. Absorption Chiller/Heater

The temperature of cooling water from the PV/T collector is much lower than that
of the exhaust gas. The double-effect absorption chiller/heater is driven by waste heat
from the GT, and natural gas is employed to make full use of waste heat. Its general output
(Qabs) of heating, Qh,abs (kW), and cooling, Qc,abs (kW), is expressed as:

Qabs(t) = COPabs
[
Qgt(t) + (1− ν)ηdczFgas(t)

]
, ∀ t ∈ T (8)

where COPabs is the coefficient of performance (COP). The energy flows in the cooling
and heating modes are different, and their COP values are different. The COP in cooling
mode, COPc

abs, is determined by the heat ratio of the low-pressure generator (QLG) to the
high-pressure generator (QHG) in the absorption chiller, and its coefficient—obtained by
simulation with engineering equation solver (EES) [24]—can be fitted to:

COPc
abs = 0.0251

(
QLG
QHG

)2
− 0.2158

QLG
QHG

+ 1.4058 (9)

The absorption chiller/heater serves as a heater in heating mode, and its COP, COPh
abs,

is assumed to be 0.9. In addition, it will also output domestic hot water (in both cooling
and heating modes) through heat exchange in the low-pressure generator.

2.1.6. GSHP

The output of heat energy, Qh,hp (kW), or cold energy, Qc,hp (kW), from the GSHP is de-
termined by the inputted electric and geothermal energies, and it is generally expressed as:

Qhp(t) = f
(

EIES
gird(t), Qgeo(t)

)
= (1− µ)COPhpEIES

gird(t), ∀ t ∈ T (10)
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where COPhp is the COP of the GSHP; the factor µ is the ratio of EIES
gird consumed by the

buildings, and 1− µ is the ratio consumed ratio by the GSHP.

2.1.7. Energy Storage System

The energy conversion status of the battery is as follows:

E1
s = E0

s (1− ηs,los) + (ξEs,inηs,ch − (1− ξ)Es,out/ηs,disch)∆t (11)

Emin
s ≤ Es ≤ Emax

s (12)

0 ≤ Es,in ≤ Emax
s,in (13)

0 ≤ Es,out ≤ Emax
s,out (14)

where Es,out and Es,in (kW) are the discharge capacity and charge capacity of the battery,
respectively; E0

s and E1
s (kW) are the energy storage state of the battery before and after

charging/discharging; ηs,los,ηs,ch and ηs,disch are the self-consumption rate, charging effi-
ciency and discharging efficiency of the battery, respectively; ξ value is 0 or 1; The time
interval ∆t is 1 h; Emax

s , Emin
s ,Emax

s,in and Emax
s,out (kW) are the maximum and minimum energy

storage, maximum charging capacity and maximum discharge capacity of the battery,
respectively; These values can be obtained by multiplying the rated capacity of the battery
by the corresponding coefficient.

The model of the water storage tank can be expressed as:

Q1
h,wst = ηwstQ0

h,wst + Qh,wst,in −Qh,wst,out (15)

where Q0
h,wst and Q1

h,wst (kW) are the energy storage state of the storage tank before and after
heat storage/release, respectively; Qh,wst,in and Qh,wst,out (kW) are the storage and release
heat of the storage tank, respectively; ηwst is the thermal efficiency of the storage tank.

2.2. Operation Strategy

The operation strategy of following electric load (FEL) was adopted; the key opera-
tional strategy of FEL is to give priority to PV, WT and battery, such that the GT generates no
excess electricity. When the heat produced by the gas turbine exceeds the heating demand,
the excess heat is stored in the storage tank or directly discharged into the environment;
when the heat produced by the gas turbine is less than the heat load, the direct combustion
zone of AC/H or the water storage tank makes up for the deficiency. In addition, due to
the existence of PV and WT (whose outputs are uncertain), it is necessary to introduce
batteries for adjustment. Detailed operating situations include the following cases:

Case 1. If Eu + EIES
hp < EPV + Ewt + Es,out + Emin, where EIES

hp is the inputted electric
and Emin (kW) is the minimum power generation of the GT, at the same time, the GT will
not operate. There are three potential versions of this situation: (1) Eu + EIES

hp < EPV + Ewt:
the power required is met by only the PV and WT, and the excess PV and WT electricity
will be stored in the storage cell or sold to the national grid. (2) EPV + Ewt < Eu + EIES

hp ≤
EPV + Ewt + Es,out: the demand for electricity is met by PV, WT, and storage battery.
(3) EPV + Ewt + Es,out < Eu + EIES

hp ≤ EPV + Ewt + Es,out + Emin: the power required is
provided by PV, WT, battery, and grid.

Case 2. When EPV + Ewt + Es,out + Emin ≤ Eu + EIES
hp < EPV + Ewt + Es,out + Emax,

where Emax (kW) is the maximum power generation of the GT. The GT operates under
partial load to meet the electric load and generates a certain amount of heat. When the heat
generated exceeds the heating requirements, the excess heat is released directly into the
environment; when the heat generated is less than the heat required, the natural gas direct
combustion zone of the AC/H will supply supplementary heat.

Case 3. When EPV + Ewt + Es,out + Emax ≤ Eu + EIES
hp , the GT operates at rated

conditions, generating heat and electricity, and supplementary electricity is purchased from
the grid. The excess heat is released directly into the ambient atmosphere when the heat
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produced exceeds requirements; when the heat generated is not enough to meet the load
demand, the direct combustion zone of AC/H directly burns natural gas to supplement
the remaining driving heat.

3. Methodology
3.1. Optimization Objectives

The primary energy saving rate (PESR), annual cost saving rate (ACSR) and carbon
dioxide emission reduction rate (CDERR) are usually used to assess (respectively) the
energy, economic and environmental efficiencies of an IES in comparison to traditional
systems. They are (respectively) defined as follows [23]:

PESR =

o
∑

t=1
Fre f (t)−

o
∑

t=1
FIES(t)

o
∑

t=1
Fre f (t)

× 100% (16)

ACSR =
ACre f − ACIES

ACre f × 100% (17)

CDERR =

o
∑

t=1
CDEre f (t)−

o
∑

t=1
CDEIES(t)

o
∑

t=1
CDEre f (t)

× 100% (18)

where represents annual operating hours (h), and Fre f and FIES (kW) are the fuel con-
sumption of the reference system and IES, respectively. ACre f and ACIES ($) represent the
annual costs of the reference system and the IES, respectively. CDEre f and CDEIES are
carbon dioxide emissions from the reference system and the IES, respectively.

3.2. Decision Variables

The decision variables in the IES can be divided into design variables and operational
variables. The key components’ independent sizing decision variables are as follows:

Capacity sizes of the GT (Ngt), PV panels (NPV) and wind turbines (Nw). In the IES,
the GT is a core component which affects the capacity of other equipment. The introduction
of solar energy and wind energy reduces fuel consumption and carbon dioxide emission,
improving the environmental protection of the system, but also increasing the AC of
the system.

Capacities of energy storage devices, including battery and water storage tank, are
defined as (Ns and Nwst). Energy storage devices and WSTs with sufficient capacities are
beneficial; they improve the flexibility and stability of the IES, and their capacities can
adjust the economic and energetic performances of the system.

An additional operational variable of the IES is the heating or cooling output ra-
tio of the GSHP. The GSHP and AC/H are used to satisfy the users’ space heating or
cooling requirements; the operational ratio of the GSHP (θ) refers to the hourly ratio of
cooling/heating supplied by the GSHP to the total cooling/heating output.

