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Abstract: In this research, we consider monitoring mean and correlation changes from zero-inflated
autocorrelated count data based on the integer-valued time series model with random survival rate.
A cumulative sum control chart is constructed due to its efficiency, the corresponding calculation
methods of average run length and the standard deviation of the run length are given. Practical
guidelines concerning the chart design are investigated. Extensive computations based on designs
of experiments are conducted to illustrate the validity of the proposed method. Comparisons with
the conventional control charting procedure are also provided. The analysis of the monthly number
of drug crimes in the city of Pittsburgh is displayed to illustrate our current method of process
monitoring.

Keywords: CUSUM control chart; INAR-type time series; statistical process monitoring; random
survival rate; zero-inflation

1. Introduction

This work is motivated by an empirical analysis and process control of a monthly drug
crime series, which contains excess zeros (over 40%) and shows clear serial dependence
(see Section 5 for more details). To solve this problem, an appropriate integer-valued
model is selected, further, control charts based on this model are developed. Among
kinds of integer-valued models, a specific kind featured with first-order integer-valued
autoregressive (INAR(1)) models plays an very important role and has been widely studied
in the literature. In reality, serial dependence among the count data have been demonstrated
to arise extensively in practice, typical examples are infectious disease counts, defect counts
and unemployment counts, etc. These data are important indicators of the epidemic study,
quality control and economics analysis, and the process monitoring is essential to detect
the shifts in them.

The first INAR(1) model proposed by Al-Osh and Alzaid [1] is in the following form

Xt = α ◦ Xt−1 + εt, t = 1, 2, · · · ,

where the binomial thinning operator “◦′′ is defined by Steutel and Van Harn [2], α ◦Xt−1 =

∑
Xt−1
i=1 Yi, α ∈ (0, 1), {Yi}N is a sequence of independent and identically distributed (i.i.d.)

random variables with Bernoulli(α) distribution; and {εt}N is a sequence of i.i.d. random
variables, independent of all {Yi}. The INAR(1) model is currently applied in various
kinds of real-world problems because of its good interpretability. As one example, we let
Xt represent the number of patients of an infectious disease in a community at time t, εt the
number of new patients entering the community at time t, and suppose each patient at time
t− 1 survives at time t with survival probability α. As for the crime data, α ◦ Xt−1 can be
considered as the number of re-offendings provoked by Xt−1 with probability α. Depending
on the nature of this kind of observed data, the INAR(1) models have been modified and
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generalized with respect to their orders (Ristić and Nastić [3], Nastić, Laketa and Ristić [4]),
dimensions (Pedeli and Karlis [5], Khan, Cekim and Ozel [6]), marginal distributions
(Alzaid and Al-Osh [7], Alzaid and Al-Osh [8], Jazi, Jones and Lai [9], Ristić, Nastić and
Bakouch [10], Barreto-Souza [11]), thinning operators (Ristić, Bakouch and Nastić[12], Liu
and Zhu [13]), and mixed models (Ristić and Nastić [3], Li, Wang and Zhang [14], Orozco,
Sales, Fernández and Pinho [15]). For more literature, we refer to review papers (Weiß [16],
Scotto, Weiß and Gouveia [17]). Differing with the models that based on a fixed survival
rate α, Zheng, Basawa and Datta [18] proposed the random coefficient INAR(1) model,
supposing that the parameter α may be affected by various environmental factors, and
could vary randomly over time. Some of the generalizations of random coefficient INAR
models can also be found in Kang and Lee [19] and Zhang, Wang and Zhu [20]. In particular,
considering both random survival probability and zero-inflation phenomenon, Bakouch,
Mohammadpour and Shirozhan [21] purposed a zero-inflated geometric INAR(1) time
series with random coefficient (short for the ZIGINARRC(1) process). The ZIGINARRC(1)
model has simple structure and good properties, which turns out to be the best fit for the
real data studied by us.

As the serial dependence shows big influence on the performance of the control chart,
the traditional control charts under the assumption of independent observations are not
appropriate in many cases. Therefore, the monitoring of INAR(1) models has received
much attention. The related research includes but not limited to the control charts for
the generally developed Poisson INAR(1) models (Weiß [22], Weiß and Testik [23], Weiß
and Testik [24], Yontay, Weiß, Testik and Bayindir [25]), for zero-inflated or zero-deflated
INAR(1) models (Rakitzis, Weiß and Castagliola [26], Li, Wang and Sun [27], Fernandes,
Bourguignon and Ho [28]), for the mixed INAR(1) model (Sales, Pinho, Vivacqua and
Ho [29]), etc. While, to the best of our knowledge, methods for monitoring the zero-inflated
INAR(1) model with random coefficient have not been studied in the literature so far,
which is exactly what we are going to explore. As cumulative sum (CUSUM) control
charts are known to be sensitive in detecting small shifts, we study the performance of
the CUSUM chart for monitoring ZIGINARRC(1) process. We investigate the practical
guidelines for the statistical design and the methods for evaluating the chart performance.
Besides monitoring mean shifts of the ZIGINARRC(1) model, our scope is also to monitor
correlation shifts in the model. Meanwhile, we compare the performance of the CUSUM
chart with the conventional Shewhart chart.

The rest of the article is outlined as follows. The ZIGINARRC(1) process and some
properties of this process are introduced in Section 2. In Section 3, we present the mon-
itoring procedure to detect the mean and correlation shifts of the process. Extensive
computation results are discussed in Section 4. In Section 5, the applicability of the process
monitoring is investigated using the monthly number of drug crimes in Pittsburgh. Finally
conclusions and possible future lines of research are shown in Section 6.

2. The ZIGINARRC(1) Process

A randomized binomial thinning operation in Bakouch, Mohammadpour and Shi-
rozhan [21] is defined by

αt ◦ X =





α ◦ X, with probability 1− β,

0, with probability β,

where α, β ∈ (0, 1), αt is a binary random variable independent of discrete random variable
X, P(αt = 0) = β = 1− P(αt = α).

Based on the definition of the randomized binomial thinning operation, the ZIGINARRC(1)
model {Xt} presented by Bakouch, Mohammadpour and Shirozhan [21], is given by

Xt = αt ◦ Xt−1 + εt, t = 1, 2, · · · ,
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where the marginal distribution is a zero-inflated Geometric distribution (denoted as
ZIG(p, θ)), P(Xt = 0) = p + (1− p)/(1 + θ), P(Xt = j) = (1− p)θ j/(1 + θ)j+1, j =
1, 2, · · · , and p ∈ (0, 1), θ > 0. {εt}N is independent of the past of the solution {Xs; s < t}
and the binary sequence {αt}, parameters are also constrained by the condition p/(β +
p(1− β)) < α < 1.

The ZIGINARRC(1) process is quite suitable for modelling some real-life phenomena
in which counted events may survive or vanish with the random survival probability αt.
Such series are studied in Section 5 with an example of the counts of the drug crimes, where
the re-offending rate may be affected by public security situation and financial situation.
The mean, variance, and first-order autocorrelation function of the process are, respectively,

µX , E(Xt) = (1− p)θ, σ2
X , Var(Xt) = (1− p)θ[(1 + p)θ + 1],

ρX , Corr(Xt, Xt+1) = α(1− β).

