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Abstract: Robustness of the collaborative knowledge network (CKN) is critical to the success of open
source projects. To study this robustness more comprehensively and accurately, we constructed
a weighted CKN based on the semantic analysis of collaborative behavior, where (a) open source
designers were the network nodes, (b) collaborative behavior among designers was the edges, and
(c) collaborative text content intensity and collaborative frequency intensity were the edge weights.
To study the robustness from a dynamic viewpoint, we constructed three CKNs from different
stages of the project life cycle: the start-up, growth and maturation stages. The connectivity and
collaboration efficiency of the weighted network were then used as robustness evaluation indexes.
Further, we designed four edge failure modes based on the behavioral characteristics of open source
designers. Finally, we carried out dynamic robustness analysis experiments based on the empirical
data of a Local Motors open source car design project. Our results showed that the CKN performed
differently at different stages of the project life cycle, and our specific findings could help community
managers of open source projects to formulate different network protection strategies at different
stages of their projects.

Keywords: dynamic robustness; open source project; knowledge collaboration; weighted network;
semantic-based

1. Introduction

In the open source design community, volunteers with diverse capabilities use the
Internet to carry out innovation activities on open source products, either spontaneously
or under the guidance of enterprises [1]. This collaborative design mode has significant
advantages, such as low costs and high customer satisfaction in the aspects of product
innovation, flexibility and foresight [2,3]. It has been successfully applied in fields such as
open source software (e.g., Linux, Apache, Mozilla), knowledge sharing (e.g., Wikipedia,
Baidu Encyclopedia), product design (e.g., Lego Mindstorms), among others. However,
this self-organizing design model is easily affected by changes in the external environ-
ment, internal community management mechanisms, and other community competitions.
This results in the degradation of designers’ collaborative behavior, which makes project
progress slow and ineffective, and can even potentially cause the decline and end of the
project [4,5]. Midha and Palvia [6] used both the popularity of a project and the amount of
developer activity as indicators to explore the factors affecting the success of open source
software. They found that the size of the community and the continuous innovation of
personnel are fundamental for the continuous development and growth of the community.
Griffith and Sawyer [7] posited that interactive collaboration is the best way to complete
knowledge sharing, and Singh, Tan and Mookerjee [8] stated that participating members
can improve development efficiency by relying on their own experience and collaboration
with other members. Therefore, large-scale collaboration is an important way for commu-
nity members to continue to innovate, which is also the main source of community success.
Robustness refers to the ability of a system to maintain its original various functions when it
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faces the impact of changes in its internal structure or external environment [9]. In an open
source project (OSP), the loss of designers and the weakening of designers’ willingness to
collaborate on knowledge lead to the failure of collaborative behavior, which then affects
the efficiency of the project. As such, it is of great practical significance both to identify
the failure model of collaborative behavior in an OSP and to study the robustness of its
collaborative knowledge network (CKN).

At present, research on OSPs can be roughly divided into two categories: (1) em-
pirical and qualitative research, including the behaviors of participants, motivation for
participation, and network structure characteristics in the community [10,11], thereby
obtaining the operating rules and best practices of this type of community; and (2) the
simulation modeling and experimental analysis of OSPs to conduct quantitative simulation
research on its evolution mechanism, management mechanism, evolution trend, and so
on [12,13]. An important method in both categories of research is the building of a social
network model. Most OSP network models take (a) designers as nodes, (b) communica-
tion behaviors (such as email contact or mutual comments) as edges, and (c) frequency
of communication as the weight [14–17]. For example, Bai and Deng [18] established a
weighted network model based on the number of forwarded interactions between nodes
in social network communities, to study the accuracy of social network link prediction.
To study the influence that opinion leaders have on opinion followers in the open source
community (OSC), Xu and Zhang [19] established a weighted CKN based on the number of
comments between two designers. Li et al. [20] constructed a weighted idea transportation
network between scientists in econophysics to study the impact of weight changes on the
network. Toral, Martinez-Torres and Barrero [21] constructed a cooperation network based
on the number of cooperation times between developers, then analyzed the cooperation
behavior of existing developers in the OSC. Although the above network considered the
weight of collaboration, the weight considered only the frequency of collaboration and
not the content of collaboration. Different collaboration content also represents different
collaboration intensity. Therefore, the constructed network was still an information dissem-
ination network, which has not reached the level of the CKN. Consequently, a CKN based
both on collaboration frequency and collaboration content can more accurately reflect
the collaborative relationship among designers, which is the key of robustness analysis
of OSCs.

The majority of research on network robustness focuses on the robustness of complex
networks in real systems, such as in aviation, high-speed rail, public transport, supply
chains, transportation and other fields [22–24]. As such, there are relatively few studies on
the robustness of virtual networks without physical edges. Some scholars have studied the
robustness of this type of network by constructing network models of different structures,
mainly focusing on research on the research cooperation network and the Internet [25–27].
While research on the robustness of the OSP is still relatively lacking, the continuous
development of the OSC has led to an increased recent focus here.

Research on network robustness is commonly based on the perspective of designer
loss (i.e., node failure) [28–30]. For example, Frank et al. [31] measures the exit and entry of
users according to the cost-benefit relationship of active nodes in the community (when
the cost is higher than the benefit, the nodes leave the network), to studies the dynamic
robustness of online social network based on the Tanaka, Morino and Aihara [32] studied
the dynamic robustness of complex networks by attacking the nodes according to the
node degree; They demonstrated that, in contrast to the structural fragility, the nonlinear
dynamics of heterogeneously connected networks can be highly vulnerable to the failure
of low-degree nodes. Zhang, Zhou and Hu [33] conducted node attacks on the OSC from
both static and dynamic perspectives to analyze the robustness of the network. Fuge, Tee
and Agogino [34] modeled a node attack simulation on the OpenIDEO community and
found that an OSP with a core-edge structure has strong robustness. Tang and Liao [35]
studied the robustness of the regional collaborative innovation network by removing nodes
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with high betweenness, in turn. These examples all use methods based on node failure (i.e.,
when the node is attacked, the node and the connected edges are deleted).