The optimization variables involved in the IES are as follows:

X = [Ngt, Npv, Nwt, Ns, Nwst, θ]T (19)

The optimization model considers the maximization of multi-objectives such as PESR,
ACSR and CDERR to improve energy, economic and environmental performance respec-
tively. The optimization problem is expressed as:
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Max PESR(X)
Max ACSR(X)
Max CDERR(X)

, X ∈ Rn

S.t. hi(X) = 0, (i = 1, 2, · · · , p)
gi(X) ≤ 0, (i = p + 1, p + 2, · · · , q)

(20)

where hi(X) and gi(X) list the restrictions of equalities and inequalities with the decision
variables X in the n dimensional space Rn, and the functions are subject to these constraints.

3.3. Solution Algorithm

This paper aimed—through the operation of the components—to obtain the optimal
capacities and thus the most efficient performance of the IES. In the problem of multi-
objective optimization, it is hard to get optimal solutions for each objective function at
the same time. Therefore, we used the global search capability of the genetic algorithm
to avoid traditional optimization methods, falling into the optimal local solution in the
optimization process. The optimization problem had a set of Pareto optimal solutions
selected by subjective weights.

NSGA-II had incomparable advantages in multi-objective optimization, which com-
bined the parent scheme with its offspring schemes and competed together to produce the
next generation population, retaining the diversity of solutions. The decision variables
included device decision variables and operating decision variables. When considering
discrete variables, the use of mixed integer linear programming [25] or linear programming
solvers [26] introduces binary variables and ordinal optimization variables, which increases
the computational complexity. Considering that the optimal device variable is a continuous
variable, NSGA-II was used to solve the problem, to reduce the computational complexity.
As shown in Figure 2, the main calculation process for finding the best result included the
following steps:
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Step 1: Input the initial parameters. Initial parameters include system integration
parameters and NSGA-II setting parameters. System parameters are mainly based on
facility type, technical parameters, economic parameters, system operation strategy, etc.,
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and are used to establish system thermodynamic, economic, and emission models. The
NSGA-II parameters include the size of population (pop), number of iterations (gen),
crossover’s probabilities and mutation (Pc and Pm), and distribution indices of crossover
and mutation operations (mu and mum).

Step 2: Initialize the population. Based on the initialization in Step 1, the Y group of
decision variables in Equation (4) is randomly generated, where Y is the overall size and
P represents the population.

Step3: According to the operation strategy and objective function, calculate the indi-
vidual fitness function.

Step 4: Reserve some of the candidate solutions according to fitness in a new popula-
tion, P1, and discard others.

Step 5: Crossover and mutation operations. A new population, P2, is obtained by
crossover and mutation operation of population P1. Then, calculate the individual fitness
function in the population P2.

Step 6: Generate a new population. The new population, P, is acquired from {P, P2},
considering the rank value and crowding distance.

Step 7: Termination condition judgment. When the maximum evolutionary generation
is contented, the individual with the maximum fitness obtained in the evolution process is
taken as the optimal solution output, and the calculation is terminated.

4. Results and Discussions

The case study in this paper was aimed at the particularity of the climate in severely
cold areas, and carried out related research on reducing environmental pollution, improv-
ing energy efficiency, and saving economic investment. Harbin is a severely cold region in
China, and experiences harsh weather. To verify the correctness and effectiveness of the
system model and optimization method, the hospital buildings in Harbin were selected
as a case study. In this case, the regional buildings were supplied with energy by an IES
and separate supply (SP) system, respectively. The performance assessments of the IES
were evaluated by the optimization results. The optimization process was calculated by
MATLAB R2019a software produced by MathWorks company of Massachusetts in the
United States, using a Lenovo notebook computer with Intel Core i7-1065G7.

4.1. Initializations

Figure 3 shows the load simulation data (calculated by DeST software) of a certain
Harbin hospital in a year. Because the hospital load is a special type of building load, there
is no strict sense of cooling season or transition season. Compared with other buildings,
hospitals have more variable load conditions. For example, on a certain day in summer, a
demand for both cooling and heating loads may be required, because the hospital requires
accurate temperature control. In a year, hospitals experience almost all the demands of
heating load and domestic hot water load, while the cooling load is larger in summer.