Obviously the process is characterized by the property of overdispersion, i.e., the vari-
ance greater than the expectation. Figure 1 shows some sample paths of simulated
ZIGINARRC(1) processes for θ = 1, 3, 5; p = 0.2, 0.5; α = 0.5, 0.8 and β = 0.3, 0.8. As
we can see, the model has larger process mean with larger θ, and larger percentage of zeros
with larger p.
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Figure 1. Sample path of ZIGINARRC(1) processes for θ = 1, 3, 5, p = 0.2, 0.5, α = 0.5, 0.8 and
β = 0.3, 0.8.
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Following Theorem 2.1 in Bakouch, Mohammadpour and Shirozhan [21], the ZIGINARRC(1)
model has a unique, strictly stationary solution given by

∞

∑
i=1

( i−1

∏
l=0

αt−l

)
◦ εt−i + εt.

Furthermore, the probability mass function of {εt}N is

P(εt = j) =
p

β + p(1− β)
I(j) +

(1− p)(1− α)

1− α[β + p(1− β)]

θ j

(1 + θ)j+1

+
(1− p)(1− β)[α(β + p(1− β))− p]
(1− α[β + p(1− β)])(β + p(1− β))

× [αθ(β + p(1− β))]j

[1 + αθ(β + p(1− β))]j+1 , j = 0, 1, 2, · · · .
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where I(j) = 1 for j = 0 and 0 else. It can be deduced that the innovation series {εt}N is a
mixture of three random variables, a degenerate distribution at 0, Geometric(θ/(1 + θ))
and Geometric(αθ(β + p(1− β))/(1 + αθ(β + p(1− β)))) distributions with three different
mixing portions. The following form is the transition probability of the process {Xt}N0

P(Xt = j|Xt−1 = i) =βP(εt = j) + (1− β)
min(i,j)

∑
l=0

(
i
l

)
αl(1− α)i−l P(εt = j− l),

i, j = 0, 1, · · · .

Some other important probabilistic properties of the process, like spectral density, multi-
step conditional mean and variance, extreme order statistics, distributional properties
of length of run of zeros, have also been discussed in Bakouch, Mohammadpour and
Shirozhan [21]. Furthermore, the unknown parameters of the model could be estimated by
conditional least squares or maximum likelihood methods.

3. Monitoring Procedure

In this section, we present a CUSUM chart for monitoring the ZIGINARRC(1) process.
As this process is used to fit the number of crimes, an increase in the process mean
usually means a deteriorating public security environment, and an increase in the process
correlation usually means more re-offendings. Thus, our purpose is to detect the increasing
of both mean shifts and correlation shifts in the ZIGINARRC(1) process. According to the
model properties, the process mean is affected by the parameters θ and p, the correlation
is affected by the parameters α and β. Let θ0, p0, α0 and β0 (θ1, p1, α1 and β1) denote
the in-control (out-of-control) parameters of the processes, and µ0, σ0, ρ0 (µ1, σ1, ρ1)
be the corresponding in-control (out-of-control) process mean, standard deviation and
first-order correlation.

The CUSUM charts are commonly used charts in statistical process control, which were
first proposed by Page [30]. The essential assumption underlying the design of CUSUM
charts is that the process observations are independent (Montgomery [31], Alencar, Ho
and Albarracin [32], Bourguignon, Medeiros, Fernandes and Ho [33]). While the violation
of this major assumption seriously affects the monitoring performance of the charts (Harris
and Ross [34], Triantafyllopoulos and Bersimis [35], Albarracin, Alencar and Ho [36]).
Some authors have studied the performance of CUSUM charts for some integer-valued
models (Weiß and Testik [23], Weiß and Testik [24], Yontay, Weiß, Testik and Bayindir [25],
Rakitzis, Weiß and Castagliola [26], Li, Wang and Sun [27], Lee and Kim [37], Lee, Kim and
Kim [38]).

Scheme (The ZIGINARRC(1) CUSUM chart). Let {Xt}N0 be a stationary ZIGINARRC(1)
process, the CUSUM statistics Ct is defined as:

Ct = max(0, Xt − k + Ct−1), t = 1, 2, · · · ,

where k is a positive integer constant representing the reference (k > µ0). This chart is said to be
out-of-control when Ct falls outside the control limit h (h ∈ N), that is, Ct > h.

The initial value of the CUSUM statistics is set equal to the integer constant c0, i.e.,
C0 = c0 with c0 < h. The performance evaluation of this chart is accomplished based on
the average run length (ARL) measures, which is defined as the average number of points
to be plotted on the chart until the first out-of-control signal triggers. As {Xt, Ct}t∈N0 of the
ZIGINARRC(1) process is a bivariate Markov chain, the Markov chain approach proposed
by Brook and Evans [39] is adapted to evaluate the exact ARLs. Though this method
has been described in detail in the relevant literature by Weiß [22], Weiß and Testik [23]
and Weiß and Testik [24], we briefly introduce this method here for completeness. The
reachable control region (CR) of {Xt, Ct}N0 is given by
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CR , {(n, i) ∈ N0 × {0, · · · , h}|max(0, n− k + i) ∈ {0, · · · , h}}
= {(n, i)|i ∈ {0, · · · , h}, n ∈ {max(0, i + k− h), · · · , i + k}}.

Obviously CR has a finite number of elements and could be ordered in a certain manner.
The transition probability matrix of {Xt, Ct}N0 is Q> , (p(n, j|m, i))(n,j),(m,i)∈CR,

p(n, j|m, i) , P(Xt = n, Ct = j|Xt−1 = m, Ct−1 = i) = I(j−max(0,n−k+i))P(Xt = n|Xt−1 = m).

The initial probabilities are

p(n, j|c0) , P(X1 = n, C1 = j|C0 = c0) = I(j−max(0,n−k+c0))
P(X1 = n).

The conditional probability that the run length of {Xt, Ct}N0 equals r is defined by

pm,i(r) , P((Xr+1, Cr+1) 6∈ CR, (Xr, Cr), · · · , (X2, C2) ∈ CR|(X1, C1) = (m, i)),

where (m, i) ∈ CR. Let the vector µ(k) denote the k-th factorial moments that (u(k))m,i ,
∑∞

r=1 r(k)pm,i(r) where k > 1 and r(k) , r× (r− 1)× · · · × (r− k + 1). Then

pm,i(r) = ∑
(n,j)∈CR

pn,j(r− 1)× p(n, j|m, i),

(u(1))m,i = 1 + ∑
(n,j)∈CR

p(n, j|m, i)× (u(1))n,j, i.e., (I −Q)u(1) = 1.

The ARL is obtained as

ARL = ∑
(m,i)∈CR

(u(1))m,i × p(m, i|c0).

For simplicity we do not repeat the proof methods, see Weiß [22], Weiß and Testik [23] and
Weiß and Testik [24] for more details. It is expected that an efficient chart possesses a large
in-control ARL (denoted as ARL0) and a small out-of-control ARL. Along with the ARL,
we also assess the performance of the charts through the standard deviation of run length
(SDRL) suggested by Weiß [22]. The SDRL of the ZIGINARRC(1) CUSUM chart could again
be computed efficiently by applying the Markov chain method. The second order factorial
moments u(2) can be determined recursively from the relation (I − Q)u(2) = 2Qu(1).
Then the SDRL is

SDRL =
√

∑
(m,i)∈CR

((u(2))m,i + (u(1))m,i)× p(m, i|c0)−ARL2 .

