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Abstract: In this study, the information flow time arrow is investigated for stochastic data defined
by vector autoregressive models. The time series are analyzed forward and backward by different
Granger causality detection methods. Besides the normal distribution, which is usually required
for the validity of Granger causality analysis, several other distributions of predictive errors are
considered. A clear effect of a change in the order of cause and effect on the time-reversed series of
unidirectionally connected variables was detected with standard Granger causality test (GC), when
the product of the connection strength and the ratio of the predictive errors of the driver and the
recipient was below a certain level, otherwise bidirectional causal connection was detected. On the
other hand, opposite causal link was detected unconditionally by the methods based on the time
reversal testing, but they were not able to detect correct bidirectional connection. The usefulness
of the backward analysis is manifested in cases where falsely detected unidirectional connections
can be rejected by applying the result obtained after the time reversal, and in cases of uncorrelated
causally independent variables, where the absence of a causal link detected by GC on the original
series should be confirmed on the time-reversed series.

Keywords: time reversal; Granger causality; predictive error; endogeneity

PACS: 05.45.Tp

1. Introduction

Investigating causal relations between simultaneous recordings of variables is a com-
mon task in scientific fields as diverse as neuroscience [1], climatology [2], and economy [3].
In 1969, Clive Granger proposed a testable definition of causality between two processes X
and Y based on predictability and precedence [4]. As all available information, he consid-
ered knowledge of two stationary time series, x and y, corresponding to variables X and Y,
respectively. If the predictive error variance of y only from past y values is greater than the
predictive error variance of y from both past x and past y values, then the variable X is said
to cause variable Y, denoted X → Y. Granger suggested to use linear autoregressive (AR)
predictor, which is simple to interpret and mathematically easy to handle. The standard
Granger causality test (GC) refers to an F-test for significance of regression coefficients.

A slightly different approach to test Granger causality that we will also use here is
to test for predictive errors (PEGC) instead of testing for regression coefficients. It means
that the null hypothesis of no predictability improvement is statistically tested against the
alternative hypothesis that the inclusion of the knowledge of x significantly improves the
prediction of y (causal connection from X to Y). Analogously, we test the opposite direction
Y → X. We adopted the approach from the predictability improvement method designed
as a generalization of the GC test for reconstructed state spaces [5].

To avoid the problem of spurious causal detections, especially in the analysis of elec-
troencephalographic signals, Haufe et al. [6] have suggested using the time-reversed series
as surrogate data and called this procedure time-reversed Granger causality (TRGC) [7].
They have proposed to contrast a value of the net Granger score [8,9] obtained from the
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original data against a value of the net Granger score obtained from the time-reversed data.
The time-reversed data, as a special case of possible permutation of the data, represents
the surrogate data for which weak asymmetries are preserved and strong asymmetries
are exactly inverted [6]. Using simulations, it has been shown that TRGC robustly rejects
causal interpretations on mixtures of independent processes [6], and can indicate the correct
direction of causal interaction in the case of unidirectionally linearly connected autoregres-
sive processes [7]. However, TRGC by definition is not able to detect a so-called feedback,
i.e., bidirectional causal connection between variables. Only the predominant direction
of information flow between two variables can be detected dealing with the net-GC and
time inversion testing. In this study, the performance of a proposed modification of TRGC
(mTRGC), which also allows the detection of a feedback, is investigated.

The concept of time inversion testing is based on the intuitive idea, that if the first
principle of Granger causality that the cause precedes the effect holds, then reversed role
between a driver and its recipient can be expected for the time-reversed series, but can we
really expect that? In [10], Paluš et al., investigating the role of the time arrow in coupled
irreversible processes, have found some surprising results. For example, for the case of
bivariate order-one AR model with unidirectional connection, the standard GC failed to
detect unidirectional but reversed causality when analyzing time reversed series. Instead,
the method resulted in detection of bidirectional connection.

In this paper, Granger’s analysis of causality between two variables in the context
of time reversals is numerically studied. We are mainly interested in the effect of time
reversal on the change in the order of cause and effect. Three different Granger causality
detection methods are used. They are applied to linear autoregressive processes for which
the Granger’s causality is originally formulated. According to the literature, the validity of
the F-test for Granger causality is only guaranteed for the normally distributed predictive
errors of present values x and y, see e.g., [11]. In this study, we decided to consider different
distributions of predictive errors and analyze the effect of the errors term’s distribution on
causality testing both for the original time-ordered and the time-reversed series.

As we have already indicated, in addition to the effect of predictive error distribution,
we are also interested in whether the type of used causal method plays a role. To find out,
we numerically tested several ways to estimate Granger causality.

