
entropy

Article

Adaptive Information Sharing with Ontological Relevance
Computation for Decentralized Self-Organization Systems

Wei Liu, Weizhi Ran, Sulemana Nantogma and Yang Xu *

����������
�������

Citation: Liu, W.; Ran, W.;

Nantogma, S.; Xu, Y. Adaptive

Information Sharing with Ontological

Relevance Computation for

Decentralized Self-Organization

System. Entropy 2021, 23, 342.

https://doi.org/10.3390/e23030342

Academic Editor: Juval Portugali

Received: 9 February 2021

Accepted: 8 March 2021

Published: 14 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Computer Science and Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, China; 201812081216@std.uestc.edu.cn (W.L.); 202012081713@std.uestc.edu.cn (W.R.);
201814080012@std.uestc.edu.cn (S.N.)
* Correspondence: xuyang@uestc.edu.cn

Abstract: Decentralization is a peculiar characteristic of self-organizing systems such as swarm in-
telligence systems, which function as complex collective responsive systems without central control
and operates based on contextual local coordination among relatively simple individual systems. The
decentralized particularity of self-organizing systems lies in their capacity to spontaneously respond
to accommodate environmental changes in a cooperative manner without external control. However,
if members cannot obtain observations of the state of the whole team and environment, they have
to share their knowledge and policies with each other through communication in order to adapt to
the environment appropriately. In this paper, we propose an information sharing mechanism as an
independent decision phase to improve individual members’ joint adaption to the world to fulfill
an optimal self-organization in general. We design the information sharing decision analogous to
human information sharing mechanisms. In this case, information can be shared among individual
members by evaluating the semantic relationship of information based on ontology graph and their
local knowledge. That is, if individual member collects more relevant information, the information will
be used to update its local knowledge and improve sharing relevant information by measuring the
ontological relevance. This will enable more related information to be acquired so that their models will
be reinforced for more precise information sharing. Our simulations and experimental results show
that this design can share information efficiently to achieve optimal adaptive self-organizing systems.

Keywords: self-organizing systems; decision-making; information sharing; information relevance;
ontology

1. Introduction

Self-organization is an incarnating characteristic of self organization systems such
as swarm intelligence systems, which functions as a complex collective response without
central control and operates based on contextual local coordination among relatively simple
individual members. The distinctiveness of self-organized systems lies in their capacity
to spontaneously form a new team-based organization without external control to accom-
modate environmental changes. The main concept and self-organization, the fundamental
notion of self-organization mechanisms, and the problem of assessing and characterizing
such mechanisms are all well defined and presented by [1].

With the advances of self-organization systems research, a representative form which
reflects structural dynamics of self-organizing systems, has been widely studied from
different perspectives [2] and applied in real applications by building large-scale light-
weighted robots in domains such as emergency responses [3], planet explorations [4], and
military operations [5]. In those systems, a member simply has a partial observation to the
system and the environment [6,7], however, require closely cooperating with each other
for achieving a joint, yet complex adaption to the world in a decentralized way by making
decisions themselves. Because of the limited knowledge and partial observation to the
system, information sharing is imperative for their effective collaboration and interaction.
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For instance, if an ant searches for and finds a huge piece of food, it must notify the team to
find an appropriate member to help carry the food.

Self-organization has been widely studied as an attractive approach for realizing
adaptability, robustness, and scalability of large-scale complex systems [8]. For instance,
controlling large-scale self-organized networks is presented in [9,10], and Ref. [11] presents
a novel distributed algorithm for multiple unmanned aerial vehicles (UAVs) for a search-
attack mission self-organization problem. In an attempt to support military operations,
Ref. [12] applies concepts in self-organization as a supporting paradigm for UAV Relay
Networks. In [13], a model of Self-organizing System of Autonomous Agents is presented.
Agents in this model distribute available resources among cells and accumulate energy.
Authors in [14] present the self-organisation framework based on coupled dynamical
systems and the multivariate information information-theoretic approach. In addition,
Ref. [15] applies an effective leadership model (ELM) of the collective decision-making
of animal groups to enable self-organizing control mechanisms to adapt to information
uncertainty, while authors in [16] develop an ontology model to facilitate knowledge-
sharing in complex multi-agent systems.

