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Abstract: This paper is our attempt, on the basis of physical theory, to bring more clarification on the
question “What is life?” formulated in the well-known book of Schrödinger in 1944. According to
Schrödinger, the main distinguishing feature of a biosystem’s functioning is the ability to preserve its
order structure or, in mathematical terms, to prevent increasing of entropy. However, Schrödinger’s
analysis shows that the classical theory is not able to adequately describe the order-stability in a
biosystem. Schrödinger also appealed to the ambiguous notion of negative entropy. We apply
quantum theory. As is well-known, behaviour of the quantum von Neumann entropy crucially
differs from behaviour of classical entropy. We consider a complex biosystem S composed of many
subsystems, say proteins, cells, or neural networks in the brain, that is, S = (Si). We study the
following problem: whether the compound system S can maintain “global order” in the situation
of an increase of local disorder and if S can preserve the low entropy while other Si increase their
entropies (may be essentially). We show that the entropy of a system as a whole can be constant,
while the entropies of its parts rising. For classical systems, this is impossible, because the entropy of
S cannot be less than the entropy of its subsystem Si. And if a subsystems’s entropy increases, then a
system’s entropy should also increase, by at least the same amount. However, within the quantum
information theory, the answer is positive. The significant role is played by the entanglement of
a subsystems’ states. In the absence of entanglement, the increasing of local disorder implies an
increasing disorder in the compound system S (as in the classical regime). In this note, we proceed
within a quantum-like approach to mathematical modeling of information processing by biosystems—
respecting the quantum laws need not be based on genuine quantum physical processes in biosystems.
Recently, such modeling found numerous applications in molecular biology, genetics, evolution
theory, cognition, psychology and decision making. The quantum-like model of order stability can
be applied not only in biology, but also in social science and artificial intelligence.

Keywords: biological, social, and AI systems; order-stability; classical vs. quantum entropy; quantum
channel; entanglement; quantum-like models

1. Introduction

This paper is motivated by Schrödinger’s book [1], in which he considered one of the
most fundamental and intriguing problems of modern science: “What is life?” This was his
attempt to proceed towards clarification of this problem on the basis of quantum physics
and thermodynamics. Of course, from the purely biological viewpoint this attempt to
resolve the basic problem of biology in the purely physical framework may be considered
as very naive. Schrödinger by himself pointed out the casual nature of his approach. At the
same the treatment of “What is life?” question in the purely physical framework can have
its advantages; in particular, clarifying and cleaning the biological details may enlighten a
few basic issues related to this question.
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1.1. Order-Stability as a Distinguishing Feature of Biosystems

Schrödinger tried to find analogies between physical and biological systems’ function-
ing. And he emphasized the amazing ability for order preservation as one of the basic features
of functioning of biological systems. He compared this feature with the thermodynamics of
physical systems governed by the Second Law of Thermodynamics:

“What is the characteristic feature of life? When is a piece of matter said to be
alive? It is alive when it goes on ‘doing something’, moving, exchanging material with its
environment, and so forth, and that for a much longer period than we would expect of an
inanimate piece of matter to ‘keep going’ under similar circumstances.”

Entropy is the basic measure of disorder in physics and information theory. To be
stable, a biosystem should be able to control entropy and prevent its essential increase. (It
is clear that entropy can fluctuate.) Schrödinger views the heuristic mechanism of entropy-
stabilization through its emission from a system S to the environment E , that is, through an
increase of disorder in E . Such a system’s behaviour does not match the laws of physics [1]:
“When a system that is not alive is isolated or placed in a uniform environment, all motion
usually comes to a standstill. . . ” Schrödinger continues to speculate and suggests that S
absorbs a flow of “negative entropy” from E . From the viewpoint of conventional physics,
this notion is ambiguous and he points out that the mystery of life cannot be explained
without the discovery of new physical laws.

1.2. Information Biology and Physics

The book [1] stimulated the creation of a new area of science which is nowadays known
as information biology by emphasizing that order stability or even its improvement for
the alive-state cannot be modelled solely in terms of the energy and matter flows between
a biosystem S and the environment E . Biosystems should be viewed as open systems
interacting with the physical and information components of the surrounding environment.
Since the 1970s, information’s role was highlighted in biology, for example, the well known
paper of Johnson [2] characterizing information theory as a “general calculus for biology”.
As was pointed by Gatenby and Frieden [3], “it is clear that life without matter and energy
is impossible, Johnson’s manuscript emphasizes that life without information is likewise
impossible. Since the article, remarkable progress has been made towards understanding
the informational fundament for life. . . ” This information reconstruction of biology was
closely related to the similar process in physics, starting with Wheeler’s “It from bit” [4]
and to the recent quantum information revolution. The latter has led to an information
reconsideration of quantum foundations [5–11]. Therefore, quantum information and open
quantum systems [12] can contribute to the modelling of information interactions of the
biosystem S and the environment E (see monograph [13]).

1.3. Quantum-Like Models

This is a good place to make the remark on genuine quantum and quantum-like
modeling in biology. The first one is known as quantum biophysics and it describes genuine
quantum processes in biosystems (see [14] for review). It operates on micro-scales, see, for
example, the series of works [15–22] on modeling cognition from genuine quantum physical
processes in the brain. Schrödinger’s book was the first step in this direction. (Maybe the
global aim of quantum biophysics is too ambitious—to reduce biological functions, as say
psychological functions, to quantum physical processes. The difference in scales, for space,
time and temperature, is too big.).

In quantum-like modeling, a biosystem is characterized from the purely information
processing viewpoint, that is, its size and other scales, say of temperature, are not important.
As was shown in numerous studies (mainly in cognition, psychology and decision making,
but even microbiology) [23–70], in some contexts biosystems process information in accor-
dance with the quantum laws. Thus, they can be considered as quantum-like (although
not genuinely quantum). In this paper, we proceed in the quantum-like framework. It
covers even formal information processing in genuine quantum systems, that is, so to
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say software. Of course, quantum physical hardware differs crucially from hardware of
macroscopic quantum-like information processors.

