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Abstract: Hellinger distance has been widely used to derive objective functions that are alternatives
to maximum likelihood methods. While the asymptotic distributions of these estimators have been
well investigated, the probabilities of rare events induced by them are largely unknown. In this
article, we analyze these rare event probabilities using large deviation theory under a potential
model misspecification, in both one and higher dimensions. We show that these probabilities
decay exponentially, characterizing their decay via a “rate function” which is expressed as a convex
conjugate of a limiting cumulant generating function. In the analysis of the lower bound, in particular,
certain geometric considerations arise that facilitate an explicit representation, also in the case when
the limiting generating function is nondifferentiable. Our analysis involves the modulus of continuity
properties of the affinity, which may be of independent interest.

Keywords: Hellinger distance; large deviations; divergence measures; rare event probabilities

1. Introduction

In a variety of applications, the use of divergence-based inferential methods is gain-
ing momentum, as these methods provide robust alternatives to traditional maximum
likelihood-based procedures. Since the work of [1,2], divergence-based methods have been
developed for various classes of statistical models. A comprehensive treatment of these
ideas is available, for instance, in [3,4]. The objective of this paper is to study the large
deviation tail behavior of the minimum divergence estimators and, more specifically, the
minimum Hellinger distance estimators (MHDE).

To describe the general problem, suppose Θ ⊂ Rd, and let F = { fθ(·) : θ ∈ Θ} denote
a family of densities indexed by θ. Let {Xn : n ≥ 1} denote a class of i.i.d. random
variables, postulated to have a continuous density with respect to Lebesgue measure and
belonging to the family F, and let X be a generic element of this class. We denote by g(·)
the true density of X.

Before providing an informal description of our results, we begin by recalling that
the square of the Hellinger distance (SHD) between two densities h1(·) and h2(·) on R is
given by

HD2(h1, h2) =

∥∥∥∥h
1
2
1 − h

1
2
2

∥∥∥∥2

2
= 2− 2

∫
R
(h1(x)h2(x))

1
2 dx.

The quantity
∫
R(h1(x)h2(x))

1
2 dx is referred to as the affinity between h1(·) and h2(·) and

denoted by A (h1, h2). Hence, the SHD between the postulated density and the true density
is given by SHD(θ) = HD2( fθ, g). When Θ is compact, it is known that there exists a
unique θg ∈ Θ minimizing the SHD(θ). Furthermore, when g(·) = fθ0(·) and F satisfies
an identifiability condition, it is well known that θg coincides with θ0; cf. [1]. Turning to the
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sample version, we replace g(·) by gn(·) in the definition of SHD, obtaining the objective
function SHDn(θ) = HD2( fθ, gn) and

gn(x) =
1

nbn

n

∑
i=1

K
(

x− Xi
bn

)
, (1)

where the kernel K(·) is a probability density function and bn ↘ 0 and nbn ↗ ∞ as n→ ∞.
It is known that when the parameter space Θ is compact, there exists a unique θ̂n ∈

Θ minimizing SHDn(θ), and that θ̂n converges almost surely to θg as n → ∞; cf. [1].
Furthermore, under some natural assumptions,

n
1
2 (θ̂n − θg)

d→ G, (2)

where, under the probability measure associated with g(·), G is a Gaussian random vector
with mean vector 0 and covariance matrix Σg. If g(·) = fθ0(·), then the variance of
G coincides with the inverse of the Fisher information matrix I(θ0), yielding statistical
efficiency. When the true distribution g(·) does not belong to F, we will call this the “model
misspecifed case,” while when g ∈ F, we will say that the “postulated model” holds.

In this paper, we focus on the large deviation behavior of {θ̂n : n ≥ 1}; namely, the
asymptotic probability that the estimate θ̂n will achieve values within a set away from the
central tendency described in (2). We establish results of the form

log Pg(θ̂n ∈ B) ≈ −n inf
θ∈B

I(θ), (3)

for some “rate function” I and given Borel subset B ⊂ Θ. Similar large deviation estimates
for maximum likelihood estimators (MLE) have been investigated in [5–7], and for general
M-estimators in [8,9]. These results allow for a precise description of the probabilities of
Type I and Type II error in both the Neymann–Pearson and likelihood ratio test frameworks.
Furthermore, large deviation bounds allow one to identify the best exponential rate of
decrease of Type II error amongst all tests that satisfy a bound on the Type I error, as in
Stein’s lemma (cf. [10]). Additional evidence of the importance of large deviation results
for statistical inference has been described in [11] and in the book [12].

One of our initial goals was to derive sharp probability bounds for Type I and Type II
error in the context of robust hypothesis testing using Hellinger deviance tests. This article
is a first step towards this endeavor. A key issue that distinguishes our work from earlier
works is that, in our case, the objective function is a nonlinear function of the smoothed
empirical measure, and the analysis of this case requires more involved methods compared
with those currently existing in the statistical literature on large deviations. Consistent
with large deviation analysis more generally, we identify the rate function I as the convex
conjugate of a certain limiting cumulant generating function, although in our problem,
we uncover a subtle asymmetry between the upper and lower bounds when our limiting
generating function is nondifferentiable. In the classical large deviation literature, similar
asymmetries have been studied in other one-dimensional contexts (e.g. [13]), although
the statistical problem is still quite different, as the dependence on the parameter θ arises
explicitly—inhibiting the use of convexity methods typically exploited in the large deviation
literature—and hence requiring novel techniques.

1.1. Large Deviations

In this subsection we provide relevant definitions and properties from large deviation
theory required in the sequel. In the following, R+ will denote the set of non-negative
real numbers.
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Definition 1. A collection of probability distributions {Pn : n ≥ 1} on a topological space (X , B)
is said to satisfy the weak large deviation principle if

lim sup
n→∞

1
n

log Pn(F) ≤ − inf
x∈F

I(x), for all closed F ∈ B,

and

lim inf
n→∞

1
n

log Pn(G) ≥ − inf
x∈G

I(x) for all open sets F ∈ B

for some lower semicontinuous function I : X → [0, ∞]. The function I is called the rate function.
If the level sets of I are compact, we call I a good rate function and we say that {Pn} satisfies the
large deviation principle (LDP).

We begin with a brief review of large deviation results for i.i.d. random variables and
empirical measures. Let {Xn} ⊂ R be an i.i.d. sequence of real-valued random variables,
and let Pn denote the distribution of the sample mean X̄n. If the moment generating
function of X1 is finite in a neighborhood of the origin, then Cramér’s theorem states
that {Pn} satisfies the LDP with good rate function Λ∗, where Λ∗ is the convex conjugate
(or Legendre–Fenchel transform) of Λ, and where Λ(α) = log E[eαX1 ] is the cumulant
generating function of X1 (cf. [10], Section 2.2).