However, in the OSP, rather than designers directly exiting from the project when
they are negatively affected, they would first decline the collaboration intention with other
designers. The failure mode of network robustness analysis should reflect this process
more accurately by changing the node failure mode to an edge failure mode. In addition,
existing robustness research tends to be static [36–39] as it only analyzes the network in
one particular time period, but in the development process of an OSP, the collaborative
network has different structural characteristics at different stages. Therefore, the dynamic
robustness of the network should be studied from the perspective of dynamic evolution
(i.e., at each stage of the network).

We summarize the current research on network model and robustness, as shown
in Table 1. This paper proposes a method to assess the dynamic robustness of CKNs
based on semantic analysis and edge failure mode correspondingly. The remainder of the
paper is structured as follows. In Section 2, we construct a network with comprehensive
collaboration information using (a) OSC designers as network nodes, (b) collaborative
behaviors among designers as edges, and (c) the collaborative text content intensity and
collaborative frequency intensity as the edge weights. To study the robustness of the
network from a dynamic viewpoint, we also construct CKNs from three different stages of
the project life cycle: the start-up, growth and maturation stages. In Section 3, we use the
connectivity and collaboration efficiency of the weighted network as robustness evaluation
indexes. The specific calculation method is also presented. In Section 4, we design four edge
failure modes based on the behavioral characteristics of OSP designers: (1) collective failure
of knowledge contribution behavior, (2) successive failure of knowledge contribution
behavior, (3) collective failure of knowledge dissemination behavior, and (4) successive
failure of knowledge dissemination behavior. In Section 5, we conduct dynamic robustness
analysis experiments based on the empirical data of a Local Motors OSP for a car design.
Finally, in Section 6, we present suggestions for network robustness protection based on
our results.

Table 1. Research on network model and robustness.

Researcher
(Time) Network Model Network Failure

Mode
Robustness

Measurement
Dynamic Evolution

Stage

Zhou, H.; Zhang, X.;
Hu, Y. (2020)

Collaborative
knowledge network:

user as nodes,
frequency of

communication as the
weight.

Node failure based on:
recalculate degree,

recalculate
betweenness, and

random.

The relative size of the
largest connected
component, et al.

Three different stages
of network

development (i.e., the
start-up, growth and
maturation stages)

Martinez-Torres, M.R.
(2014)

Weighted network:
community members
as nodes, number of

e-mails as the weight.

One stage

Bellingeri, M.; Cassi, D.
(2017)

The co-authorship
network of scientists
working on network

theory and
experiment: authors as
nodes, the number of
common papers and

the number of
authors of these papers

as the weight.

Node failure based on:
nearest neighbors

(First), next to nearest
neighbors (Sec) et al.

The size of the largest
connected component

(LCC),
The weighted

efficiency.
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Table 1. Cont.

Researcher
(Time) Network Model Network Failure

Mode
Robustness

Measurement
Dynamic Evolution

Stage

Bai, Y.; Deng, G.S.
(2016)

User Interaction
weighted network: user
as nodes, the number

of forwarded
interactions between
nodes as the weight.

One stage

Duan, D.L.; Lv, C.C.;
(2017) Weighted network A fraction node failure

based on random.

Critical threshold
against cascading

failures
One stage

He, Z.; Liu, S.; Zhan, M.
(2013)

Unweighted
heterogeneous

networks and weighted
heterogeneous

networks

Node failure based on:
high-degree,
low-degree.

The sum of the degrees
of inactive nodes One stage

Frank, S; Pavlin, M.
(2020)

Online Social
Networks:

directed networks of
users and their

followers
(Unweighted)

Node failure based on:
the cost-benefit

relationship.

Lifetime of the
core-periphery

structure
One stage

Tanaka, G.; Morino, K.;
Aihara, K. (2012)

Coupled oscillator
networks: networks

consisting of N
oscillator nodes

coupled by diffusive
connections with fixed

strength.

Node failure based on:
lower degree, random.

Order parameter,
Average of the

oscillation, Amplitudes
over all the

oscillators in the phase
synchronization state.

One stage

Zhang, X.D;
Zhou, H.L.

(2017)

Knowledge
collaborative network:
user as nodes and the

collaborative
relationship between

user as edges

Node failure based on:
initial degree, initial

betweenness,
recalculate degree,

recalculate
betweenness.

The relative size of the
largest connected

component,
Network efficiency.

Three different stages
of network

development (i.e., the
start-up, growth and
maturation stages)

Tang, Y.G;
Liao, H.J.

(2016)

Regional collaborative
innovation

network(unweighted
network):

innovation subject as
nodes and the
cooperation

relationship between
innovation subjects as

edges

Node failure based on
the: comprehensive

betweenness.

Average path length,
The most connected

subgraph.
One stage

Tanizawa, T.; Paul, G.;
Havlin, S.; (2006)

Scale-free multimodal
network:

given values of the
number of modes, the
total number of nodes,
and the average degree

Node failure based on:
random, targeted node

removal.
Analytical formulas. One stage

Liu, L.;
Meng, K.

(2018)

Interdependent
networks with

correlated structure:
two interdependency
scenarios: conditional

and redundant
interaction modes.

Node failure based on:
random, low-degree,

high-degree.
Giant component size. One stage
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Table 1. Cont.

Researcher
(Time) Network Model Network Failure

Mode
Robustness

Measurement
Dynamic Evolution

Stage

Our work

Semantic-based
Collaborative

Knowledge Network:
designers as nodes,

collaborative behavior
among designers as

edges, and
collaborative text

content intensity and
collaborative frequency

intensity as the edge
weights.

Edge failure modes
based on: (1) collective
failure of knowledge

contribution behavior,
(2) successive failure of

knowledge
contribution behavior,
(3) collective failure of

knowledge
dissemination behavior,

and (4) successive
failure of knowledge

dissemination
behavior.

Relative size of
network connectivity,

Relative size of
collaborative

knowledge efficiency.

Three different stages
of the project life cycle:

the start-up, growth
and maturation stages.