Hourly meteorological data—including air temperature, solar radiation and wind
speed—were simulated in DeST [27]. The outdoor environment temperature, wind speed,
and solar radiation intensity in this area (shown in Figure 4) were suitable for the develop-
ment of renewable energy technologies.
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The technical parameters of the IES and the reference system are listed in Table 2.
Tables 3 and 4 show the initial investment cost of the equipment and key parameters in
the optimization solution. The solutions obtained are points on the front of the pareto,
using parameters listed in Table 3—and they are evenly distributed in the target space.
When the number of calculations reached 300 generations, the optimization results already
had a good distribution. Further increase in the number of iterations would not have
improved the convergence results. The population size of 100 retained diversity. The
mutation probability should be the reciprocal of the number of decision variables. From
the theoretical and experimental results [28], the crossover and mutation index was set
to 20, and the crossover probability was 0.9—both of which are efficient parameters. The
optimization range of the capacity was determined according to the extreme value of the
load, and the operating variable was a dimensionless value between 0 and 1.

Table 2. Technical parameters involved in the system.

Equipment Parameter Value Source

GT ηe
gt, % 30 [29]

WT
Vr,m/s 3 [22]
Vci, m/s 12 [22]
Vco, m/s 20 [22]

AC/H

COPh,abs 0.9 [24]
COPc,abs 1.4 [24]

COPhw,abs 0.9 [24]
ηdcz, % 80 [23]

GSHP
COPc

hp 4.3 [30]
COPh

hp 5.6 [30]

WST ηwst , % 90 [23]

PV
ηe,pv, % 16 [23]

α −0.5 [23]
f 0.9 [23]

Battery ηe
s , % 96 [29]

Power generation efficiency ηe
p, % 35 [31]

Efficiency of heat exchanger ηh
hx, % 80 [31]

Boiler thermal efficiency ηh
gb, % 80 [31]

Grid transmission efficiency ηe
t , % 92 [31]

Natural gas price δgas, kg/kWh 0.220 [31]
Electricity price from grid δgrid, g/kWh 0.968 [31]

Table 3. Technical parameters involved in the system.

System Component Unit Initial Investment Costs Source

GT $/kW 1046 [23]
WT $/kW 1196
PV $/kW 2039 [23]

ACH $/kW 225 [23]
GSHP $/kW 373 [23]
WST $/kW 56 [23]

Battery $/kWh 359 [32]
Boiler $/kW 25 [33]
Heat

$/kW 22 [33]exchanger
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Table 4. The key variable parameters in the optimization solution.

Variable Value Variable Value Range

Population size 100 Ngt [0, 180]
Maximum iteration number 300 Npv [0, 180]

Crossover probability 0.90 Nwt [0, 180]
Mutation probability 0.16 Ns [0, 180]

Distribution index of crossover operator 20 Nwst [0, 520]
Distribution index of mutation operator 20 θ [0, 1]

The influence of different parameters on the results of the optimization algorithm is
listed in Table 5. The results showed that a larger population size and iteration number
in the parameters of NSGA-II resulted in a longer calculation time. However, when
the number of iterations was large, the convergence time was obviously shorter than
the calculation time, resulting in unnecessary calculation time. Therefore, selecting the
appropriate population size and number of iterations was critical.

Table 5. The influence of different parameters on the results of the optimization algorithm.