One may point to differences in the classical and quantum probabilistic descrip-
tions [71–73] and the applicability of the quantum probability calculus and, hence, the
quantum information theory to macroscopic biosystems. However, interrelations be-
tween these two descriptions is a complex problem of quantum foundations which we
are not able to discuss in this paper (see, e.g., [74–76]). The main distinguishing feature
of quantum(-like) information processing is operation with states’ superpositions. They
represent unresolved uncertainty. This uncertainty is not reduced to classical probabilistic
uncertainty, because incompatible variables cannot be realized on the same probability
space. So, the same quantum state carries uncertainties for numerous incompatible vari-
ables. Such information processing saves a lot of computational resources. A biosystem
(or social, or AI system, see Section 1.5), processes its state and then at each time it can
select the concrete representation corresponding to some variable.

1.4. Order-Stability in a Biosystem Compounded of a Few Subsystems from a Quantum
Information Approach

We model the order stability inside of a complex biosystem S that is composed of a
few subsystems Si, i = 1, 2 . . . , N. We study the following problem:

Can a compound system S = (Si) preserve the “global order” in itself, in spite of the increase
of local disorder—in its subsystems?

In the mathematical framework, this question is formulated as follows:
Can S = (Si) preserve its entropy while some of its subsystems Si increase (may be essentially)

their entropies?
We show that within quantum information processing the answer is positive. How-

ever, within the classical information processing the increase of subsystem’s entropy
automatically implies the increase of compound system’s entropy.

The key point is that in quantum theory the significant role is played by entanglement
(cf. [67]), nonclassical correlations between the states of subsystems Si of S. In the absence
of entanglement, entropy behaves classically.

We explore the following feature of quantum channels (dynamical maps describing
the state evolution)—they can transfer non-entangled states into entangled. We present
the scheme of the concrete quantum channels construction preserving the global entropy
and increasing all local entropies. This feature of quantum channels is well known and
widely used in quantum information theory and its applications to quantum computing.
The novelty is in its exploring for modeling order-stability in biosystems.

We point to the model of entanglement production as an action realized by a special
operator over given disentangled states which was proposed in articles [77,78]. This ap-
proach generalizes the standard quantum information scheme based on quantum channels
and it is especially interesting for applications to biology, social science, management, and
artificial intelligence. In such applications, one cannot exclude that information processing
is based on more general quantum operators than quantum channels.

1.5. Other Applications: Social Science, Management, Artificial Intelligence, Information Retrieval

Our quantum-like framework and the result on entropy-stability can be applied not
only to biosystems compounded of subsystems, say organs compounded of cells or or-
ganisms compounded of organs, or interacting neural networks in the brain, but also
to social science and management (see the paper of Lawless [65] who also mentioned a
coupling with Schrödinger’s book [1]), and artificial intelligence; in particular, to modeling
behavior of future AI-systems which will be equipped with quantum processors—quantum
computers, simulators, memory devices, internet based networks endowed with quan-
tum cryptography. On the other hand, already nowadays the quantum-like ideology can
stimulate design and development of Artificial Intelligence (AI)-systems equipped with
classical processors, but exploring the quantum information processing. Some steps in this
direction were done within the recent studies on quantum(-like) information retrieval (see,
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e.g., [79–81]): algorithms based on the complex Hilbert state representation of informa-
tion, but driven on classical computers, demonstrate superiority w.r.t. some parameters
comparing with the traditional (“classical”) algorithms.

One of the distinguishing features of quantum-like modeling is that, for its output,
the physical basis of information processors is not important. So, we can apply results of
such modeling both to genuine quantum and macroscopic classical information processors
and AI-systems.

For AI-systems, the main result of this paper is that systems equiped with quantum(-
like) software are more stable than pure classical AI-systems. In classical AI, generation
of disorder in any sybsystem Si has impact to the whole AI-system S. In quantum AI,
entanglement between states of subsystems can prevent generation of global disorder from
the local destabilization.

In social systems using quantum-like information processing, the global stability can
be preserved, in spite of local destabilization. The crucial point is information processing
in the form of superpositions, that is, without complete resolution of uncertainties.

1.6. The Problem of Self-Measurement

In Section 7, we briefly discuss the problem of self-measurements performed by biosys-
tems within quantum measurement theory and more concretely the indirect measurement
scheme [82]. Such self-measurements destroy entanglement and generate classical proba-
bilistic mixtures.

2. Classical Entropy
2.1. Micro and Macrostates

Suppose that at some instant of time, a system S can be in one of states labeled
by symbols xj, j = 1, 2, . . . , n. We call them microstates of S; set AS = {xj}. Let ρ be a
probability distribution on AS, that is, ρ = (p(x) : x ∈ AS), where p(x) ≥ 0, ∑x p(x) = 1.
We call ρ a macrostate, or simply state.

For state ρ, entropy is defined as

S(ρ) = −∑ p(x) log p(x). (1)

In bio applications (see Section 2.4), this quantity can be interpreted in the following
way. Suppose that mcirostates of S can be “scanned” by other biosystems. Thus the
microstate dynamics can be treated as signaling to other biosystems. For simplicity, we
consider the discrete time dynamics; it generates the sequence of symbols

X = x(τ1), . . . , x(τN), . . . , (2)

where τ is the time parameter of the microstate-dynamics. Mathematically this dynamics
(signaling) is modeled as a random process. Under some conditions, the probability p(x)
can be interpreted as the frequency probability - the limiting frequency of occurrence of
the symbol x in the process’s trajectory X : p(x) = limN→∞ N(x)/N, where N(x) is the
number of occurrences of x in the sequence (2).

If system S is able to preserve its microstate, say one concrete y ∈ AS, then p(y) = 1
and p(x) = 0, x 6= y, and entropy S = 0. (The microstate can fluctuate visiting x-states
different from y, but not so often, as 0 = lim N(x)/N). In contrast, if the microstate of
system S fluctuates covering uniformly AS, then p(x) = 1/n and entropy S = log n. Thus
entropy can be used as the measure of state-stability, order preservation in S. The increase
of entropy implies the decrease of information, the diminishing of order, and death, or at
least decay. On the contrary, the decrease of entropy means the increase of information, the
rise of order, and life or at least the improvement of self-organization.
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2.2. Compound Systems

We are interested in compound systems S = (S1, S2). The (statistical) states of S are
represented by probability distributions ρ = (p(x, y)), where px,y ≥ 0, ∑xy p(x, y) = 1. The
entropy of S is given by

S(ρ) = −∑
xy

p(x, y) log p(x, y). (3)

For a compound system, the states of its subsystems are given by the marginal proba-
bility distributions:

ρ1 = (p1(x) = ∑
y

p(x, y), ρ2 = (p2(y) = ∑
x

p(x, y)), (4)

and the corresponding entropies are

S(ρ1) = −∑
x

p1(x) log p1(x),S(ρ2) = −∑
j

p2(y) log p2(y). (5)

We can consider two bio-systems, say two cells, that communicate with each other: S2
“feels” x-states of S1 and vice verse: cell-signaling. Systems Si can represent as well neural
networks in the brain, social systems, or AI-systems.