2. Construction of Weighted Collaborative Knowledge Network
2.1. Semantic-Based Weight Calculation

The OSC makes use of public knowledge and creativity to enable a large number
of participants to share, suggest, evaluate, and improve knowledge with other partic-
ipants through the Internet [40–42]. The collaborative behavior of designers includes:
(1) knowledge-level behavior, which is measured by the content of the collaboration be-
tween designers; and (2) non-knowledge-level socialized behavior, which is represented by
the frequency of the collaboration. Despite the content and frequency of collaboration being
two key factors when constructing a CKN, most studies on OSC networks consider only
the frequency of collaboration when calculating the weight of the network. This cannot
truly reflect the collaboration intensity between designers in the OSC.

We constructed a semantic-based CKN by taking OSC designers as nodes, collabora-
tive behaviors between nodes as edges, and collaborative content intensity and collabo-
rative content frequency as edge weights. The network edge weight Wi,j is obtained by
weighting the collaborative content intensity gi and the collaborative frequency intensity
ki,j between designers, as shown in Equation (1):

Wi,j = αgi + βki,j, (1)

where gi is obtained by calculating the matching degree between the collaborative content
and the project keywords in order to normalize it ki,j is obtained by normalized processing
of the collaboration times between designer i and designer j, and α and β are the influence
coefficients of the content intensity and frequency intensity, respectively, satisfying α + β = 1.
The following focuses on the calculation of the collaborative content intensity gi.

First, keywords are extracted from the project’s overall text comments using the RAKE
algorithm [43]. Then, the value of gi is calculated according to the matching degree of
these keywords. The specific calculation steps are as follows:

1. Word segmentation: Take all collaborative content contained in the community project
as the target text, then take punctuation marks and stop words as word segmentation
intervals to obtain a candidate set of text keywords, T = {t1, t2, t3, . . . , tz }.

2. Construct the co-occurrence matrix, as shown in Equation (2):

Dzz =

 a1,1 · · · a1,z
...

. . .
...

az,1 · · · az,z

 (2)
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where am,m is the frequency of the occurrence of the candidate word in the text, and
am,n is the frequency of the co-occurrence of the candidate words tm and tn in the
same phrase.

3. Calculate candidate word weight: According to the co-occurrence matrix, get the
degree of candidate word tm: Degm = ∑z

n=1 am,n, the frequency of candidate word
tm : Fegm = am,m then use their ratio to represent the weight Wtm of the candidate
word tm as shown in Formula (3):

Wtm =
Degm

Fegm
=

∑z
n=1 am,n

Fegm
. (3)

Arrange in descending order according to the calculated weight Wtm take the candidate
words in the top 1/3 of the ranking as the keywords of the text, and output the keyword
set T′, and the weight value Wtm of each keyword.

For example, by calculating the weights according to the content of the project reviews
of an open source car community, the top ten keywords in the weight ranking can be
obtained, as demonstrated in Table 2.

Table 2. Top ten keywords sorted by weight.

Keyword tm Car Side
View Design Engine Track

Width Entry Package
View Technical Profile Rear

weight Wtm 0.998 0.978 0.974 0.969 0.941 0.886 0.883 0.877 0.838 0.801

4 Calculate the content intensity of each designer: Follow step (1) to segment the overall
comment content of each designer in the project to obtain a set of keyword candidates
for each designer, Ti = {t1, t2, t3, . . .}, then calculate gi

′ as the sum of the weights of
the keywords contained in the designer comment text, as shown in Formula (4):

gi
′ = ∑tm∈T′∩Ti

Wtm , (4)

where T′ is the keyword set, Ti is the candidate word set of designer i, and tm is the
keyword contained in designer i. For example, Table 3 shows a list of the top ten
nodes in the content intensity of an open source car community.

5 Obtain gi by normalizing gi
′.

Table 3. Top ten nodes with gi
′ value.

Node i 328 351 311 325 14 210 317 185 160 356

gi
′ 1210.57 871.7 811.53 370.21 311.72 267.6 260.6 257.47 218.57 203.53

2.2. Network Structure Characteristics in Different Life Cycle Stages

Life cycle theory refers to the process of birth, growth, aging, illness and death of a
certain thing. This concept coincides with the development of the OSC, and some scholars
have introduced life cycle theory into virtual network research [44,45]. For example,
Moingeon, Quelin and Dalsace [46] divided virtual communities into “formation stage,
development stage, institutionalization stage and decline stage” by referring to the three-
stage model of traditional organization development, and Tan et al. [47] divided the life
cycle of the community into four stages (initial, growth, maturity and decline) to study the
cooperative behavior choices of virtual academic communities. However, existing research
on the dynamic robustness of the OSC usually only analyzes the network at a single static
time node rather than taking into account specific or multiple life cycle stages. For a more
accurate representation of robustness, it is necessary to analyze the characteristics of the
CKN of OSC projects over time.
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In this paper, we used Local Motors, an OSC for car design, as the research object.
Local Motors has the world’s largest automotive design communication community, and
the online community is active with more than 8000 automotive design enthusiasts from
121 countries. This community has an avant-garde design concept of “production for
customers”, where designers can freely choose design projects of interest, exchange creative
models, and propose design solutions. It is a typical open source community with the
characteristics of open source, large-scale collaboration, product innovation, and dynamics.
It can represent most open source communities, and the research results and corresponding
management strategies can be applied to other communities with universal applicability.

This paper analyzes the impact of the failure of knowledge collaboration behavior on
robustness from a micro perspective. In order to make the research results more specific
and easier to apply to other networks, we chose project LF-01, which has the largest number
of participants and can best reflect the characteristics of this community, for our research.
This project was established in January 2014, and as of 16 November 2016, the project
contained 673 designers and 7757 instances of communication. The selection of this project
has the following considerations. (1) We compared all the projects in the Local Motor
community and found that as of 16 November 2016, “LM SF-01” has the largest number
of participants, which best reflects the characteristics of the community. (2) The network
features of LF-01 are consistent with most projects; it can therefore suitably represent the
situation of most OSPs. (3) Selecting a single project for analysis can clearly describe the
evolution process of project robustness from a microscopic point of view.