Granger causality and three approaches for testing Granger causality are introduced
in Section 2. Data and the experimental setup for our simulation study are described in
Section 3. Results are summarized in Section 4 and the discussion is given in Section 5.

2. Methods

In the context of bivariate Granger causality, we will consider two variables X and Y,
represented by simultaneously observed stationary zero mean time series
x := {x(1), x(2), . . . , x(T)} and y := {y(1), y(2), . . . , y(T)}, respectively. The causal analy-
sis from a driving variable X to a response variable Y involves two linear models [4]. The
first one is a bivariate autoregressive model

x(t) =
p

∑
i=1

axx,ix(t− i) +
p

∑
j=1

axy,jy(t− j) + εxy(t) (1)

y(t) =
p

∑
i=1

ayx,ix(t− i) +
p

∑
j=1

ayy,jy(t− j) + εyx(t), (2)

where axx,j, axy,j, ayx,j, and ayy,j are coefficients of the model; and (εxy, εyx)
′
is a 2-dimensional

unobservable zero mean white noise process with time invariant covariance matrix Σ. The
dependence of y on the past x in the linear autoregressive model (2), given its own past, is
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encapsulated in the coefficients ayx,i. The consideration that there is no dependence of y on
the past of x leads to the second model

y(t) =
p

∑
j=1

ay,jy(t− j) + εyy(t), (3)

where ay,j are AR coefficients; and predictive error (or residuals) εyy is white noise process
with a variance σ2

y . If the past of x is found to be helpful for predicting y, then X is said to
Granger-cause Y; otherwise X is said to fail to Granger-cause Y.

2.1. The Standard Granger Causality Test (GC)

Variable X fails to Granger-cause Y if all ayx,i coefficients are zero. A parametric
statistical significance test on the regression coefficients, i.e., H0 : ayx,1 = . . . = ayx,p = 0, is
usually provided with the Fisher test statistic

FX→Y =
(SSRH0

y − SSRyx)/p
SSRyx/(T − 3p)

∼as. Fp,T−3p, (4)

where SSRH0
y is the sum of squared residuals εyy(t) from the regression model (3) restricted

by the null hypothesis H0, and SSRyx is the sum of squared residuals εyx(t) from the full
(or unrestricted) model (2). Under the null hypothesis the test statistic (4) has an asymptotic
F-distribution with p and T − 3p degrees of freedom. If FX→Y is greater than a quantile
of Fp,T−3p-distribution at a chosen significance level, then the null hypothesis is rejected
and it is concluded that X Granger-causes Y. To search for the causal influence in the
opposite direction, i.e., Y → X, the values SSRH0

y and SSRyx in (4) are replaced by SSRH0
x

and SSRxy, respectively. The value SSRH0
x is the sum of squared residuals εxx(t) from the

regression model

x(t) =
p

∑
j=1

ax,jx(t− j) + εxx(t) (5)

restricted by the null hypothesis H0 : axy,1 = . . . = axy,p = 0, and SSRxy is the sum of
squared residuals εxy(t) from the full model (1).

The regression coefficients in (1)–(5) may be estimated separately by ordinary least
squares (OLS). The whiteness of predictive errors is a crucial assumption for a valid causal
analysis. Autocorrelation of the predictive errors implies that also regressors and the pre-
dictive errors are correlated. As a result, the regression coefficient estimates fail to converge
to the true value of the regression coefficients as sample size increases. This bias is referred
to as the endogeneity bias and may affect the Granger causality inference [12]. The problem
with identification of a vector autoregressive model (VAR) also arises in the presence of
instantaneous interactions between variables. Such interactions can occur in practice if the
sampling rate of the records falls below the time scale of causal interactions. This can lead
to a falsely detected feedback. There is no instantaneous causality if and only if the vector
predictive errors (εxy, εyx)

′
have uncorrelated components. Such predictive errors are often

called innovations [13]. Granger causality inference is valid only if autoregressive models
can adequately capture the correlation structure in the data.