Next, consider the empirical measures {µn}, defined by

µn(B) =
1
n

n

∑
i=1

I{Xi∈B}, B ∈ B, (4)

where B denotes the collection of Borel subsets of R. It is well known (cf. [14]) that {µn}
converges weakly to P, namely to the distribution of X1. Then Sanov’s theorem asserts that
{µn} satisfies a large deviation principle with rate function IP given by

IP(ν) =

{
KL(ν, P) if ν� P,
∞ otherwise,

(5)

where KL(ν, P) is the Kullback–Leibler information between the probability measures ν and
P. When ν and P each possesses a density with respect to Lebesgue measure (say p and g,
respectively), the above expression becomes

KL(p, g) :=

{∫
S p(x) log

(
p(x)
g(x)

)
dµ(x) if p� g,

∞ otherwise.
(6)

In Sanov’s theorem, the rate function IP is defined on the space of probability measures,
which is a metric space with the open sets induced by weak convergence. Extensions of
Sanov’s theorem to strong topologies have been investigated in the literature; cf., e.g., [15].

We now turn to a general result, which will play a central role in this paper, namely
Varadhan’s integral lemma (cf. [10], Theorem 4.3.1). This result will allow us to infer
the scaled limit of a sequence of generating functions from the existence of the large
deviation principle.

Lemma 1 (Varadhan). Let {Yn} be a sequence of random variables taking values in a regular
topological space (X , B), and assume that the probability law of {Yn} satisfies the LDP with good
rate function I. Then for any bounded continuous function F : X → R,

lim
n→∞

1
n

log E[exp(nF(Yn))] = sup
x∈X
{F(x)− I(x)}. (7)
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1.2. Minimum Hellinger Distance Estimator and Large Deviations

We first observe that the MHDE is obtained by maximizing

An(θ) ≡ An(θ, gn) :=
∫
R

f
1
2

θ (x)g
1
2
n (x)dµ(x), (8)

which involves solving the equation ∇An(θ) = 0. The idea behind the large deviation
analysis is to observe that the large deviation behavior of the maximizer can be extracted
from that of the objective function ∇An(θ) near 0. By the Gärtner–Ellis theorem (cf. [10],
Section 2.3), this amounts to investigating the asymptotic behavior as n→ ∞ of

1
an

log Eg[exp{an〈α,∇A n(θ)〉}], α ∈ Rd, (9)

where an ↗ ∞ as n → ∞. In the case of maximum likelihood estimation (MLE) or
minimum contrast estimation (MCE), the objective function can be expressed as

n

∑
i=1

hθ(Xi) = n
∫
R

hθ(x)dµn(x), (10)

where {µn : n ≥ 1} is the empirical measure associated with {Xk : 1 ≤ k ≤ n}. Thus,
while the objective functions associated with the MLE and MCE are linear functions of
the empirical measure, the affinity is a nonlinear function of the empirical measure. This
creates certain complications in identifying the rate function I(·) alluded to in (3). Of
course, in the case of likelihood and minimum contrast estimator analysis, an explicit
formula for I(·) ensues as the Legendre–Fenchel transform of the cumulant generating
function of hθ(X1), viz. log Eθ0 [exp(αhθ(X1))]. One approach to evaluating the limiting
generating function is to apply Varadhan’s lemma as given above in (7). In the context
of our problem, that requires an investigation into the large deviation principle for the
density estimators gn(·) viewed as elements of L1(S), viz. the space of integrable functions
on S. Equivalently, we require a version of Sanov’s theorem in L1-space, which leads to
certain topological considerations. The main issue here is that, when L1 is equipped with a
norm topology, the sequence of kernel density estimates {gn(·)} possesses large deviation
bounds, but the associated rate function may not have compact level sets, as is required
for a typical application of Varadhan’s lemma. Nonetheless, one obtains a full LDP when
L1(S) is equipped with the weak topology.

The asymptotic properties of MHDE, such as consistency and asymptotic normality,
are established using the norm convergence of gn(·) to g(·). For this reason, we focus
on a subclass of densities G (see Proposition 1 below) possessing certain equicontinuity
properties where norm convergence prevails. These issues are handled in Section 2, where
the precise statements of our main results can also be found. Section 3 is devoted to the
proofs of the main results. Section 4 contains some concluding remarks.

2. Notation, Assumptions, and Main Results

Let fθ(·) denote the postulated density of {Xn}, defined on a measure space (Ω, F ).

Let S ⊂ R denote the support of X and sθ(·) = f
1
2

θ (·). Let the true density of {Xn} be given
by g(·). Throughout the paper, we assume that the following regularity conditions hold.

Hypothesis 1. Θ is a compact and convex subset of Rd.

Hypothesis 2. The family F is identifiable; namely, if θ1 6= θ2, fθ1(·) 6= fθ2(·) on a set of positive
Lebesgue measure.



Entropy 2021, 23, 386 5 of 20

Hypothesis 3. For every θ ∈ Θ, sθ is three times continuously differentiable with respect to all
components of θ. Denote by ∇sθ the gradient of sθ and its components by ṡi

θ(·). Let Hθ denote the
matrix of second partial derivatives of sθ(·) with respect to θ and s̈ij

θ the (i, j)th element of Hθ.

Hypothesis 4. Let the matrix of second partial derivatives of An(θ) and A (θ) be denoted by
HAn(θ) and HA (θ), respectively. Assume that HAn(θ) and HA (θ) are continuous in θ and that
HA (θ) is positive definite for every θ ∈ Θ. For p ∈ G and θ ∈ Θ, let λθ(p) denote the smallest
eigenvalue of the matrix

∫
S Hθ(x)p

1
2 (x)dx. Assume that inf{λθ(p) : p ∈ G } ≥ c > 0, where c

is independent of θ.

These hypotheses on the family F are generally standard and are used to establish
the asymptotic properties of the MHDE. Sufficient conditions on F for the validity of these
hypotheses are described in [3,16], and [17]. A remark on Hypothesis 4 is warranted
here. When p = g, this assumption is related to the positive definiteness of the Fisher
information matrix. If one assumes G = F, then this hypothesis reduces to the condition
that inf{λθ : θ ∈ Θ} ≥ c > 0, which is standard. Finally, we remark that we have not
attempted to provide the weakest regularity conditions, and we do believe some of these
conditions can possibly be relaxed.

Recall that the MHDE of θ can be obtained by solving the equation

∇A n(θ) := ∇θA ( fθ, gn) =
1
2

∫
R

uθ(x)sθ(x)g
1
2
n (x)dx = 0, (11)

where uθ(x) = ∇θ fθ(x)( fθ(x))−1 is the score function, which is obtained using
∇θs(x; θ) = 1

2 u(x; θ)s(x; θ).
We begin by providing some heuristics for the case d = 1. Let ˙An(θ) denote the

derivative of An(θ) when d = 1. Let θ̂n denote the argzero of the function ˙A n(θ) obtained
from (11) above. Let θ̂n,l = inf{θ ∈ Θ : ˙A n(θ) ≤ 0} and θ̂n,u = sup{θ ∈ Θ : ˙A n(θ) ≥ 0}.
Since θ̂n,l ≤ θ̂n ≤ θ̂n,u, we obtain using Markov’s inequality that for any ε > 0,

Pg(θ̂n,l ≥ θg + ε) ≤ Pg( ˙A n(θg + ε) ≥ 0) ≤ Eg[exp(nα ˙A n(θg + ε)], (12)

where α > 0. Similarly, for α < 0, it can be seen that

Pg(θ̂n,u ≤ θg − ε) ≤ Pg( ˙A n(θg − ε) ≤ 0) ≤ Eg[exp(nα ˙A n(θg − ε)]. (13)

Thus, an evaluation of (9) will allow us to obtain the logarithmic upper bound for θ̂n,l and
θ̂n,u. Next, using the inequalities

Pg(θ̂n,l ≥ θg + ε) ≤ Pg( ˙A n(θg + ε) ≥ 0) ≤ Pg(θ̂n,u ≥ θg + ε), (14)

Pg(θ̂n,u ≤ θg − ε) ≤ Pg( ˙A n(θg − ε) ≤ 0) ≤ Pg(θ̂n,l ≤ θg − ε), (15)

under additional hypotheses, one can derive large deviation lower bounds for θ̂n. Deriving
these bounds for MLE and MCE is rather standard, since the objective functions and their
derivatives are linear functionals of the empirical distribution, as stated in (10), but this is
not the case for the Hellinger distance.