Despite the many research gains to realize self-organizing systems, effective infor-
mation sharing in decentralized self-organizing systems still remains a challenge. Some
existing works tackle communication decision problems in self-organizing systems using
decision theoretical models. With the decision theoretical models, the expected utility of
communication actions is leveraged in making communication decisions [17–19]. This ap-
proach is only suitable for coordination where complete team knowledge is possible. For
coordination in large decentralized teams, however, individual members have only local
views of both the environment and other member states, which makes computation of the
expected utility NEXP-complete [20]. Clearly, obtaining complete team knowledge in large
decentralized teams using information sharing strategies is challenging with decision theo-
retical models. That not withstanding, some attempts have already been made to address
this challenge using heuristic algorithms. For example, state factorization of individual
members’ observation has been applied in a heuristic information sharing algorithm [21].
This approach maintains a good knowledge base of individual members of the entire system,
and carefully determines the relevance of any information that has to be shared. However,
there remains a gap on the appropriateness of action selection by members using their local
observation, which is limited in scope of both themselves and the environment. What is
considered a way forward in this paper is to consider the information sharing process by
the individual members as a partial Markov decision process. Principles and objectives of
information sharing in large self-organizing teams are explored, providing insight into a
practical approach for efficient information sharing.

For a practical approach, instead of indiscriminate information dissemination by
individual members to ensure widespread of information in a team, information sharing
should target those it will benefit [22], and ultimately to the benefit of the entire team.
Therefore, information sharing should be directed, targeting the potential beneficiaries. In
addition, in self-organizing systems organization, information about events, capabilities
and knowledge about other individual members has inherent relations with one another,
and can be leveraged for efficient coordination. For instance, in a combat scenario involving
scouter and attacker UAVs, the information that is relayed by a scouter on the location
of an enemy is related to the state and locale of the attacker UAVs, and the availability of
ammunition. This feature can be used by individuals to predict the information needs of
other individuals of the team using the information relevance obtained from their domain
knowledge. This particular strategy is novel, and has not been reported in most related
works of self-organizing systems’ coordination.

By extending a theoretical decision model into a scalable information sharing problem,
we analyze the information utilities between related information. The fundamental point
is to prove that information relevance is the intrinsic knowledge relevant to dynamic
attributes of the self-organizing system [23]. Next, to compute the relevance of information,



Entropy 2021, 23, 342 3 of 17

we propose a semantic model based on semantic graph. The semantic graph is built with
the domain knowledge and information that individual members share. In this context,
information refers to semantic information represented by human language but not a
communication package that relies on network protocols. In addition, offline relevance
computation algorithm is modified to provide a practical online algorithm. In this online
computation, the ontology graphs are dynamically updated with the domain knowledge of
individual members. Hence, as members continue to receive relevant information, they are
able to enrich their knowledge-base and also extend their ontology graphs for improved
measurements of information relevance. By doing so, the decision model of individual
members is refined, and they are able to get more related information for their domain
actions. Finally, we extend the information relevance model to build simulations on sharing
coordination. Our experimental results show the feasibility and efficiency of our algorithm
in large teams.

The rest of this paper is organized as follows; In Section 2, the decentralized infor-
mation sharing problem and the need for practical information sharing mechanisms are
presented. In Section 3, our ontological information relevance approach is presented in
detail. Having presented our approach, experiments and results in a search and rescue task
are presented in Section 4. Finally, we present our concluding remarks by summarizing
our contributions and future work.

2. Decentralized Information Sharing Problem

In this section, we present the nature of decentralized coordination existing between
the members of a given self-organized system. The general information sharing model
for decentralized members of a team can be explained using the causal processing model
shown in Figure 1. Members’ decisions can be explicitly described in two stages. First,
members make decisions on how to communicate with some teammates based on their
perspective to the environment, so that they can jointly share knowledge. We call this stage
information sharing stage. In the next stage termed the domain decision stage, members’
decisions rely on the intermediate observation, subject to the local communication decision,
observation, and information received by a member.