The order p of VAR can be determined using a model selection criterion. For example,
the Akaike information criterion [14] and the Schwartz–Bayesian information criterion [15]
are commonly used to estimate the order. An F-test for testing the submodel is mean-
ingful if both the full and the restricted models are well-defined linear models. In fact,
while the full model is of finite order, the reduced one is generally of infinite order. To
eliminate potentially problematic consequences for Granger causality analysis, it can be
recommended to estimate appropriate model order for the reduced model, rather than for
the full model [16].
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2.2. Predictive Error Test for Granger Causality (PEGC)

If all coefficients ayx,j, j = 1, . . . , p are zero, then it is stated that X does not Granger
cause Y. This seems to fit definition of no Granger causality, when the variance of pre-
dictive error of y using only past of y cannot be reduced by also using the past of x [4].
The predictability improvement, a nonparametric generalization of Granger causality in
reconstructed state spaces, evaluates a causal connection between variables by testing
the equality of predictive errors [5,17]. Here, we adopt the approach such that, instead
of testing regression coefficients, the causal link X → Y is analyzed by comparing the
predictive errors εyy, εyx and the causal link Y → X is analyzed by comparing the pre-
dictive errors εxx, εxy. If the null hypothesis of the absence of a causal link X → Y, i.e.,
H0 : εyy = εyx, is rejected against the alternative that the prediction of y is significantly
improved by including the information of past x in a linear autoregressive prediction, i.e.,
HA : εyy > εyx, on a significance level, then it is concluded that X causes Y. Analogous
testing procedure is applied to analyze the causal connection Y → X.

2.3. Modification of Time-reversed Granger Causality Test (mTRGC)

The additional information contained in variable X about the future value of variable
Y, and in Y about the future of X, is quantified by the Granger causality score [7,18]
defined as

GX→Y = log
(

SSRH0
y /SSRyx

)
and GY→X = log

(
SSRH0

x /SSRxy

)
, (6)

respectively. Larger values of GX→Y indicate that the past of X helps to improve the
prediction of Y. On the other hand, the values of GX→Y close to zero indicate that the past
of X does not improve prediction of y, meaning that X does not Granger cause Y.

Let (x̃(t), ỹ(t))
′

denotes the time-reversed bivariate autoregressive process (i.e., (x̃(t),
ỹ(t))

′
= (x(T − t + 1), y(T − t + 1))

′
). The difference based TRGC [6,7] analyzes a causal

interaction between X and Y using the difference of the net Granger scores obtained from
the original data, given as GX→Y − GY→X, and the net Granger scores obtained from the
time-reversed data, given as GX̃→Ỹ − GỸ→X̃, where GX̃→Ỹ, GỸ→X̃ are the Granger scores
computed on x̃, ỹ. The presence of causal connection X → Y is detected by TRGC if
GX→Y − GY→X is significantly greater than GX̃→Ỹ − GỸ→X̃ , the opposite causal connection
Y → X is detected if GX→Y − GY→X is significantly less than GX̃→Ỹ − GỸ→X̃, and the
absence of a causal connection between variables X, Y is concluded if there is no statistically
significant difference between the net scores. We see that TRGC is by definition unable to
detect the bidirectional causal connection between variables.

Winkler et al. [7] also showed that if X Granger causes Y and Y does not Granger cause
X, then DX→Y ≥ 0, DY→X ≤ 0 for infinite samples, where the variables DX→Y, DY→X are
defined as

DX→Y = GX→Y − GX̃→Ỹ and DY→X = GY→X − GỸ→X̃ . (7)

Instead of the net Granger scores, we propose to examine the difference variable DX→Y
and DY→X for investigating causal relation between X, Y. Namely, the causal connection
X → Y is detected if DX→Y is greater than zero, otherwise it is concluded that X does not
Granger cause Y. Analogously, the causal connection Y → X is detected if DY→X is greater
than zero, otherwise it is concluded that Y does not Granger cause X. We see that with this
modification, we should also be able to detect bidirectional connection. Similarly to TRGC,
the bootstrapping approach can be applied to perform statistical inference [19].

We propose two versions of TRGC modification. The first one includes a statistical sig-
nificance testing and is denoted as mTRGC. The second version is based on non-statistical
evaluation of DX→Y, DY→X and is denoted as mTRGC*.

In addition, we test the combination of GC and mTRGC*, denoted GC+mTRGC*. A
causal link is detected by GC+mTRGC*, if the causal link is found to be significant by GC
and the detection is confirmed by mTRGC* subsequently.



Entropy 2021, 23, 409 5 of 13

The introduced methods GC, PEGC, mTRGC, mTRGC*, and GC+mTRGC* will be
applied to detection of causal interaction between two variables in numerical experiments
without an influence of a common hidden variable, and measurement noise. The perfor-
mance of all five methods is numerically examined on processes generated by a bivariate
order-one AR model under considering seven different distributions of the predictive
errors. Besides the normal distribution typically used for defining VAR, serially indepen-
dent predictive errors are generated by a uniform distribution, triangular distribution,
and a mixture of normal distributions. In addition, the predictive errors generated by the
moving-average model, and quadratic moving-average model is used to analyze the impact
of model assumption violations to the performance of the Granger causality detection
methods. Moreover, the effect of instantaneous interactions is analyzed through generat-
ing correlated predictive errors. Causal relationship will be analyzed by all introduced
methods on both originally generated time series and the time-reversed series.