If ρ = ρ1 ⊗ ρ2 (the direct product of probability measures), that is, probability
p(x, y) = p1(x)p2(y), then

S(ρ) = S(ρ1) + S(ρ2). (6)

Generally, additivity is violated and only the subadditivity inequality holds:

S(ρ) ≤ S(ρ1) + S(ρ2). (7)

In the quantum case, the situation is the same. We now point out the specific classical
constraint between the entropy of a compound system and subsystems’ entropies:

S(ρ) ≥ S(ρi). (8)

Quantum information processing relaxes this constraint; in such processing the global
order in a compound biosystem S can be preserved, in spite generating of local disorders
in its subsystems Si.

2.3. Stability of Global Order Is Possible Only with Stable Local Orders

Consider a model of signaling between biosystems based on recognition not of mi-
crostates, but macrostates. So, S1 and S2 communicate by recognition of the macrostates
of each other (the probability distributions). There are two time scales, the fine time scale
parameter τ and the rough time scale parameter t corresponding to the micro and macro
state dynamics, respectively. The τ-scale dynamics determines macrostates evolving with
the t-scale dynamics.

Suppose that state of S evolves in accordance with some dynamics t → ρ(t). It
generates dynamics of subsystems’ states t→ ρi(t). Suppose that initially S had very low
entropy, S(ρ0) = ε << 1 and suppose that it does not increase (at least essentially) with
time, that is, S(ρ(t)) << 1. Inequalities (8), (7) trivially imply inequality:

S(ρ1(t)) + S(ρ2(t)) ≤ 2S(ρ(t)). (9)

Hence, stability of entropy S(ρ(t)) is possible only under assumption of stability of
the entropy of each subsystem, S(ρi(t)). In other words, preserving of global order is
possible only under the condition of local orders preserving—in all subsystems.
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2.4. Classical Information Processing in Biosystem

Now consider a complex biosystem containing a large ensemble of identical “elemen-
tary biological subsystems”, say cells; for example, an organism S with N cells; each of
them can be in one of the microstates. Probability p(x) can be interpreted as the statistical
(ensemble) probability p(x) = limN→∞ N(x)/N, where N(x) is the number of cells in the
state x. This leads to the statistical interpretation of entropy. (The ergodicity assumption
gives the possibility of identification of the frequency probabilities with the statistical
(ensemble) probabilities.).

Let system S = (S1, S2) be a compound biosystem such that each Sj contains a large
number of “elementary biological subsystems”, say cells. Then, at each instance of time t,
the macrostates of S and Sj; ρ(t), ρj(t), j = 1, 2, can be determined statistically. The previous
considerations on their entropies are applicable even with the statistical interpretation
of probabilities.

We have presented two different schemes for determination and recognitions of
macrostates which are related to two different types of signaling, information exchange
between biosystems, S1 and S2 :

1. frequency (temporal),
2. statistical (ensemble).

In temporal framework, S1 monitors the microstate of S2 during some interval at the
fine time scale τ and after each such time interval updates information about the macrostate
of S2. At the rough time scale t, this update is treated as the instantaneous change of the
macrostate; or in the language of infinitesimals—the state determination τ-interval ∆t
is infinitesimal w.r.t. to the rough scale and, ρi(t + ∆) is the result of the update of the
state ρi(t).

In the ensemble framework, S1 updates the microstate of S2 via determination of
intensity of realizations of the microstates of S2. Here the probability distribution p(x) can
be interpreted as a field, the probability field. Of course, determination of this field of
probability can neither be done instantaneously. The previous two scale scheme should be
applied.

Generalization of these two interpretation-schemes to the quantum case is
not straightforward.

3. Quantum Entropy
3.1. A Few Words about the Quantum Formalism

Denote by H a complex Hilbert space endowed with the scalar product 〈·|·〉. For
simplicity, we assume that it is finite dimensional. The space of density operators is denoted
by S(H) The space of all linear operators in H is denoted by the symbol L(H). In turn,
this is the complex Hilbert space with the scalar product, 〈A|B〉 = Tr(A?B). We shall also
consider linear operators acting in L(H). They are called superoperators.

A pure quantum state is represented by a vector |ψ〉 ∈ H that is normalized to 1,
that is, 〈ψ|ψ〉 = 1. It can be represented as the density operator ρψ = |ψ〉〈ψ|; this is the
orthogonal projector on the vector |ψ〉. States which are not pure are called mixed.

3.2. Features of von Neumann Entropy

The von Neumann entropy is defined as

S(ρ) = −Trρ ln ρ, (10)

where ρ is a density operator.
There exists an orthonormal basis |j〉 consisting of eigenvectors of ρ, that is, ρ|j〉 = pj|j〉

(where pj ≥ 0 and ∑j pj = 1). In this basis, the matrix of the operator ρ ln ρ has the form
diag(pj ln pj; ) hence

S(ρ) = −∑
j

pj ln pj. (11)
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However, the von Neumann entropy has the classical form, but only w.r.t. this to
special basis.

We present three basic properties of the von Neumann entropy.

1. S(ρ) = 0 if and only if ρ is a pure quantum state, that is, ρ = |ψ〉〈ψ|.
2. For a unitary operator U,S(UρU?) = S(ρ).
3. The maximum of entropy is approached on the state ρdisorder = I/N and

S(ρdisorder) = ln N, where N is the dimension of the state space.

It is natural to call ρdisorder = I/N the state of maximal disorder.