Figure 1. Coordination of the self-organizing system with the information sharing stage .
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2.1. Information Sharing Decision Process

At the information sharing stage, decentralized member a take information sharing
action CAI and changes the information state of team SI , while, in the coordination stage,
member a takes coordination action CAD and changes the domain state of team SD. Since
the decision process of a member includes these two stages, the team state S includes the
state of information sharing and domain coordination state: S : SI × SD, and the transition
probability function can be computed as shown in Equation (1):

PD+I(S, S′) = Prob(S′D, S′I |SD, SI , CAD, CAI) (1)

For member a, the coordination decision is only based on its intermediate local knowl-
edge, which is fully observable. According to the properties of Bayesian Networks [24],
the decision of information sharing and coordination are d-separated and mutually inde-
pendent when the intermediate observation is given. The whole transition probability can
then be written using Equation (2):

PD+I(S, S′) = Prob(S′D|SD, CAD) · Prob(S′I |SI , CAI) (2)

As an independent decision process, when the information sharing process forwards
enough information to support a single member domain decision, we assume it will
perform rationally to carry out an action with expected reward. Therefore, CAD → R and
Prob(S′D|SD, CAD) = 1. The transition probability function for information sharing with
the assumption of members’ rational action based on received information can be modeled
using Equation (3):

PD+I(S, S′) = Prob(S′I |SI , CAI) (3)

Moreover, the reward function also includes these two parts R : RD × RI . The instant
reward of an information sharing process is negative RI ∈ R− because only communication
cost occurs. However, a team can benefit when an individual member gets enough related
information for a rational joint team decision to be made. For example, if a piece of
information denoting a hostile target is approaching and another piece of information
talking about obstacle on a particular path reach a single member, the team can make an
alternative routing decision so that the team coordination can be improved. Therefore, the
information distribution of the team directly decides the domain action when it is assumed
that rational actions are expected to be carried out whenever a member gains enough
information for their domain decision support: SI → CAD. Since there is CAD → R,
the reward function is traceable to information distribution, and the value of immediate
reward depends on the corresponding information individual members get.

The information sharing utility function can be defined based on the reference reward
that if a set of related information gi = {Ii1, Ii2, . . . , Iik} is received by one member, a
rational joint activity can be carried out in the team toward a reward R(gi). To make
rational decisions, members of a self-organizing team must make the best trade-off between
sharing information for team reward and minimizing communication cost [25].

2.2. Decision Theoretical Model

In a large self-organization system, effective information sharing improves each decen-
tralized member’s cooperation and joint actions toward improving their common objective
and therefore gaining a higher overall reward. In theory, the information sharing decision
process of each member can be also modeled as a partially-observable Markov decision
process (POMDP). In order to make rational information sharing decisions, members have
to make the best trade-off between sharing information to obtain overall system reward but
minimize the communication cost in the sharing process. We adapt the classic definition of
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information sharing decision model, COMmunicative Multiagent Team Decision Problem
(COM-MTDP) model [18], and extend the model as a tuple, < S,O, Υ̂, B, P, CA,< >, where:

• S denotes the information state of the team. At time t, S(t) = ∪
a∈A

Sa(t) where Sa(t) is

a set of information states about the system that a member of the team possesses.
• O defines a member’s observation of the environment.
• Υ̂ defines the members’ communication sets, which consists of each member’s infor-

mation, Υ such that Υ̂(t) = ∪
a∈A

Υ̂a(t). Information in member a’s communication set

Υ̂a(t) is either received or sensed by a.
• B is the member’s perceived belief state of the team. The probability Ba(S(t)) is the

inferred belief of member a of the state of the team S(t) at time t.
• P : B× Υ̂× B→ [0, 1] is the transition function, which maps the impact of team mem-

bers’ communication action to the belief state. More formally, at time t, P(b, π, b′) =
Pr(B(t + 1) = b′|B(t) = b, CA(t) = π).

• CA represents members’ communication action. CA(a, Υ) is the decision of member a
on which a neighbor should receive information Υ.

• < : S× Υ̂ → R is the reward function that returns the cost of choices made by indi-
vidual members. The rewards obtained over time by individual members adopting a
specific course of communication action can be viewed as random variables <t. For
instance, when the individual members carry out their preferred actions based on a
set of related information Υ = {Υi1, Υi2, . . . , Υik} received by one of its members, zi,
the cost of these actions is the reward, <(zi), returned by the reward function. A team
receives negative comcost values as the cost of information sharing.