3. Data and Experimental Setup

Through the numerical experiments in this study, the performance of the bivariate
Granger causality detection methods was investigated. A causal interaction was analyzed
on a pair of known causal structure processes with original temporal order and with
reversed temporal order. Three types of causal relationships between the two variables X
and Y were considered: causal independence (X⊥Y), unidirectional causal link (X → Y),
and bidirectional causal link (X ↔ Y). The corresponding series were generated by a
simple linear autoregressive model with the predictive error of various distributions. The
model systems were as follows:
Causal independence (X⊥Y)

x(t) =0.5x(t− 1) + εx(t)

y(t) =ay(t− 1) + εy(t),
(8)

where 19 values of a were considered, a ∈ {0.05, 0.10, . . . , 0.95}.
Unidirectional causal connection (X → Y)

x(t) =0.5x(t− 1) + εx(t)

y(t) =0.5y(t− 1) + c1x(t− 1) + εy(t),
(9)

where 49 values of c1 were considered, c1 ∈ {0.02, 0.04, . . . , 0.98}.
Bidirectional causal connection (X ↔ Y)

x(t) =0.5x(t− 1) + 0.5y(t− 1) + εx(t)

y(t) =0.5y(t− 1) + c2x(t− 1) + εy(t),
(10)

where 19 values of c2 were considered, c2 ∈ {0.025, 0.05, . . . , 0.475}. The connectivity
structure of the model systems was controlled by parameters c1, c2.

The predictive errors εx, εy were generated under seven different conditions:

Condition A (normal distribution): The predictive errors εx, εy were independent normally
distributed random variables with zero mean and with the variance σ2

x = 0.5 and σ2
y =

σ2
x ∗ {0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75} (i.e., σ2

y was a multiple of σ2
x ), respectively.

Condition B (uniform distribution): The predictive errors εx, εy were independent uni-
formly distributed random variables in intervals [ax, bx], [ay, by], respectively. The distribu-
tion parameters for εx were: ax = −

√
3/2, and bx = −ax. The distribution parameters for

εy were: ay = ax ∗ {0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75}, and by = −ay.
Condition C (triangular distribution): The predictive errors εx, εy were independent
triangular-distributed random variables. The triangular distribution parameters for εx
were: lower limit ax = −2, upper limit bx = −ax/2 and mode cx = bx. The triangular
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distribution parameters for εy were: lower limit ay = ax ∗ {0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75},
upper limit by = −ay/2 and mode cy = by.
Condition D (a mixture of normal distributions): Both predictive errors εx, εy were gener-
ated from a mixture of two normal distributions. The error term εx was generated from a
distribution where the probability of drawing from the normal distribution N(1, 5(σ2

x −
1/4)/9) was 1/5 and from the normal distribution N(−1/4, 10(σ2

x − 1/4)/9) was 4/5,
where σ2

x = 0.5. The error term εy was generated from a distribution where the probability
of drawing from the normal distribution N(1, 5(σ2

y − 1/4)/9) was 1/5 and from the normal
distribution N(−1/4, 10(σ2

y − 1/4)/9) was 4/5, where σ2
y = σ2

x ∗ {0.75, 1, 1.25, 1.5, 1.75}
Condition E (moving average): The predictive errors εx, εy were defined as εx(t) =
0.5ξx(t− 1) + ξx(t), εy(t) = 0.5ξy(t− 1) + ξy(t), respectively. The variables ξx, ξy were
independent normally distributed with zero mean and with the variance σ2

x = 0.4 and
σ2

y = σ2
x ∗ {0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75}, respectively.

Condition F (quadratic moving average): The predictive errors εx, εy were defined as
εx(t) = 0.5ξ2

x(t− 1)− 0.5ξ2
x(t), εy(t) = 0.5ξ2

y(t− 1)− 0.5ξ2
y(t), respectively. The variables

ξx, ξy were independent normally distributed with zero mean and with the variance
σ2

x =
√

0.5 and σ2
y = σ2

x ∗ {0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75}, respectively.
Condition G (correlation): The predictive errors εx, εy were correlated, with cov(εx, εy) =
0.1. Like in the condition A, the error terms were normally distributed variables with zero mean
and with the variance σ2

x = 0.5 and σ2
y = σ2

x ∗ {0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75}, respectively.

Note that various parameters in conditions B–G were chosen to obtain the same means
and variances of variables εx, εy as set in condition A. Only in the condition D, the first
two values of σ2

y had to be omitted due to the requirement (σ2
y − 1/4) > 0 in the variance

of εy. The random variables εx, εy were serially uncorrelated for conditions A-D, and
serially correlated for conditions E–F. In the condition G, the residuals were correlated with
each other.