3.3. Information Processing in Classical vs. Genuine Quantum and Quantum-Like Bio and
AI Systems

Starting with Formula (11), one can try to proceed along the classical interpretational
scheme. To consider vectors xj = |ej〉 as microstates a system S, and the density operator ρ
as the macrostate of S : the operator form of representation of the probability distribution
pj = p(xj). However, another density operator has different basis and different set of
microstates. One can try to overcome this problem by declaring the micro-state space
as the unit sphere s(H) of Hilbert space H. Then each “macrostate” given by a density
operator determines the probability distribution on the set of its basis states. One of the
problems of such an approach is that, if some eigenvalues of ρ are degenerate, then the
set of microstates is not not uniquely defined. As the most striking example, take the
state ρ = I/N, where N = dim H. Then any basis in H can be considered as the set
of its microstates and this operator ρ determines infinitely many different probability
distributions on s(H). And some of them are mutually-singular, from measure-theoretic
viewpoint. In fact, the situation is even more indefinite. For a density operator ρ, we can
consider general decompositions of the form:

ρ = −∑
j

qj|ψj〉〈ψj|, (12)

where qj ≥ 0, ∑j qj = 1, and (yj = |ψj〉) is any set of pure states (pretending to be
microstates). Then the probability distribution q(yj) = qj on the subset (yj) of sphere s(H)
can also be considered as a macrostate represented by operator ρ.

It seems that the classical picture of microstate–macrostate measure-theoretic interre-
lation is not applicable (at least straightforwardly) to the quantum case.

For the moment, we proceed with the formal mathematical model in which biosys-
tems’ states are given by density operators. This approach matches perfectly the genuine
quantum biophysics [14] and our study can be considered as justification of order stability
in compound quantum biophysical systems, including stability of mental processing based
on the “quantum brain model” in the spirit of papers [15–22]. The same can be said about
the genuine quantum artificial intelligence based on quantum computers and simulators.
However, our desire is to apply the order-stability result of this paper to quantum-like
macroscopic biosystems. Some steps in this direction were done in works [63,83,84]. In the
latter, the quantum-like information processing in the brain is generated via superposition
representation of action potentials in neurons. This representation can be considered as
qubit digitization of continuous action potentials and linear quantum(-like) dynamics as
linearization of nonlinear classical electrochemical dynamics in neural networks.

In modeling order-stability in the quantum-like AI-devices, we can proceed with the
formal mathematical representation of states by density operators which is realized on
classical computing devices.

3.4. States of a Compound System and Its Subsystems, Entanglement

Let S = (S1, S2) be a compound system represented in Hilbert spaceH1 ⊗H2 and let
ρ ∈ S(H1 ⊗H2). The states of its subsystems are calculated as the partial traces of ρ:

ρ1 = TrH2 ρ, ρ2 = TrH1 ρ, (13)
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ρi ∈ S(Hi).
Consider now a pure state of S that is factorisable w.r.t. the tensor product structure,

that is, |Ψ〉 = |ψ1〉 ⊗ |ψ2〉. States which are not represented in this form are called entangled.
Entangled states play the crucial role in quantum information theory. In particular, this is
the most important resource of quantum computations. They represent the correlations
between subsystems of a quantum system. These correlations are nonclassical, in the sense
that they cannot be adequately described by the classical probability, the Kolmogorov
measure-theoretic axiomatics [71].

The definition of entanglement can be generalized to mixed states. A state
ρ ∈ S(H1 ⊗H2) is called separable if it can be represented in the form:

ρ = ∑
km

ckmρ
(k)
1 ⊗ ρ

(m)
2 , (14)

where ρ
(j)
i ∈ S(Hi), i = 1, 2. A compound state that cannot be represented in this form

is called entangled. However, in this paper we shall consider only entanglement of
pure states.

If the state ρ is factorisable, that is, ρ = ρ1 ⊗ ρ2, then

S(ρ) = S(ρ1) + S(ρ2), (15)

cf. (6). Generally, as in the classical case (see (7)), we have only subadditivity

S(ρ) ≤ S(ρ1) + S(ρ2). (16)

However, in contrast to the classical case, it can happen that

S(ρ) < S(ρi), (17)

cf. (8). We shall explore this distinguishing feature of the quantum information measure
of disorder.

Consider now the pure state ρΨ = |Ψ〉〈Ψ|, where |Ψ〉 ∈ H1 ⊗H2. The states of the
systems Si are pure if and only if |Ψ〉 is separable. Thus, for an entangled state ρΨ, the
states ρi are always mixed states.

This fact is important for our further study. It implies that, for an entangled pure state,
the entropies of subsystem’s states S(ρi) > 0, because ρi is not pure.

3.5. Compound Systems; Quantum Channels

Consider evolution of the state of the compound system S = (S1, S2), ρ(t) = Λtρ0
and the corresponding evolution of the states of Si,

ρ1(t) = TrH2 Λtρ0, ρ2(t) = TrH1 Λtρ0. (18)

In the framework of open quantum systems theory, for each t, a state’s evolution of S
is represented by a quantum channel—trace-preserving completely positive map (superoper-
ator) acting in the space L(H1 ⊗H2).

Each subsystem Si of the compund system S can be considered as an open quantum
system. In the case of the isolated system S, system S2 plays the role of the environment of
system S1 and vice verse. If S is not isolated, the environment of S1 includes S2 and the
environment of ES of S.

4. Stability of Global Order, in Spite of the Increase of Local Disorder

We are interested in the condition of order-stability in the compound system S in the
situation of disorder-increasing in its subsystems Si. Suppose that initially all entropies
were very small S(ρ0),S(ρ0i) << 1. Suppose now that subsystems’ entropies started to
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increase and in the process of evolution they can increase essentially. Can S(ρ0) preserve
its value (or increase only slightly)?

In this note, we consider the case of factorizable pure initial state of the compound
system S, that is, ρ0 = ρ01 ⊗ ρ02.

The simplest model of such behavior is based on the unitary evolution of S, that
is, one parameteric group of unitary operators Ut : H1 ⊗H2 → H1 ⊗H2. In this case,
Λtρ0 = Utρ0U?

t . Such dynamics transfer pure states into pure states. Hence,
S(Λtρ0) = S(ρ0) = 0. If ρ0 corresponds to a separable pure state, then S(ρ0i) = 0, i = 1, 2,
as well.

If the quantum channel Λt transfers a separable state into an entangled state, then
ρi(t), i = 1, 2, are mixed states and, hence, they have positive entropy. Thus, our desire is to
construct a unitary evolution operator that can transfer separable states into entangled states. It is
well-known that such operators exist and they are widely used in quantum computations.
For readers convenience (and especially by taking into account that this issue is directed to
experts in cognition, psychology, and decision making and not in quantum information
theory), we present the well known examples of such operators for state spaces of an
arbitrary (finite) dimension. These operators are explicitly expressed through orthonormal
bases in Hilbert spacesHi and an entropy increase can be calculated explicitly.