When a senses or receives a message from someone else, it will update its belief state
Ba(t) and communication set, and decides whether the information in Υ̂a(t) should be sent
according to its information sharing decision policy. The objective of a’s decisions is to
send a piece of information so as to reach a state that the whole system could benefit, i.e., a
specific member obtains a piece of information it could make a good use of. To measure the
expected utility of the member a’s decision on where to share the information, we define
the expected utility function on Ba(t) = ba under information sharing policy π as shown
in Equation (4):

Expπ(ba) =
∞

∑
t=0

P(ba, Υ̂a, b′a)× (γtρ(ba)− comcost) (4)

where b′a represents a’s belief state in the next step Ba(t + 1) and γ ∈ (0, 1] is the discounted
future reward.

Hence, given a belief state of b, the reward can be calculated as

ρ(b) = ∑
S

B(S(t))<(S(t)) (5)

The optimal policy for sharing information in Υ̂ is shown in Equation (6), and the
expected utility based on value iteration based on Equation (7)

π∗(b) = argmaxCA(a,Υ̂)Exp∗(b′) (6)

Exp∗(b) = argmaxCA(a,Υ̂)[P(b, Υ̂, b′) · (ρ(b)− comcost + γExp∗(b′))] (7)

However, although we can theoretically model the information sharing, this problem
in nature is still classified as a DEC-POMDP [26], which has been proven to be NEXP-
complete [18]. Therefore, for the intrinsic computation complexity of the problem, the
self-organization system has to find a practical way for information sharing by a nature-
inspired heuristic idea.
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2.3. Practical Information Sharing Model

Considering the computational complexity of the theoretical information sharing
decision model, we try to find clues for designing efficient information sharing from a
nature inspired self-organizing system. Naturally, humans, both biologically and as a
society, provides several illustrative examples of such self-organizations [27]. In the human
society, information is also communicated and shared in a decentralized way. However,
instead of precisely computing its information utility, human beings evaluate and share
information in an inferred probability way. We illustrate this information sharing process
using Figure 2 to provide a simplistic and easy to comprehend scenario. Assuming, in
the midst of his friends, that Paul receives a call “Do you need to see the doctor?”, which
suggests that one of his friends should come and see the doctor. However, none of Paul’s
friends has indicated to him that he is sick. Thus, Paul decides to share the message “ Do
you need to see the doctor?” among his friends. However, if, prior to the call, Paul knew
about the health status of his friends i.e., “I feel sick” from Peter, he would prefer to send
this message to Peter.

Figure 2. A scenario human information sharing decision concept.

However, this preference does not always lead to a desirable outcome, and the rele-
vance of it demonstrates the effectiveness. Motivated by this information sharing process
of humans, we build a practical model for distributed self-organizing systems. In this
model, we take advantage of the members’ local knowledge. If we refer to Paul as member
a, Peter as member b, and represent the local knowledge of Paul as λa, va is used to model
Paul’s belief state of potential information receivers as compared to the use of B in the
decision theoretical model. We note that members’ local knowledge solely depends on
their previously received information. Similar to human beings, the decision process to
match an information sharing action in our practical model is defined in Equation (8):

P : Λ× Υ̂→ [0, 1] (8)

where Λ means sending information, and Paul’s preference to send a piece of information
according to its knowledge-base is built as a probability model P. According to Equation (8),
we build the probability model to denote individuals’ preferred information activity. The
model of member a is a matrix Pa, where Pa[υ, b] represents the preference that information
υ is to be sent to an associate b(Peter).

When Paul does not have any prior knowledge of his associates’ or his friends’ in-
formation needs, any of his friends can become a potential receiver, i.e., Paul will relay
the information he receives without any preference. However, following the example in
Figure 2, if Paul already knew that Peter was not feeling well (“I feel sick” from Peter), the
preference of sending “Do you need to see the doctor?” to Peter becomes higher. Analyzing
the preceding scenario, there is a tightly coupled relevance between these two pieces of in-
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formation i.e., irrespective of the originator of “I feel sick,” there is an increasing preference
of sending “Do you need to see the doctor?” since sickness has an intrinsic relationship
with seeing a doctor. Therefore, in this practical model, given two pieces of information
q, r ∈ Υ̂, the Relevance of q and r can be computed as the fitness Fit(q, r) between q and r
whose value can be derived from the domain knowledge as discussed in Section 3. This
data structure is potentially critical to practical information sharing.