To implement the proposed monitoring scheme, the chart design pairs (h, k) need to be
designed in advance. Generally, a fixed ARL0 value is set to be the target value, and (h, k)
is set accordingly. Some guidelines for the choices of them will be given in the next section.

4. Computation Results

In this section, we evaluate the ZIGINARRC(1) CUSUM chart performance basing
on extensive numerical experiments and presume that the parameters in this model have
already been known. In practice, the in-control parameters need to be estimated from the
data, as shown in the next section. We search for possible chart designs (integer (h, k) pairs)
in order to adjust the ARL0 close to the target value. Here the target ARL0 value is set to be
370, which is commonly used in the statistical process monitoring domain. Meanwhile,
the values of ARL and SDRL are calculated accurately by the Markov chain method, and
we only show the results with two decimal places for simplicity. We first compute ARL0
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and SDRL0 of the CUSUM chart for different in-control process parameters and initial
values in Table 1. The process parameters are: θ0 = {1, 5}; p0 = {0.1, 0.3}; α0 = {0.5, 0.8};
β0 = {0.5, 0.8}. Furthermore, initial values are c0 = {0, 3, 6}. These chosen parameters
could cover a broad range of different scenarios. Based on the results in Table 1, three
important conclusions can be derived. First, it can be observed that when c0 takes smaller
value, the deviation of ARL0 and SDRL0 is small. When c0 takes larger value, there might
be a situation where the value of SDRL0 is significantly greater than the value of ARL0
(for example, ARL0 = 409.42, SDRL0 = 442.13 under (θ0, p0, α0, β0, c0) = (1, 0.3, 0.5, 0.8, 6)).
Thus, we assume that c0 = 0 in the following studies to get better robust. Second, as the
differences of the values between ARL and SDRL are small when c0 = 0, we only use ARL
as the measure in the following computations to save space. Last, the parameter θ0 shows
a great influence on the selection of control designs (h, k), with a larger θ0 comes a larger
pair of (h, k).

Table 1. ARL0 and SDRL0 of the CUSUM chart for various θ0, p0, α0, β0 and c0.

(θ0, p0, α0, β0) (h, k) (c0, ARL0, SDRL0) (c0, ARL0, SDRL0) (c0, ARL0, SDRL0)

(1, 0.1, 0.5, 0.5) (9, 2) (0, 340.55, 339) (3, 336.84, 338.98) (6, 322.88, 338.52)

(1, 0.1, 0.5, 0.8) (8, 2) (0, 428.55, 427.38) (3, 423.5, 427.34) (6, 398.83, 426.33)

(1, 0.1, 0.8, 0.5) (12, 2) (0, 368.36, 366.45) (3, 365.76, 366.43) (6, 358.76, 366.3)

(1, 0.1, 0.8, 0.8) (9, 2) (0, 428.69, 427.42) (3, 424.79, 427.4) (6, 408.35, 426.91)

(1, 0.3, 0.5, 0.5) (8, 2) (0, 385.69, 384.65) (3, 381.9, 384.62) (6, 365.66, 384.11)

(1, 0.3, 0.5, 0.8) (7, 2) (0, 444.16, 443.51) (3, 438.89, 443.47) (6, 409.42, 442.13)

(1, 0.3, 0.8, 0.5) (10, 2) (0, 359.91, 358.61) (3, 357.26, 358.6) (6, 349.32, 358.44)

(1, 0.3, 0.8, 0.8) (8, 2) (0, 469.37, 468.53) (3, 465.3, 468.51) (6, 446.23, 467.94)

(5, 0.1, 0.5, 0.5) (60, 6) (0, 379.61, 371.51) (3, 379.07, 371.51) (6, 378.25, 371.51)

(5, 0.1, 0.5, 0.8) (49, 6) (0, 376.02, 369.17) (3, 375.4, 369.17) (6, 374.38, 369.16)

(5, 0.1, 0.8, 0.5) (75, 6) (0, 371.37, 363.76) (3, 370.91, 363.76) (6, 370.28, 363.75)

(5, 0.1, 0.8, 0.8) (54, 6) (0, 378.57, 372.12) (3, 378.01, 372.12) (6, 377.14, 372.11)

(5, 0.3, 0.5, 0.5) (46, 6) (0, 383.15, 379.48) (3, 382.64, 379.47) (6, 381.86, 379.47)

(5, 0.3, 0.5, 0.8) (38, 6) (0, 386.29, 383.42) (3, 385.68, 383.42) (6, 384.7 , 383.42)

(5, 0.3, 0.8, 0.5) (59, 6) (0, 378.46, 374.67) (3, 378.04, 374.67) (6, 377.45, 374.67)

(5, 0.3, 0.8, 0.8) (42, 6) (0, 379.79, 377.04) (3, 379.26, 377.04) (6, 378.45, 377.03)

Due to its simplicity, the conventional Shewhart chart is very popular in monitor-
ing the process shifts. The upper limit for the Shewhart chart is denoted as UCL. For
observations, when the value of the process {Xt}N0 exceeds the threshold value UCL
(Xt > UCL), a fault is declared. Figures 2 and 3 investigate the CUSUM method prelim-
inarily by comparing it with the Shewhart method. In both of these figures, we assume
that the in-control parameters are θ0 = 2, p0 = 0.2, α0 = 0.5 and β0 = 0.5, which are
selected based on the real drug crime data in Section 5. According to these parameters,
the CUSUM chart designs can be determined, respectively, as h = 31, k = 2 (correspond-
ing ARL0 = 383.74); h = 19, k = 3 (ARL0 = 396.12); h = 14, k = 4 (ARL0 = 373.27);
h = 11, k = 5 (ARL0 = 370.77); h = 9, k = 6 (ARL0 = 394.03). Furthermore, the Shewhart
chart limit UCL = 13 (ARL0=381.31) can be used. It should be noted that two types of
changes are considered in Figure 2, which both lead to the upward mean shifts. The first
type of changes occurs only in the parameter θ, with other parameters invariant, the results
are listed in Figure 2a. Similarly, the second type of changes occurs only in the parameter
p, with other parameters invariant, the results are in Figure 2b. From Figure 2, we can
conclude that the CUSUM chart with the design h = 31, k = 2 outperforms the other