Observe that the probabilities in (12) and (13) represent rare-event probabilities since,
under the hypotheses described previously, θ̂n converges to θg almost surely as n→ ∞. The
distributional results concerning θ̂n rely on the continuity and differentiability properties
of ∇A n(θ), which depend nonlinearly on gn, and the norm convergence of gn to g.

Let G denote the collection of all probability densities with support S. By Scheffe’s

theorem, the pointwise convergence of gn to g implies gn
L1→ g as n → ∞. Additionally,

when gn(·) is the kernel density estimator, then Glick’s Theorem guarantees that gn
L1→

g almost surely as n → ∞ when bn ↘ 0 and n ↗ ∞; cf. [18]. Since the MHDE are



Entropy 2021, 23, 386 6 of 20

functionals of density estimators, it is natural to expect that the large deviations of density
estimators will play a significant role in our analysis. For this reason, one is forced to
consider the topological issues that arise in the large deviation analysis of density estimators.
Interestingly, it turns out that the weak topology on L1(S) plays a prominent role. This, in
turn, leads to the question of whether certain continuity properties, which were part of the
traditional theory of MHD analysis, continue to hold if G were viewed as a subset of L1(S)
equipped with weak topology. Expectedly, while the answer in general is no (cf. [19]),
Proposition 1 provides sufficient conditions on the family G under which one additionally
obtains norm convergence.

Before proceeding, we now introduce some further regularity conditions, as follows.

Hypothesis 5. uθsθ ∈ L2(S) and is an L2(S)-continuous function of θ.

Hypothesis 6. The family F consists of bounded equicontinuous densities.

Hypothesis 7. The family G consists of bounded and equicontinuous densities.

Hypothesis 8. uθg ∈ L2(S) and is an L2(S)-continuous function of θ.

Here, we note that Hypotheses 6 and 7 are related. Furthermore, if one is willing
to assume that G = F, then one does not need Hypothesis 7. On the other hand, if one
believes that parametric distributions are approximations to G , then one needs to work
with Hypothesis 7. For this reason, we have maintained both of these hypotheses in our
main results. Hypotheses 5 and 8 are related to finiteness of the Fisher information and are
standard in the statistical literature.

Before we state the first proposition, we recall the definition of weak topology on L1
(cf. [19]). A sequence {hn : n ≥ 1} is said to converge weakly in L1 if

∫
S hn(x)b(x)dx →∫

S h(x)b(x)dx as n→ ∞ for every b ∈ L∞(S), where L∞(S) is a class of essentially bounded
functions. We assume throughout the paper that the topology on Θ is the standard topology
generated by the Euclidean metric.

Proposition 1. Let G denote the class of densities, equipped with the weak topology. Further
assume that Hypotheses 1–7 hold. Let Θ⊗ G be equipped with the product topology. Then the
mapping ∇A : Θ⊗ G → Rd defined by

∇A (θ, g) :=
∫
R

uθ(x)sθ(x)g
1
2 (x)dx (16)

is jointly continuous in (θ, g). Furthermore, if gn
w→ g, then

lim
n→∞

sup
θ∈Θ
||∇A (θ, gn)−∇A (θ, g)|| = 0. (17)

Finally, under Hypothesis 7, the family G is a weakly sequentially closed subset of L1(S).

Our next result is concerned with the limit behavior of the generating function of
∇A n(θ). In the following we use the notation p � g to mean the probability measures
associated with p(·) and g(·) are absolutely continuous.

Theorem 1. Assume that Hypotheses 1–7 hold, and set

Λn,θ(α) :=
1
n

log Eg[exp(n〈α,∇A n(θ)〉], α ∈ Rd. (18)



Entropy 2021, 23, 386 7 of 20

Then Λθ(α) := limn→∞ Λn,θ(α) exists and is a convex function given by

Λθ(α) = sup
p∈G

{∫
S
〈α, uθ(x)〉sθ(x)p

1
2 (x)dx−KL(p, g)

}
, (19)

where

KL(p, g) =

{∫
S p(x) log

(
p(x)
g(x)

)
dx if p� g,

∞ otherwise.
(20)

Remark 1. Since Λθ is defined via a limiting operation, it is hard to extract its qualitative
properties. However, we can obtain a simple lower bound by observing that KL(p, g) = 0
if and only if p = g, and an upper bound using that the Kullback–Leibler information is
nonnegative. This results in the following bounds:∫

S
〈α, uθ(x)〉sθ(x)g

1
2 (x)dx ≤ Λθ(α) ≤ sup

p∈G

[∫
S
〈α, uθ(x)〉sθ(x)p

1
2 (x)dx

]
. (21)

Furthermore, if all densities in G are bounded by one, then p
1
2 (·) ≥ p(·) implies

Λθ(α) ≥ sup
p∈G

{∫
S
〈α, uθ(x)〉sθ(x)p(x)dx−KL(p, g)

}
. (22)

Using a variational argument, it can be shown that the supremum on the right-hand side is
attained at p∗ given by

p∗(x) :=
exp(〈α, uθ(x)〉)sθ(x)∫

S〈α, uθ(x)〉sθ(x)g(x)dx
; (23)

cf. [20]. Furthermore, the maximum that results from this choice of p∗(·) is

log
∫

S
exp(〈α, uθ(x)〉)sθ(x)g(x)dx,

yielding yet another lower bound for Λθ(α), although the comparison of these two lower
bounds is not immediate.

Returning to our main discussion, recall from [21] that the convex conjugate of the
function Λθ is defined by

Λ∗θ(x) = sup
α∈Rd
{〈α, x〉 −Λ(α)}, x ∈ Rd. (24)

Let Dθ denote the domain of Λθ; namely,

Dθ = {α ∈ Rd : Λθ(α) < ∞}; (25)

and let Rθ denote the range of the gradient map ∇Λθ; that is,

Rθ =
{

x ∈ Rd : ∇Λθ(α) = x, some α ∈ Rd
}

.