5. Complex Systems

A biosystem S is typically composed of a large number of subsystems Si, i = 1, 2, . . . , M
(say genes, proteins, cells, organs, neural networks). Let subsystem Si be represented in
Hilbert spaceHi. The compound system S is represented in the tensor productH = ⊗i=1Hi.
For quantum state ρ ∈ S(H), states of the subsystems are given by partial traces

ρj = Tr⊗i 6=jHi ρ.

Let Λt be a quantum channel describing the dynamics of the compound state, ρ(t) =
Λtρ0; then the states of subsystems evolves as

ρj(t) = Tr⊗i 6=jHi Λtρ0.

For the fixed subsystem Sj, the system S′j = (Si)i 6=j plays the role of its environment
(in the case of isolated S). We are interested in generalization of condition (17) for i =
1, 2, . . . , M. However, even in the case M = 2 considered in this paper calculations are
long. We do not want to overshadow the main idea of compound-stability by even longer
calculations. Although calculations for an arbitrary M are more complicated, but it is clear
that desired quantum channels can be constructed, especially for spaces of the dimension
dim H = 2M, for M qubit spaces.

6. Quantum Channel Preserving Compound System’s Entropy, in Spite of Increasing
of Its Subsystems’ Entropies

The constructions of the desired quantum channel for subsystem’s state spaces of
dimensions N = 2 and N > 2 are different. In the latter case, the expressions for the von
Neumann entropies of the subsystems Si, i = 1, 2, contain the factor log(N − 2). Therefore,
we consider these cases separately.

6.1. Two Subsystems with Qubit State Spaces

LetH1 andH2 be C2 and
{∣∣∣x(i)0

〉
,
∣∣∣x(i)1

〉}
be orthonormal bases inHi (i = 1, 2). We

define a completely positive channel Λ from S(H1 ⊗H2) to S(H1 ⊗H2) by

Λ(•) ≡ V(•)V,
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where V is a linear map fromH1 ⊗H2 toH1 ⊗H2 given by

V ≡
√

1
2

(∣∣∣x(1)0

〉
⊗
∣∣∣x(2)0

〉
+
∣∣∣x(1)1

〉
⊗
∣∣∣x(2)1

〉)〈
x(1)0

∣∣∣⊗ 〈x(2)0

∣∣∣
+

√
1
2

(∣∣∣x(1)0

〉
⊗
∣∣∣x(2)0

〉
−
∣∣∣x(1)1

〉
⊗
∣∣∣x(2)1

〉)〈
x(1)1

∣∣∣⊗ 〈x(2)1

∣∣∣
+

√
1
2

(∣∣∣x(1)0

〉
⊗
∣∣∣x(2)1

〉
+
∣∣∣x(1)1

〉
⊗
∣∣∣x(2)0

〉)〈
x(1)0

∣∣∣⊗ 〈x(2)1

∣∣∣
+

√
1
2

(∣∣∣x(1)0

〉
⊗
∣∣∣x(2)1

〉
−
∣∣∣x(1)1

〉
⊗
∣∣∣x(2)0

〉)〈
x(1)1

∣∣∣⊗ 〈x(2)0

∣∣∣.
We remark that the operator V is unitary (see, e.g., [85]). Thus this channel is noiseless—

it is given by the unitary dynamics.
Let ρ0 be an initial compound state onH1 ⊗H2 of the form:

ρ0 =
(∣∣∣x(1)0

〉
⊗
∣∣∣x(2)0

〉)(〈
x(1)0

∣∣∣⊗ 〈x(2)0

∣∣∣).

We remark that this is the density operator corresponding to a pure state and the von
Neumann entropy of ρ0 equals zero:

S(ρ0) = 0.

We point out that the pure state under consideration is separable (non-entangled)
and hence the two marginal states of ρ0 are given by density operators corresponding to
pure states:

ρ01 =
∣∣∣x(1)0

〉〈
x(1)0

∣∣∣, ρ02 =
∣∣∣x(2)0

〉〈
x(2)0

∣∣∣.
The von Neumann entropy of two marginal states ρ01 and ρ02 are equal to zero:

S(ρ01) = 0, S(ρ02) = 0.

The final compound state Λ(ρ0) transmitted through the CP channel is

Λ(ρ0) =

√
1
2

(∣∣∣x(1)0

〉
⊗
∣∣∣x(2)0

〉
+
∣∣∣x(1)1

〉
⊗
∣∣∣x(2)1

〉)√1
2

(〈
x(1)0

∣∣∣⊗ 〈x(2)0

∣∣∣+ 〈x(1)1

∣∣∣⊗ 〈x(2)1

∣∣∣).

We emphasize that this is the density operator corresponding to an entangled pure state.
The entropy of transformed state Λ(ρ0) coincides with the entropy of the initial state:

S(Λ(ρ0)) = 0 = S(ρ0).

The two marginal states of Λ(ρ0) are

Λ1ρ01 =
1
2

∣∣∣x(1)0

〉〈
x(1)0

∣∣∣+ 1
2

∣∣∣x(1)1

〉〈
x(1)1

∣∣∣, Λ2ρ02 =
1
2

∣∣∣x(2)0

〉〈
x(2)0

∣∣∣+ 1
2

∣∣∣x(2)1

〉〈
x(2)1

∣∣∣.
The von Neumann entropy of two marginal states Λ1ρ01 and Λ2ρ02 are

S(Λiρ0i) = log 2 > S(ρ0i) = S(Λ(ρ0)) = 0.

Thus the entropies of both subsystems increased for log 2-amount, but the entropy of
S preserves its zero value.