The investigation of causal interaction between variables was performed with gen-
erated time series of length T = {300, 3000} for all combinations of model systems and
conditions, after the initial 104 iterations were discarded for each dataset. The experiments
were repeated 500 times. Two separate GC tests, two separate PEGC tests, two separate
mTRGC tests, two separate mTRGC* tests, and two separate GC+mTRGC* tests were
performed (one for X → Y, one for Y → X) on the originally generated series and on the
time-reversed series. The statistical tests detected a causal link at the significance level α/2
with α = 0.05.

Instead of a bootstraping method, the (1− α/2)-confidence intervals on the difference
variables DX→Y and DY→X for evaluating mTRGC were constructed by using the DX→Y
and DY→X determined from repeated experiments. Then, a causal connection was assessed
by examining such estimated confidence intervals. The causal link X → Y was detected by
mTRGC if the lower one-sided (1− α/2)-confidence interval on DX→Y did not contain zero.
The opposite direction of Y → X was examined analogously, using the lower one-sided
(1− α/2)-confidence interval on DY→X . The results obtained under the (unrealistic) testing
condition, from repeated experiments, serve to get an idea of the best possible obtainable
results of mTRGC.

The performance of the Granger causality detection methods was evaluated by two
rates: false positive (a type I error) and false negative (a type II error). A false-positive
rate (FPR) is the proportion of all cases without causal links, where a test result incorrectly
indicates the presence of a causal effect. The significance level α is the probability of the
type I error. The false-negative rate (FNR) represents the proportion of all existing causal
links, where a test result incorrectly failed to detect the causal link. The power of a test is
defined as one minus the probability of the type II error. We recall that, in the case of the
time-reversed series and unidirectionally connected variables, Y → X was considered the
ground true, if it was X → Y for the original, forward series.
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4. Results

The determined FPRs and FNRs for a model system were averaged according to a
condition, sample size, and a testing procedure. The averaged rates of false results are
presented in Table 1 for causally independent variables, in Table 2 for unidirectionally
connected variables, and in Table 3 for bidirectionally connected variables. It follows
from the definition of the mTRGC* that the observed FPR on the time-reversed series
is complementary to the observed FPR on the original time series (i.e., their sum equals
100 %) for causally independent variables; the observed FNR on the time-reversed series is
complementary to the observed FNR on the original time series for bidirectionally causally
connected variables; and the observed FPR, FNR on the original time series are changed
vice-versa on the time-reversed series for unidirectionally causally connected variables.
Due to the fact that the results obtained by mTRGC* are complementary in this way, the
values of the time-reversed series are not shown in the presented tables. The results of
GC+mTRGC* obtained on the time-reversed series are not presented in tables either, for
more details see Section 4.5.

Table 1. False positive rates (in %) for causally independent (X⊥Y) variables. The results for eight discussed testing
procedures (inv—results in the time-reversed series) are presented, with the worst (more than 3%) FPR highlighted in bold.

Condition Sample GC inv PEGC inv mTRGC inv mTRGC* GC
for εx, εy Size GC PEGC mTRGC +mTRGC*

A 300 FPR 2.6 2.6 0.6 0.6 0 0 49.9 2.5
3000 FPR 2.5 2.5 0.6 0.6 0 0 49.8 2.5

B 300 FPR 2.7 2.6 1.1 0.7 0 0 50.1 2.6
3000 FPR 2.5 2.5 1.1 0.6 0 0 50 2.5

C 300 FPR 2.6 2.6 0.9 0.6 0 0 50 2.5
3000 FPR 2.5 2.5 0.9 0.6 0 0 49.9 2.4

D 300 FPR 2.7 2.6 0.6 0.7 0 0 50.1 2.6
3000 FPR 2.5 2.5 0.6 0.6 0 0 49.9 2.4

E 300 FPR 2.7 2.7 2.4 2.3 0 0 50.1 2.6
3000 FPR 2.5 2.5 3.9 3.8 0 0 50 2.5

F 300 FPR 3.4 3.5 1.7 1 0 0 50 3.4
3000 FPR 3.2 3.2 5.9 1.8 0 0 50 3.1

G 300 FPR 2.6 17.2 0.7 3.2 0 2.6 34.7 2.2
3000 FPR 2.6 62.3 0.6 27.6 0 43.2 13.2 1.1

Table 2. False positive rates and false negatives rates (in %) for unidirectionally causally connected (X → Y) variables. The
results for eight discussed testing procedures (inv—results in the time-reversed series) are presented, with the worst (more
than 3%) FPR highlighted in bold.

