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Abstract: In this paper, the authors analyze in more details an image encryption scheme, proposed by
the authors in their earlier work, which preserves input image statistics and can be used in connection
with the JPEG compression standard. The image encryption process takes advantage of fast linear
transforms parametrized with private keys and is carried out prior to the compression stage in a way
that does not alter those statistical characteristics of the input image that are crucial from the point of
view of the subsequent compression. This feature makes the encryption process transparent to the
compression stage and enables the JPEG algorithm to maintain its full compression capabilities even
though it operates on the encrypted image data. The main advantage of the considered approach
is the fact that the JPEG algorithm can be used without any modifications as a part of the encrypt-
then-compress image processing framework. The paper includes a detailed mathematical model
of the examined scheme allowing for theoretical analysis of the impact of the image encryption
step on the effectiveness of the compression process. The combinatorial and statistical analysis
of the encryption process is also included and it allows to evaluate its cryptographic strength. In
addition, the paper considers several practical use-case scenarios with different characteristics of
the compression and encryption stages. The final part of the paper contains the additional results
of the experimental studies regarding general effectiveness of the presented scheme. The results
show that for a wide range of compression ratios the considered scheme performs comparably to
the JPEG algorithm alone, that is, without the encryption stage, in terms of the quality measures
of reconstructed images. Moreover, the results of statistical analysis as well as those obtained with
generally approved quality measures of image cryptographic systems, prove high strength and
efficiency of the scheme’s encryption stage.

Keywords: encryption of images; compression of images; linear discrete parametric transforms;
transform coding; uniform block quantization; entropy coding

1. Introduction

The beginning of the twenty-first century brings the dynamic development of telecom-
munication technologies giving the possibility of practical use of multimedia in almost all
areas of our lives. The successively increased bandwidths of data transmission channels
enable fast transmission of high resolution images and video sequences. This allows for
the wide spread of remote data exchange systems for audio/video conferencing in real
time, publishing multimedia content in computer networks through websites or image
data exchange between experts in various fields using dedicated database systems, that is,
in medical sciences, engineering or forensics.

The transmission of multimedia data using publicly available open communication
channels makes the data vulnerable to interception and overhearing by unauthorized
parties. This problem can be solved with cryptographic algorithms. The security of
multimedia data transmission can be ensured by conventional cryptographic algorithms,
that is, block ciphers such as Data Encryption Standard (DES) [1], International Data
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Encryption Algorithm (IDEA) [2], or Advanced Encryption Standard (AES) [3]. However,
the systems based on encryption of entire multimedia data streams with block ciphers are
referred to in the literature as naïve approaches (see [4]) because of their high computational
complexity, lack of data stream consistency in video transmissions or incompatibility of
encrypted data stream with devices that do not operate with the proper (or any) private
key. In practice, selective approaches are preferred, that is, approaches where only the
selected elements of the multimedia data stream are encrypted.

Both naïve and selective approaches can only be applied to compress-then-encrypt (CTE)
systems, in which encryption is done after compression, or is combined within a given
system with the compression method. The conversely defined problem, which requires
encrypt-then-compress (ETC) approach and puts much higher demands on the cascade
combination of encryption and compression methods, was formulated and addressed in
papers [5–11]. In the ETC approach, the encryption step proceeds independently of the
compression, and what is more important, the data is encrypted in the first place and then
compressed in the following step. It should be emphasized that both steps are strongly
contradictory. The aim of the encryption process is to hide all similarities (correlations) in
the image. In turn, the compression process allows for the reduction of the data size based
on the similarities and resulting redundancy of the representation.

The ETC coding scenarios considered in this paper, which concern the common
problems of data storage or data transmission over global network, are depicted in Figure 1.
Both scenarios involve two actors—Alice and Bob, each with distinct needs and limited
mutual trust. We assume that Alice wants to send confidential image data over the network
or store it in an external archive. Both tasks are delegated to Bob, however he’s either not
authorized to access the data or the data is sent to him over an open channel. For this
reason Alice performs the data encryption process, being the only activity she’s forced
to undertake in the assumed circumstances. Bob on the other hand, since his task is to
deposit the data or forward it over the network, is highly interested in its compression,
thus reducing the requirements for the available free disk space or the bandwidths of data
transmission channels. In the ideal case Alice sends the ciphertext to Bob, who is able to
compress it efficiently without any additional information, using known standards and
tools. Such assumptions put even higher demands on the solutions being developed.

The scheme addressed in this paper is an example of such a solution that tries to meet
all the requirements specified above.

In this paper we analyze in more details the novel scheme for encryption and com-
pression of images according to the ETC scenario, which was was proposed during the
2020 Data Compression Conference (see [12]). The encryption stage takes advantage of
linear orthogonal transforms and the known approach of image data mixing within blocks
selected from different areas of an image [13]. Such operation in the encryption process
allows to keep the statistical characteristics of the image, which is crucial from the point
of view of the succeeding compression stage. The compression stage adopts a classical
method based on scalar quantization in the domain of linear transformation (in practice
Discrete Cosine Transform (DCT)) and entropy coding. The practical implementation of such
method is the well known JPEG standard for lossy image compression. The analyzed
scheme allows for the practical realization of the ETC scenario with the use of standard
compression tools like JPEG, while maintaining the efficiency of compression at a level
comparable to a case without the encryption stage.

The elements of novelty in this paper include: (i) the extended theoretical efficiency
analysis of the scheme’s compression process along with additional, practical verification of
its effectiveness, (ii) the proposal of utilization of fast parametric transforms as the effective
computational tools which can be used in the encryption process, (iii) both the detailed
theoretical and practical analysis of the efficiency of encryption stage.
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Figure 1. Exemplary scenarios for data encryption and compression according to encrypt-then-
compress (ETC) scheme: data storage (a), data transmission over global network (b).

2. Review of Existing Solutions

The ETC schemes proposed in the literature are based on a variety of approaches,
that is, source coding with additional information [5–7], iterative image reconstruction
based on reduced representation in the orthogonal transform domain [8], encryption and
compression in the domain of integer wavelet transform [9], compressive sampling [10], the
elements of game theory [11]. Depending on the adopted approach, we can expect different
values of the compression ratio CR obtained at different values of the Peak Signal-to-Noise
Ratio (PSNR), as well as different levels of compliance with the considered scenarios of
practical usage (see Figure 1). In particular, we have approaches that exploit:

• Source coding with additional information: compression is based on known statistical
relationships between ciphertext and the private key. If the elements of the ciphertext
and the private key are correlated to the extent that the Hamming distance between
them can be bounded from above, that is, the distance is not greater than ξ, then this
information can be effectively used by the compression algorithm to reduce the size
of the data without knowing the private key. It is enough to divide the set of values of
ciphertext elements into layers in which we place those elements that are distant by
more than 2ξ bits, whereas to the output stream we write not the values of elements
themselves, but the identifiers of the layers to which they belong. In paper [5] it
was shown that under certain conditions it is possible to compress encrypted data
to the same level as in the case of compression of original data, that is, not subjected
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to encryption. The Authors also proposed a scheme for the encryption and lossless
compression of binary images using LDPC (Low-Density Parity Check Codes) correction
codes and XOR operation at the compression and encryption stages respectively. It
allowed to obtain the practical compression ratios at the level of CR = 1.3. In paper [6],
the original approach was improved by taking into account the spatial dependencies
between the values of neighboring pixels in the image. This allowed to increase the
value of the compression ratio to the level of CR = 2.3. Another improvement of
the original method for grayscale and color images was proposed in paper [7]. The
average values of compression ratios were obtained at the level of CR = 1.8. The
essential drawbacks of approaches based on source coding are relatively low levels of
the compression ratio, and the lack of symmetry of the entire scheme, which requires
to combine decompression and decryption stages. In practice, it means that such
approaches do not fully follow the scenarios depicted in Figure 1.