6.2. Two Subsystems with N-dimensional State Spaces

We expand the above setting to N × N compound systems (N ≥ 3).
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Let H1 and H2 be CN and
{∣∣∣x(i)k

〉}N−1

k=0
be orthonormal bases in Hi (i = 1, 2). We

define a completely positive channel Λ from S(H1 ⊗H2) to S(H1 ⊗H2) by

Λ(•) ≡ V(•)V,

where V is a linear map fromH1 ⊗H2 toH1 ⊗H2 given by

V =
N−1

∑
k,`=0

∣∣ϕk,`
〉〈

x(1)k

∣∣∣⊗ 〈x(2)`

∣∣∣,
where

∣∣ϕk,`
〉

=
2
N

N−1

∑
j=0

αk,`,j

∣∣∣x(1)j

〉
⊗
∣∣∣x(2)j+k mod N

〉
αk,`,j =

{
−N−2

2 (j = `)
1 (j 6= `)

(k = 0, 1, 2, · · · , N − 1)

V =
2
N

((
−N − 2

2

)∣∣∣x(1)0

〉
⊗
∣∣∣x(2)0

〉
+
∣∣∣x(1)1

〉
⊗
∣∣∣x(2)1

〉
+ · · ·+

∣∣∣x(1)N−1

〉
⊗
∣∣∣x(2)N−1

〉)〈
x(1)0

∣∣∣⊗ 〈x(2)0

∣∣∣
+

2
N

(∣∣∣x(1)0

〉
⊗
∣∣∣x(2)0

〉
+

(
−N − 2

2

)∣∣∣x(1)1

〉
⊗
∣∣∣x(2)1

〉
+ · · ·+

∣∣∣x(1)N−1

〉
⊗
∣∣∣x(2)N−1

〉)〈
x(1)0

∣∣∣⊗ 〈x(2)1

∣∣∣
+ · · ·+

+
2
N

(∣∣∣x(1)0

〉
⊗
∣∣∣x(2)0

〉
+
∣∣∣x(1)1

〉
⊗
∣∣∣x(2)1

〉
+ · · ·+

(
−N − 2

2

)∣∣∣x(1)N−1

〉
⊗
∣∣∣x(2)N−1

〉)〈
x(1)0

∣∣∣⊗ 〈x(2)N−1

∣∣∣
+

2
N

((
−N − 2

2

)∣∣∣x(1)0

〉
⊗
∣∣∣x(2)1

〉
+
∣∣∣x(1)1

〉
⊗
∣∣∣x(2)2

〉
+ · · ·+

∣∣∣x(1)N−1

〉
⊗
∣∣∣x(2)0

〉)〈
x(1)1

∣∣∣⊗ 〈x(2)0

∣∣∣
+

2
N

(∣∣∣x(1)0

〉
⊗
∣∣∣x(2)1

〉
+

(
−N − 2

2

)∣∣∣x(1)1

〉
⊗
∣∣∣x(2)2

〉
+ · · ·+

∣∣∣x(1)N−1

〉
⊗
∣∣∣x(2)0

〉)〈
x(1)1

∣∣∣⊗ 〈x(2)1

∣∣∣
+ · · ·+

+
2
N

(∣∣∣x(1)0

〉
⊗
∣∣∣x(2)1

〉
+
∣∣∣x(1)1

〉
⊗
∣∣∣x(2)2

〉
+ · · ·+

(
−N − 2

2

)∣∣∣x(1)N−1

〉
⊗
∣∣∣x(2)0

〉)〈
x(1)1

∣∣∣⊗ 〈x(2)N−1

∣∣∣
+

2
N

((
−N − 2

2

)∣∣∣x(1)0

〉
⊗
∣∣∣x(2)2

〉
+
∣∣∣x(1)1

〉
⊗
∣∣∣x(2)3

〉
+ · · ·+

∣∣∣x(1)N−1

〉
⊗
∣∣∣x(2)1

〉)〈
x(1)2

∣∣∣⊗ 〈x(2)0

∣∣∣
+

2
N

(∣∣∣x(1)0

〉
⊗
∣∣∣x(2)2

〉
+

(
−N − 2

2

)∣∣∣x(1)1

〉
⊗
∣∣∣x(2)3

〉
+ · · ·+

∣∣∣x(1)N−1

〉
⊗
∣∣∣x(2)1

〉)〈
x(1)2

∣∣∣⊗ 〈x(2)1

∣∣∣
+ · · ·+

+
2
N

(∣∣∣x(1)0

〉
⊗
∣∣∣x(2)2

〉
+
∣∣∣x(1)1

〉
⊗
∣∣∣x(2)3

〉
+ · · ·+

(
−N − 2

2

)∣∣∣x(1)N−1

〉
⊗
∣∣∣x(2)1

〉)〈
x(1)2

∣∣∣⊗ 〈x(2)N−1

∣∣∣
+ · · · · · · · · ·+

+
2
N

((
−N − 2

2

)∣∣∣x(1)0

〉
⊗
∣∣∣x(2)N−1

〉
+
∣∣∣x(1)1

〉
⊗
∣∣∣x(2)0

〉
+ · · ·+

∣∣∣x(1)N−1

〉
⊗
∣∣∣x(2)N−2

〉)〈
x(1)N−1

∣∣∣⊗ 〈x(2)0

∣∣∣
+

2
N

(∣∣∣x(1)0

〉
⊗
∣∣∣x(2)N−1

〉
+

(
−N − 2

2

)∣∣∣x(1)1

〉
⊗
∣∣∣x(2)0

〉
+ · · ·+

∣∣∣x(1)N−1

〉
⊗
∣∣∣x(2)N−2

〉)〈
x(1)N−1

∣∣∣⊗ 〈x(2)1

∣∣∣
+ · · ·+

+
2
N

(∣∣∣x(1)0

〉
⊗
∣∣∣x(2)N−1

〉
+
∣∣∣x(1)1

〉
⊗
∣∣∣x(2)0

〉
+ · · ·+

(
−N − 2

2

)∣∣∣x(1)N−1

〉
⊗
∣∣∣x(2)N−2

〉)〈
x(1)N−1

∣∣∣⊗ 〈x(2)N−1

∣∣∣.
The operator V is unitarity (see, e.g., [85]). Hence, this channel is noiseless.

Let ρ0 be an initial compound state onH1 ⊗H2 denoted by

ρ0 =
(∣∣∣x(1)0

〉
⊗
∣∣∣x(2)0

〉)(〈
x(1)0

∣∣∣⊗ 〈x(2)0

∣∣∣).
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One finds the von Neumann entropy of ρ0 such that

S(ρ0) = 0.

The two marginal states of ρ0 are

ρ01 =
∣∣∣x(1)0

〉〈
x(1)0

∣∣∣, ρ02 =
∣∣∣x(2)0

〉〈
x(2)0

∣∣∣.
The von Neumann entropy of the two marginal states ρ01 and ρ02 are

S(ρ01) = 0, S(ρ02) = 0.