We begin with the discussion of the case d = 1. In this case, the generating function
Λθ reduces to

Λθ(α) = sup
p∈G

{
α
∫

S
exp(nα ˙An(θ)s(x; θ)p

1
2 (x)dx−KL(p, g)

}
. (26)
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By the convexity of Λθ(·), this function is differentiable almost everywhere (cf. [21]), and
in the proof, we would like to exploit the differentiability of this function at the point α∗θ
where it attains its minimum value. If Λθ is not differentiable at this point, it is helpful to
consider the directional derivatives of Λθ . Specifically, let Λ′θ,+(·) and Λ′θ,−(·) denote the

right and left derivatives of Λθ(·), respectively. When x ∈
(
Λ′θ,−(α),Λ

′
θ,+(α)

)
, then it is

well known that Λ∗θ (x) = αx−Λθ(α), but this observation will not be sufficient to obtain a
proper lower bound. For that to hold, we need a stronger condition, namely that 0 ∈ Rθ ,
which will only be true if Λθ is differentiable at its point of minimum, α∗θ . Otherwise, the
expected lower bound turns out to be Λ∗θ (x), where x = Λ′θ,+(α

∗
θ ); cf. [13].

We now turn to our large deviation theorem in R1, where we study the rare-event
probabilities Pg(θ̂n ∈ C) for sets C that are away from the true value θg. Specifically, we
establish an analogue of the LDP, but where a subtle difference arises in the lower bound
in the absence of differentiability of Λθ .

We recall that θ̂n is defined using the kernel density estimator gn(·) defined in (1),
whose behavior is dictated by the bandwidth sequence {bn}.

Theorem 2. Assume d = 1, Hypotheses 1–8 are satisfied, and θ̂n is the unique zero of ˙An(θ) = 0.
Further assume that bn ↘ 0 and nbn ↗ ∞ as n→ ∞. Then for any closed set F not containing θg,

lim sup
n→∞

1
n

log Pg(θ̂n ∈ F) ≤ − inf
θ∈F

Λ∗θ (0). (27)

Moreover, for any open set G not including θg,

lim inf
n→∞

1
n

log Pg(θ̂n ∈ G) ≥ − inf
θ∈G

I(θ), (28)

where

I(θ) = inf{Λ∗θ (x) : x ∈ Rθ ∩ [0, ∞)}, (29)

and the infimum is taken to be infinity if the set Rθ ∩ [0, ∞) is empty.

Remark 2. If F = [θ, ∞) where θ > θg, then in both the upper and lower bounds, it is
sufficient to evaluate the infimum at the boundary point θ. That is,

lim sup
n→∞

1
n

log Pg(θ̂n ∈ [θ, ∞)) ≤ −Λ∗θ (0).

Similarly, if G = (θ, ∞) where θ > θg, then

lim inf
n→∞

1
n

log Pg(θ̂n ∈ (θ, ∞)) ≥ −I(θ).

Furthermore, if infα Λθ(α) is achieved at a unique point α∗θ and Λθ is differentiable at α∗θ ,
then the right-hand side of (28) reduces to Λ∗θ (0), i.e., the upper and lower bounds coincide
and the limits exist. Since the rate function appearing in the upper and lower bounds
coincide in this case, we obtain a proper LDP if the resulting rate function has the required
regularity properties, in particular, I(θ) = Λ∗θ (0) is lower semicontinuous and has compact
level sets.

The proof of the above theorem relies on (14) and (15) combined with Theorem 1,
together with a change of measure argument characteristic of large deviation analysis. The
comparison inequalities in (14) and (15) are critical to obtaining the characterizations in the
above theorem, but these are essentially one-dimensional results and their analogues in
higher dimensions (d ≥ 2) are not immediate. Consequently, when Λθ is not differentiable,
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new complications arise, which lead to a slightly different, and less explicit, representation
of the lower bound.

Next we establish a large deviation theorem for Rd, generalizing the previous theorem
to higher dimensions. In the following, let dist(x, G) = infy∈G ||x− y|| denote the distance
between a point x ∈ Rd and a set G ⊂ Rd.

Theorem 3. Assume Hypotheses 1–8 are satisfied, and assume that bn ↘ 0 and nbn ↗ ∞ as
n→ ∞. Then for any closed set F not containing θg,

lim sup
n→∞

1
n

log Pg(θ̂n ∈ F) ≤ − inf
θ∈F

Λ?
θ(0). (30)

Moreover, for any open set G not including θg,

lim inf
n→∞

1
n

log Pg(θ̂n ∈ G) ≥ − inf
θ∈G

I(θ), (31)

where I(θ) = inf
{
Λ∗θ(x) : x ∈ Rθ ∩ B(0; cθ)

}
and cθ = b dist(θ,Θ− G) for some universal

constant b ∈ (0, ∞), and the infimum is taken to be infinity if the set Rθ ∩ B(0; cθ) is empty.

Remark 3. As we noted for the one-dimensional case in Remark 2, under a differentiability
assumption on Λθ , the function I(θ) can be identified as Λ∗θ (0), but in full generality, it is
not immediately known that I(θ) is even nontrivial. Moreover, without differentiability,
the infimum in the definition of I(θ) is more restrictive than what we encountered in the
one-dimensional problem. However, if one assumes additional geometry on G, such as a
translated cone structure, then one obtains improved estimates in the sense that one can
take unbounded regions in the definition of I(θ), just as we saw in Theorem 2.2. For further
remarks in this direction, see the discussion given after the proof of the theorem.

3. Proofs

We turn first to Proposition 1.

Proof of Proposition 1. Since Θ⊗ G is equipped with product topology, it is sufficient to
show that if θn → θ and gn

w→ g, then ∇A n(θ) converges to ∇A (θ), where

∇A (θ) =
∫

S
uθ(x)sθ(x)g

1
2 (x)dx. (32)

Let rθ(x) = uθ(x)sθ(x), and observe that

|∇A (θn, gn)−∇A (θ, g)| ≤
∫

S
|rθn (x)||g

1
2
n (x)− g

1
2 (x)|dx +

∫
S
|rθn (x)− rθ(x)|g

1
2 (x)dx

≤ ||rθ||2HD(gn, g) +
∫

S
|rθn (x)− rθ(x)|g

1
2 (x)dx

= Tn,1 + Tn,2, (33)

where the penultimate equation follows by applying the Cauchy–Schwarz inequality. Then
by the Cauchy–Schwarz inequality and Hypothesis 5, Tn,2 → 0. Since Hellinger distance is
dominated by the L1-distance, in order to complete the proof, it is sufficient to show that
||gn − g||1 → 0. Now since gn

w→ g, it follows that as n→ ∞,

Gn(x) :=
∫

S
gn(y)I{y≤x}dy→

∫
S

g(y)I{y≤x}dy := G(x). (34)

Evidently, Gn(·) and G(·) are nondecreasing and right continuous. Furthermore, if x∗ =
inf{x : x ∈ S} and x∗ = sup{x : x ∈ S}, then Gn(x∗) → G(x∗) and Gn(x∗) →
G(x∗), where Gn(x∗) = limx→x∗ Gn(x), Gn(x∗) = limx→x∗ Gn(x), G(x∗) = limx→x∗ G(x),
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G(x∗) = limx→x∗ G(x). Thus Gn converges to G, which is a proper distribution function.
Then by Lemma 1 of Boos [22], gn(·) converges to g(·) uniformly on compact sets. This, in
turn, implies the L1 convergence of gn(·) to g(·) (by Scheffe’s lemma), which establishes
the convergence of Tn,1 to 0, thus completing the proof of the joint continuity of ∇A (θ, g).