Entropy 2021, 23, 372 7 of 16

CUSUM charts under most shifts, while the Shewhart chart performs worst among them.
For the upward correlation shift scenarios, ARL values under two types of the parameter
changes are displayed in Figure 3. The first one considers changes only in the parameter
α, and the second one considers changes only in the parameter β. For each scenario, the
Shewhart chart performs increase ratio of ARL with the increase of first-order correlation
ρX, and the CUSUM chart has the better behaviour in the figure. In a comprehensive
view, the conventional Shewhart chart is insensitive for upward mean shifts caused by
changes in parameter p, and fails to detect shifts in the correlation. While the proposed
CUSUM chart could overcome these limitations and has superiorities in various coefficient
shifts compared with the Shewhart chart. From the figures, we can also conclude that the
smaller the value of k, the more sensitive the CUSUM chart is. As the constraint k > µ0 is
required to make the chart reasonable, it is natural to recommend k = dµ0e (the smallest
integer no less than µ0), then we aim to select the value of h such that ARL0 is close to 370.
Now the computations of the CUSUM chart are extended to general cases with designs of
experiments as follow.
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ρX, and the CUSUM chart has the better behaviour in the figure. In a comprehensive
view, the conventional Shewhart chart is insensitive for upward mean shifts caused by
changes in parameter p, and fails to detect shifts in the correlation. While the proposed
CUSUM chart could overcome these limitations and has superiorities in various coefficient
shifts compared with the Shewhart chart. From the figures, we can also conclude that the
smaller the value of k, the more sensitive the CUSUM chart is. As the constraint k > µ0 is
required to make the chart reasonable, it is natural to recommend k = dµ0e (the smallest
integer no less than µ0), then we aim to select the value of h such that ARL0 is close to 370.
Now the computations of the CUSUM chart are extended to general cases with designs of
experiments as follow.
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In Tables 2–4, we focus on situations that there are increasing shifts in process
mean, and the correlation remains the same. Each in-control parameter has three lev-
els: θ0 = {1, 3, 5}; p0 = {0.1, 0.2, 0.3}; α0 = {0.5, 0.6, 0.7}; β0 = {0.5, 0.6, 0.7}. We consider
the case when the changes only occur in θ, this is the most common case. The out-of-
control process mean is µ1 = µ0 + δσ0, the shift size δ considers potential values in set
{0.5, 1, 1.5, 6}. The usual relative deviation (in %) in ARL is defined as dev(%) = 100%×
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(ARL-ARL0)/ARL0 (Weiß and Testik [24]). From Tables 2–4, we can conclude that the
ZIGINARRC(1) CUSUM chart performs quite well in detecting upward mean shifts for
all scenarios. For the small shift size of δ = 0.5, the CUSUM chart is efficient with the
minimum 86.38% drop of ARL and the maximum 91.23% drop of ARL. Take larger δ
for another illustration (δ = 1), the drop of ARL is at least 92.81%, and up to 96.03% at
most. It can also be obtained that δ has to be at least 6 to get an immediate signal with
the out-of-control ARL closer to 1. In addition, extensive computation results show that
the in-control parameters (θ0, p0, α0, β0) have little effect on the better performance of the
CUSUM chart to detect the mean shifts.

Table 2. ARL profiles of the CUSUM chart versus mean shifts under θ0 = 1.

Process Parameters ARL (dev(%))

p0 α0 β0 µ0 h k δ = 0 δ = 0.5 δ = 1 δ = 1.5 δ = 6

0.1 0.5 0.5 0.9 22 1 348.22 38.62 19.31 12.94 3.44
(−88.91%) (−94.45%) (−96.28%) (−99.01%)

0.1 0.5 0.6 0.9 21 1 357.74 36.77 18.28 12.21 3.21
(−89.72%) (−94.89%) (−96.59%) (−99.1%)

0.1 0.5 0.7 0.9 20 1 365.71 34.91 17.27 11.51 3
(−90.45%) (−95.28%) (−96.85%) (−99.18%)

0.1 0.6 0.5 0.9 24 1 370.79 42.46 21.23 14.23 3.78
(−88.55%) (−94.27%) (−96.16%) (−98.98%)

0.1 0.6 0.6 0.9 22 1 358.58 38.82 19.32 12.91 3.39
(−89.17%) (−94.61%) (−96.4%) (−99.05%)

0.1 0.6 0.7 0.9 21 1 378.05 36.86 18.23 12.15 3.16
(−90.25%) (−95.18%) (−96.79%) (−99.16%)

0.1 0.7 0.5 0.9 25 1 358.79 44.75 22.43 15.04 3.99
(−87.53%) (−93.75%) (−95.81%) (−98.89%)

0.1 0.7 0.6 0.9 23 1 359.01 40.95 20.39 13.63 3.57
(−88.59%) (−94.32%) (−96.2%) (−99.01%)

0.1 0.7 0.7 0.9 21 1 351.73 37.15 18.41 12.28 3.19
(−89.44%) (−94.77%) (−96.51%) (−99.09%)

0.2 0.5 0.5 0.8 18 1 371.21 37.8 18.14 12.01 3.26
(−89.82%) (−95.11%) (−96.76%) (−99.12%)

0.2 0.5 0.6 0.8 17 1 378.49 35.72 17 11.22 3.01
(−90.56%) (−95.51%) (−97.04%) (−99.2%)

0.2 0.5 0.7 0.8 16 1 382.96 33.57 15.88 10.45 2.77
(−91.23%) (−95.85%) (−97.27%) (−99.28%)

0.2 0.6 0.5 0.8 19 1 360.14 40.29 19.42 12.87 3.49
(−88.81%) (−94.61%) (−96.43%) (−99.03%)

0.2 0.6 0.6 0.8 18 1 382.06 38.15 18.17 11.99 3.2
(−90.01%) (−95.24%) (−96.86%) (−99.16%)

0.2 0.6 0.7 0.8 16 1 346.1 33.8 16.06 10.58 2.81
(−90.23%) (−95.36%) (−96.94%) (−99.19%)

0.2 0.7 0.5 0.8 20 1 349.23 42.95 20.77 13.77 3.71
(−87.7%) (−94.05%) (−96.06%) (−98.94%)

0.2 0.7 0.6 0.8 18 1 338.16 38.56 18.49 12.21 3.25
(−88.6%) (−94.53%) (−96.39%) (−99.04%)

0.2 0.7 0.7 0.8 17 1 365.85 36.24 17.17 11.29 2.98
(−90.09%) (−95.31%) (−96.91%) (−99.19%)

0.3 0.5 0.5 0.7 15 1 376.37 37.77 17.57 11.54 3.25
(−89.96%) (−95.33%) (−96.93%) (−99.14%)

0.3 0.5 0.6 0.7 14 1 374.56 35.37 16.31 10.67 2.97
(−90.56%) (−95.65%) (−97.15%) (−99.21%)

0.3 0.5 0.7 0.7 13 1 368.03 32.86 15.04 9.81 2.71
(−91.07%) (−95.91%) (−97.33%) (−99.26%)

0.3 0.6 0.5 0.7 16 1 369.03 40.69 19.04 12.51 3.5
(−88.97%) (−94.84%) (−96.61%) (−99.05%)

0.3 0.6 0.6 0.7 14 1 323.29 35.58 16.61 10.89 3.03
(−88.99%) (−94.86%) (−96.63%) (−99.06%)

0.3 0.6 0.7 0.7 13 1 328.19 33.03 15.25 9.96 2.75
(−89.94%) (−95.35%) (−96.97%) (−99.16%)

0.3 0.7 0.5 0.7 17 1 360.19 43.81 20.59 13.53 3.75
(−87.84%) (−94.28%) (−96.24%) (−98.96%)

0.3 0.7 0.6 0.7 15 1 335.26 38.66 18 11.79 3.24
(−88.47%) (−94.63%) (−96.48%) (−99.03%)

0.3 0.7 0.7 0.7 14 1 357.18 36.06 16.52 10.76 2.93
(−89.9%) (−95.37%) (−96.99%) (−99.18%)



Entropy 2021, 23, 372 9 of 16

Table 3. ARL profiles of the CUSUM chart versus mean shifts under θ0 = 3.