Python3.6 software was used to crawl all collaboration data of LF-01, from creation to
end, and the evolution process of the project was analyzed on a timeline for the number of
nodes, edges and incremental edges. As Figure 1 shows, this evolution curve demonstrates
(a) an initial trend of slow growth, followed by rapid growth, then slow growth, and finally
stability, and (b) an increase then a decrease of the incremental edges.
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Figure 1. Scale evolution diagram of the collaborative knowledge network of LF-01 project.

As Figure 1 shows, the evolution curve of nodes and connecting edges is basically
consistent with the product life cycle theory. Therefore, as per the growth rate method in
the product life cycle theory, we dividedLF-01′s network into three stages: (1)the start-up
stage (prior to 10 June 2014),where the growth rate of nodes and edges in the network
is slow, and the value of nodes and edges is at its minimum; (2) the growth stage (from
10 June 2014 to 10 September 2014), where (a) the network nodes and connecting edges
have the fastest growth rate, and (b) on 10 September 2014, the nodes and connecting edges
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appear to be at a relatively obvious inflection point, and their growth rates begin to slow;
and (3) the maturation stage (after 10 December 2014), where the nodes and edges have the
slowest growth rate but the highest value. For the purpose of simple description, these
three time nodes (10 June 2014; 10 September 2014; and 10 December 2014) are respectively
called the start-up stage, the growth stage and the maturation stage of the network. For
these three stages, we constructed a semantic-based weighted CKN. Here, the intensity of
collaborative content, α, and collaborative frequency, β, were considered equally important,
and were each given a value of 0.5. Table 3 shows some of the network topology parameters
of the network during the three periods.

Table 4 shows that small-world, scale-free and disassortative characteristics are present
in all three network stages. The small-world characteristic shows that the network has
some “shortcut” connections to connect different subgroups, that is, there are some key
cooperation in the knowledge collaboration relationship of many participants, and they
play a key role in reducing the network distance. The scale-free characteristic indicates
that during the evolution of the project network, new participants tend to connect to
larger nodes in the original network. The disassortative characteristic reflects that nodes
with lower degree values are more inclined to establish connections with nodes with
higher degree values. Since the weighted CKNs of all three stages have small-world,
scale-free and disassortative characteristics, the outflow of designers may bring about
serious consequences. This indicates that the robustness analysis of these networks is
very necessary.

Table 4. Network topology parameters and network characteristics of the semantic-based collaborative knowledge network.

Network
Topological Parameter Network Characteristic

Number of
Nodes

Average
Out-Degree

Average
Path Length

Clustering
Coefficient

Network
Efficiency

Small World
Parameter

Small World
Characteristic

Scale Free
Property Assortatvity

Start-up
stage 16 1.3529 2.0932 0.1261 0.2151 11.0804 Yes Yes No

Growth
stage 318 7.9296 2.5445 0.3374 0.2877 19.3845 Yes Yes No

Maturation
stage 419 7.3430 2.6403 0.3278 0.2630 23.1868 Yes Yes No

Note: According to Davis, Yoo and Baker [48], the small-world parameters can be expressed as: SW = [Cactual/Lactual] ×
[Lrandom/Crandom], where Lrandom = ln(n)/ ln(k), Crandom = k/n, n is the number of nodes, k is the average degree.

3. Robustness Evaluation Index

It is generally believed that the robustness of the network is the degree of retention
of network performance when network nodes or edges fail [49–51]. For the CKN of an
OSC, the impact of network node or edge failure mainly includes two aspects: (1) the
network connectivity is destroyed, which reduces the collaborative knowledge intensity;
and (2) the collaborative knowledge efficiency decreases, which increases the difficulty
of collaborating knowledge to the network. Therefore, the robustness evaluation index
proposed in this paper also includes two aspects: network connectivity and collaborative
knowledge efficiency.

3.1. Relative Size of Network Connectivity S

Connectivity is an important performance index of the network, which is usually
expressed by the relative size of the most connected subgraph. It refers to the proportion
of the number of nodes in the subnet with the largest number of nodes to the number of
all remaining nodes after the network is attacked. However, the relative size of the most
connected subgraph cannot reflect the impact of the change of knowledge collaboration
behavior on network performance. In this paper, the relative connectivity size, S, is defined
as the relative size of the largest connected subgraph node intensity of the network, so as
to reflect the degree of network connectivity retention:

S =
S′lc
Slc

, (5)
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where S′lc is the sum of the node intensity of the maximum connected subgraph of the
network after being attacked, and Slc is the sum of the node intensity of the original
network. The calculation formula for the sum of node intensity is

Slc = ∑N
i 6=j wij, (6)

where N represents the total number of nodes in the network, and wij represents the edge
weight of nodes i and j. In the weighted CKN of the OSC, the node intensity represents the
collaborative knowledge intensity. Therefore, the smaller the value of S, the greater the
decrease in the collaborative knowledge intensity after the network is attacked, that is, the
less robustness of connectivity, and vice versa.

3.2. Relative Size of Collaborative Knowledge Efficiency H

Network efficiency indicates how easy it is for collaborative information to enter the
network. It is also an important measure of network performance. The network efficiency
is expressed as the sum of the efficiency of all nodes in the network, where node efficiency
is the reciprocal of the shortest path length between two nodes [13]:

E =
1

n(n− 1) ∑i 6=j
1

dij
, (7)

where dij is the distance between nodes i and j, and n is the number of nodes.
Although the above network efficiency formula describes the difficulty of information

dissemination, it does not reflect the weighted characteristics of the CKN. Therefore,
this paper defines collaborative knowledge efficiency by referring to network efficiency
formula EG:

EG = 1− 1
n(n− 1) ∑i 6=j

1
wdij

, (8)

where wdij
is the sum of weights on the shortest path between nodes i and j in the CKN.