Population Size Iteration Number Converge Time (s) Computational Time (s)

50 100 206.43 240.03
50 300 387.49 687.86
50 500 519.84 1181.45

100 100 454.19 504.66
100 300 923.65 1485.40
100 500 1711.41 2516.78

4.2. Optimization Results

The Pareto optimal solution set was acquired by running the multi-objective optimiza-
tion algorithm program. The performance indicators of the optimal solution are shown in
Figure 5. The value of each coordinate axis represents the performance of the optimiza-
tion target, and each point is the solution obtained by NSGA-II, which forms the Pareto
frontier. The subjective selection solution considers that the environmental, economic and
energy efficiency have the same weight, so the point P in the figure with the largest total
indicator value was selected as the optimal solution for the performance assessment analy-
sis. After the optimization of capacity configuration and operation strategy, IES achieved
performances of ACSR, PESR and CDERR of 17.3%, 39.8% and 53.8%, respectively.
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The detailed system technical parameters of the optimal solution point P are listed
in Table 6. The total installed capacity of renewable energy generation accounts for 64.5%.
The ratio coefficient θ is 0.655, because the initial investment costs of GSHP are lower than
that of ACH, and the cooling and heating coefficients of performance are much larger than
ACH. As shown in Table 7, the results of different weights (binary weights) of ACSR, PESR,
and CDERR are given, so that users can choose different weights for specific applications
and scenarios.

Table 6. Optimization results of IES.

Items Symbol IES SP

GT capacity Ngt, kW 167 -
WST capacity Nwst, kWh 482 -

Battery capacity Nsc, kWh 8 -
PV capacity Npv, kW 173 -
WT capacity Nwt, kW 130 -

Proportion of heating and cooling supplied by GSHP θ 0.655 -
ACH capacity Nach, kW 406 -
GSHP capacity Ngshp, kW 729 1113

GB capacity Ngb, kW - 405
HX capacity Nhx, kW - 324

Table 7. Optimization results under the binary weight of the indicators.

Symbol
Binary Weights (ACSR, PESR, CDERR)

(0,0,1) (0,1,1) (0,1,0) (1,1,0) (1,0,0) (1,0,1)

Ngt, kW 169 169 169 170 177 177
Nwst, kWh 521 521 521 342 303 342
Nsc, kWh 21 21 21 0 0 0
Npv, kW 180 180 180 179 0 101
Nwt, kW 180 180 180 95 28 86

θ 0.666 0.666 0.666 0.639 0.582 0.623
Nach, kW 425 425 425 405 466 420
Ngshp, kW 742 742 742 712 648 694

ACSR 15.2% 15.2% 15.2% 18.4% 25.6% 21.7%
PESR 41.1% 41.1% 41.1% 38.8% 24.9% 34.7%

CDERR 54.9% 54.9% 54.9% 53.2% 43.0% 50.3%

4.3. Energy Scheduling Analysis

Power dispatching analyses can clarify the operational status of electrical equip-
ment under optimal configuration and show the interaction between supply and demand.
Figure 6 shows the energy dispatch status of the electric source and load demand in a
typical day. From 1:00 to 7:00, the electricity generated by the WT was not enough to meet
the demand of electric consumption, and photovoltaic electricity generation did not meet
the operational conditions; thus, the GT generated electricity under partial load. At the
same time, part of the electricity bought from the grid met the electricity load. From 8:00 to
10:00, as the electrical load increased significantly, the power generation of WT, PV and GT
jointly met the electrical load. From 11:00 to 18:00, the IES gave priority to the utilization of
renewable energy. Due to the low economy and energy efficiency of the GT under low load,
the GT was shut down. From 13:00 to 15:00, part of the electricity was stored in the battery,
and the surplus was injected into the grid. Conversely, from 16:00 to 18:00, supplementary
power was supplied by batteries and the grid. From 19:00 to 24:00, solar radiation and
cut-in wind speed could not meet the renewable power generation conditions. Therefore,
both the building electrical load and GSHP electrical load were supplied by GT.
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Figure 6. Electricity source and consumption of the integrated energy system (IES) in a typical day.