• Approximate representation of image pixels in the domain of linear transform: such approach
was proposed in paper [8], here at the encryption stage the image pixels are scrambled
with use of permutation determined on the basis of the private key, whereas the
compression stage assumes to divide the elements of ciphertext into two sets: (a) rigid
pixels that are not further modified, (b) flexible pixels. The values of flexible pixels are
represented in the domain of linear orthogonal transform and then quantized, while
the results are assigned to a specific equivalence classes resulting from the division
operation. It allows to describe the value of each of the obtained coefficients in the
form of a weighted sum of three components: (a) coarse, which can be estimated
based on the values of the nearest rigid pixels, (b) the average, which next to the
values of rigid pixels is written to the output stream, (c) detailed, which is rejected.
The values of rigid pixels and representations of transform coefficients that describe
the components of the average elastic pixels are written to the output stream. The
compression itself is lossy. The reconstruction of the image is possible based on the
proposed iterative procedure. The practical values of the compression ratio obtained
with this method are at the level of CR = 3 with PSNR values around 35 dB.

• Image representation in the domain of discrete integer wavelet transform (DIWT) (see [9])—at
the encryption stage, the grayscale input image is transformed using DIWT into one
coarse band and nine bands containing detailed information. The data contained in
the coarse band is encrypted by adding to it a sequence of pseudo-random numbers,
while the range of resulting values is limited by the modulo division operation. The
data contained in the remaining bands is permuted. Both the the pseudo-random
sequence and the permutation are determined on the basis of the private key. The
compression stage operates only on the encrypted data coming from the detailed
bands. The data taken from those bands is quantized and then entropy coded using
arithmetic coding. The compression and encryption stages are reversible, with the
whole scheme being symmetrical. The practical results obtained with this method
are very close to those obtained with JPEG standard. It should be emphasized that
the compression method used here is a lossy one. Hence it is possible to obtain high
compression ratios around CR = 20 at the expense of quality distortion, but still with
PSNR above 30 dB.

• Compressive sensing (see [7])—at the encryption stage, the image is reshaped into a
single vector, and then encrypted by a linear method consisting of multiplying the
input vector by any matrix, for example, permutation matrix, which is generated on
the basis of a private key. The compression stage is based on compressive sampling
and relies on projecting the ciphertext vector onto a set of basis vectors from the
subspace with reduced size. Such a basis is most often a set of linearly-independent
vectors whose elements are randomized. In addition, the coefficients of projections
are quantized. In this way the reduction in the size of the data can be obtained. The
image decoding process is based on the theory of compression sensing, wherein the
matrix of discrete cosine transform (DCT) is taken as a matrix allowing for a sparse
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representation of the input image. During the experiments the practical values of the
compression ratios were at the level of CR = 2 with the PSNR coefficients around
30 dB. However, the discussed scheme is asymmetrical, which manifests in the way
that the decompression and decryption stages must be combined.

• Game theory—proposed in paper [11], it is an improvement of the previously described
approach from paper [8]. Here, at the encryption stage the image is divided into
blocks of arbitrary sizes (e.g., 32× 32 pixels), the order of which, the same as the
order of pixels within the blocks, is modified using permutations described by the
private key. An additional action is to determine the block type, that is, whether it
is a texture or a smooth part of an image. Its aim is to increase the efficiency of the
compression step. However, such actions must be done by the sender, which is surely
a disadvantage of this approach. The compression step is based on the [8] approach,
wherein the algorithm is applied to subsequent blocks, not to the whole image. Then,
depending on the type of block, the value of a coefficient describing the share of rigid
and elastic pixels, as well as the quantization step can be selected individually for
each block. The choice of parameter values is adaptive and controlled by an algorithm
based on the game theory, where image quality is being maximized while keeping
the limit on the size of image after compression. Image reconstruction is based on the
iterative technique proposed in [8]. During the experimental research, the quality of
smooth images and textures was at the level of 36 and 27 dB, with the compression
ratios around CR = 2.32, which is an improvement of about 3 and 1 dB respectively
when compared to the original approach from paper [8].

3. Mathematical Model of the Analyzed Scheme

In this section, we will present the mathematical model of the proposed scheme, and
show the main characteristics of the compression and encryption processes present within
its course.

Let us assume that the input of the considered scheme is a monochromatic image
being a realization of some two-dimensional, stationary, zero-mean random field Ψ. Let
w, h, n ∈ N and W = w× n, H = h× n and let’s suppose that M = w× h and N = n2. In
such case the image will be represented by H×W element matrix U, with elements uij ∈ R
for i = 1, . . . , H and j = 1, . . . , W. At first, initial arrangement the image’s input data is
performed, what is shown in Figure 2. 
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In step (a), the input image U is divided into separate, square fragments Xk, k = 1, . . . , M,
each of which being the n× n element real matrix. Input image’s matrix U components
mapping to the elements of matrices Xk can be compactly written in the form of the
following relationship: ∀ k ∈ 1, . . . , M and ∀ i, j ∈ 1, . . . , n:

( Xk)ij = u b(k−1)/wc×n + i, ((k−1) mod w)×n + j , (1)

where the symbol b × c stands for the floor function and mod denotes the integer modulo
operation. In the next step, that is, step (b) in Figure 2, each of the Xk matrices is flattened,
creating the respective N = n2 – element vector xk of the form:

xk = vec ( Xk) = [ ( Xk)
T
1 ( Xk)

T
2 . . . ( Xk)

T
n ] T , (2)

where ( Xk)l , k = 1, . . . , M, l = 1, . . . , n, is the l-th column of the matrix Xk and vec (× )
is the matrix column vectorization operator, see for example [14]. In the last step, that
is, step (c), N – element vectors xk are arranged into successive columns of the N ×M –
element matrix X, that is:

∀ k ∈ { 1, . . . , M } ( X )k = xk , (3)

where ( X )k is the k-th column of the direct input matrix X, which constitutes the final
form of the input data arrangement in the considered coding scheme.

After the input matrix X has been prepared, the coding process begins, whose course
is schematically shown in Figure 3.
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YY ˆ

Storage and transmission 
over local open channel 

Ŷ
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In the first step, denoted by (i), the input matrix X is encrypted and scaled, that
is, Y = 1/α X C, where C is the M × M – element, real, orthogonal, that is, CCT = I,
encryption matrix and α ∈ R is the scaling factor, whose value will usually be greater
than 1, ensuring the range of the magnitudes of the elements of the ciphertext X C being
acceptable from the point of view of the subsequent coding stages. Step (ii) is optional
and, for specific implementations of the analyzed scheme, might involve acquisition of the
scaled ciphertext Y in the form of the preferred standard graphics file format, for example,
BMP or PNG (see e.g., [15]). This enforces truncation or rounding of the ciphertext data to
the respective integer values, since most of the graphics file formats assume their input
image data to be coded as integers. This is modeled by adding the N×M – element integer
projection error matrix E to the ciphertext Y (see e.g., [16,17]), resulting in the integer-valued
matrix Ŷ. Steps (iv), (v) and (vi) comprise the actual image compression process which
follows exactly the JPEG image compression algorithm’s operation (see [18]). In those steps
the JPEG method can be utilized without any modifications. In step (iv) the ciphertext
Ŷ is transformed by the orthogonal, N × N – element compression matrix A, then it is
quantized and entropy coded. Quantization is modeled by adding the N ×M – element
rounding error matrix Ê to the matrix Z, resulting in the integer-valued matrix Ẑ. In step
(vii) the compressed ciphertext is sent through the open communication channel to the
destination device. Decompression, which is performed in step (viii), is the exact reverse of
the compression process taking place in steps (iv), (v) and (vi). At this stage we assume the
decompression matrix AT to be the inverse of the orthogonal compression matrix A applied
in step (iv). Here, the unmodified JPEG algorithm can also be fully utilized, resulting in the
obtainment of the N ×M – element, real matrix W. In the last stage (x) of the considered
scheme, the decryption and rescaling of the values of the matrix W is carried out, what
results in obtaining the N ×M – element matrix X̂, which approximates the input image
matrix X. The analyzed encryption before compression coding scheme, described above,
can be stated in terms of the following model equation:

X̂ = α AT ( A ( α−1 X C + E ) + Ê ) C T . (4)

Equation (4) comprises the mathematical model of the examined scheme and is used as the
basis for derivation of its most significant efficiency characteristics.

4. Compression Process Effectiveness Analysis

In this section we will present and analyze the equations describing the efficiency
of the compression process present within the considered image coding scheme. For this
purpose, on the basis of the model Equation (4), using high-resolution approximations to
Shannon’s information theory, for example, [19–23], along with the results developed in our
previous work [12], we’ll derive the distortion-rate characteristics of the analyzed scheme,
that is, the D(R) function, whose explicit form comprises the exhaustive description of the
effectiveness of the analyzed image compression process. Eventually, we’ll show that: (i)
the obtained D(R) function does not depend on the choice of the encryption matrix C, and
(ii) the encryption step preserves the second order statistics of the input image data. Both
mentioned features are the main characteristics of the image coding scheme examined in
this work.

We will solely base our analysis on the results obtained in our previous work (please
refer to [12] for all the detailed derivations), in which it is initially stated that the mean
squared error of reconstruction of the input signal at the output of the considered scheme
takes the following form:

D =
1

MN
tr { ( X̂− X ) ( X̂− X )T} , (5)

where tr{×} is the matrix trace operator. Using orthogonality of the compression and
encryption matrices A and C, respectively, we can simplify the form of the image X̂,
reconstructed at the output of the analyzed scheme, obtaining:
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X̂ = X + α ( AT Ê + E ) C T . (6)

Substituting Equation (6) to the relationship (5) and using proper sample approximations,
E and Ê, of the integer projection and quantization errors’ matrices, respectively (see [12]),
present in steps (ii) and (v) of the examined scheme (c.f. Figure 3), we conclude that:

D = α2 1
N

( ∑N
i=1 σ2

ei
+ ∑N

i=1 σ2
êi
) , (7)

where α is the scaling factor used in steps (i) and (x) of the analyzed scheme, while σ2
ei

and σ2
êi

are the sample estimators of integer projection and quantization errors’ variances
(see [12]). It is worth explaining here, that in case of the optional scenario (c.f. step (ii)
in Figure 3), in which the user wishes to archive the encrypted image X C in the form
of one of the selected standard graphics file formats, e.g BMP, the concrete value of the
scaling factor α, proper for the particular input image X, has to be chosen in such a way,
that all integer projected values 1

α X C + E of the scaled ciphertext 1
α X C must fall into an

interval contained within the appropriate input range, accepted by that selected format, for
example, in case of 8-bit grayscale BMP format images, 1

α X C + E must fall (after 128 level-
shift) into an interval [ 0 , . . . , 255 ] ⊂ Z. The detailed discussion on the values of the scaling
factor α, proper for our model’s assumptions, will be carried out in the next section.

Let us now examine the problem of approximation of the sample estimators of integer
projection and quantization errors’ variances, that is, parameters σ2

ei
and σ2

êi
, i = 1, . . . , N

present in the Equation (7), which result from performing the steps (ii) and (v) within the
examined image coding scheme. Let’s consider uniform scalar quantization of a continuous,
one-dimensional random variable X with sufficiently smooth probability density function
pX, performed with two types of scalar quantizers, x̂(1) and x̂(2), whose reconstruction
levels for an arbitrary value x ∈ R of a random variable X are given by the following
relationships:

x̂(1)(x) = ∆×
⌊

x
∆
+

1
2

⌋
and x̂(2)(x) = sgn(x)× ∆×

⌊
| x |
∆

⌋
, (8)

where ∆ ∈ R+ denotes the quantization step. The operation of both of the considered
quantizers is depicted schematically below in Figure 4.
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Figure 4. Schematic view of the operation of quantizers (8) for an exemplary random variable X.
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Quantizers x̂(1) and x̂(2) perform rounding and truncation, respectively, of the vari-
able’s X values to the nearest multiplicities of their quantization steps. With such assump-
tions we can write the common expression for the quantization error variance σ2

e(k)
, for both

of the considered quantizers x̂(k), k = 1, 2 , in the following way:

σ2
e(k) =

L

∑
i = 1

∫ xi

xi−1

( x− x̂(k)(x)) 2 pX(x) dx , (9)

where N 3 L� 1 denotes the number of quantization levels of a selected quantizer and
xj = − 1

2 L ∆ + j ∆, j = 0, . . . , L, are the limits of its consecutive reconstruction levels’
intervals [ xi−1, xi ] ⊂ R, i = 1, . . . , L. Taking advantage of the well-known results of high
resolution quantization theory, see [20–22], we can infer that the expression (9) can be
approximated by the following relationships:

σ2
e(1) =

∆2

12
and σ2

e(2) =
∆2

3
, (10)

appropriate for the considered rounding x̂(1) and truncation x̂(2) quantizers, respectively.
Moreover, setting ∆ ≡ 1 in Equation (10), lets us approximate the error variances for the
integer rounding and integer truncation towards zero operations, which eventually take
the following forms:

σ2
e =

{
1

12 for rounding,
1
3 for truncation.

(11)

Going back to the main course of our considerations and using the results stated
in Equations (10) and (11), we can rewrite the expression (7) for the mean squared error D
of the reconstruction of the input image at the output of the analyzed scheme, as follows:

D ∼= α2 1
N

N

∑
i=1

∆2
i

12
+ α2 σ2

e , (12)

where ∆2
i , i = 1, . . . , N are the steps of the independent scalar quantizers used in stage (v)

of the examined scheme and σ2
e can take alternative values given in (11), depending on the

chosen integer projection operation applied in step (ii) of the analyzed scheme.
Let us now concentrate the on the evaluation of minimum average bit rate R, being

the bit rate in the sense of the Shannon’s rate-distortion theory [19], of representation of a
single sample coded at the output of the examined scheme, corresponding to the mean
squared error D, given in (12). On the basis of the detailed derivation presented in our
earlier work [12], we can immediately state that the approximate value of the considered
bit rate may be expressed as:

R ∼= 1
2 log 2

 2πe
α2

(
N

∏
i=1

aT
i Rx a i + α2σ2

e

∆2
i

) 1
N
 , (13)

where aT
i , i = 1, . . . , N is the i-th row of the orthogonal compression matrix A, utilized

in step (iv) of the considered scheme, and Rx = 1/M X XT is the sample autocovariance
matrix of the input image X. Using dependencies (12) and (13), after some mathematical
manipulations (once again please refer to [12] for the details), we obtain the explicit form
of the relationship between the analyzed mean squared error D and its corresponding
minimum average bit rate R, characteristic of the analyzed coding scheme:

D ( R ) ∼=
πe ‖∆∆∆‖2

6N

(
N

∏
i=1

aT
i Rx a i + α2σ2

e

∆2
i

) 1
N

× 2−2R + α2σ2
e , (14)

where ‖∆∆∆‖ is the Euclidean norm of ∆∆∆ = [∆1, ∆2, . . . , ∆N ], that is, the vector of the quantiza-
tion table coefficients. According to Shannon’s information theory, the relationship between
the measures D and R, given by the approximate dependency (14), that is, the distortion-rate
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function, is an exhaustive description of the effectiveness of image compression process
being the part of the coding scheme considered in this paper.