Process Parameters ARL (dev(%))

p0 α0 β0 µ0 h k δ = 0 δ = 0.5 δ = 1 δ = 1.5 δ = 6

0.1 0.5 0.5 2.7 54 3 364.48 38.52 19.06 12.72 3.37
(−89.43%) (−94.77%) (−96.51%) (−99.08%)

0.1 0.5 0.6 2.7 51 3 366.54 36.32 17.87 11.9 3.11
(−90.09%) (−95.12%) (−96.75%) (−99.15%)

0.1 0.5 0.7 2.7 48 3 365.43 34.07 16.69 11.09 2.87
(−90.68%) (−95.43%) (−96.97%) (−99.21%)

0.1 0.6 0.5 2.7 58 3 373.32 41.8 20.71 13.83 3.66
(−88.8%) (−94.45%) (−96.3%) (−99.02%)

0.1 0.6 0.6 2.7 54 3 374.45 38.8 19.09 12.71 3.32
(−89.64%) (−94.9%) (−96.61%) (−99.11%)

0.1 0.6 0.7 2.7 50 3 369.98 35.75 17.51 11.63 3.01
(−90.34%) (−95.27%) (−96.86%) (−99.19%)

0.1 0.7 0.5 2.7 61 3 365.9 44.55 22.1 14.76 3.89
(−87.82%) (−93.96%) (−95.97%) (−98.94%)

0.1 0.7 0.6 2.7 56 3 366.07 40.68 20.03 13.33 3.47
(−88.89%) (−94.53%) (−96.36%) (−99.05%)

0.1 0.7 0.7 2.7 52 3 374.26 37.49 18.34 12.17 3.14
(−89.98%) (−95.1%) (−96.75%) (−99.16%)

0.2 0.5 0.5 2.4 43 3 371.94 36.87 17.43 11.48 3.1
(−90.09%) (−95.31%) (−96.91%) (−99.17%)

0.2 0.5 0.6 2.4 40 3 363.7 34.31 16.11 10.58 2.82
(−90.57%) (−95.57%) (−97.09%) (−99.22%)

0.2 0.5 0.7 2.4 38 3 377.02 32.59 15.16 9.92 2.62
(−91.36%) (−95.98%) (−97.37%) (−99.31%)

0.2 0.6 0.5 2.4 46 3 368.96 39.91 18.93 12.47 3.35
(−89.18%) (−94.87%) (−96.62%) (−99.09%)

0.2 0.6 0.6 2.4 43 3 379.62 37.34 17.5 11.48 3.04
(−90.16%) (−95.39%) (−96.98%) (−99.2%)

0.2 0.6 0.7 2.4 39 3 360.73 33.72 15.72 10.29 2.7
(−90.65%) (−95.64%) (−97.15%) (−99.25%)

0.2 0.7 0.5 2.4 49 3 363.38 43.17 20.52 13.51 3.6
(−88.12%) (−94.35%) (−96.28%) (−99.01%)

0.2 0.7 0.6 2.4 45 3 370.51 39.59 18.57 12.17 3.2
(−89.31%) (−94.99%) (−96.72%) (−99.14%)

0.2 0.7 0.7 2.4 41 3 369.61 35.87 16.68 10.89 2.84
(−90.3%) (−95.49%) (−97.05%) (−99.23%)

0.3 0.5 0.5 2.1 36 3 380.79 36.83 16.87 11.01 3.08
(−90.33%) (−95.57%) (−97.11%) (−99.19%)

0.3 0.5 0.6 2.1 33 3 357.51 33.81 15.39 10.01 2.78
(−90.54%) (−95.7%) (−97.2%) (−99.22%)

0.3 0.5 0.7 2.1 31 3 360.6 31.82 14.33 9.28 2.55
(−91.18%) (−96.03%) (−97.43%) (−99.29%)

0.3 0.6 0.5 2.1 38 3 358.5 39.26 18.15 11.86 3.3
(−89.05%) (−94.94%) (−96.69%) (−99.08%)

0.3 0.6 0.6 2.1 35 3 355.89 36.32 16.56 10.76 2.96
(−89.79%) (−95.35%) (−96.98%) (−99.17%)

0.3 0.6 0.7 2.1 33 3 378.11 34.37 15.41 9.96 2.71
(−90.91%) (−95.92%) (−97.37%) (−99.28%)

0.3 0.7 0.5 2.1 41 3 359.33 43.13 19.97 13.03 3.58
(−88%) (−94.44%) (−96.37%) (−99%)

0.3 0.7 0.6 2.1 38 3 377.93 40.22 18.23 11.81 3.2
(−89.36%) (−95.18%) (−96.88%) (−99.15%)

0.3 0.7 0.7 2.1 34 3 362.28 35.83 16.08 10.38 2.8
(−90.11%) (−95.56%) (−97.13%) (−99.23%)
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Table 4. ARL profiles of the CUSUM chart versus mean shifts under θ0 = 5.

Process Parameters ARL (dev(%))

p0 α0 β0 µ0 h k δ = 0 δ = 0.5 δ = 1 δ = 1.5 δ = 6

0.1 0.5 0.5 4.5 85 5 365.12 38.31 18.91 12.61 3.33
(−89.51%) (−94.82%) (−96.55%) (−99.09%)

0.1 0.5 0.6 4.5 80 5 364.27 36 17.67 11.76 3.07
(−90.12%) (−95.15%) (−96.77%) (−99.16%)

0.1 0.5 0.7 4.5 76 5 371.67 34.09 16.64 11.04 2.86
(−90.83%) (−95.52%) (−97.03%) (−99.23%)

0.1 0.6 0.5 4.5 91 5 370.55 41.46 20.5 13.68 3.61
(−88.81%) (−94.47%) (−96.31%) (−99.03%)

0.1 0.6 0.6 4.5 85 5 374.72 38.61 18.95 12.6 3.29
(−89.7%) (−94.94%) (−96.64%) (−99.12%)

0.1 0.6 0.7 4.5 79 5 373.87 35.71 17.43 11.56 2.99
(−90.45%) (−95.34%) (−96.91%) (−99.2%)

0.1 0.7 0.5 4.5 97 5 373.34 44.81 22.15 14.77 3.89
(−88%) (−94.07%) (−96.04%) (−98.96%)

0.1 0.7 0.6 4.5 89 5 373.74 40.89 20.06 13.34 3.47
(−89.06%) (−94.63%) (−96.43%) (−99.07%)

0.1 0.7 0.7 4.5 81 5 365.37 36.94 18.03 11.96 3.08
(−89.89%) (−95.07%) (−96.73%) (−99.16%)

0.2 0.5 0.5 4 118 4 373.44 45.69 24.01 16.42 4.62
(−87.77%) (−93.57%) (−95.6%) (−98.76%)

0.2 0.5 0.6 4 112 4 369.47 43.25 22.65 15.45 4.3
(−88.29%) (−93.87%) (−95.82%) (−98.84%)

0.2 0.5 0.7 4 107 4 369.02 41.18 21.48 14.63 4.03
(−88.84%) (−94.18%) (−96.04%) (−98.91%)