Condition Sample GC inv PEGC inv mTRGC inv mTRGC* GC
for εx, εy Size GC PEGC mTRGC +mTRGC*

A
300 FPR 2.2 11.7 0.7 1.8 0 0 3.4 0.3

FNR 10.3 10.3 22.2 22.3 14 14.2 3.5 10.3

3000 FPR 2.3 48.1 0.9 16 0 0 0.7 0.1
FNR 2.5 2.5 6.4 6.5 4 4 0.7 2.5

B
300 FPR 2.2 12.3 1.3 2.2 0 0 3.6 0.3

FNR 10.7 10.7 31.6 22 14.8 15.4 3.6 10.7

3000 FPR 2.3 47 1.6 17.8 0 0 0.8 0.1
FNR 2.7 2.7 9.7 6.3 4 4 0.8 2.7
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Table 2. Cont.

Condition Sample GC inv PEGC inv mTRGC inv mTRGC* GC
for εx, εy Size GC PEGC mTRGC +mTRGC*

C
300 FPR 2.3 12.2 1.1 2 0 0 3.7 0.3

FNR 10.7 10.7 28.2 22.5 15.4 15.4 3.7 10.8

3000 FPR 2.4 46.9 1.3 17.4 0 0 0.8 0.1
FNR 2.6 2.6 8.7 6.5 4 4 0.8 2.7

D
300 FPR 2.3 8.3 0.6 1.4 0 0 4.1 0.4

FNR 12 12 26.5 25.4 18 17.2 4.1 12

3000 FPR 2.4 40.4 0.7 11 0 0 0.9 0.1
FNR 3 3 7.9 7.4 4.8 4.8 0.9 3

E
300 FPR 2.4 6.7 2.3 3.8 0 0 4.2 0.4

FNR 12.5 12.4 21 21.1 17.4 17.4 4.3 12.5

3000 FPR 2.6 36.3 4 19.7 0 0 1 0.1
FNR 3.4 3.4 5.9 5.8 5.2 5.2 1 3.4

F
300 FPR 16.1 9.3 1.9 2 0 0 5.9 0.7

FNR 15.9 15.9 17.7 39.9 24.2 24.4 5.9 16

3000 FPR 51.7 52.5 22.6 19.1 0 0 1.5 0.2
FNR 4.4 4.4 5.3 12.5 6.2 6.2 1.5 4.5

G
300 FPR 2.4 34.1 0.8 7.6 0 0 3.4 0.3

FNR 10.7 10 23.6 21.7 15.4 14.2 3.7 10.8

3000 FPR 2.4 73.5 1 51.2 0 0 0.7 0.1
FNR 2.6 2.4 6.7 6.3 4.4 3.8 0.8 2.6

Table 3. False negatives rates (in %) for bidirectionally causally connected (X ↔ Y) variables. The results for eight discussed
testing procedures (inv—results in the time-reversed series).

Condition Sample GC inv PEGC inv mTRGC inv mTRGC* GC
for εx, εy Size GC PEGC mTRGC +mTRGC*

A 300 FNR 9.7 13.7 24.7 28.6 62.4 62 50 50
3000 FNR 1.8 5.1 5.8 9.1 53 53 50 50

B 300 FNR 12.7 21.5 42.4 34.5 57.9 57.9 50 50.1
3000 FNR 2 8.2 11 14 52.3 52.6 50 50

C 300 FNR 12.8 21.6 38.3 35.5 57.9 57.5 50 50.1
3000 FNR 2 8.3 9.3 14.2 51.9 51.9 50 50

D 300 FNR 11.2 15.9 25.5 27.9 58.4 58.4 50 50
3000 FNR 2.3 6.6 7.2 10.9 52.1 52.1 50 50

E 300 FNR 13 16.4 25.2 28.7 62 62.8 50 50
3000 FNR 3.3 6.2 5.8 8.7 53 53 50 50

F 300 FNR 33.7 34.4 34.7 61.7 66.2 65.8 50 50.6
3000 FNR 2.1 9 5.6 21.9 54.5 54.9 50 50

G 300 FNR 10.3 19.9 27.6 34.1 61.3 60.9 50 50
3000 FNR 2 7.3 6 13.8 53 53 50 50

4.1. GC Results

It can be concluded that GC is an exact test for the Granger causality. The presented
FPRs obtained on the original time series are very close to the chosen significance level. This
is true even for predictive error distributions that are different from the normal distribution
which is usually required for the validity of Granger causality analysis. The only exceptions
are the false positive results obtained under condition F, see Tables 1 and 2. Similar FPRs are
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observed independently of a regression coefficient a and of the predictive error variances
in the case of causally independent variables. Except for the condition F, the obtained FPRs
for unidirectionally connected variables are independent of a value of the connectivity
structure control parameter c1 and of the predictive error variances, see Figure 1a. The
FPRs observed under condition F for unidirectionally connected variables increased as the
product of the connection strength c1 and the ratio of variance of the driver relative to the
recipient increased. If we drew this dependence, we would got a triangle shape similar to
the one in Figure 1c which we will speak about later.