By analyzing Equation (14), describing the distortion-rate function for the examined
coding scheme, one can conclude that the effectiveness of the compression process does not
depend on the choice of the encryption matrix C. Moreover, we have:

Ry =
1
M

Y YT =
1

α2M
X C CTXT =

1
α2M

X XT =
1
α2 Rx,

therefore, from statistical point of view of the compression process, which follows the input image’s
encryption step, both signals, input X and encrypted Y, are equivalent, up to a scaling factor,
what is compensated in the last step of the analyzed scheme. Both mentioned features are
the main characteristics of the presented image coding scheme and stood originally at the
basis of its construction.

Examples of Compression Process Quality Characteristics

In this part of the work we will present examples of theoretical image compression pro-
cess quality characteristics, achieved by the examined image coding scheme under selected
operational scenarios, along with the exemplary practical results allowing for brief verifi-
cation of the accuracy of the derived approximation of the distortion-rate function (14),
characteristic to the considered scheme.

Let us assume a global image model (see [24,25]), in which the image is considered to
be the realization of some two-dimensional, discrete index, zero-mean, stationary, separable
random field with W 2 ×W 2 – element autocovariance matrix of the form:

Rx = E { vec ( U ) vec ( UT) } = σ2
x R ( ρr) ⊗ R ( ρc), (15)

where U is W ×W – element stochastic matrix representing the image itself, E{ × } is the
expected value operator, ⊗ is a matrix Kronecker product (see e.g., [14]), σ2

x is the variance
of a single random variable of the field U, ρr, ρc ∈ (−1, 1 ) are row and column correlation
coefficients, respectively, of adjacent elements of the U matrix, and the individual elements
of the W ×W – element matrix R ( ρ ) are defined as follows:

[ R ( ρ ) ] ij = ρ |i−j| , i, j = 1, . . . , W, ρ ∈ (−1, 1 ). (16)

Let us assume further that the M×M – element, orthogonal encryption matrix C has the
following form:

C = Pr diag ( C1, C2, . . . , CM/K ) Pc , (17)

where diag ( C1, . . . , CM/K) is a block-diagonal, orthogonal real matrix, composed of
K× K – element orthogonal matrices Ci, i = 1, . . . , M/K, while additional M×M element
permutation matrices Pr and Pc apply respective permutations to the rows and to the
columns of the block-diagonal matrix diag ( C1, . . . , CM/K) . Such choice of the form of the
encryption matrix C is very useful practically since it enables, for example, the calculation
of the ciphertext image with the use of fast parametric transformations (see Section 5
or, e.g., [26]), and/or perform a simple balance adjustment between the efficiency of the
compression process within the examined scheme and its cryptographic strength.

It is relatively easy to show that for the form (17) of the encryption matrix C, the
maximum possible absolute value of a single element of the ciphertext matrix Y is equal
to
√

K xmax, where xmax is the maximum possible absolute value of the individual sample
of the input image X. Based on the assumption that xmax is also the maximum possible
value comprising the input range limit, accepted by the selected standard graphics file
format, to which the user wishes to archive the encrypted image Y in the optional step (ii)
of our scheme (see discussion in the first part of Section 4), we can infer that the maximum
possible value of the scaling constant α used in step (i) of the analyzed scheme is

√
K. This

inference can be summarized as:
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max i=1,...,N
j=1,...,M

| ( Y )ij | =
√

K xmax ⇒ αmax =
√

K. (18)

As explained earlier in Section 4, choosing the value αmax of the scaling factor α ensures
that all integer projected samples 1

αmax
Y + E of the scaled ciphertext 1

αmax
Y will fall into an

interval contained within the appropriate input range, accepted by the mentioned graphics
image file format.

Let us now choose the compression transform to be 8× 8 point two-dimensional
discrete cosine transform of the second kind (2D-DCTII) with a matrix form (see [27]):

A(8×8)
2D = A(8)

1D ⊗ A(8)
1D , (19)

where the elements of 8× 8 – element matrix A(8)
1D are:

[ A(8)
1D ] ij =


1√
8

for i = 1, j = 1, . . . , 8,
1
2 cos

(
π(i−1)(2j−1)

16

)
for remaining i, j.

(20)

This is an orthogonal transformation, optimal in the image compression problem for the
probabilistic image model (18) with row and column autocorrelation coefficients ρr, ρc of
the adjacent image elements equal in limit to 1, see [27].

Let us finally choose the quantization table, which is the last parameter required
for the simulation model of theoretical quality characteristics of the compression process
present in the examined coding scheme to be completed. Let us take the quantization
table recommended in the JPEG standard (see [18], table K.1, p. 143) with the following
quantization steps:

∆∆∆ = vec



16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99


. (21)

The parameters Rx, C, A(8×8)
2D , ∆∆∆, and αmax for σ2

x = 1024 and ρr = ρc = 0.95 correspond
to the simulation of the compression process, being a part of the considered scheme, which
fully utilizes unmodified standard JPEG algorithm which in this case operates on W ×W
pixel, 8-bit grayscale image.

Figure 5 shows the theoretical quality characteristics of the compression process
for the examined scheme in the form of the dependence of the PSNR measure of im-
age reconstruction error D at the output of the analyzed scheme on the minimum av-
erage bit rate R, resulting from Equation (14). For clarity, it is worth mentioning that
in Figure 5 the PSNR = 10 log 10( 2552/D ), where the mean squared error D is given by
the relationship (14).

Additionally, to illustrate the trade-off between the scheme’s cryptographic strength,
depending on the dimensions K of the encryption matrices Ci (see (17) and Section 6), and
its compression capabilities, three different characteristics for K = 8, 16 and 32 are shown
in Figure 5. The last of the characteristics presented in Figure 5 applies to the case when
σ2

e = 0, that is, when the user omits the optional step (ii) of the analyzed scheme in which
the integer projection is performed. In such case Equation (14) does not depend on the
scaling factor α, and the situation corresponds to the scheme’s implementation variant in
which it is not necessary to save the intermediate encrypted image, for example, to a file in
the BMP format, that is, the ciphertext Y is fed directly to the compression subsystem as a
matrix of real samples. Such scenario requires only a slight modification of the standard
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JPEG method in such a way, that it should be acceptable to supply the JPEG’s compressor
input with real sample values instead of integers.
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Figure 5. Selected quality characteristics of the image compression process.