Next, the uniform convergence (17) follows by Hypothesis 5, since

sup
θ∈Θ
|∇A (θ, gn)−∇A (θ, g)| ≤

∫
S
|rθ(x)||g

1
2
n (x)− g

1
2 (x)|dx

≤ sup
θ∈Θ
||rθ||2HD(gn, g)→ 0.

Finally, to prove that G is weakly sequentially closed, note that convergence in weak
topology implies pointwise convergence, yielding g(·) ≥ 0. Noting that∫

S
g(x)dµ(x) = 1 +

∫
S
(g(x)− gn(x))dx, (35)

it follows that g(·) integrates to one, using L1 convergence, thus completing the proof of
the proposition.

We now turn to the proof of Theorem 1. The proof relies on the large deviation theorem
for the kernel density estimator gn(·) in the weak topology of G . The next proposition
is concerned with the LDP for {gn} in G , equipped with the inherited weak topology
from L1(S). This issue has received considerable attention recently (cf. [23,24]), where it is
established that the full LDP may not hold for {gn} in norm topology, but does hold under
the weak topology.

Proposition 2. Assume Hypotheses 1–8 and that bn ↘ 0 and nbn ↗ ∞ as n→ ∞. Then {gn}
satisfies the LDP in the weak topology of L1(S) with good rate function I given by

I(p) =

{∫
S p(x) log

(
p(x)
g(x)

)
dx if g� p,

∞ otherwise.
(36)

Proof of Theorem 1. As before, let G be equipped with the weak topology. Set
rθ(x) = uθ(x)sθ(x), and define F : G → R as follows:

F(h) =
∫

S
〈α, rθ(x)〉h

1
2 (x)dx. (37)

By Hypothesis 5, rθ ∈ L2(S). To show that F(·) is continuous, let hn
w→ h as n→ ∞. Then

|F(hn)− F(h)| ≤
∫

S
rθ(x)|h

1
2
n (x)− h

1
2 (x)|dµ(x)

≤ ||rθ||2HD(hn, h) ≤ ||rθ||2||hn − h||1 → 0 as n→ ∞, (38)

where we have used the Cauchy–Schwarz inequality that the L1 distance dominates the
Hellinger distance in (38). Now by Hypothesis 7, as in the proof of Proposition 1, we have
that ||hn − h||1 → 0 as n→ ∞, establishing the continuity of F(·). Next, to show that F(·) is
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bounded, note that sup{F(p) : p ∈ G } ≤ ||rθ||2 by the Cauchy–Schwarz inequality. Then
by Proposition 2, it follows by Varadhan’s integral lemma (see [10], Theorem 4.3.1) that

lim
n→∞

1
n

log E[exp(nF(gn(x))] = lim
n→∞

1
n

log E
[

exp
(

n
∫

S
〈α, uθ(x)sθ(x)〉g

1
2
n (x)dx

)]

= sup
p∈G

{∫
S
〈α, uθ(x)〉sθ(x)p

1
2 (x)dx−KL(p, g)

}
:= Λθ(α). (39)

This completes the proof of the theorem.

The proofs of our main results will involve probability bounds on the modulus of
continuity of An(θ) and ∇A n(θ), respectively. Recall that the modulus of continuity
ω(h; r) of a function h : Rd → R is given by

ω(h; r) := sup
||x1−x2||≤r

|h(x1)− h(x2)|, r > 0. (40)

Observe that when h(·) is replaced by An(θ) or ∇A n(θ), the modulus of continuity
becomes a random quantity. Our next proposition summarizes the continuity properties
of An(θ) and ∇A n(θ) via their modulus of continuity as real-valued functionals from G
equipped with the weak topology.

Proposition 3. Assume that Hypotheses 1–8 hold and that bn ↘ 0 and nbn ↗ ∞ as n → ∞.
Then, with respect to {An} and A , the modulus of continuity satisfies the following relations, each
with probability one:

(i) lim
n→∞

ω(An; r) = ω(A , r); (ii) lim
r→0

ω(An; r) = 0; and (iii) lim
r→0

ω(A ; r) = 0.

Similarly, the sequence {∇An} and∇A satisfy the analogous relations with probability one; namely,

(iv) lim
n→∞

ω(∇An; r) = ω(∇A ; r); (v) lim
r→0

ω(∇An; r) = 0; and (vi) lim
r→0

ω(∇A ; r) = 0.

Proof. First observe that An(θ) converges uniformly to A (θ). To see this, note that if
gn

w→ g, then by Proposition 1, it converges in L1. Hence

sup
θ∈Θ
|An(θ)−A (θ)| ≤ sup

θ∈Θ

∫
R

sθ(x)|g
1
2
n (x)− g

1
2 (x)|dx

≤ ||g
1
2
n (x)− g

1
2 (x)||2 ≤ ||gn − g||1 → 0, (41)

where the last inequality follows using that the Hellinger distance is dominated by the L1-
distance. We now prove (i). For this we invoke the properties of the modulus of continuity.
Observe that

ω(An; r) = ω(An −A +A ; r) ≤ ω(An −A ; r) + ω(A ; r), (42)

which yields

|ω(An; r)−ω(A ; r)| ≤ ω(An −A ; r). (43)
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Next observe that

ω(An −A ; r) = sup
||θ1−θ2||≤r

|(An −A )(θ1)− (An −A )(θ2)|

≤ 2 sup
θ∈Θ
|An(θ)−A (θ)| → 0, (44)

where the last convergence follows from the uniform convergence of (An −A )(θ) to 0 as
shown in (42). The proof of (iv) is similar, and specifically is obtained by using that

ω(∇(An −A ); r) ≤ 2 sup
θ∈Θ
||∇An(θ)−∇A (θ)|| → 0, (45)

where the above convergence follows from (17).
We now turn to the proof of (ii). Using the Cauchy–Schwarz inequality and the

definition of Hellinger distance,

ω(An; r) = sup
||θ1−θ2||≤r

|An(θ1)−An(θ2)|

= sup
||θ1−θ2||≤r

∣∣∣∣∫R(sθ1(x)− sθ2(x))g
1
2
n (x)dx

∣∣∣∣ ≤ HD( fθ1 , fθ2)

≤ sup
||θ1−θ2||≤r

|| fθ1 − fθ2 ||1 := ω(H; r), (46)

where H : (θ1, θ2)→ || fθ1 − fθ2 ||1 is continuous since F is continuous in θ. Also, since Θ×
Θ is compact, H(·, ·) is uniformly continuous. Since the modulus of continuity converges
to 0 if and only if H(·, ·) is uniformly continuous, (ii) follows. Turning to (v), notice that,
as before,

ω(∇An; r) ≤ sup
||θ1−θ2||≤r

||uθ1 sθ1 − uθ2 sθ2 ||2. (47)

Now, since uθsθ is L2 continuous, by Hypothesis 5, the proof follows as in (ii) due to to the
compactness of Θ. The proofs of (iii) and (vi) are similar to (ii) and (v), respectively, and are
therefore omitted.