(a) (b) (c) (d)

Figure 1. Rates of false detections obtained by GC on time series of length T = 3000 generated with normally distributed errors
(condition A) for unidirectionally causally connected variables (X → Y): (a) false positive rates observed on original time series,
(b) false negative rates observed on original time series, (c) false positive rates observed on time-reversed series, (d) false negative
rates observed on time-reversed series.

The power of GC increases (or equivalently, FNR decreases) with increasing sample
size, see Tables 2 and 3. GC produces false-negative results for small values of the con-
nectivity structure control parameters, c1 and c2, and is sensitive to heteroscedasticity of
predictive error variances. Indeed, FNRs for weakly connected variables are higher if the
predictive error variance of the recipient is higher than the predictive error variance of the
driver, see Figure 1b.

Let us now look at the results of GC after application to the time-reversed series. It
is worth emphasizing that the fitting of a VAR(p) on the time-reversed series leads to the
problem of endogeneity bias. In that case, the values x(t− p) and y(t− p) are expressed
as linear functions of x(t− p + 1), x(t− p + 2), . . ., x(t), y(t− p + 1), y(t− p + 2), . . ., y(t)
and consequently, the regressors x(t) and y(t) correlate with the predictive error. Then,
OLS are biased and that can lead to spurious causal detection as it happened under the
condition F for the original time series.

The FPRs obtained under the conditions A–F on the time-reversed series of causally
independent variables are similar to those observed on the original time series, see Table 1.
Although the presence of instantaneous interactions (condition G) did not pose a com-
plication for correct causal inference on the original time series of causally independent
variables, spurious causal identifications occurred after time reversal as consequence of
endogeneity, see Table 1.

Similarly, the observed FPRs for the time-reversed series of unidirectionally connected
data were larger than the chosen significance level. Elements of the forward predictive
errors were uncorrelated on the set of values of connection strength and the ratio of
predictive error variances, see Figure 2b. However, a strong correlation structure occurred
after time reversal, see Figure 2c. The influences on the dependent variable which were
not captured by the model were collected in the predictive error. The endogeneity bias
depends on the correlation of the variables (see Figure 2a) and on the ratio of predictive
error variances of the variables simultaneously, see Figure 2c.
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(a) (b) (c)

Figure 2. Correlation for time series of length T = 3000 generated with independent normally distributed errors (condition A) for
unidirectionally connected variables (X → Y): (a) correlation of variables, (b) correlation of predictive error elements fitted by VAR on
original time series, (c) correlation (multiplied by −1) of predictive error elements fitted by VAR on time-reversed series.

We can see in Figure 1c that the FPRs for unidirectionally connected variables increase
to 1 by increasing the value c1 and decreasing the predictive error variance of recipient
relative to the driver. The observed FPRs differed between conditions and increased with
increasing sample size, due to an inconsistency of endogeneity bias.

On the other hand, non-zero FNRs for the time-reversed series of unidirectionally
connected data were observed for small values of c1 to a very similar extent as for the
original time series, see Table 2, Figure 1b,d.

The endogeneity bias also induced that FNRs obtained on the time-reversed series for
bidirectionally connected variables are strictly higher than those observed on the original
time series. They are higher for a weak feedback between variables and if the predictive
error variance of the recipient is higher than that of the driver.

4.2. PEGC Results

PEGC is a conservative test of Granger causality (i.e., the probability of the type I error
is smaller than the chosen 0.05/2 significance level), which was found to be sensitive to
predictive error distribution and violation of model’s assumptions. Besides, the power of
PEGC was much smaller than the power of GC (see Tables 1–3).

Similarly to GC, the presence of instantaneous interactions invoked false positive de-
tections after time-reversal. In contrast to GC, FNR obtained on the time-reversed series for
unidirectionally connected variables changed under some conditions. The number of de-
tected bidirectional connections on the time-reversed series for unidirectionally connected
variables was lower compared to the GC results.