Furthermore, the relative size of collaborative knowledge efficiency, H, is used as
another important index to measure the robustness, so as to reflect the degree of retention
of collaborative knowledge efficiency after the network is attacked:

H =
EG
′

EG
, (9)

where EG
′ is the collaborative knowledge efficiency of the attacked network and EG is the

collaborative knowledge efficiency of the original network. Obviously, the value range of
H is [0,1]. When H = 0, it indicates that the network efficiency drops to its lowest after the
attack, that is, designers in the network do not have any form of cooperation. When H = 1,
it indicates that the efficiency of the whole network remains at the original level, without
any impact on the network efficiency due to the failure of edge weights.

4. Failure Mode Design of the Robustness Analysis

The design of failure modes is the key to robustness analysis. Most previous research
is based on the failure of nodes themselves, and little research exists on the failure of
collaborative knowledge behavior between nodes.

In OSPs, collaborative knowledge behavior can be divided into knowledge contri-
bution behavior and knowledge dissemination behavior. The edge weight of the CKN
constructed in this paper is weighted based on the collaborative content intensity and
collaborative frequency intensity, so it can effectively describe the knowledge contribution
behavior between nodes. The order of knowledge contribution behavior between nodes
can be reflected by the order of edge weights. In addition, the number of edge betweenness
in the constructed network is the number of times that the edge acts as the intermediary in
the network, where “intermediary” means that the edge occupies a key connection position
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in the dissemination path of the network. This is an important parameter to measure
knowledge dissemination, which can describe the behavior of knowledge dissemination
between nodes. If the order is based on the number of edge betweenness, it can reflect the
order of collaborative knowledge behavior intensity between nodes.

Considering the above two kinds of collaborative knowledge behavior, as well as
the two scenarios of successive failure occurrence and collective failure occurrence, we
designed four failure modes for collaborative behavior, as shown in Table 5.

Table 5. Failure mode design of collaborative knowledge behavior.

Failure Mode
Description Failure Simulation Calculation Process

Failure
Mode of collaborative

behavior

Successive failure of knowledge
contribution behavior (WS)

Sort the edges generated by the network according to their
weights, from large to small, where the weight of the edge
with the largest weight is proportionally reduced according

to the sorting result. Take the network at this time as the
current network, then calculate the weight and sort to

reduce the edge with the largest edge weight. Repeat n
times to simulate the continuous failure of knowledge

contribution behavior.

Collective failure of knowledge
contribution behavior (WC)

Sort the edges generated by the network according to their
weights, from large to small. Select the top n weights to
connect the edges according to this sorting result, then

reduce the weights by a certain percentage to simulate the
collective failure of knowledge contribution behavior.

Successive failure of knowledge
dissemination behavior

(BS)

Sort the edges generated by the network according to the
order of edge betweenness, from large to small, where the
edge weight of the edge with the largest edge betweenness
is proportionally reduced. Take the network at this time as

the current network, then calculate and sort the edge
betweenness, where the edge weight with the largest edge
betweenness is reduced and repeated N times to simulate

the failure of knowledge dissemination behavior.

Collective failure of knowledge
dissemination behavior

(BC)

Sort the edges generated by the network according to the
order of edge betweenness, from large to small. Select the

top n connected edges according to this sorting result, then
reduce the weight of edges to simulate the collective failure

of knowledge dissemination behavior.

Random failure Random failure
(R)

Randomly select the edge generated by the network
according to its weight, where the edge weight is reduced

proportionally.

5. Dynamic Robustness Analysis Experiments

Based on the collaborative knowledge behavior and failure modes of the network
constructed in Section 4, we used Python3.6 software to program the simulation of the
robustness index changes of the CKN under each of the four regular failure modes (BS, BC,
WS, WC) and the random failure mode (R) of the start-up, growth, and maturation stages.

5.1. Robustness Analysis during Project Start-Up Stage

The robustness index changes during the start-up stage are shown in Figure 2.
Figure 2 shows that the decline rate of the index value is significantly higher for the

four regular failure modes (BS, BC, WS, WC) than for the random failure mode (R). Further,
the decline rate is higher in failure modes for (a) knowledge contribution behavior (WS,
WC) as opposed to knowledge dissemination behavior (BS, BC), and (b) collective failure
(BC, WC) as opposed to successive failure (BS, WS). When we performed a paired T-test on
this data, the index values of the network under different failure modes were significantly
different. See Table 6 for part of this test result.
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Table 6. Paired sample T-test for different failure modes of network in start-up stage (α = 0.05).

Pairing Failure Mode M SD
95% Confidence Interval

t df Sig
Lower Limits Upper Limits

R-BS 0.084231 0.040326 0.067204 0.101262 10.233 23 0.000
S BS-WS 0.153952 0.107466 0.108573 0.199331 7.018 23 0.000

WS-BC 0.175503 0.058234 0.150913 0.200093 14.764 23 0.000
BC-WC 0.072582 0.022999 0.062871 0.082294 15.460 23 0.000

R-BS 0.071423 0.045057 0.052397 0.090449 7.766 23 0.000
H BS-WS 0.161813 0.091040 0.123370 0.200256 8.707 23 0.000

WS-BC 0.093761 0.038576 0.077471 0.110050 11.907 23 0.000
BC-WC 0.0804623 0.045413 0.061286 0.099638 8.680 23 0.000
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Based on the above analysis, we can conclude that when the network is in the start-up
stage, the random failure mode has the highest robustness, followed by the successive
failure of knowledge dissemination behavior mode, successive failure of knowledge con-
tribution behavior mode, collective failure of knowledge dissemination behavior mode,
and collective failure of knowledge contribution behavior mode, namely R > BS > WS > BC
> WC.

Paired sample T-test for different failure modes of network in start-up stage (α = 0.05)
Table 6 shows that under the failure modes for knowledge contribution behavior(WS, WC),
the values of Sand H decrease to 0.5 when 5 edges collectively fail (WC), whereas 15 edges
need to fail to achieve the same effect under the successive failure mode (WS).Similarly,
under the failure modes for knowledge dissemination behavior (BS, BC), the values of S
and H decrease to less than 0.3 as the number of failure edges increases under the collective
failure mode (BC), whereas these values remain much higher under the successive failure
mode (BS).