Finally, it is interesting to verify, at least briefly, the accuracy of the derived high
resolution approximation (14) of rate-distortion characteristics of the considered scheme
on the exemplary input image. For this purpose we have chosen the 512 × 512-pixel,
8-bit grayscale ’Mandrill’ image (see Figure 12 in Section 7), used later in our experiments,
since it enables for examining proportionally wider range of higher bit rates, in comparison
to other images used in our experiments, due to its relatively noisy statistical characteristics.
The image was processed exactly according to our scheme’s model (4) operation, with the
use of parameters C, A(8×8)

2D , ∆∆∆, and αmax defined in Equations (17)–(21), for the block sizes
K = 8, 16 and 32 of the encryption matrix C. To achieve variable sample bit rates for the
experimental image, the quantization matrix (21) was multiplied by scaling factors s ∈ R+,
whose values were calculated according to a widely-used JPEG’s quantization table scaling
method, described for example, in [28]. We then calculated sample bit rates for subsequent
image compression qualities, determined by the consecutive values of parameter s, using
the histogram method of differential entropy approximation for the exemplary input image,
along with their corresponding sample mean squared errors of the reconstruction of the
original exemplary image on the output of the analyzed scheme. Computed in such way,
sample bit rates R and corresponding sample mean squared errors D, were then compared
with their theoretical counterparts defined in Equations (13) and (14), calculated on the
basis of the exemplary image’s sample autocovariance matrix Rx, respective quantization
tables s×∆∆∆ and the integer projection error’s variance σ2

e = 1
3 , corresponding to the integer

truncation of the encrypted image data, performed in step (ii) of our simulation. The
resulting graphs, showing the comparison of the modeled and the sampled rate-distortion
pairs, characteristic to the examined image coding scheme for the exemplary ’Mandrill’
input image are depicted below in Figure 6.

The graphs reveal that for higher bit rates the approximate, theoretical D(R) character-
istics derived for the considered scheme, match up quite accurately with their data sampled
counterparts. For lower bit rates on the other hand, the derived dependencies become
inaccurate, what results from the simplifications, proper for high-resolution quantization
theory approximations, used in our derivations.
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Figure 6. Comparison of the modeled and the sampled R(D) pairs for the ’Mandrill’ image.

5. Fast Parametric Orthogonal Transforms

Fast parametric orthogonal transforms (FPOT) are an extension of the class of known
transforms with strictly defined basis vectors (e.g., DCTII) onto the class of transforms
described by the values of parameters. The parametrization allows to determine the form of
the transform on the basis of the private key, or enables its automatic adaptation to a given
criterion (see e.g., [29]), while maintaining fast computational structures with O(n log2 n)
complexity, where n is the transform size. The fast computational structures of FPOTs
can be determined in the way allowing to obtain the required properties (e.g., involutory
transforms [30,31]) or can follow the fast computational structures of known orthogonal
transforms. The second approach is based on the heuristic: if the known transform has
good properties in solving the given class of problems, then parametrization, and the
ability to adopt transform itself, can only serve to improve the results.

A good example of the heuristic is FPOT with two-stage structure that follows the
well known Benes̆ interconnection network [32] (see Figure 7, for n = 8). It is well known
that Benes̆ network is able to realize any permutation in the set of n elements. Hence,
its computational structure can be effective from the point of view of data encryption.
The parametrization of Benes̆ network involves the use of base operations (described
symbolically as ’◦’) for example, defined as:

Oi(αi) =

[
cos αi sin αi
− sin αi cos αi

]
, (22)

where αi is the operator’s parameter, and i is an index of the operator with i = 1, . . . ,LP(n),
while LP(n) describes the total number of transform parameters. For the two-stage struc-
ture we have LP(n) = n

2 (2 log2 n− 1). And then {αi : i = 1, 2, . . . ,LP(n)} is the set of
parameters whose values fully define the form of the resulting transform.

In the task of encryption-then-compression of natural images FPOTs can be used at
the image encryption stage to implement the block elements of the encryption matrix C,
and also realize all the necessary permutations (see Section 3). In the first case we can use
the structure shown in Figure 7 with base operations in the form of rotations defined as (22).
Then the mapping of the bits of the private key (q bits resulting in ξ = 2q different values)
onto the values of parameters (from the range [0, 2π)) can be implemented according to
the formula αi = 2πdiξ

−1, where di ∈ {0, 1, . . . , ξ − 1} for i = 1, 2, . . . ,LP(n) (c.f. [13,31]).
Then the concatenation of the bit representations of numbers di is the part of the private
key K describing the transformation.
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Figure 7. Fast structure of two-stage parametric transform for n = 8.

In the case of permutations the Benes̆ network (see Figure 7) in its direct form can be
used. Here, however, the base operations can be reduced to simple variants Ti changing
the order of elements if the si parameter equals 1, that is,:

Ti(si) =

[
1− si si

si 1− si

]
, (23)

where si ∈ {0, 1}. Then any permutation in the n-element set can be described by the se-
quence {si : i = 1, 2, . . . ,LP(n)} of binary numbers, whose concatenation will complement
the private key K.

6. Analysis of the Encryption Efficiency of the Considered Scheme

An analysis of encryption efficiency is an essential step in the design of any crypto-
graphic system. In the case of the analyzed approach, such an analysis was performed: (i)
based on the known measures used to evaluate the effectiveness of image cryptographic
methods, that is, combinatorial analysis and quality indicators in the form of Histogram
Analysis (HA), Maximum Deviation (MD), Correlation Coefficient (CC), or Irregular Devia-
tion (ID) (see [33,34]), (ii) as a statistical analysis aimed at deriving dependencies allowing
to determine the probability of obtaining a reconstruction error at a level not greater than a
given value in the case of an attempt to randomly guess the proper encryption key.

6.1. Combinatorial Analysis

The combinatorial analysis applies to the considered encryption scheme (see Section 3),
where the encryption matrix C is a composite of permutation matrices Pr, Pc (M × M
element matrices) and a block-diagonal matrix with K × K element blocks Cl for
l = 1, 2, . . . , M/K. We assume that both permutation matrices and the element mix-
ing matrices Cl are implemented with use of fast parametric transforms modeled as the
two-stage structure of the Benes̆ network (see Section 4). In case of Benes̆ network the
number of free parameters equals LP (n) = n

2 (2 log2 n− 1), where n is the size of the trans-
form. It is assumed that for Cl block matrices with base operations of the form (22) that
each of the αi parameters for i = 1, 2, . . . ,LP (n) is quantized to a number of ξ = 2q values
αi = 2πdiξ

−1, which are evenly distributed over the range [0, 2π) with di ∈ {1, 2, . . . , ξ}
being an integer that describes the value of the rotation angle in terms of q bits in a natural
binary representation. The Benes̆ network with base operations of the form (23) performs
any permutation in the m-element set, where m is the transform size, and each si parameter
is a one-bit integer, that is, si ∈ {0, 1}. Thus, the length of the private key expressed in
bits, which is the concatenation of binary representations of di and si parameters, can be



Entropy 2021, 23, 421 15 of 26

determined according to the formula LK(K, M, q) = q
(

M
K

)
LP (K) + 2LP (M), where M/K

is the number of Cl block matrices.
In case of an attack consisting in guessing a private key for the decryption step, the

probability of drawing a key that differs by the number of κ bits in terms of the Hamming
distance from the key used at the encryption stage can be described using the Bernoulli
distribution with the probability of success equal to p = 1

2 . The expected value of κ variable,
that is, the average number of bits distinguishing both keys, will then be equal to half the
key length, that is, E{κ} = 1

2LK(K, M, q). In turn, the probability of drawing a key that
differs by the number of κ0 bits can be described as:

P{κ = κ0} =
(
LK(K, M, q)

κ0

)
× 2−LK(K,M,q).