From Equation (8), members in a self-organizing team can rely on their understanding
of teammates’ local knowledge to make an informed decision on whether to send its own
information to others, as well as update its preference model when the relevance between
pieces of information is known. When a new piece of information q is received, the practical
decision model Pa is updated based on the relevance between q and any of the information r
in λa. However, when λa = {φ} i.e., member a has no prior knowledge about its neighbors’
local knowledge state, then an unbiased decision process is adopted by a for sharing the
received information since Pa will be equal. When λa = r where r is a piece of information
sent from associate b to a, the probability updating function can be written as:

P′a[q, b] = Pa[q, b]× Fit(i, r) (9)

This function shows the direct relation of q and r to a’s preference of passing q to b in
order for the team to gain higher expected utility. The update of the preference model of
sending q by a is a recursive process since all other information in Λa is considered. The
work in [28] shows the complete updating function:

∀q, r ∈ Υ, b ∈ N(a) δΥ
P (Pa[q, b], m =< r, path >)

=


Pa[q, b]× Fit(q, r)× 2

|N| if q 6= r, b = sender(r)

Pa[q, b]× 1
|N| if q 6= r, b 6= sender(r)

ε if q = r, b = sender(q)

It is worth noting that the normalization of P is necessary to achieve a common
scale. This model has been proven to be feasible when the relevance between information
pieces is known [28] based on the practical decision model. However, research on practical
approaches to define information relevance is still ongoing [29,30].

3. Ontological Approach for Computing Information Relevance

Ontology can generally be viewed as a data model used to represent concepts in
a given domain and the relationships between them. It is practical for concepts/objects
and their semantic relationships to be represented as ontology graphs based on members’
domain knowledge and shared information. This ontology graph can then be used to
compute the relevance between pieces of information. In this section, we introduce an
extended method of computing the relevance Fit between pieces of information based on
ontology and members’ local dynamic knowledge. To do this, we first discuss with an
example what a semantic ontology graph and then goes ahead to present the information
relevance model. Next, with an example, we demonstrated how to compute the relevance
between concepts and finally present our approach to dynamically update members’ local
knowledge and compute the information relevance.

3.1. Ontology Graph Representation

Ontologies can be seen as a special kind of graph describing entities, their properties,
and relationships between them in a given domain. Ontologies can be used to reason about
the objects and their attributes within a domain. Given that self-organizing systems operate
in environments where pieces of information and knowledge of individuals can be con-
cretized to extract atomic concepts, correlated with each other by semantic contents [31], this
data model can be leveraged to compute relevance between information. To conceptually
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abstract pieces of information, this paper uses the representation of triples as in Resource
Description Framework (RDF).

RDF is a standard model for data interchange on the Web. In the RDF data model,
resources are represented in the form subject-predicate-object. Similar to web resources,
information semantically consists of subjects, predicates, and objects. We refer to subjects
and objects, which represent the class or instances of the information source as concepts,
and the predicate referred to as property, which describes the attributions of concepts
and their relationships.With this approach, a piece of information Υ, consists of concepts
vi, and properties pj, i.e., Υ = {v1, v2, . . . vn; p1, p2, . . . , pm}(n, m ∈ R). For instance, in
a combat mission, the information “UCAV A loaded with air-to-surface missiles destroyed
Enemy Base near forest B” sent by one of the robots can be divided into the semantic set
{“UCAV A”, “EnemyBase”, “Forest B”, “missiles”; “destroyed”, “is-near”, “is-loaded-with”}. To
investigate the relationships between different pieces of information, information in this
work is represented with ontology graph as has been in the literature. In an ontology graph
G =< V, E >, V is used to define the node set that represents the concepts in the semantic
ontology, and E, the edge set, denoting properties of a piece of information. Figure 3 shows
an example of ontology graph of Υ.

Figure 3. Ontology graph representation of information “UCAV A loaded with air-to-surface missiles
destroyed Enemy Base near forest B”.

Received information in some situations may include multiple communication instruc-
tions consisting of multiple clauses. In this case, the multiple communication primitives can
be decomposed into single clauses, and its effects will be the summation of all clauses [32].
Thus, a single clause, clausej = {clj1, clj2, pj}. For us to be able to perform relevance
computations, the defined ontology should be devoid of cyclic or circle definitions. In
other words, ontological representation of domain information must use primitive atomic
concepts of the domain from which the proposed concepts are created.