In the start-up stage, the increase in collaborative knowledge behavior greatly im-
proves the robustness of the network. Therefore, in addition to effectively promoting a
project in the start-up stage, community managers should also develop corresponding in-
centive mechanisms to increase knowledge sharing behavior by (a) encouraging designers
who have already entered the community to introduce more designers to the community
and (b) encouraging existing designers to share more of their knowledge.

5.2. Robustness Analysis during Project Growth Stage

The robustness index changes during the growth stage are shown in Figure 3.
Similar to the start-up stage, Figure 3 shows that the decline rate of the index value

in the growth stage is significantly higher when the network faces regular failure (BS,
BC, WS, WC) rather than random failure (R). Further, the decline rate is slower in the
failure mode for successive knowledge dissemination behavior (BS) than in the other three
regular modes (BC, WS, WC), instead following the same trend as the random failure
mode (R).The descending magnitude of the curve under the other three regular failure
modes is: collective failure of knowledge contribution behavior (WC) > collective failure of
knowledge dissemination behavior (BC) > successive failure of knowledge contribution
behaviors (WS).

We further test the significant difference of each index. Since we focuses on the
performance changes of the network under different failure modes in order to propose
more effective solutions. Therefore, the process data with the values of each index dropping
by 70% (dropping from 1 to 0.3) is taken as the test object. Table 7 shows part of the results
of paired T-test, which shows that there are significant differences in the changes of each
index value under different failure modes.

Based on the above analysis, we can conclude that when the network is in the growth
stage, the random failure mode has the highest robustness, followed by the successive
failure of knowledge dissemination behavior mode, successive failure of knowledge con-
tribution behavior mode, collective failure of knowledge dissemination behavior mode,
and collective failure of knowledge contribution behavior mode, namely R > BS > WS > BC
> WC.

Table 7 shows that the mean values of the differences between indexes in the ran-
dom failure mode (R) and successive failure of knowledge dissemination behavior mode
(BS) are 0.013707 and 0.072419, respectively, which indicates that the range of decline of
network performance under these two modes is very close. However, the mean values
of the differences between the indexes in the successive failure of knowledge dissemina-
tion behavior mode(BS)and the successive failure of knowledge contribution behavior
mode(WS)are 0.225036 and 0.214288, respectively, and the mean values of the differences
in the collective failure of knowledge dissemination behavior mode (BC) and the collective
failure of knowledge contribution behavior mode (WC) are 0.072419 and 0.111128, respec-
tively, which shows that when the network is in the growth stage it is more sensitive to
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the knowledge contribution behavior failure modes (WS, WC), particularly the collective
failure of knowledge contribution behavior mode (WC).Therefore, in this stage, community
managers should (a) encourage more collaborative knowledge behavior, (b) give more
protection to the main knowledge contributors, and (c) encourage designers who have a
high level of professionalism to conduct more knowledge collaboration.
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Table 7. Paired sample T-test for different failure modes of network in growth stage (α = 0.05).

Pairing Failure Mode M SD
95% Confidence Interval

t df Sig
Lower Limits Upper Limits

R-BC 0.013707 0.042816 0.010097 0.01731 7.46 542 0.001
S BC-WS 0.225036 0.135681 0.212829 0.237243 36.224 476 0.000

WS-BC 0.236496 0.053234 0.230437 0.242554 76.818 298 0.000
BC-WC 0.072419 0.057574 0.065866 0.078971 21.75 298 0.000

R-BC 0.006946 0.052469 0.002523 0.011369 3.085 542 0.002
H BC-WS 0.171703 0.125931 0.159653 0.183752 28.009 421 0.000

WS-BC 0.214288 0.053104 0.208294 0.220281 70.357 303 0.000
BC-WC 0.111128 0.101701 0.099648 0.122607 19.05 303 0.000

5.3. Robustness Analysis during Project Maturation Stage

The robustness index changes during the maturation stage are shown in Figure 4.
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Similar to both the start-up and growth stages, Figure 4 shows that the decline rate of
the index value in the maturation stage is higher when the network faces regular failure
(BS, BC, WS, WC) rather than random failure (R). Further, the robustness of the network
is significantly higher for the successive failure of knowledge dissemination behavior
mode (BS) than for the other three regular modes (BC, WS, WC), which differs from the
growth stage, and the decline rate of the index value is highest for the collective failure
of knowledge dissemination behavior mode (BC). When we performed a paired T-test on
this data (with each index value dropping from 1 to 0.3 under different failure modes), the
index values of the network under different failure modes were significantly different. See
Table 8 for part of these test results.

Table 8. Paired sample T-test for different failure modes of network in maturation stage (α = 0.05).

Pairing Failure Mode M SD
95% Confidence Interval

t df Sig
Lower Limits Upper Limits

R-WS 0.143179 0.065401 0.138122 0.148236 55.59 644 0.000
S WS-BS 0.086093 0.016223 0.084744 0.087442 125.358 557 0.000

BS-WC 0.181593 0.061437 0.175039 0.188147 54.501 339 0.000
WC-BC 0.051196 0.005174 0.080188 0.082204 158.606 254 0.000

R-WS 0.102239 0.058472 0.097718 0.106760 44.406 644 0.000
H WS-BS 0.133359 0.069257 0.127037 0.139889 41.731 467 0.000

BS-WC 0.182520 0.048358 0.177392 0.187648 70.003 343 0.000
WC-BC 0.039459 0.003451 0.039073 0.039848 199.667 304 0.000

Based on the above analysis, we can conclude that when the network is in the matu-
ration stage, the random failure mode has the highest robustness, followed by successive
failure of knowledge contribution behavior mode, successive failure of knowledge dissemi-
nation behavior mode, collective failure of knowledge contribution behavior mode, and
collective failure of knowledge dissemination behavior mode, namely R > WS > BS > WC
> BC.