The heat dispatch shown in Figure 7 reveals the heat source and heat demand in a day.
From 1:00 to 6:00, the ambient temperature at night was relatively low. The heating load
of the hospital was greater than the cooling load. Part of the chilled water was stored in
the WST. However, the total load demand was small, resulting in waste heat generated
by the system. From 7:00 to 9:00, ACH directly burned natural gas to drive the cycle to
produce domestic hot water to meet the relatively large domestic hot water load. The WST
released chilled water, and the ACH and GSHP jointly met the cooling load and heating
load. There was no heating water load in the hospital after 10:00. From 10:00 to 15:00, the
GT generated less waste heat at a low load rate. Therefore, the GSHP and WST met most
of the cooling load. From 16:00 to 21:00, due to the large electrical load, the GT generated a
lot of waste heat while generating electricity. Part of the waste heat drove the AC/H to
produce domestic hot water and chilled water. However, the cooling capacity of the AC/H
accounted for only about 0.34, resulting in a lot of wasted heat. From 22:00 to 24:00, as
the waste heat generated by the gas turbine decreased, part of the natural gas entered the
ACH to burn and generate heat to drive the circulation to produce domestic hot water. The
cooling load demand was relatively reduced, and the insufficient cooling load was met
by the WST.
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4.4. Sensitivity Analysis

Analyzing the effects of energy price changes on system performance is vital for
exploring IES. Figure 8a,b shows the direct impact of changes in natural gas prices and
electricity prices of the grid on ACSR and PESR. The different colors in Figure 8 represent
the prices of energy fuels, which vary from −30% to 30% based on every 10% change. All
the points are optimal solutions under different fuel prices. The optimized solution set
showed that as natural gas prices increased, ACSR decreased and PESR remained almost
unchanged. On the contrary, as natural gas prices increased, ACSR increased, and PESR
was practically constant. The reason for this may have been that the evaluation index is a
relative value. When the electricity price increases, the cost saving of IES is faster than the
cost increases of SP, which leads to an increase in ACSR. However, when natural gas prices
increase, the cost savings of IES are slower than the cost increases of SP, which leads to a
decrease in ACSR.
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The detailed changes in the index are shown in Figure 9. The average value of ACSR
decreased by 3.5% (and PESR increased by 0.3%) when the natural gas price increased by
10%. On the contrary, the average value of ACSR increased by 5.5%, (and PESR decreased
by 0.2%) when the electricity price of the grid increased by 10%. The analysis shows that
the economic indicators of the IES were more sensitive to changes in energy prices, and the
fluctuation of energy consumption index changes were not obvious.
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Figure 9. Variations of average ACSR/PESR of the IES with energy price changes.

Fuel is the main component of operating cost. The total natural gas consumption
costs consist of the fuel cost of the GT and the fuel cost of the AC/H direct combustion
zone. Figure 10 shows the impact of energy prices on fuel costs. The results show that the
operating cost of IES was more sensitive to the change in natural gas prices compared with
the shift in electricity prices. The utilization and distribution of natural gas are critical for
the performance of the IES proposed in this paper, and the change in natural gas prices
will directly affect the optimization objective.
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5. Conclusions

This paper proposed a gas-wind-photovoltaic IES, following the establishment of its
optimization method for determining the capacities of the devices. Through a case study
in a severe cold region, the following conclusions were drawn.
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The annual ACSR, PESR and CDERR were incorporated into the multi-objective
optimization problem. Their optimal values were 17.3%, 39.8% and 53.8% in the optimal
operation strategy. The Pareto frontiers considering ACSR, PESR and CDERR demonstrated
that the PESR had a positive relationship with CDERR; it had a negative impact on ACSR.

The optimal capacities of the IES were 167 kW for the GT, 482 kW for the WST, 8 kW
for the GT, 173 kW for the PV, 130 for the WT, 406 kW for the ACH and 729 kW for the
GSHP. The total installed capacity of renewable energy generation accounted for 64.5%.
The optimal capacities—considering different objectives—were variable, and multi-criteria
decision-making was necessarily adopted to select a suitable scheme.

Natural gas processes had a more prominent influence on the operating cost of the
IES compared with shifts in electricity prices. The utilization and distribution of natural
gas is critical for the performance of the IES proposed in this paper, and changes in natural
gas prices directly affects the optimization objective.
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