Proposition 4. For any 0 < M < ∞ and δ > 0, there exists a positive number r(M, δ) such that

Pg(ω(An; r) ≥ δ) ≤ e−Mn and Pg(ω(∇An; r) ≥ δ) ≤ e−Mn. (48)

Proof. By Markov’s inequality and (46), it follows that for any β > 0,

Pg(ω(An; r) ≥ δ) ≤ Eg[enβω(An ;r)]e−nβδ ≤ e−nβ(δ−ω(H;r)). (49)

Since ω(H; r) → 0 as r ↘ 0, there exists an r0 such that for all r ≤ r0, (δ− ω(H; r)) > 0.
Since β > 0 is arbitrary, the proposition follows by taking β = M(δ−ω(H; r))−1, for some
r ≤ r0. The proof of the second inequality is similar, using (47).

Proof of Theorem 2. We begin with the proof of the upper bound. Since we assume that
the equation ˙A n(θ) = 0 has a unique solution, it follows from the inequality in (12) that
for any α > 0 and θ > θg,

lim sup
n→∞

1
n

log Pg(θ̂n ≥ θ) ≤ lim sup
n→∞

1
n

log Eg[exp(nα ˙A n(θ))] = Λθ(α), (50)
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where the last equality follows by applying Theorem 1 with d = 1. Since the inequality
holds for every α > 0,

lim sup
n→∞

1
n

log Pg(θ̂n ≥ θ) ≤ sup
α>0

Λθ(α) ≤ sup
α∈R

Λθ(α). (51)

Now, noticing that supα∈RΛθ(α) = − infα∈R−Λθ(α) = −Λ∗θ (0), we then obtain

lim sup
n→∞

1
n

log Pg(θ̂n ≥ θ) ≤ −Λ∗θ (0). (52)

Similarly, for θ < θg, using (13), one can show by an analogous calculation that

lim sup
n→∞

1
n

log Pg(θ̂n ≤ θ) ≤ −Λ∗θ (0). (53)

Now let θ1 = inf{θ > θg : θ ∈ F} and θ2 = sup{θ < θg : θ ∈ F}. Then

Pg(θ̂n ∈ F) ≤ Pg(θ̂n ≥ θ1) + Pg(θ̂n ≤ θ2), (54)

and so by (52) and (53), it follows that

lim sup
n→∞

1
n

log Pg(θ̂n ∈ F) ≤ − min
θ∈{θ1,θ2}

Λ∗θ (0) ≤ − inf
θ∈F

Λ∗θ (0), (55)

where the last step follows since F closed implies {θ1, θ2} ⊂ F.
Next we turn now to the proof of the lower bound. Let G be an open set, and let θ ∈ G.

Then there exists an ε > 0 (to be chosen) such that Iε := (θ − ε, θ + ε) ( G. Note that

{θ̂n ∈ Iε} = { ˙A n(θ̂n) = 0, θ̂n ∈ Iε}

⊃ { ˙A n(θ)− ˙A n(θ̂n) ≥ δ} ∪ { θ̂n ∈ Iε, sup
θ1,θ2∈Iε

| ˙A n(θ1)− ˙A n(θ2)| ≤ δ}.

Thus,

Pg(θ̂n ∈ Iε) ≥ Pg( ˙A n(θ)− ˙A n(θ̂n) ≥ δ)− Pg(θ̂n /∈ Iε, sup
θ1,θ2∈Iε

| ˙A n(θ1)− ˙A n(θ2| > δ))

≥ Pg( ˙A n(θ)− ˙A n(θ̂n) ≥ δ)− Pg( sup
θ1,θ2∈Iε

| ˙A n(θ1)− ˙A n(θ2)| > δ)

= Pg( ˙A n(θ) ≥ δ)− Pg( sup
θ1,θ2∈Iε

| ˙A n(θ1)− ˙A n(θ2)| > δ)

= Pg( ˙A n(θ) ≥ δ)− Pg(ω( ˙An; ε) > δ). (56)

We now investigate Pg( ˙A n(θ) ≥ δ). Let Qn denote the distribution of ˙A n(θ), and
define Qn,α as follows:

Qn,α(B) =
1

Λn,θ(α)

∫
B

e−nαydQn(y), B ∈ B. (57)

Let B = (x− η, x + η), for some η > 0, where B ⊂ (δ, ∞) and x ∈ Rθ . Then

Qn(B) ≥ exp{−nαx− nη|α|+ nΛn,θ(α)}Qn,α(B). (58)

Taking the logarithm, dividing by n, and then taking the limit as n→ ∞, we obtain

lim inf
n→∞

1
n

log Qn(B) ≥ −αx− η|α| −Λθ(α) + lim inf
n→∞

1
n

log Qn,α(B). (59)
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Now since x ∈ Rθ , we can apply Theorem IV.1 of [25] to obtain that the last term on
the right-hand side of the previous equation converges to zero. Upon letting η → 0, it
follows that

lim inf
n→∞

1
n

log Qn(B) ≥ −Λ∗θ (x). (60)

Since the above inequality holds for all x ∈ Rθ ∩ (δ, ∞), we conclude that

lim
n→∞

1
n

log Pg( ˙A n(θ) ≥ δ) ≥ −Iδ(θ), (61)

where Iδ(θ) = infx∈Rθ∩(δ,∞) Λ
∗
θ (x).

By Proposition 4, choosing M > Iδ(θ), one can find ε > 0 such that

Pg(ω( ˙An; ε) > δ) ≤ e−Mn. (62)

Since

Pg(θ̂n ∈ G) ≥ Pg( ˙A n(θ) ≥ δ)

(
1−

Pg(ω( ˙An; ε))

Pg( ˙A n(θ) ≥ δ)

)
, (63)

by the choice of M, it follows from (61) that

lim inf
n→∞

1
n

log Pg(θ̂n ∈ G) ≥ −Iδ(θ). (64)

Taking the supremum on left- and right-hand side over all δ > 0 yields the required
lower bound.

Turning to the higher dimensional case, we first need the following result, which
provides a uniform bound on the Hessian of the objective function An(θ).

Lemma 2. Under Hypotheses 1–8, there exists a finite constant 0 < C < ∞ such that with
probability one,

sup
n≥1

sup
θ∈Θ
||HAn(θ)||2 ≤ C. (65)

Proof. This is standard. Specifically, note that the (i, j)th element of the matrix HAn(θ) is
given by

hn,ij =
∫

S
s̈ij

θ(x)g
1
2
n (x)dx. (66)

Next, writing down the expression for s̈ij
θ in terms of the derivatives of the score function

uθ, using the Cauchy–Schwarz inequality along with Hypotheses 3, 4, 6, and 8, and the
definition of the matrix norm, the lemma follows.

In the proof of the lower bound, we will take a somewhat different approach, involving
the analysis of k constraints, and our strategy will be to reduce this to a problem involving
a single constraint. Specifically, in (67) below, we establish that, instead of studying k
constraints on a quantity Dn (which we are about to define), we can cast the problem in
terms of a d-dimensional vector Yn (defined in (70) below) belonging to a ball centered at 0
and of appropriate radius.