Table 8 shows that when the network is in the maturation stage it is more sensitive to
the knowledge dissemination behavior failure modes (BS, BC), particularly the collective
failure of knowledge dissemination behavior mode (BC).Further, the mean values of
the differences between the indexes in the collective failure of knowledge dissemination
behavior mode (BC) and the collective failure of knowledge contribution behavior mode
(WC) are 0.039459 and 0.051196, respectively, which shows that knowledge dissemination
behavior is increasing, that is, many designers are now not only knowledge contributors
but also knowledge disseminators. Therefore, in this stage, community managers should
try to prevent the collective failure of knowledge dissemination.

Our analysis of the results from the three network stages can be summarized as follows:

1. In the start-up, growth and maturation stages of network evolution, the CKN shows
(a) low robustness in the face of regular failure of knowledge contribution behav-
ior and high robustness in the face of irregular failure of knowledge contribution
behavior, and (b) low robustness in the face of collective failure of knowledge contri-
bution behavior and high robustness in the face of successive failure of knowledge
contribution behavior.

2. During the four regular failure modes (WS, WC, BS, BC), the network’s growth and
maturation stages are affected differently. In the growth stage, the robustness of the
CKN is lowest during the collective failure of knowledge contribution behavior mode
(WC) and highest during the successive failure of knowledge dissemination behavior
mode (BS). In the maturation stage, the robustness of the CKN is lowest during the
collective failure of knowledge dissemination behavior mode (BC) and highest during
the successive failure of knowledge contribution behavior mode (WS).
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5.4. Robustness Analysis of the Network Facing the Same Behavior Failure Mode in
Different Stages

To further compare changes in the robustness of CKNs in the evolution process, we
analyzed this robustness in different stages of network evolution under the same behavior
failure mode. First, we found few cooperative behaviors in the network during the start-up
stage, which is very different from the other two stages. The robustness of the network in
the start-up stage is obviously lower than that of the other two stages, so we chose only
to compare the network in growth stage and maturation stage. Second, as shown in our
analysis in Section 5, the robustness of the network is more sensitive when the collaborative
behavior collectively fails, and the dynamic evolution of the network under the successive
failure mode presents different trends. Third, from a micro perspective, designers reduce
the willingness of knowledge collaboration, which is manifests as the collective failure of
knowledge collaboration behavior (WC, BC) in the network; however, due to the dynamic
evolution of the network, new designers successively enter the community for collaboration,
and this manifests in the macro failure of collaborative behavior. Therefore, we compared
the robustness of the network in the growth stage and maturation stage under (a) the
collective failure of knowledge contribution behavior mode (WC) and successive failure of
knowledge contribution behavior mode (WS), and (b) the collective failure of knowledge
contribution behavior mode (WC) and the collective failure of knowledge dissemination
behavior mode (BC), as shown in Figures 5 and 6, respectively. In these figures, B represents
the growth stage network and C represents the maturation stage network.

Figures 5 and 6 show that (a) under the knowledge contribution behavior failure
modes (WS, WC), the decline rate of the index value decreases with the evolution of the
network, and (b) under the collective failure of knowledge dissemination behavior mode
(BC), and the decline rate of the index value increases with the evolution of the network.
When we performed a paired T-test on this data (with each index value dropping from
1 to 0.3 under different failure modes), as shown in Table 9, these results show significant
differences in the index value of different stages under the same failure mode.

Entropy 2021, 23, x FOR PEER REVIEW 18 of 23 
 

 

 
(a) S 

 
(b) H 

Figure 5. Robustness index values changes of networks in the growth and maturation stages under 
WC and WS failure modes (Legend number of edges: actual number of edges = 1:5). (a) shows the 
changes in relative size of network connectivity (S). (b) shows the changes in relative size of col-
laborative knowledge efficiency (H). 

Figure 5. Cont.



Entropy 2021, 23, 391 17 of 22

Entropy 2021, 23, x FOR PEER REVIEW 18 of 23 
 

 

 
(a) S 

 
(b) H 

Figure 5. Robustness index values changes of networks in the growth and maturation stages under 
WC and WS failure modes (Legend number of edges: actual number of edges = 1:5). (a) shows the 
changes in relative size of network connectivity (S). (b) shows the changes in relative size of col-
laborative knowledge efficiency (H). 

Figure 5. Robustness index values changes of networks in the growth and maturation stages under
WC and WS failure modes (Legend number of edges: actual number of edges = 1:5). (a) shows
the changes in relative size of network connectivity (S). (b) shows the changes in relative size of
collaborative knowledge efficiency (H).

Entropy 2021, 23, x FOR PEER REVIEW 19 of 23 
 

 

 
(a) S 

 
(b) H 

Figure 6. Robustness index values changes of networks in the growth and maturation stages under 
WC and BC failure modes (Legend number of edges: actual number of edges = 1:5). (a) shows the 
changes in relative size of network connectivity (S). (b) shows the changes in relative size of col-
laborative knowledge efficiency (H). 

Figures 5 and 6 show that (a) under the knowledge contribution behavior failure 
modes (WS, WC), the decline rate of the index value decreases with the evolution of the 
network, and (b) under the collective failure of knowledge dissemination behavior mode 
(BC), and the decline rate of the index value increases with the evolution of the network. 
When we performed a paired T-test on this data (with each index value dropping from 1 
to 0.3 under different failure modes), as shown in Table 9, these results show significant 
differences in the index value of different stages under the same failure mode. 

Figure 6. Cont.



Entropy 2021, 23, 391 18 of 22

Entropy 2021, 23, x FOR PEER REVIEW 19 of 23 
 

 

 
(a) S 

 
(b) H 

Figure 6. Robustness index values changes of networks in the growth and maturation stages under 
WC and BC failure modes (Legend number of edges: actual number of edges = 1:5). (a) shows the 
changes in relative size of network connectivity (S). (b) shows the changes in relative size of col-
laborative knowledge efficiency (H). 

Figures 5 and 6 show that (a) under the knowledge contribution behavior failure 
modes (WS, WC), the decline rate of the index value decreases with the evolution of the 
network, and (b) under the collective failure of knowledge dissemination behavior mode 
(BC), and the decline rate of the index value increases with the evolution of the network. 
When we performed a paired T-test on this data (with each index value dropping from 1 
to 0.3 under different failure modes), as shown in Table 9, these results show significant 
differences in the index value of different stages under the same failure mode. 