4.3. mTRGC Results

The observed FPRs on the original time series equal to 0 % for both causally indepen-
dent variables and unidirectionally connected variables under all considered situations. It
can be concluded that mTRGC is a conservative test for Granger causality and sensitive
to predictive error distribution. Similarly, as for GC, false negativity occurs for weakly
connected variables. The observed FNRs for unidirectionally connected variables are
higher than those obtained by GC, but lower than the sum of FPR+FNR obtained by GC
for T = 3000 under any conditions. No bidirectional connection was correctly detected by
mTRGC (see Tables 1–3).
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The results obtained on the original time series and on the time-reversed series are
very similar, except for the case of causally independent variables and the condition G.
If a causal link was detected by mTRGC on the original time series for undirectionally
causally connected variables, then opposite causal link was generally detected on the
time-reversed series.

4.4. mTRGC* Results

The observed FPRs for causally independent variables and the observed FNRs for bidi-
rectionally connected variables are both equal to 50 %, only the FPRs for correlated causally
independent variables differ. A causal link was incorrectly detected for causally indepen-
dent variables. Only the dominant causal link was detected in the case of bidirectionally
causally connected variables.

The observed FPRs and FNRs for unidirectionally causally connected variables were
similar for a condition and a sample size. Their sum was smaller than the sum of FPR+FNR
obtained by GC or mTRGC. Similarly to mTRGC, the larger FPRs and FNRs are observed
under condition F.

In the case of unambiguous unidirectionally connected variables, the opposite causal
link was detected by mTRGC* after time-reversal. Bidirectional causal connections were in-
correctly detected on the time-reversed series for correlated causally independent variables.
For the results, see Tables 1–3.

4.5. GC+mTRGC*

Since the smallest number of false detections (FPR+FNR) for unidrectionally con-
nected variables was obtained by mTRGC*, we proposed to combine mTRGC* with GC.
Our intention was to analyze a potential improvement of GC by using the results from the
time-reversed series, on the original time series. The observed FPRs were similar to the
FPRs obtained by GC for causally independent variables, except under the condition G.
Since the highest number of correctly detected absence of a causal link occurred for corre-
lated causally independent variables, the difference was expected. A significant number
of the false positive detections by GC was rejected by additional applying mTRGC* for
unidirectionally connected variables. Moreover, the observed FNRs by GC for unidirection-
ally connected variables did not change significantly after applying mTRGC*. As it was
expected based on the previous results, many of correctly detected connections by GC for
bidirectionally connected variables were rejected after additional application of mTRGC*.
For the results, see Tables 1–3.

5. Discussion

In the case of stochastic data defined by autoregressive models, the change of the
direction of causality after the time reversal is investigated by different Granger causality
detection methods. The clear effect of a change in the order of cause and effect is widely
observed by mTRGC and mTRGC*, while GC and PEGC observe a clear reversal of
causality only under specific conditions. Unambiguously opposite direction of causal
link was detected by GC and PEGC on the time-reversed series only when the product
of the connection strength and the ratio of the predictive errors of the driver relative to
the recipient were below a certain level. If it was above that level, bidirectional causal
link was mostly detected by GC and PEGC. The bidirectional causal detections after time-
reversal of unidirectionally causally connected variables might occur as consequence of the
endogeneity bias. Indeed, components of the backward predictive errors were correlated
on similar set of values of the connection strength and of the ratio of the predictive error
variances for which bidirectional causal connection was detected. The set of values leading
to such bidirectional detection even increased with increasing sample size.

Although, in general, the methods based on time-reversal testing suffer from the
inability to correctly detect bidirectional connections, they can serve to verify the results
of GC. A falsely detected unidirectional causal connection by GC can be rejected by ap-
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plying mTRGC* additionally. Moreover, the absence of causal link detected by GC on the
original series should be detected also on the time-reversed series of uncorrelated causally
independent variables.

GC test turned out to be an exact test for Granger causality even for predictive error
distributions that are different from the normal distribution. However, the assumption of
no-autocorrelated predictive errors was crucial for validity of GC. Our results indicate that,
even if a part of the model assumption is violated, under some circumstances, GC can still
yield meaningful results. Finally, it should be mentioned that even if the autoregressive
model fits the correlation structure in the data, spurious causalities could still arise if some
relevant variables are not analyzed. The problem of a hidden confounding variable as well
as measurement noise issues were not considered in this work.
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The following abbreviations are used in this manuscript:

AR Autoregressive model
VAR Vector autoregressive model
GC Standard Granger causality test
PEGC Predictive error test of Granger causality
TRGC Time-reversed Granger causality test
mTRGC Modification of time-reversed Granger causality test
mTRGC* Modification of time-reversed Granger causality (non-statistical) test
FPR False-positive rate
FNR False-negative rate
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