For example, with image of the size 512× 512 pixels, which was divided into fragments con-
sisting of 8× 8 pixels, and the size of the Cl block matrices was assumed to be the size of vec-
tors Xk, we get K = 64 and M = 4096. Assuming the value of q = 4 bits, the resulting length
of the private key will be equal toLK(64, 4096, 4) = 256LP (64) + 2LP (4096) = 184,320 bits.
Thus, the probability of guessing the encryption key will be approximately 10−55,485. For
a key that differs by one bit from the encryption key we have 0.38× 10−55,479, and for a
key that differs by two bits 0.41× 10−55,474. For κ0 =46,080 (i.e., for 25% of the key length)
the probability will be 0.11× 10−10,473. The obtained exemplary values of probabilities are
negligibly small, even for relatively small size of Cl block matrices, which is K = 64. On this
basis, we can conclude that the examined encryption method in conjunction with the used
scheme of construction of matrix C can be characterized by high combinatorial complexity.
This complexity can be further increased by increasing the value of the K parameter.

6.2. Statistical Analysis of the Decryption Error

Let there be a given set O(m) (not necessarily understood in the sense of a consistent
algebraic structure) of random orthogonal matrices with the dimension m×m elements
(i.e., if only we have A ∈ O(m) then AAT = ATA = I, where I is an identity matrix).
By aij for i, j = 1, 2, . . . , m we denote the elements of matrix A ∈ O(m), which are also
random variables. We further assume that the matrices belonging to the set O(m) have
the following properties: (i) property of zero expected value: expected values of random
variables aij for i, j = 1, 2, . . . , m are zero, that is, E{aij} = 0 holds; (ii) stationarity property:
variances of aij random variables are constant and equal to m−1, that is, E{a2

ij} = m−1

for i, j = 1, 2, . . . , m; (iii) lack of correlation between matrix elements: for any two different
random variables E{aijakl} = 0 is true, where i, j, k, l = 1, 2, . . . , m, and i 6= k, and j 6= l.
In practice, matrices from the set O(m), which have the mentioned properties, can be
generated: as the result of Gram-Schmidt orthogonalization of random matrices, as a
product of random Housholder’s transformation or Given’s rotation matrices, or with use
of the fast orthogonal parametric transforms.

Let X be an N ×M element matrix representing input data arranged as a set of M
image blocks expanded into N-element column vectors (see Sec. III). Input data, known as
the plain text, is encrypted using the encryption matrix CI ∈ O(M), and the encryption
process can be described as:

Y = XCI,

where Y is N ×M element resulting matrix, that is, the ciphertext. The column vectors
of this matrix are the encrypted forms of the column plain text vectors. The decryption
process follows the following formula:

X = YCII,
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where CII ∈ O(M) is the decryption matrix. If CII 6= CI
T , then also X 6= X, and the absolute

error of the signal reconstruction can be defined using the Hilbert-Schmidt operator as:

D = tr{(X− X)T(X− X)}, (24)

where tr{×} is the trace of a matrix and (×)T describes matrix transposition. The relative
value of D error related to the energy of the input signal can be defined as:

D∗ = D/tr{XTX}. (25)

Next substituting X in formula (24) with X = XCICII we obtain after elementary matrix
transformations the formula:

D = 2tr{(I− CICII)XTX}, (26)

where I is M × M element identity matrix. In the rest of the section we will calculate
the expected value, variance, and the statistical distribution of the reconstruction error
calculated for randomly selected decryption matrices CII ∈ O(M).

The expected value of the reconstruction error (24) calculated for randomly selected
matrices CII can be expressed as:

D = E
{

2tr{(I− CICII)XTX)}
}
= 2tr{(I− CIE{CII})XTX}. (27)

Taking into account the assumed statistical properties of matrices from the set O(M), that
is, E{CII} = O, where O is the null matrix, we can write:

D = 2tr{XTX}. (28)

The result in (28) gives immediately D∗ = 2, which means that the expected value of the
relative reconstruction error is twice the energy of input signal. In terms of the known
measure of signal reconstruction quality, Signal to Noise Ratio (SNR), this corresponds
approximately to −3 dB.

The variance of the absolute error value can be described using the following relation-
ship:

σ2
D = E{(D− D)2},

where the expected value is calculated relative to the matrix CII ∈ O(M). Next taking into
account the expression (26) and the expected value D (see (28)), we get the formula:

σ2
D = 4E

{
tr{CIIXTY}2

}
. (29)

Having in mind previously formulated properties of stationarity and the lack of correlation
of elements of matrices from the set O(m), we can rewrite (29) in a simpler form:

σ2
D =

4
M

tr{XTYYTX}. (30)

We should note that formula (30) does not depend on the encryption matrix CI, since
tr{XTYYTX} = tr{XTXXTX}. It can be also proved that tr{XTXXTX} ≤ tr{XTX}2. This
allows to upper bound the variance of absolute error as:

σ2
D ≤

4
M

tr{XTX}2. (31)
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In case of relative error we obtain an analogical estimate:

σ2
D∗ ≤

4
M

. (32)

The statistical distribution of the value of the absolute error D, and also the relative
error D∗, is the normal distribution. It results directly from the fact that the value of D
is created as a weighted sum of random variables with zero expected value, that is, the
elements cij for i, j = 1, 2, . . . , M of matrix C, and the validity of this statement can be
proved on the basis of the Central Limit Theorem. Hence, the probability density function
of D can be fully characterized by its expected value D and the variance σ2

D. Similarly D∗
and σ2

D∗ fully define the distribution of relative error. This allows for simple estimation of
the probability of obtaining an error value not greater than a given value. For example, in
case of D∗ the probability of getting an error value not greater than D0 is described as:

P{D∗ ≤ D0} =
1
2

(
1 + erf

(
D0 − D∗
σD∗
√

2

))
, (33)

where we assume D∗ = 2 and σD∗ = 2/
√

M. An exemplary results for ’Lena’ image
with resolution 512× 512, and image blocks of sizes 8× 8 pixels, which correspond to
N = 64 and M = 4096, are presented in Figure 8 for the following values of D0 =
{0.1, 0.25, 0.5, 0.75, 1.0, 1.5}. The obtained results are plotted as the cumulative probability
density (CDF) function of the D∗ random variable. It should be noted that for images, unlike
text data, changing one or even several bits of binary representation of pixel luminance
does not mean that the image content will be unreadable. However, the SNR quality
measure allows to assess the legibility of the image after decryption. Figure 9 shows how
the legibility of ’Lena’ image changes in the function of SNR measure. An analysis of
results shows that the values of SNR measure close to −2 dB guarantee good hiding of
image content. On the basis of formula (32) the probability of obtaining SNR values not
lower than −2 dB (i.e., for D0 ≈ 1.6) can be determined. This probability will be around
0.18× 10−40. The probabilities for the remaining values of SNR are shown in Figure 8.

Figure 8. The values of the probability of obtaining the relative error at the level not greater than D0

for M = 4096 and the quality indicators of the image reconstruction in the form of Signal to Noise
Ratio (SNR) corresponding to the selected values of D0.
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Figure 9. Sample results of decryption of ’Lena’ image for different values of SNR measure

6.3. Analysis Based on the Histogram

From the point of view of statistical analysis the histogram describes the probability
distribution of the luminance values of individual pixels in the image (grayscale images).
In case of encryption algorithms the algorithm having good properties is the one that
produces an even distribution of symbols representing the data after encryption [34].
The even distribution corresponds to the same frequency or probability of occurrence of
particular symbols in the ciphertext (pixel luminance values). Since the considered method
is based on matrix multiplication, that is, it is a linear technique, and the pixel values in
the image obtained after encryption are formed as the weighted sums (with the elements
of the encryption matrix) of luminance values of input image pixels, then, according to
the Central Limit Theorem, the resulting distribution will be a normal distribution (or will
be close to such distribution). This is an inherent feature of linear methods. Figure 10
shows histograms for three sample images calculated before and after encryption using the
examined method. The luminance probability distribution of the pixels after encryption
looks in a statistical sense like normally distributed noise.