3.2. Information Semantic Relevance Model

Relying on the intrinsic meaning of words that convey a piece of information, the
semantic relationship between pieces of information can be measured [31]. In the model
defined above, the semantic components of an information is represented by concepts
and their properties. Hence, the relevance between two pieces of information can be
measured using the relationship between their concepts and properties. More generally,
concepts and properties of pieces of information can reflect the semantic relation between
information. Based on the relevance between each concept pairs, the information relevance
is modeled without taking into consideration the influence on the relations by properties.
Consequently, given two pieces of information, Υx and Υy, the relevance between them
can be defined as Equation (10)

Fit(Υx, Υy) =
1

|Ψx| · |Ψy| ∑
vi∈Ψx

∑
vj∈Ψy

Fit(vi, vj) (10)

where Ψx = Υx − (Υx ∩ Υy) represents the set of concepts in Υx but does not belong to the
semantic intersection set of Υx and Υy. Similarly, Ψy = Υy − (Υx ∩ Υy). The relevance of
two pieces of information only takes the relationship of different concepts of them because
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relevance of the same concepts or word string is 1, and the semantic difference is only
caused by the different parts. To compute the average relevance between all different
concept pairs of Υx and Υy, the sum of relevance between all the pairs is divided by the
count of different concept groups, i.e., |Ψx| · |Ψy|. The similarity of the information Υx itself
is an empty set, i.e., Ψx = ∅ and Fit(Υx, Υx) = Fit(∅, ∅) = 1. Fit(vi, vj) is the degree of
relationship between concepts as presented in Section 3.3.

3.3. Concepts Relevance Computation Approach

In the literature, there have been some approaches adopted for computing the simi-
larities between concepts such as one found in Wu et al. [33]. In this work, the relevance
between concepts are computed based on the model found in Wu et al. [33]. Given a
domain D, an initial ontology graph GD =< V, E > is formed in accordance with the
knowledge extracted from the domain. Based on the terminologies associated with the
domain, the nodes in the tree are expanded beginning with the root node “Thing”—for
instance, assuming in a military operation that unmanned aerial vehicles consisting of
scouters and combat vehicles (UCAV) are deployed in a forest to destroy enemy bases. In
this scenario, the scouters are to search for the bases and communicate to the UCAV to come
and destroy the targets. The common knowledge for the members of a self-organizing
team can be described as shown in Figure 4.

Figure 4. A minimal example initial ontology graph in combat missions.

The members’ decisions are based on the rigidity and non-volatile nature of the domain
knowledge and the ontology graph [34]. The relationship between concepts’ definitions and
the semantic meaning conveyed by pieces of information is reflected in the ontology graph.
This means that the semantic relationship between nodes in an ontology graph can be seen
by their distance in the graph. The closer the distance between two nodes, the higher the
relevance between concepts they represent. The degree of relationship between two concept
nodes vi and vj can be calculated as Equation (11) [33]:

Fit(vi, vj) =
2× len(vr, vk)

len(vi, vk) + len(vj, vk) + 2× len(vr, vk)
(11)

where len(vi, vj) is the shortest path length between concepts vi and vj, and vk is the lowest
common ancestor of vi and vj. For example, in Figure 4, len( f orest, base) = len(scouter,
UCAV) = 2. The assumption is that the root node, vr of the ontology graph has a shortest
path of length 1, i.e., len(Thing, Thing) = 1. In addition, it can be said that len(Thing, scouter)
= len(Thing, f orest) = 3. It is worth noting, since the lowest common ancestor of a concept
vi is itself and the shortest distance is 0, the relevance of vi is 1, Fit(vi, vi) = 1.
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To avoid incurring high computational complexities, the computation uses distance
between concepts rather than their content [34]. Content based computations require travers-
ing of the entire ontology graph to compute the probability of concepts and all its child nodes.
Other than solely computing the shortest distance between nodes, this method weights each
edge by the global depth of vk. From the above example, the relevance between event and
Military is 0.5.