0.2 0.6 0.5 4 122 4 366.95 47.66 25.12 17.21 4.86
(−87.01%) (−93.15%) (−95.31%) (−98.68%)

0.2 0.6 0.6 4 115 4 365.11 44.74 23.47 16.03 4.47
(−87.75%) (−93.57%) (−95.61%) (−98.78%)

0.2 0.6 0.7 4 110 4 371.48 42.56 22.22 15.14 4.17
(−88.54%) (−94.02%) (−95.92%) (−98.88%)

0.2 0.7 0.5 4 128 4 371.06 50.55 26.69 18.29 5.17
(−86.38%) (−92.81%) (−95.07%) (−98.61%)

0.2 0.7 0.6 4 120 4 372.35 47.07 24.71 16.88 4.71
(−87.36%) (−93.36%) (−95.47%) (−98.74%)

0.2 0.7 0.7 4 112 4 368.48 43.62 22.79 15.53 4.28
(−88.16%) (−93.82%) (−95.79%) (−98.84%)

0.3 0.5 0.5 3.5 80 4 367.77 38.09 19.11 12.93 3.77
(−89.64%) (−94.8%) (−96.48%) (−98.97%)

0.3 0.5 0.6 3.5 75 4 363.52 35.68 17.79 12 3.45
(−90.18%) (−95.11%) (−96.7%) (−99.05%)

0.3 0.5 0.7 3.5 71 4 367.7 33.69 16.7 11.23 3.2
(−90.84%) (−95.46%) (−96.95%) (−99.13%)

0.3 0.6 0.5 3.5 85 4 366.71 40.93 20.6 13.95 4.06
(−88.84%) (−94.38%) (−96.2%) (−98.89%)

0.3 0.6 0.6 3.5 79 4 366.41 37.96 18.95 12.78 3.67
(−89.64%) (−94.83%) (−96.51%) (−99%)

0.3 0.6 0.7 3.5 74 4 372.31 35.4 17.55 11.8 3.35
(−90.49%) (−95.29%) (−96.83%) (−99.1%)

0.3 0.7 0.5 3.5 90 4 364.09 43.96 22.17 15.02 4.35
(−87.93%) (−93.91%) (−95.87%) (−98.81%)

0.3 0.7 0.6 3.5 83 4 368.41 40.36 20.16 13.59 3.88
(−89.04%) (−94.53%) (−96.31%) (−98.95%)

0.3 0.7 0.7 3.5 76 4 365.16 36.7 18.2 12.23 3.46
(−89.95%) (−95.02%) (−96.65%) (−99.05%)
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The computation study in Tables 5 and 6 concerns the upward shifts in the process
correlation. Two levels are accepted for each in-control parameter: θ0 = {1, 5}; p0 =
{0.1, 0.2}; α0 = {0.5, 0.6}; β0 = {0.7, 0.8}. Two types of out-of-control pattern are considered
here for comprehensive investigation, the first type is that the upward changes only exist
in α (shown in Table 5), and the second type is that the downward changes only exist in
β (shown Table 6). In Table 5, the shifts in the magnitude δα = α1 − α0 are from the set
{0.1, 0.2, 0.3}. The results imply that the performance of CUSUM chart fluctuates greatly
in detecting correlation shifts caused only by α. To be specific, when δα is 0.3, dev(%) ranges
from−6.81% to−23.68%. Another finding based on the design of experiments in Table 5 is that
both a smaller θ0 and a smaller β0 could slightly improve detection efficiency, while p0 and α0
could not. In Table 6, the shifts magnitude δβ = β1 − β0 are from the set {−0.1,−0.2,−0.3}.
From Table 6, we can see the CUSUM chart is more efficient in detecting the correlation
shifts caused by β. As the absolute value of δβ gets bigger, the decreasing proportion
of ARL gradually increased. When δβ = −0.3, dev(%) ranges from −21.3% to −40.39%.
Meanwhile, we can further conclude that a smaller θ0 and a larger α0 often lead to better
chart performance, and p0, β0 have little influence. Based on all the analysis above in this
paragraph, we can further conclude that a smaller θ0 and a larger value of initial correlation
ρ0 are helpful to detect the correlation shifts. Furthermore, that we cannot get an immediate
signal when only correlation shifts occur.

Table 5. ARL profiles of the CUSUM chart versus correlation shifts caused by α.

Process Parameters ARL (dev(%))

θ0 p0 α0 β0 ρ0 h k δα = 0 δα = 0.1 δα = 0.2 δα = 0.3

1 0.1 0.5 0.7 0.15 20 1 365.71 339.16 316.72 298.07
(−7.26%) (−13.4%) (−18.5%)

1 0.1 0.5 0.8 0.1 19 1 371.95 353.06 336.45 322.04
(−5.08%) (−9.54%) (−13.42%)

1 0.1 0.6 0.7 0.18 21 1 378.05 351.73 329.83 311.98
(−6.96%) (−12.75%) (−17.48%)

1 0.1 0.6 0.8 0.12 19 1 353.06 336.45 322.04 309.72
(−4.7%) (−8.79%) (−12.28%)

1 0.2 0.5 0.7 0.15 16 1 382.96 346.1 316.19 292.28
(−9.63%) (−17.44%) (−23.68%)

1 0.2 0.5 0.8 0.1 15 1 384.25 357.92 335.41 316.44
(−6.85%) (−12.71%) (−17.65%)

1 0.2 0.6 0.7 0.18 16 1 346.1 316.19 292.28 273.5
(−8.64%) (−15.55%) (−20.98%)

1 0.2 0.6 0.8 0.12 15 1 357.92 335.41 316.44 300.62
(−6.29%) (−11.59%) (−16.01%)

5 0.1 0.5 0.7 0.15 76 5 371.67 340.88 315.5 295.25
(−8.28%) (−15.11%) (−20.56%)

5 0.1 0.5 0.8 0.1 72 5 377.08 355.15 336.23 320.32
(−5.82%) (−10.83%) (−15.05%)

5 0.1 0.6 0.7 0.18 79 5 373.87 344.75 321.44 303.45
(−7.79%) (−14.02%) (−18.84%)

5 0.1 0.6 0.8 0.12 73 5 367.42 347.51 330.75 316.97
(−5.42%) (−9.98%) (−13.73%)

5 0.2 0.5 0.7 0.15 107 4 369.02 353.52 339.82 328.1
(−4.2%) (−7.91%) (−11.09%)

5 0.2 0.5 0.8 0.1 103 4 372.99 362.65 353.34 345.14
(−2.77%) (−5.27%) (−7.47%)

5 0.2 0.6 0.7 0.18 110 4 371.48 356.88 344.32 333.97
(−3.93%) (−7.31%) (−10.1%)

5 0.2 0.6 0.8 0.12 104 4 369.05 359.52 351.13 343.92
(−2.58%) (−4.86%) (−6.81%)
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Table 6. ARL profiles of the CUSUM chart versus correlation shifts caused by β.