Figure 10. Results of the histogram analysis for the analyzed method and sample natural images (’Boat’, ’Lena’
and ’Peppers’).

6.4. Maximum Deviation Index

The Maximum Deviation (MD) index allows to evaluate the efficiency of the en-
cryption process in terms of the deviation calculated between the distributions of pixel
luminance values in the input and encrypted images. In order to do this, first the his-
tograms of both images should be calculated, that is, HI(i) for the input image and HC(i)
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for the encrypted image, where i = 0, 1, . . . , 255. Then the value of the deviation index can
be determined on the basis of the following formula:

ηMD(HD) =

(
HD(0) + HD(255)

2

)
+

254

∑
i=1

HD(i),

where HD(i) = |HI(i)− HC(i)|. The greater the value of ηMD, the more the encrypted
image differs from the input.

Table 1 contains MD index values obtained for three sample images (’Boat’, ’Lena’ and
’Peppers’) with four encryption algorithms, that is, method from paper [9], the considered
method, and two popular symmetric block ciphers, that is, Advanced Encryption Standard
(AES) and Data Encryption Standard (DES) (see [35]). In case of block ciphers, we used the
Cipher Block Chaining (CBC) scheme, which consists in sequential binding of encrypted
blocks, and allows to avoid the repetition of some patterns in the encrypted image. The
obtained results are comparable in terms of an order of magnitude. The results obtained
with method from [9] and the considered method are very close. For images ’Boat’ and
’Lena’ the method from paper [9] allows to obtain better results, while for ’Peppers’ image
the considered method generates the highest value of ηMD index. The results obtained
with AES and DES ciphers are very similar. It is possible to indicate images for which
block ciphers give higher values of ηMD index than the examined method (’Boat’, ’Lena’).
However, we can also indicate images for which the opposite relationship holds (’Peppers’).
It should be noted that ηMD index allows to assess the quality of the encryption method
based only the notion of the pixel luminance distribution.

Table 1. The values of ηMD index for sample images (’Boat’, ’Lena’, ’Peppers’) and various encryption
methods (considered, AES and DES block ciphers in the CBC scheme, method from paper [9]).

Image Method [9] Considered AES + CBC DES + CBC

’Boat’ 169,848.5 161,842.5 221,312 221,746.5
’Lena’ 133,883 126,087 169,378.5 168,856.5

’Peppers’ 133,755 192,357.5 144,174 144,084.5

6.5. Correlation Coefficient Index

By the Correlation Coefficient (CC) index ηCC, we understand the correlation calcu-
lated between the input and the encrypted image. Obviously ηCC ∈ [−1, 1]. From the
viewpoint of encryption task the desired value of ηCC is zero, which corresponds to the
lack of statistical similarity between both images. Let U with dimensions W × H represent
the input image and V the encrypted image. Then the ηCC index can be determined on the
basis of the following formula:

ηCC(U, V) =

(
W

∑
i=1

H

∑
j=1

(uij − µ(U))(vij − µ(V))

)
WH(σ(U)σ(V))

,

where uij and vij for i = 1, 2, . . . , W, j = 1, 2, . . . , H are the pixel luminance values of U and
V images, while µ(Z) and σ(Z) are the mean value and the standard deviation of the pixel
luminance values, respectively, that is,:

µ(Z) =
1

WH

(
W

∑
i=1

H

∑
j=1

zij

)
,
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in case of the mean value and for standard deviation:

σ(Z) =

√√√√ 1
WH

(
W

∑
i=1

H

∑
j=1

(zij − µ(Z))2

)
.

The results of the experimental measurements of µCC index for sample images (’Boat’,
’Lena’ and ’Peppers’) obtained for the method from paper [9], the considered encryption
method, and both AES and DES block ciphers, are presented in the Table 2.

Table 2. The values of the ηCC index for sample images (’Boat’, ’Lena’, ’Peppers’) and selected en-
cryption methods (Considered, Advanced Encryption Standard (AES) and Data Encryption Standard
(DES) block ciphers in Cipher Block Chaining (CBC) scheme, method from [9]).

Image Method [9] Considered AES + CBC DES + CBC

’Boat’ −0.53× 10−3 −0.17× 10−1 −0.18× 10−2 −0.47× 10−2

’Lena’ −0.31× 10−1 0.10× 10−1 0.45× 10−2 −0.95× 10−3

’Peppers’ 0.47× 10−1 −0.50× 10−2 0.14× 10−2 −0.13× 10−3

Based on the analysis of results, we can conclude that µCC index values for the
considered method are close to zero. The method proposed in [9] allowed to obtain a
better result for ’Boat’ image. The results obtained for block ciphers are on average an
one order of magnitude lower than the results obtained with the methods dedicated to
image encryption.

6.6. Irregular Deviation Index

The Irregular Deviation (ID) index is based on measuring the deviation of pixel values
in encrypted image relative to pixel values in an input image. Let matrices U and V (W×H
element matrices) describe pixel luminances in input and encrypted images, respectively.
In order to determine the value of the ID index (µID), first we have to calculate the matrix
T, which holds the modules of differences between the elements of matrices U and V, that
is, tij =

∣∣uij − vij
∣∣ for i = 1, 2, . . . , W and j = 1, 2, . . . , H. Then, it is required to determine

the HT histogram of occurrences of individual elements in matrix T. The next step is to
count the average number of pixels, which for each value of luminance differed from the
input value. It can be done on the basis of HT histogram using the formula:

µ(HT) =
1

256

255

∑
i=0

HT(i),

where HT(i) for i = 0, 1, . . . , 255 are the individual values of HT histogram. The mean
value µ(HT) describes the model histogram, which in optimal case should take form of
the uniform distribution. Then, on the basis of HT and µ(HT), we build the HT histogram,
which in turn describes the deviation of the HT from the optimal uniform distribution.
In this way we obtain HT(i) = |HT(i)− µ(HT)| for i = 0, 1, . . . , 255. Based on the HT
histogram, we can directly calculate the value of the µID index as the area under the
histogram HT :

µID(HT) =
255

∑
i=0

HT(i).

The smaller the value of µID index, the greater the efficiency of the encryption method. Table 3
contains sample values of µID index calculated for exemplary natural images (’Boat’, ’Lena’,
’Peppers’) and method from paper [9], the considered encryption method, and AES and
DES block ciphers.
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Table 3. The values of µID index for sample images (’Boat’, ’Lena’, ’Peppers’) and selected encryption
methods (considered, AES and DES block ciphers in CBC schema, method from [9]).

Image Method [9] Considered AES + CBC DES + CBC

’Boat’ 250,726 248,506 186,588 186,652
’Lena’ 219,236 233,898 180,002 180,992

’Peppers’ 243,636 247,716 166,458 166,104

The analysis of the experimental results shows that the considered encryption method
can be characterized by higher values of the µID index, on average by 29%, compared to the
results for AES and DES block ciphers. In turn, the results obtained with block ciphers are
comparable. The method proposed in paper [9] gives results close to the results obtained
with the considered method, and better for ’Lena’ and ’Peppers’ images.