To be more precise, let G ⊂ Rd be open, and consider the probability that we obtain
an estimated value θ ∈ G. Let {θ1, . . . , θk} ⊂ Θ− G, and for any δ > 0, set

dn(j) = An(θ)−An(θj)− δ, j = 1, . . . , k
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and Dn(θ) = (dn(1), · · · dn(k)). If θ is chosen as the estimate, then we must have An(θ)−
An(θj) ≥ 0 for all j, so, in particular,

Pg(θ̂n ∈ G) ≥ Pg(Dn(θ) ≥ 0) (67)

(by which we mean that dn(j) ≥ 0 for all j in this last probability).
To evaluate the latter probability, observe that by a second-order Taylor expansion,

sθ(x)− sθj(x) = 〈θ− θj,∇sθ(x)〉+ 1
2
(θ− θj)H (x; θ∗j )(θ− θj)

′. (68)

Using the positive definiteness and uniform boundedness of the matrix
∫
R H (x; θ)p

1
2 (x)dx,

by Hypothesis 4, we have that for any unit vector v ∈ Rd,

sup
p∈G

inf
η∈Θ

{
v
(∫

R
H (x; η)p

1
2 (x)dx

)
v′
}
≥ c,

where c is a positive constant independent of v. Thus, for each j,

sup
p∈G

inf
η∈Θ

{
(θ− θj)

(∫
R

H (x; η)p
1
2 (x)dx

)
(θ− θj)

′
}
≥ c ‖θ− θj‖2. (69)

Integrating with respect to g
1
2
n (·) and using the definition of An(·), we then obtain that

dn(j) =
∫
R

[
〈θ− θj,∇s(x, θ)〉

]
g

1
2
n (x)dx +R(θ, θj), (70)

where
R(θ, θj) ≥ c ‖θ− θj‖2 − δ.

Let Yn(θ) = (Yn,1, . . . , Yn,d), where for s(x; θ) := sθ(x):

Yn,j =
∫

S

∂

∂θj
s(x; θ)g

1
2
n (x)dx, 1 ≤ j ≤ k. (71)

(We have suppressed θ in the notation for Yn,j.) Then the inequality dn(j) ≥ 0 corresponds
to an event En,j described by the occurrence of the inequality〈

θ− θj

||θ− θj||
, Yn

〉
≥ −c||θ− θj||+ δ(||θ− θj||)−1, (72)

where the right-hand side is always negative for small δ (since dist(θ,Θ− G) > 0) and
behaves like a constant multiple of dist(θ,Θ− G) as this distance tends to infinity. Thus,
we can choose a positive constant aδ such that

aδ dist(θ,Θ− G) ≤ c||θ− θj|| − δ(||θ− θj||)−1, j = 1, . . . , k,

and set cθ(δ) := aδ dist(θ,Θ− G). Finally, let Ẽn denote the event that〈
θ− θj

||θ− θj||
, Yn

〉
≥ −cθ(δ). (73)
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Then for all j, En,j ⊃ Ẽn, where we recall that En,j was defined via (72). Now, since the
definition of the event Ẽn does not depend on any specific vector θj, one can replace the
vector (θ− θj)(||θ− θj||)−1 by any unit vector v in Rd. Hence

Pg(Dn ≥ 0) ≥ Pg(〈v, Yn〉 ≥ −cθ(δ), for all unit vectors v) = Pg(Yn ∈ B(0; cθ(δ))), (74)

and we now derive a large deviation lower bound for the probability on the right-hand
side.

Proposition 5. Assume that Hypotheses 1–8 hold, and suppose that G is an open subset of Rd.
Assume that bn ↘ 0 and nbn ↗ ∞ as n→ ∞. Then for any θ ∈ G and r > 0,

lim
n→∞

1
n

log Pg(Yn ∈ B(0; r)) ≥ −Ir(θ), (75)

where Ir(θ) = inf
{
Λ∗θ(x) : x ∈ Rθ ∩ B(0; r)

}
and the infimum is taken to be infinity if the set

Rθ ∩ B(0; r) is empty.

Proof. We begin by studying the limiting generating function of Yn. By Varadhan’s integral
lemma, it follows that

lim
n→∞

Λn,θ(α) := lim
n→∞

1
n

log Eg[exp(n〈α, Yn〉] = Λθ(α), (76)

where

Λθ(α) = sup
p∈G

[∫
S
〈α,∇sθ(x)〉p

1
2 (x)dx−KL(p, g)

]
. (77)

Define the α-shifted distribution by

Qn,α(B) =
1

Λn,θ(α)

∫
B

en〈α,y〉dQn(y), (78)

where Qn denotes the distribution of Yn. Note by the convexity of Λθ(α) that it is almost
everywhere differentiable. Fix x ∈ Rθ ∩ B(0; r) and choose α such that ∇Λθ(α) = x. Let
δ > 0 be such that B(x; δ) ( B(0; r). Then

Qn(B(x; δ)) = exp(nΛn,θ(α))
∫

B(x;δ)
exp (−n〈α, y〉)dQn,α(y)

≥ exp(n(−〈α, x〉+Λn,θ(α) + ||α||δ))Qn,α(B(x; δ)), (79)

implying

lim inf
n→∞

1
n

log Qn(B(x; δ)) ≥ −〈α, x〉+Λθ(α)− ||α||δ + lim inf
n→∞

1
n

log Qn,α(B(x; δ)). (80)

Now, notice that the limiting cumulant generating function of Yn under the measure Qn,α
is given by

Λ̃θ(β) = Λθ(α + β)−Λθ(β). (81)

Since Λ̃θ is a proper convex function, it is continuous since Λθ(α) is finite in the Rd, and
moreover, by the choice of x, it is differentiable at 0. Hence Condition II.1 of [25] is satisfied.
Now, using Theorem IV.1 of [25], it follows that

lim inf
n→∞

1
n

log Qn,α(B(x; δ)) = 0. (82)
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Substituting the above into (80), we obtain

lim inf
n→∞

1
n

log Pg(Yn ∈ B(0; r)) ≥ −Λ∗θ(x). (83)

Taking the supremum in x ∈ Rθ ∩ B(0; r), the proposition follows.

Proof of Theorem 3: Upper Bound. Let F be a closed subset of Θ. Note Θ compact im-
plies that F is compact. Let {B(θ; r) : θ ∈ Θ} denote an open cover of F, and let
{B(θ1; r), . . . , B(θk; r)} denote the finite subcover. Using that ∇An(θ̂n) = 0, we then
obtain that for any α ∈ Rd,

Pg(θ̂n ∈ F) ≤
k

∑
j=1

Pg(θ̂n ∈ B(θk; r))

=
k

∑
j=1

Eg[exp(n〈α, ˙A n(θ̂n)〉)I{θ̂n∈B(θj ;r)}] :=
k

∑
j=1

Tn(j). (84)

Adding and subtracting ∇An(θj) to ∇An(θ) and then applying Hölder’s inequality yields
Tn(j) ≤ Tn(1, j, p)Tn(2, j, q), where

log Tn(1, j, p) =
1
p

log Eg[exp(np〈α,∇A n(θj)〉)I{θ∈B(θj ;r)}],

log Tn(2, j, q) =
1
q

log Eg[exp(nq〈α,∇(A n(θ̂n)−An(θj))〉)I{θ̂n∈B(θj ;r)}].