Process Parameters ARL (dev(%))

θ0 p0 α0 β0 ρ0 h k δα = 0 δα = 0.1 δα = 0.2 δα = 0.3

1 0.1 0.5 0.7 0.15 20 1 365.71 321.34 284.33 252.99
(−12.13%) (−22.25%) (−30.82%)

1 0.1 0.5 0.8 0.1 19 1 371.95 325.82 287.74 255.77
(−12.4%) (−22.64%) (−31.24%)

1 0.1 0.6 0.7 0.18 21 1 378.05 324.46 281.01 245.09
(−14.18%) (−25.67%) (−35.17%)

1 0.1 0.6 0.8 0.12 19 1 353.06 303.31 263.34 230.49
(−14.09%) (−25.41%) (−34.72%)

1 0.2 0.5 0.7 0.15 16 1 382.96 325.3 280.11 243.87
(−15.06%) (−26.86%) (−36.32%)

1 0.2 0.5 0.8 0.1 15 1 384.25 324.54 278.48 241.96
(−15.54%) (−27.53%) (−37.03%)

1 0.2 0.6 0.7 0.18 16 1 346.1 288.47 244.5 209.96
(−16.65%) (−29.36%) (−39.34%)

1 0.2 0.6 0.8 0.12 15 1 357.92 295.66 249.23 213.36
(−17.39%) (−30.37%) (−40.39%)

5 0.1 0.5 0.7 0.15 76 5 371.67 322.61 282.59 249.42
(−13.2%) (−23.97%) (−32.89%)

5 0.1 0.5 0.8 0.1 72 5 377.08 325.96 284.72 250.82
(−13.56%) (−24.49%) (−33.48%)

5 0.1 0.6 0.7 0.18 79 5 373.87 316.52 271.1 234.34
(−15.34%) (−27.49%) (−37.32%)

5 0.1 0.6 0.8 0.12 73 5 367.42 310.19 265.46 229.57
(−15.58%) (−27.75%) (−37.52%)

5 0.2 0.5 0.7 0.15 107 4 369.02 340.45 313.89 289.18
(−7.74%) (−14.94%) (−21.64%)

5 0.2 0.5 0.8 0.1 103 4 372.99 344.5 318.09 293.53
(−7.64%) (−14.72%) (−21.3%)

5 0.2 0.6 0.7 0.18 110 4 371.48 337.45 306.12 277.2
(−9.16%) (−17.59%) (−25.38%)

5 0.2 0.6 0.8 0.12 104 4 369.05 336.01 305.7 277.78
(−8.95%) (−17.17%) (−24.73%)

5. Analyses of Drug Crime Count Time Series

In this section, we present a case study of crime count data in Pittsburgh. The data set
contains multiple crime types, such as arson, drink-driving, robbery and so on. Monitoring
of crime data is needed not only for early warnings of the organised crime, but also
for assessments of the social security environment. For the crime data, the readers can
download it from the Forecasting Principles site (http://www.forecastingprinciples.com,
accessed on 20 March 2021), or email to the corresponding author to access. The subset we
analyse is a monthly drug use count data collected from the 56th police car beat, which
contains 144 observations from January 1990 to December 2001. There are 67 zeros in this
drug use data (the proportion up to 46.53%), which have the greatest proportion among the
other values for the data series. The sample mean, variance and first-order autocorrelation
of the data are 1.7153, 6.4289 and 0.3886, respectively, which show strong overdispersion
and autocorrelation. The sample path and the histogram of the series are in Figure 4. The
histograms of estimated ZIG distribution, estimated Geometric distribution and estimated
Poisson distribution are also given in Figure 4b, which indicate that the ZIG marginal is
the most appropriate to describe the data. The sample autocorrelation function (ACF) and
the sample partial autocorrelation function (PACF) in Figure 5 reveal that the series most
likely comes from an AR-type process of order 3. While our intention is to illustrate the
implementation of the proposed control chart, we will employ the first-order INAR models
that are widely studied and applied in the literature. The consideration of more complex
models will be left for future study.

http://www.forecastingprinciples.com
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Figure 4. The plots about the zero-inflated drug crime series, (a) the sample path, (b) the histogram
with ZIG fit, Geometric fit and Poisson fit.

In this section, we present a case study of crime count data in Pittsburgh. The data set
contains multiple crime types, such as arson, drink-driving, robbery and so on. Monitoring
of crime data is needed not only for early warnings of the organised crime, but also

Figure 4. The plots about the zero-inflated drug crime series, (a) the sample path, (b) the histogram
with ZIG fit, Geometric fit and Poisson fit.
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Figure 5. The plots about the zero-inflated drug crime series, (a) the ACF plot, (b) the PACF plot.

for assessments of the social security environment. For the crime data, the readers can
download it from the Forecasting Principles site (http://www.forecastingprinciples.com),
or email to the corresponding author to access. The subset we analyse is a monthly drug
use count data collected from the 56st police car beat, which contains 144 observations from
January 1990 to December 2001. There are 67 zeros in this drug use data (the proportion
up to 46.53%), which have the greatest proportion among the other values for the data
series. The sample mean, variance and first-order autocorrelation of the data are 1.7153,
6.4289 and 0.3886 respectively, which show strong overdispersion and autocorrelation. The
sample path and the histogram of the series are in Figure 4. The histograms of estimated
ZIG distribution, estimated Geometric distribution and estimated Poisson distribution are
also given in Figure 4 (b), which indicate that the ZIG marginal is the most appropriate
to describe the data. The sample autocorrelation function (ACF) and the sample partial
autocorrelation function (PACF) in Figure 5 reveal that the series most likely comes from
an AR-type process of order 3. While our intention is to illustrate the implementation of
the proposed control chart, we will employ the first-order INAR models that are widely
studied and applied in the literature. The consideration of more complex models will be
left for future study.

Table 7: The estimated parameters, AIC and BIC of candidate models.

Model Estimated parameters AIC BIC
Poisson INAR(1) λ̂ = 1.2806 α̂ = 0.2614 625.787 631.7266
GINAR(1) p̂ = 0.3581 α̂ = 0.2005 507.0551 512.9947
NGINAR(1) µ̂ = 1.7925 α̂ = 0.3028 502.6322 508.5718
ZINAR(1) α̂ = 0.2157 λ̂ = 2.9131 527.1981 536.1075

p̂ = 0.5351
ZMGINAR(1) µ̂ = 1.9712 α̂ = 0.29 501.7477 510.6571

π̂ = 0.1197
ZIMINAR(1) α̂ = 0.001 β̂ = 0.6731 503.457 518.3061

p̂ = 0.4101 λ̂ = 2.2564
ρ̂ = 0.548

ZIGINARRC(1) α̂ = 0.547 θ̂ = 2.0495 494.906 506.7852
p̂ = 0.185 β̂ = 0.5188

Except for the ZIGINARRC(1) model, some competitive models are also applied to the
time series, such as Poisson INAR(1) (Al-Osh and Alzaid [1]), GINAR(1) (Alzaid and Al-
Osh [7]), ZINAR(1) (Jazi, Jones and Lai [9]), ZMGINAR(1) (Barreto-Souza [11]), NGINAR(1)
(Ristić, Bakouch and Nastić [12]), ZIMINAR(1) (Li, Wang and Zhang [14]). The Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC) are suggested to
evaluate these models. Numerical results in Table 7 show that the ZIGINARRC(1) process
has the best overall performance, compared with its competitors. Therefore, we assume

Figure 5. The plots about the zero-inflated drug crime series, (a) the ACF plot, (b) the PACF plot.