7. Experimental Results in Efficiency of the Compression Process

In order to verify the effectiveness of compression a series of tests were performed
on natural images with different statistical characteristics. In Table 4 and in the graphs
in Figure 11, the results for two standard, representative test images are shown, that is, the
’Lena’ image (1a) and the ’Mandrill’ image (2a) in Figure 12. Both images are 8–bit grayscale
with resolutions of 512× 512 pixels. The images were compressed with the standard JPEG
method and, for comparison, encrypted and compressed with the analyzed scheme. At
the compression stage of the considered coding scheme the standard JPEG algorithm was
applied in two variants. In the first one, it was utilized without any modification to its
original form and operated on ciphertext previously projected, by truncation towards
zero, to their respective integers. Such projection corresponds to the situation in which
the user saves the encrypted image to one of the standard graphics formats, for example,
BMP format, before it is actually compressed. In the second variant the projection was not
performed and the input of the JPEG compressor was supplied with real values obtained
after encryption of the input image. This required only a slight modification of the JPEG
method, by allowing the input of the compressor to be fed with real samples instead of
integers. Moreover, in order to examine the influence of the choice of dimensions K of
encryption matrices Ci, for each of the two described variants of the examined method,
the effectiveness of the compression process was evaluated for three different values of
K, namely for K = 8, 16 and 32. For all the described tests the compression levels were
regulated by appropriate modification [36], p. 122 of the standard quantization table, given
in (21). The PSNR was used as the image reconstruction quality measure, calculated as:

PSNR = 10× log 10

 255 2W2

∑W
i=1 ∑W

j=1
(

Uij − Ûij
)2

 ,

where W = 512 stands the vertical and horizontal resolutions of images, Uij and Ûij,
i, j = 1, . . . , W stand for the original and reconstructed images, respectively, for each of the
tested methods. Results of all the experiments are shown in Table 4.
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Figure 11. Graphs of dependences of PSNR image reconstruction quality measures on the compression ratios for the
standard and the considered method, (1a,2a)—Lena’ and ’Mandrill’ images without integer projection, (1b,2b)—’Lena’ and
’Mandrill’ images with integer projection.

     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(1a) (1b) (1c) 

(2a) (2b) (2c) 

Figure 12. Visual comparisons of image reconstruction quality for standard and the considered method with integer
projection in step (ii) of the examined scheme, (1a)—original image ’Lena’, (1b)—compression with standard JPEG method,
(1c)—compression with the considered method, compression coeff. ≈5, (2a)—original image ’Mandrill’, (2b)—compression
with standard JPEG method, (2c)—compression with the considered method, compression coeff. ≈5.
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Table 4. Dependence of Peak Signal-to-Noise Ratio (PSNR) image reconstruction quality on the compression ratios for the standard and the considered method.

Compression
Coefficient

PSNR Values [dB]

’Lena’ Image ’Mandrill’ Image

Standard
Method

Considered Method
Standard
Method

Considered Method

Without Integer Projection With Integer Projection Without Integer Projection With Integer Projection

K = 8 K = 16 K = 32 K = 8 K = 16 K = 32 K = 8 K = 16 K = 32 K = 8 K = 16 K = 32
2.455 48.839 48.726 47.758 47.032 44.589 43.935 43.288 36.250 36.032 35.406 34.981 35.582 34.697 33.829
3.232 43.020 42.524 41.922 41.401 41.488 40.934 40.377 32.567 32.236 31.699 31.241 32.039 31.396 30.734
4.009 41.240 40.479 39.797 39.311 39.810 39.205 38.687 30.314 29.944 29.575 28.878 29.831 29.385 28.577
4.787 39.967 39.071 38.328 37.846 38.597 37.883 37.404 28.841 28.356 28.069 27.568 28.281 27.941 27.341
5.564 38.989 38.041 37.316 36.714 37.676 36.971 36.371 27.737 27.260 26.955 26.472 27.208 26.850 26.304
6.341 38.271 37.254 36.406 35.682 36.953 36.128 35.421 26.916 26.450 26.128 25.632 26.403 26.039 25.497
7.118 37.660 36.550 35.577 34.865 36.293 35.353 34.648 26.242 25.820 25.529 25.055 25.783 25.454 24.938
7.896 37.104 35.856 34.949 34.148 35.641 34.756 33.956 25.720 25.315 25.029 24.577 25.274 24.972 24.476
8.673 36.595 35.303 34.416 33.564 35.116 34.230 33.393 25.275 24.900 24.631 24.181 24.863 24.579 24.092
9.450 36.201 34.818 33.876 33.067 34.642 33.723 32.921 24.891 24.530 24.270 23.893 24.496 24.221 23.809
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8. Summary and Conclusions

The paper analyzes an image encryption scheme that preserves input data statistics
and can be used in conjunction with a popular JPEG image compression standard. In this
way the considered encryption method together with JPEG standard constitute a highly
efficient realization of encrypt-then-compress image processing framework. Moreover,
thanks to the use of fast parametric linear transforms the presented scheme is computation-
ally efficient and does not alter the statistical characteristics of input images what allows to
preserve the effectiveness of the compression process. The obtained results indicate that for
a wide range of compression ratios the effectiveness of compression process, understood in
the terms of the quality of reconstructed images evaluated with PSNR measure, in case of
compressing encrypted images is comparable to the respective effectiveness of the standard
JPEG method alone, that is, applied without the encryption stage. It should be noted that
the maximum quality differences of the reconstructed images in relation to the standard
JPEG algorithm (for the practical case with K = 8, the compression ratio ≈5 and the use
of the unmodified JPEG method, with the encrypted image data saved to an intermediate
graphics file, for example, BMP format file) were 1.31 dB and 0.53 dB for the test images
’Lena’ and ’Mandrill’, respectively, what can be considered to be a highly satisfactory result,
consistent with theoretical predictions presented in Section 4 and confirmed by visual
comparisons depicted in Figure 12.

This paper also presents the detailed analysis of the efficiency of the encryption
step using common approaches, that is, histogram analysis, Maximum Deviation (MD),
Correlation Coefficient (CC), Irregular Deviation (ID), or combinatorial and statistical
analysis. The analyzed method is also compared in terms of the mentioned encryption
efficiency measures (i.e., MD, CC and ID) to the method from paper [9], and symmetric
block ciphers DES and AES. The choice of the method from [9] is due to its comparable
performance in compression of encrypted images, and to the fact that the method is
dedicated for encryption and compression of natural images. The analysis of experimental
results shows that the efficiencies of the encryption steps of the analyzed method and the
method from paper [9] are very close. Moreover, the results obtained for the considered
method with MD, CC and ID indexes are comparable to those for symmetric block ciphers
DES and AES, although in most cases worse, except for the MD index in the case of
the ’Peppers’ image. Furthermore, the histogram analysis shows that the pixel intensity
distribution of encrypted images is approximately normal. The statistical analysis of the
encryption stage indicates high combinatorial complexity of the examined method, since
the number of bits of the private key is linear-logarithmically dependent on the block size
of the encryption transform matrix, what for the block size N = 64, number of blocks
M = 4096 and the number of 4 bits per single key parameter gives a total length of a key
LK(64, 4096, 4) = 184,320 bits. This also guarantees a low probability of guessing a private
key, which makes possible to decrypt images with a PSNR value greater than the certain
threshold allowing for recognition of decrypted images. For example, for PSNR not greater
than −1.76 dB the mentioned probability is equal to 0.64× 10−57.

The experimental results along with the presented theoretical analysis show that
the considered scheme is highly efficient in terms of its encryption capabilities and com-
pression quality, as well as in terms of ease of its application in conjunction with JPEG
image compression standard. It should be noted that the analyzed encryption method
preserves the image statistics in the form of the auto-correlation matrix. As so, it can
be used in connection with any image compression method based on the form of the
auto-correlation matrix.
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