First we study Tn(2, j, q). For θ̂n ∈ B(θj, rj) and θ1, θ2 ∈ Θ, the Cauchy–Schwarz inequal-
ity gives

|〈α,∇An(θ̂n)−∇An(θj))〉| ≤ ||α||2 sup
θ1,θ2∈B(θj ,r)

||∇An(θ1)−∇An(θ2))||2

≤ ||α||2|r| sup
θ∈B(θj ,r)

||HAn(θ)||2

≤ ||α||2|r| max
1≤j≤k

 sup
θ∈B(θj ,rj)

||HAn(θ)||2

,

where HAn(θ) is the Hessian matrix consisting of the second partial derivatives of An(θ).
Hence we obtain for any 1 ≤ j ≤ k that

1
n

log Tn(2, j, q) ≤ r
1

nq
(nq||α||2) max

1≤j≤k

 sup
θ∈B(θj ,r)

||HAn(θ)||2


= r||α||2 max

1≤j≤k

 sup
θ∈B(θj ,r)

||HAn(θ)||2

. (85)

Now by Lemma 2,

lim sup
n→∞

1
n

log Tn(2, j, q) ≤ Cr. (86)

Also, for each 1 ≤ j ≤ k, Theorem 1 provides that

lim sup
n→∞

1
n

log Tn(1, j, p) ≤ 1
p
Λθj(pα). (87)
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Thus

lim sup
n→∞

1
n

Pg(θ̂n ∈ F) ≤ max
1≤j≤k

lim sup
n→∞

1
n

log Tn(1, j, p) + max
1≤j≤k

lim sup
n→∞

1
n

log Tn(2, j, p)

≤ max
1≤j≤k

1
p
Λθj(pα) + Cr. (88)

Since the last inequality holds for all p > 1,

lim sup
n→∞

1
n

Pg(θ̂n ∈ F) ≤ max
1≤j≤k

1
p
Λθj(pα) + Cr

→ max
1≤j≤k

Λθj(α) + Cr as p↘ 0. (89)

Moreover, for each j,

Λθj(α) ≤ sup
α∈Rd

Λθj(α) := −Λθj(0).

Hence

lim sup
n→∞

1
n

Pg(θ̂n ∈ F) ≤ max
1≤j≤k

−Λ∗θj
(0) + Cr

≤ − inf
θ∈F

Λ∗θ(0) + Cr. (90)

The upper bound follows by letting r ↘ 0.

Proof of Theorem 3: Lower Bound. Let G be an open subset of Θ, and let θ ∈ G. Then
Gc = Θ− G is compact, and there exists a collection T = {θ1, . . . , θk} ⊂ Gc such that
B(θ1; ε), . . . , B(θk; ε) forms a finite subcover of Θ− G, where ε > 0. Since{

An(θ) ≥ sup
t∈T

An(t)

}
⊃

An(θ) ≥ max
1≤j≤k

An(θj) + max
1≤j≤k

sup
t∈B(θj ;ε)

[An(t)−An(θj)]


⊃

{
An(θ) ≥ max

1≤j≤k
An(θj) + sup

||θ1−θ2||<ε

|An(θ1)−An(θ2)|
}

,(91)

it follows that

Pgθ̂n ∈ G ≥ Pg

(
An(θ) > max

1≤j≤k
An(θj) + δ, sup

||θ1−θ2||<ε

[An(θ1)−An(θ2)] ≤ δ

)

≥ Jn,1 − Jn,2, (92)

where

Jn,1 := Pg

(
An(θ) > max

1≤j≤k
An(θj) + δ

)
,

Jn,2 := Pg

(
sup

||θ1−θ2||≤r
[An(θ1)−An(θ2)] ≥ δ

)
:= Pg(ω(An; ε) ≥ δ).
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We now investigate the behavior of Jn,1 and Jn,2. Starting with Jn,1, note that

Jn,1 ≥ Pg

(
min

1≤j≤k
(An(θ)−An(θj)− δ) ≥ 0

)
= Pg(Dn ≥ 0). (93)

Now by (74), it follows that

Jn,1 ≥ Pg(Yn ∈ B(0; r)), (94)

where Yn is as in (71) and r = cθ(δ). Applying Proposition 3.4, we obtain

lim
n→∞

1
n

log Jn,1 ≥ −Ir(θ), (95)

where Ir(θ) = inf
{
Λ∗θ(x) : x ∈ Rθ ∩ B(0; r)

}
, and we now observe that r may be chosen to

be cθ := limδ↓0 cθ(δ) > 0, where cθ(δ) is given as in (73). Hence we may replace Ir(·) with
I(·) on the right-hand side of the previous equation. Next, using Proposition 4 yields that

lim inf
n→∞

1
n

log Pg(θ̂n ∈ G) ≥ lim inf
n→∞

1
n

log Jn,1 + lim
n→∞

log
(

1− Jn,2

Jn,1

)
≥ −I(θ). (96)

Finally, the required lower bound is obtained by maximizing the right-hand side over all
θ ∈ G.

In the proof of the lower bound, it is clear that the choice of {θ1, . . . , θk} plays a central
role, and the rate function I(θ) will be minimized when k is small. As a simple example,
suppose that our goal is to obtain a lower bound for Pg(θ̂n ∈ G), where

G = {(θ1, θ2) : θ1 > a1 or θ2 > a2} ⊂ R2, θg /∈ G,

which is a union of two halfspaces, This can be expressed as a + C , where a = (a1, a2)
and C = {(θ1, θ2) : θ1 > 0 or θ2 > 0}, which is an example of a translated cone. Now
if θ ∈ G, then we can find two elements which generate the entire set Θ − G, in the
sense that all other normalized differences lie between these two unit vectors. These two
representative points are the unit vectors e1 = (−1, 0) and e2 = (0,−1), and all other
normalized differences (θ− θ̃/‖θ− θ̃‖ lie between these vectors for all θ̃ ∈ Θ− G. Now
going back to (73), we see that this equation again holds. Furthermore, (74) holds with
B(0; cδ(θ)) now replaced by an intersection of two halfspaces rather than of all halfspaces,
yielding an unbounded region in the definition of I(θ). This potentially improves the quality
of the lower bound compared with what is presented in the statement of Theorem 3. This
idea can be potentially generalized to other sets, such as other unions of halfspaces, and so
from a practical perspective, could apply somewhat generally.

4. Concluding Remarks

In this article, we have derived large deviation results for the minimum Hellinger
distance estimators of a family of continuous distributions satisfying an equicontinuity
condition. These results extend large deviation asymptotics for M-estimators given, e.g.,
in [6,9]. In contrast to the case for M-estimators, our setting is complicated due to its
inherent nonlinearity, leading to complications in the proofs of both the upper and lower
bounds, and an unexpected subtlety in the form of the rate function for the lower bound.
Our results suggest that one can, under additional hypotheses, establish saddlepoint
approximations to the density of MHDE, which would enable one to sharpen inference for
small samples.

Similar results are expected to hold for discrete distributions. However, the equicon-
tinuity condition is not required in that case, since `1, unlike L1(S), possesses the Schur
property. Hence the LDP in the weak topology of `1 can be derived (more easily) using a
standard Gärtner–Ellis argument, and utilizing this, one can, in principle, repeat all of the
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arguments above to derive results analogous to Theorems 2 and 3. Large deviations for
other divergences under weak family regularity (such as noncompactness of the parameter
space Θ)—and their connections to estimation and test efficiency—are interesting open
problems requiring new techniques beyond those described in this article.
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