3.4. Dynamic Update of the Knowledge Graph

During mission execution, team members encounter or receive new information due
to new or uncompleted tasks and events occurring in the environment. The concepts of
this information can be modeled as instances of the objects in the ontology graph of the
domain knowledge, and they can be described as events [31]. These events come in a
form of information whose concepts are object instances in the ontology graph of the
domain knowledge. The nature of information received may also differ. This means that
some classes of information are more likely to be shared than others since some classes of
information may contain more concepts as a result of events and their descriptions. For
instance, in our example ontology graph above, a new piece of information “UCAV U loaded
with air-to-surface missiles attacked Enemy Base near forest B” is more likely to be shared as
compared to the information “UCAV is a subclass of object UAV” because the former can be
classified as an incident or event that occurred and is more likely to be correlated with other
events with little semantic similarities based on the domain knowledge. Breaking this down
further, in the former information, “ UCAV” is related to two concepts, i.e., “air-to-surface
missiles”, which is an instance of the weapon concept and “forest B”, which is an instance of
location, and may lead to correlation with more concepts with semantic relations.

For instance, an incident or some piece of information may have been related to the
forest, and it is more likely that the former piece of information may connect to some
concepts in that information. Hence, although semantics of information reflect the intrinsic
relationship between information, the type or class of information in practical applications
may lead to new relationships because of the dynamic nature of self-organizing teams.
There is therefore the need for members to update their concept ontology graphs to reflect
any new information received.

To dynamically update members’ local knowledge, incoming information is dynami-
cally incorporated into the domain ontology graph GD, which describes the relationship
between concepts. This is done by dividing newly obtained information into concepts
and properties according to the factorization presented in Section 3.1 and merged with
the former graph to form a new one. For instance, with a new piece of information Υ,
the update of GD is done by adding the new concepts in Υ that are not in GD based on
property relation, and adding new properties related to concepts that are found in both
Υ and GD. This means that Υ does not impart any new knowledge on GD if Υ ∈ GD, i.e.,
all concepts and properties of Υ are in GD including their corresponding edges having the
same direction. For example, with an initial knowledge Υinit = {Scouter A found base E near
forest F} of member of the team, the update of the member knowledge with new pieces of
information (υ1 = {UCAV U is moving to Base E with missiles}, υ2 = {UCAV U has passed forest
F}, υ3 = {The Army is under attack}) is described in Figure 5.

New nodes are added when information containing new concepts is received, as can
be seen in Figure 5. You notice that, after updating the initial graph with υ1, all the concepts
in information υ2 can be found in the resulting graph. Therefore, when new information
υ2 arrived, the update required adding the connection has-passed between the concepts
(Forest F, UCAV A) only. In addition, the piece of information, υ3, is irrelevant to the
previous information received by the member, and, hence, forms an independent ontology
graph. Dynamic information updates may lead to cyclic graphs and more difficulty with
avoiding the directed ontology graph as compared to the initial domain knowledge. In the
event that there are more relationships between two instances, such as in the following two
pieces of information, the army has procured UCAV and UCAV is operated by the army, a circle
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is formed between concepts “UCAV ” and “ the army”. Most of the existing approaches
used to compute similarity between concepts are based on a tree, which are not suitable
for directed cyclic graphs. In order to solve the cyclic problem, we use the length of the
shortest path between two concepts to roughly estimate their relevance.

Figure 5. An example of ontology graph with dynamic events in combat missions.

The relevance between vi and vj is defined as:

Fit(vi, vj) = −γlog
len(vi, vj)

N
(12)

where len(vi, vj) is the length of the shortest path between vi and vj, γ is a normalization
factor, and N is the number of concept nodes in the graph. In cases where all vertices connect
as a ring, the relevance between vertices pairs can be estimated as the shortest path between
any pairs of the vertices. Multiple links between vi and vj reflect the relevance between
them. The more links, the more relevant they are to each other. We measure this factor by
considering the length of distance between the two concepts to be shorter than 1. For n links
between vi and vj, len(vi, vj) =

1
n . The direction of arcs are ignored in our calculations.

Since the relevance of information is determined by both the semantic meaning of
concepts as contained in the information and the events the concepts describe, the relevance
of concepts in information can be modeled as:

Fit(vi, vj) = αFito f f (vi, vj) + ((1− α)Fiton(vi, vj)) (13)

where Fito f f (vi, vj) and Fiton(vi, vj) are the online and offline relevance computed using
Equations (11) and (12), respectively, and α is a normalization factor. Fito f f (vi, vj) measures
the semantic relevance of the concepts, where concepts of information are regarded as
instances of the objects in the initial domain knowledge. Hence, Fito f f (vi, vj) is actually the
relevance between concepts that vi and vj respectively belong to. In this way, the relevance
of information can be computed as shown in Equation (13).