Except for the ZIGINARRC(1) model, some competitive models are also applied to the
time series, such as Poisson INAR(1) (Al-Osh and Alzaid [1]), GINAR(1) (Alzaid and Al-
Osh [7]), ZINAR(1) (Jazi, Jones and Lai [9]), ZMGINAR(1) (Barreto-Souza [11]), NGINAR(1)
(Ristić, Bakouch and Nastić [12]), ZIMINAR(1) (Li, Wang and Zhang [14]). The Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC) are suggested to
evaluate these models. Numerical results in Table 7 show that the ZIGINARRC(1) process
has the best overall performance, compared with its competitors. Therefore, we assume
that the drug crime data is from the ZIGINARRC(1) model and the estimated parameters in
Table 7 are used in the process control procedures. Based on the computation results in
Section 4, the CUSUM chart with designs h = 34, k = 2 (corresponding ARL0 = 364.44)
is the best choice, which is shown in Figure 6a. For comparison, we also present CUSUM
control charts with designs h=15, k = 4 (ARL0 = 358.40) in Figure 6b, designs h = 12, k = 5
(ARL0 = 372.28) in Figure 6c, and the Shewhart chart with control limit UCL = 13
(ARL0 = 340.25) in Figure 6d. We observe that all the CUSUM charts give out-of-control
signals, while there is no outliers in the Shewhart chart. Because the Shewhart chart has
been proved to be less effective than the CUSUM chart, the drug crime data set seems to
be out-of-control with increasing mean shifts or increasing correlation shifts, and some
investigation should be done for further explanation. The CUSUM control charts with
three designs also display different detection efficiencies. The CUSUM chart with k = 2
first signals at t = 131 following with continuous alarms as t increases. The signals of
the CUSUM chart with k = 4 are first given at t = 133, then go back below the control
limit over a period of time, and come again at t = 141. While the outlier of the CUSUM
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chart with k = 5 occurs at t = 144. The analysis above proves again that the CUSUM chart
design k = dµ0e is the most effective in practice.

Table 7. The estimated parameters, AIC and BIC of candidate models.

Model Estimated Parameters AIC BIC

Poisson INAR(1) λ̂ = 1.2806 α̂ = 0.2614 625.787 631.7266

GINAR(1) p̂ = 0.3581 α̂ = 0.2005 507.0551 512.9947

NGINAR(1) µ̂ = 1.7925 α̂ = 0.3028 502.6322 508.5718

ZINAR(1) α̂ = 0.2157 λ̂ = 2.9131 527.1981 536.1075
p̂ = 0.5351

ZMGINAR(1) µ̂ = 1.9712 α̂ = 0.29 501.7477 510.6571
π̂ = 0.1197

ZIMINAR(1) α̂ = 0.001 β̂ = 0.6731 503.457 518.3061
p̂ = 0.4101 λ̂ = 2.2564
ρ̂ = 0.548

ZIGINARRC(1) α̂ = 0.547 θ̂ = 2.0495 494.906 506.7852
p̂ = 0.185 β̂ = 0.5188
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Figure 6. The control charts for the zero-inflated drug crime series, the CUSUM charts with designs
(a) h = 34, k = 2, (b) h = 15, k = 4, (c) h = 12, k = 5, and (d) the Shewhart chart with UCL = 13.

that the drug crime data is from the ZIGINARRC(1) model and the estimated parameters in
Table 7 are used in the process control procedures. Based on the computation results in
Section 4, the CUSUM chart with designs h = 34, k = 2 (corresponding ARL0 = 364.44) is
the best choice, which is shown in Figure 6 (a). For comparison, we also present CUSUM
control charts with designs h = 15, k = 4 (ARL0 = 358.40) in Figure 6 (b), designs
h = 12, k = 5 (ARL0 = 372.28) in Figure 6 (c), and the Shewhart chart with control
limit UCL = 13 (ARL0 = 340.25) in Figure 6 (d). We observe that all the CUSUM charts
give out-of-control signals, while there is no outliers in the Shewhart chart. Because the
Shewhart chart has been proved to be less effective than the CUSUM chart, the drug crime
data set seems to be out-of-control with increasing mean shifts or increasing correlation
shifts, and some investigation should be done for further explanation. The CUSUM control
charts with three designs also display different detection efficiencies. The CUSUM chart
with k = 2 first signals at t = 131 following with continuous alarms as t increases. The
signals of the CUSUM chart with k = 4 are first given at t = 133, then go back below the
control limit over a period of time, and come again at t = 141. While the outlier of the
CUSUM chart with k = 5 occurs at t = 144. The analysis above proves again that the
CUSUM chart design k = dµ0e is the most effective in practice.

6. Conclusions

In this paper, we have made contributions on monitoring the zero-inflated autocorre-
lated count data which can be described by an INAR(1) process with random coefficient.
ARL and SDRL are adopted to be the measures and calculated by the Markov chain ap-
proach. The design parameter k in the CUSUM chart is proved to have great influence
on monitoring efficiency, and the smallest integer no less than µ0 is the recommended
value of k. The proposed ZIGINARRC(1)CUSUM chart is proved to have superiorities in
various coefficient shifts compared with the conventional Shewhart chart. Computation
results also show that the CUSUM chart performs quite well in detecting upward mean
shifts, and shows fluctuation in detecting upward correlation shifts. Based on the design of
experiment, we also find that a larger value of initial correlation ρ0 is helpful to detect the
correlation shifts. An immediate signal occurs after large upward mean shifts, while does
not occur when only correlation shifts exist.

There are some possible topics for our future research. First, we can consider a
different monitoring scheme for the ZIGINARRC(1) process and conduct a comparison
study. Second, we can explore the monitoring of p-th random coefficient INAR model,
which is suitable for the count data with high order dependence. Third, we can study a
multivariate INAR(1) process with random coefficient to continuously monitor the serial
correlated counts that we’re interested in.

Figure 6. The control charts for the zero-inflated drug crime series, the CUSUM charts with designs
(a) h = 34, k = 2, (b) h = 15, k = 4, (c) h = 12, k = 5, and (d) the Shewhart chart with UCL = 13.

6. Conclusions

In this paper, we have made contributions on monitoring the zero-inflated autocorre-
lated count data which can be described by an INAR(1) process with random coefficient.
ARL and SDRL are adopted to be the measures and calculated by the Markov chain ap-
proach. The design parameter k in the CUSUM chart is proved to have great influence
on monitoring efficiency, and the smallest integer no less than µ0 is the recommended
value of k. The proposed ZIGINARRC(1)CUSUM chart is proved to have superiorities in
various coefficient shifts compared with the conventional Shewhart chart. Computation
results also show that the CUSUM chart performs quite well in detecting upward mean
shifts, and shows fluctuation in detecting upward correlation shifts. Based on the design of
experiment, we also find that a larger value of initial correlation ρ0 is helpful to detect the
correlation shifts. An immediate signal occurs after large upward mean shifts, while does
not occur when only correlation shifts exist.

There are some possible topics for our future research. First, we can consider a
different monitoring scheme for the ZIGINARRC(1) process and conduct a comparison
study. Second, we can explore the monitoring of p-th random coefficient INAR model,
which is suitable for the count data with high order dependence. Third, we can study a
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multivariate INAR(1) process with random coefficient to continuously monitor the serial
correlated counts that we are interested in.
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