Figure 6. Robustness index values changes of networks in the growth and maturation stages under
WC and BC failure modes (Legend number of edges: actual number of edges = 1:5). (a) shows
the changes in relative size of network connectivity (S). (b) shows the changes in relative size of
collaborative knowledge efficiency (H).

Table 9. Paired sample T-test of growth and maturation network under the same failure mode (α = 0.05).

Pairing Failure Mode M SD
95% Confidence Interval

t df Sig
Lower Limits Upper Limits

B(WS)-C(WS) −0.085595 0.073348 −0.092194 −0.07899 −25.487 476 0.000
S B(BC)-C(BC) 0.059745 0.011397 0.058339 0.061151 83.711 254 0.000

B(WC)-C(WC) −0.09193 0.049134 −0.09737 −0.086483 −33.207 314 0.000

B(WS)-C(WS) −0.134390 0.095798 −0.143556 −0.125223 −28.818 421 0.000
H B(BC)-C(BC) 0.014243 0.012625 0.012818 0.015668 19.670 303 0.000

B(WC)-C(WC) −0.13207 0.092625 −0.142322 −0.121818 −25.347 315 0.000

Note: B represents growth stage network, C represents maturation stage network.

In conclusion, under the collective failure of knowledge contribution behavior mode
(WC) and the successive failure of knowledge contribution behavior mode (WS), network
robustness is higher in the maturation stage than in the growth stage. However, under the
collective failure of knowledge dissemination behavior mode (BC), network robustness
is lower in the maturation stage than in the growth stage. This indicates that with the
successive evolution of the network and knowledge sharing of designers, the knowledge
level of designers in the community is constantly improving. Therefore, more performance
can be retained under the knowledge contribution behavior failure modes (WC, WS),
which reflects a higher robustness. With the continuous expansion of the community
scale, the aggregation coefficient of the network decreases and the weight value of the
dissemination behavior increases, which makes the knowledge dissemination behavior
have an increasingly important role in the development of the community.

6. Conclusions

To explore and improve the robustness of open source projects (OSPs), we constructed
a collaborative knowledge network (CKN) based on semantic analysis and edge failure
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mode. To allow for a more comprehensive study, we used semantic analysis to calculate
the edge weight of the network from both the collaborative content intensity and frequency
intensity. As this is an edge-weighted network, we carried out systematic robustness
analysis experiments from four edge failure modes, to more closely resemble the reality
of the project failure process. Our results show that robustness performance varied at
different developmental stages of the project: robustness was lowest during the start-up
stage and highest during the maturation stage. Further, the robustness of each stage
of the project was lower during a collective failure as opposed to a successive failure.
Network robustness at the growth stage was most affected by the failure of knowledge
contribution behavior, whereas network robustness at the maturation stage was most
affected by the failure of knowledge dissemination behavior. These findings prove that
it is necessary to analyze dynamic robustness throughout the whole project lifecycle and
not just one time period, and community management should focus on different measures
to guarantee the robustness of the network. Our research findings led to the following
management implications:

1. During the development of an OSP, network robustness trends from weak to strong.
Therefore, community managers should pay more attention to network protection
during the start-up period of the project. In particular, here it is necessary to introduce
enough stable knowledge-contributing designers to avoid the decline of collaborative
behavior. For example, in the start-up period of the project, we can invite well-known
experts in the industry to participate in the discussion, which can not only improve
the cooperation willingness of designers, but also improve the influence of the project,
so that more followers can participate in the project cooperation.

2. During the project growth stage, community managers should still focus on the pro-
tection of knowledge-contributing designers so as to avoid both the collective decline
and successive decline of collaborative behaviors. For example, (1) more resource
rights, advanced identity authentication, privilege level and other incentives could be
given to designers with major knowledge contribution behavior to encourage them to
participate further in knowledge collaboration. (2) Findings Trust, reciprocal benefits
and enjoyment are significantly related to positive attitude toward knowledge shar-
ing [52]. Therefore, the community needs to enhance the availability and reliability
of the system to improve the collaborative willingness of knowledge contributing
designers, For example, setting stars for high-quality knowledge shared by designers,
establishing a case database for designers who actively participate in collaboration,
and clearly stating the ownership of innovative knowledge in the community and
terms of designers.

3. During the maturation stage, more attention should be paid to the protection of
knowledge-disseminating designers, including both the collective decline and suc-
cessive decline of such designers’ cooperative behavior. For example, (1) reward
and incentive measures should be given to these designers to increase their sense
of belonging and achievement. (2) Enrich the entertainment functions and service
functions of the community, such as setting up communication games, answering
questions and one-to-one exclusive services, so as to improve the interest and pleasure
of knowledge-disseminating.

This paper studies the dynamic robustness of open source design projects by building
a semantic based knowledge collaboration network, which is more suitable for large-
scale knowledge collaboration as the main way of organization. This kind of community
collaboration is more knowledge-based, and the intensity of knowledge collaboration can
be more accurately reflected by the content and frequency of collaboration, such as open
source product community or open source design community. For other types of virtual
communities, such as Wikipedia or social networks, researchers only need to consider the
frequency of collaboration to reflect the intensity of collaboration, and then they can build
a relatively simple collaboration network and robustness index to study.
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Although the semantic-based weighted CKN constructed in this paper incorporates
the frequency and content of knowledge collaboration into the calculation of edge weight,
which can then describe the CKN more accurately, the directivity of knowledge collabora-
tion has not been considered. Further research could take this into account, and a directed
weighted network could be constructed so that more in-depth robustness analysis can be
conducted. In addition, the robustness analysis in this paper is based on the single-project
network of the OSC. However, in the OSC, the same designer may participate in multiple
projects, and any changes in the designer’s collaboration behavior would affect these
multiple projects. Therefore, further dynamic robustness research should be conducted on
the community’s multi-project CKNs.
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