The final compound state Λ(ρ0) transmitted through the CP channel is

Λ(ρ0) =
2
N

((
−N − 2

2

)∣∣∣x(1)0

〉
⊗
∣∣∣x(2)0

〉
+

N−1

∑
k=1

∣∣∣x(1)k

〉
⊗
∣∣∣x(2)k

〉)
2
N

((
−N − 2

2

)〈
x(1)0

∣∣∣⊗ 〈x(2)0

∣∣∣+ N−1

∑
k=1

〈
x(1)k

∣∣∣⊗ 〈x(2)k

∣∣∣).

We also have the von Neumann entropy of Λ(ρ0) is

S(Λ(ρ0)) = 0 = S(ρ0)

The two marginal states of Λ(ρ0) are

Λ1ρ01 =
(N − 2)2

N2

∣∣∣x(1)0

〉〈
x(1)0

∣∣∣+ 4
N2

N−1

∑
k=1

∣∣∣x(1)k

〉〈
x(1)k

∣∣∣,
Λ2ρ02 =

(N − 2)2

N2

∣∣∣x(2)0

〉〈
x(2)0

∣∣∣+ 4
N2

N−1

∑
k=1

∣∣∣x(2)k

〉〈
x(2).k

∣∣∣
The von Neumann entropy of the two marginal states Λ1ρ01 and Λ2ρ02 are

S(Λiρ0i) = 2 log N − 2(N − 1)2

N2 log(N − 2)− 8(N − 1)
N2 log 2 > S(ρ0i) = S(Λ(ρ0)) = 0.

Consider the above general formulas for the case N = 3. Let ρ0 be an initial compound
state onH1 ⊗H2 denoted by

ρ0 =
(∣∣∣x(1)0

〉
⊗
∣∣∣x(2)0

〉)(〈
x(1)0

∣∣∣⊗ 〈x(2)0

∣∣∣)
One finds the von Neumann entropy of ρ0 such that

S(ρ0) = 0.

The two marginal states of ρ0 are

ρ01 =
∣∣∣x(1)0

〉〈
x(1)0

∣∣∣, ρ02 =
∣∣∣x(2)0

〉〈
x(2).0

∣∣∣
The von Neumann entropy of the two marginal states ρ01 and ρ02 are

S(ρ01) = 0, S(ρ02) = 0.
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The final compound state Λ(ρ0) transmitted through the CP channel is

Λ(ρ0) =
2
3

(∣∣∣x(1)0

〉
⊗
∣∣∣x(2)0

〉
+
∣∣∣x(1)1

〉
⊗
∣∣∣x(2)1

〉
− 1

2

∣∣∣x(1)2

〉
⊗
∣∣∣x(2)2

〉)
2
3

(〈
x(1)0

∣∣∣⊗ 〈x(2)0

∣∣∣+ 〈x(1)1

∣∣∣⊗ 〈x(2)1

∣∣∣− 1
2

〈
x(1)2

∣∣∣⊗ 〈x(2)2

∣∣∣).

We also have the von Neumann entropy of Λ(ρ0) is

S(Λ(ρ0)) = 0 = S(ρ0)

The two marginal states of Λ(ρ0) are

Λ1ρ01 =
4
9

∣∣∣x(1)0

〉〈
x(1)0

∣∣∣+ 4
9

∣∣∣x(1)1

〉〈
x(1)1

∣∣∣+ 1
9

∣∣∣x(1)2

〉〈
x(1)2

∣∣∣,
Λ2ρ02 =

4
9

∣∣∣x(2)0

〉〈
x(2)0

∣∣∣+ 4
9

∣∣∣x(2)1

〉〈
x(2)1

∣∣∣+ 1
9

∣∣∣x(2)2

〉〈
x(2).2

∣∣∣
The von Neumann entropy of two marginal states Λ1ρ1 and Λ2ρ02 are

S(Λiρ0i) = 2 log 3− 16
9

log 2 > S(ρ0i) = S(Λ(ρ0)) = 0.

7. Quantum Measurement Theory: Self-Observations in Biosystems

Up to this section, our presentation was done without even mentioning the cornerstone
of quantum mechanics—quantum measurement theory. In the latter, the crucial role
is played by interaction between a system γ and a measurement apparatus M. By the
Copenhagen interpretation outputs of quantum measurements are not properties of a
system, but outputs of the complex process of γ−M interaction. Properties of a system are
inapproachable directly; they are reflected in outputs of the pointer of M. It is important to
separate system γ from measurement apparatus M. This separation is the delicate point of
quantum measurement theory. And the situation is even more airy for self-observations
performed by biosystems. Who observes whom?

We suggest resolving the issue of self-observations via straightforward application of
the methodology of quantum mechanics. Subsystems of a biosystem S (at least some of
them) can perform measurements on other subsystems. In the simplest case, S = (S1, S2)
and say subsystem S2 performs observation on subsystem S1, that is, S2 plays the role of a
measurement apparatus.

The most adequate description of such processes can be given within the indirect
measurement scheme going back to von Neumann [86] (see also Ozawa [82] for modern
formalization and coupling with theory of quantum instruments).

8. The Indirect Measurement Scheme

The indirect measurement scheme can be represented as the block of following inter-
related components:

• the states of the systems γ and the apparatus M; they are represented in complex
Hilbert spacesH and K, respectively;

• the unitary operator U representing the interaction-dynamics for the compound
system Γ = (γ, M);

• the meter observable MA giving outputs of the pointer of the apparatus M.

It is assumed that the compound system Γ is isolated. The dynamics of pure states of
the compound system is described by the Schrödinger equation:

i
d
dt
|Ψ〉(t) = H|Ψ〉(t), |Ψ〉(0) = |Ψ〉0, (19)
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where H is it Hamiltonian of Γ and |Ψ〉(t) = U(t)|Ψ〉0; U(t) is the unitary operator
U(t) = e−itH . And Hamiltonian H has the form: HΓ = Hγ ⊗ I + I ⊗ HM + Hγ,M, where
Hγ : H → H, HM : K → K are Hamiltonians of γ and M, respectively, and Hγ,M ∈
H⊗K → H⊗K is Hamiltonian of interaction between systems γ and M.

Suppose that we want to measure an observable on the system γ, which is represented
by Hermitian operator A, acting in system’s state spaceH. The indirect measurement model
for measurement of the A-observable was introduced by Ozawa in [82] as a “(general)
measuring process”; this is a quadruple

(K, σ, U, MA),

consisting of a Hilbert space K, a density operator σ ∈ S(K), a unitary operator U on
the tensor product of the state spaces of γ and M, U : H⊗K → H⊗K, and a Hermitian
operator MA on K.

Here, K represents the states of the apparatus M, U describes the time-evolution of
system Γ, σ describes the initial state of the apparatus M before the start of measurement,
and the Hermitian operator MA is the meter observable of the apparatus M (say the pointer
of M). This operator represents indirectly outcomes of an observable A for the system γ.

The probability distribution Pr{A = x‖ργ} in the system state ργ ∈ S(H) is given by

Pr{A = x‖ργ} = Tr[(I ⊗ EMA(x))U(ργ ⊗ σ)U?], (20)

where EMA(x) is the spectral projection of MA for the eigenvalue x. We reall that operator
MA is Hermitian. In the finite dimensional case, it can be represented in the form:

MA = ∑
k

xkEMA(xk), (21)

where (xk) is the set of its eigenvalues and EMA(xk) is the projector on the subspace of
eigenvectors corresponding to eigenvalue xk.

The change of the state ργ of the system γ caused by the measurement for the outcome
A = x is represented with the aid of the map IA(x) in the space of density operators
defined as

IA(x)ργ = TrK[(I ⊗ EMA(x))U(ργ ⊗ σ)U?], (22)

where TrK is the partial trace over K. We remark that the map x 7→ IA(x) is a quantum
instrument [82] (see [69] for simple and brief introduction to theory of quantum instru-
ment theory).

8.1. Biosystems

Consider now a biosystem S that is compound of two subsystems S1 and S2. In
the above measurement scheme, we set γ = S1, M = S2, and H = H1,K = H2, ργ =
ρ01, σ = ρ02, the unitary operator U determines the quantum channel Λ. If the initial density
operators correspond to pure states, then, as we have seen, the unitary evolution of the state
of S can generate the density operator corresponding to an entangled pure state expressing
the special character of correlations between the states of subsystems S1 and S2. However,
quantum instrument IA(x) generates a mixed state, that is, measurement on subsystem S1
perfromed by subsystem S2 destroys special quantum-information correlations inside S.
The state of S is given by

ρx = I ⊗ EMA(x)U(ργ ⊗ σ)U?/Tr I ⊗ EMA(x)U(ργ ⊗ σ)U.? (23)

This is the state resulting from self-observation in S.
Generally, S can be composed of a large number m of subsystems Si. They all can

perform observations on each other. Each such observation interrupts the unitary evolution
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of S. As model examples, we can consider cell-signaling and processing of information in
the brain.

8.2. Consciousness

In the brain, there is an information system which is specialized on brain’s self-
observations. We can call it consciousness, denote it by the symbol C. (We repeat that
systems under consideration are information systems. So, C need not be identified with the
special spatial area of the brain. It can spatially distributed over different areas of the brain.)
It is a subsystem of the “information brain”, that is, compound system S of all information
processors in the physical brain; C contains numerous measurement apparatuses which
specialized on observations on the states of various subsystems Si of S.

9. Concluding Discussion

Here we present a new approach to the problem of order-stability in biosystems for-
mulated by Schrödinger in 1944 [1]. This approach is based on the quantum-like paradigm
realized in the framework of the open quantum systems theory. The following particular
problem is studied: preservation of order-stability by a biosystem S as a compound of subsys-
tems performing some biological functions generating disorder-increasing. In the modelling, we
explored the features of quantum information processing, especially the constancy of an
isolated quantum information system entropy and the possibility to generate entangled
states. The quantum-like model is purely informational, that is, biosystems are considered
as information processors; for each subsystem Si, the rest of the compound system S is
treated as the information environment. The order-stability has the meaning of stability
of information processing in S. Thus, this paper is a part of the information approach
to physics and biology, from Wheeler’s “It from bit” [4] to the recent information interpre-
tation of quantum theory [5–11] and Johnson’s emphasize that life without information
processing is impossible [2]. Once again, we stress that this approach is not rigidly coupled
to the micro-world, but it supports strongly the quantum-like paradigm - context sensitive
systems, for example, biosystems can process information in accordance with the laws of quantum
information theory.

In this paper, we considered the simplest situation of an isolated compound biosystem
S. The next step is modeling order stability of the quantum information state of a compound
open system S interacting with the information environment ES. Its state dynamics is non-
unitary. In such a model, disorder in the biosystem S is coming both from outside, namely
from the information environment ES, and from inside, that is to say, the subsystems Si
of S.

The phenomenon of life is not reduced to order stability. However, even consistent
modelling of information exchange stability in a complex biosystem is a step towards clari-
fication of this phenomenon. The authors hope that this paper matches with Schrödinger
vision [1] of information processes in biosystems (within a modern quantum information
representation).

We also discussed the problem of self-observations in biosystems within the indirect
measurement scheme of quantum observations. This is the complex problem and in this
paper we restricted our considerations to the brief discussion. We plan to turn to this
problem in one of further publications.

The result of this paper on order stability in the whole system, while order decreases
in its subsystems, is also applicable to social and AI-systems processing information in
accordance with the quantum theory.

We can distinguish two types of AI-systems:

• Systems equipped with genuine quantum information processing devices, say quan-
tum computers or simulators.

• Systems equipped with classical information processing devices, say classical digital
or analog computers, realizing quantum(-like) information processing.
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Personally I do not share the generally high expectation for successful realization of
genuine quantum physical computing project, especially hopes that such quantum devices
can be useful for AI-systems, say robots. I think that quantum information processing
based on classical computational devices has better perspectives. But, since in science it
is always difficult to make prognoses for future development, both types of AI-systems,
genuine quantum and quantum-like, have to be studied. In future, the output of this
paper may become useful for modeling behavior of collectives composed of quantum and
quantum-like robots and other AI-systems.

However, the main impact of this paper is in clarification of order stability in biosys-
tems as a consequence of quantum(-like) information processing. We hope that this is a
step (of course, a little step) towards clarification of phenomenon of life.
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