We give an illustration of the computation using Figures 4 and 5b. Suppose we want
to compute relevance between υ1=“Scouter A found base E near forest F” and υ2 = “UCAV U
has passed forest F”, with α = 0.5, β = 1. Thus, Fito f f (E, U) = 0.25 and Fiton(E, U) = 0.85.
This implies that Fit(E, U) = 0.55. Hence, Fit(υ1, υ2) = 0.55. This is similar for υ3 =
“The Army L is under attack” and υ2. Fito f f (L, U) = 0.25 and Fiton(L, U) = 0.0. Therefore,
Fit(υ3, υ2) = 0.125. From above, it is evident that the information as contained in υ2 has
concepts that have intrinsic meaning or semantic relevance to the incident of finding a base
and a UCAV moving in to destroy it in υ1 as it has to υ3.

In as much as our proposed model of information relevance computation is applicable
in situations where the coordination of decisions and task assignment is shared as members’
interactive information, we note that the design of increasing probability of sending relative
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information to the previous information sender is not appropriate—for instance, if the piece
of information, which UCAV can attack base E near forest A?, previously sent from member b
to a, is sent to member c. Instinctively, if the information was false, member a should be
more likely to rather share with c, There is no base near forest A since it is c that should be
in good position to reach the member that would be taking up the task to rescind. On the
other hand, if b sends task assignment information as “I am attacking base E near forest A,”
a‘s probability of sharing i to c will be increased as described in Section 2.3. To cater for
relevance in shared coordination, our decision model is extended to share information i
based on a piece of coordination information ∆ previously received:

P′a[i, b] = Pa[i, b]× Fit(i, ∆) where b = receiver(∆)

where Fit(i, ∆) is the relevance of i and ∆, and member b received ∆ from a. The idea is for
related information to be shared with a coordination receiver so that individual members
that accepted the assignment of resources or tasks can be rewarded.

4. Simulation and Results

To manifest the efficiency of our information sharing design based on ontological
relevance computation, we built a self-organizing robot swarm in a search and rescue
domain [35,36]. The simulation was designed in the Java programming language based
on an eclipse RDF4J framework [37] and JGRAPHT [38] library. By applying our model
of information sharing with ontological relevance computation, we hypothesize that this
design will improve the decentralized information sharing process between robots and in
turn enhance their domain performance in kinds of benchmarks.

4.1. Simulation Setup

In this simulation, a group of heterogeneous robots was deployed to start from their
base and perform search and rescue tasks. There are two basic types of robots: search robots
and rescue robots. Search robots are equipped with a large range of sensors, and can move
faster than rescue robots to be able to explore and find victims in undetected areas. To save
a detected victim, one or more rescue robots receiving the information are required to go
to the distressed zone and perform the rescue task. However, different types of victims
require different rescue robots. In our abstract simulation, the heterogeneity is represented
as different colors in both victims and rescue robots. For example, the red color of victims
can only be saved by red colored rescue robots. In addition, all the robots are equipped
with wireless communicators that allow communication only among a particular range of
robots for a possible peer-to-peer information sharing. Thus, robots are required to make a
good balance of information sharing in the group in order to improve team coordination
and safeguard the communication process.

The simulation starts by dispatching search robots from the base to detect different
unexplored areas for obstacles and victims. When a victim is found, the information is shared
for a rescue operation to commence. An ideal type of rescue robot, if idle and obtaining this
information, activates a rescue mission by moving to the victim’s location. All the robots
are encoded with a decentralized path planning algorithm. However, their performance is
better if they obtain knowledge of all obstacles in advance other than detecting the same
by themselves. When a rescue robot finishes its task and gets no further information on
another victim to attend to, there are two options: wandering to find victims by itself or
returning to the base, while both options consume their fuel (this process is briefly depicted
in Figure 6). Therefore, in the simulation, information sharing is necessary to improve the
team performance and can be evaluated by two statistics: amount of information being
communicated (the less the better) and the sum of distance that all the robots traveled (the
less the better). All the simulation setup can be briefly illustrated as an ontological map in
Figure 7. To evaluate our design, we encoded three different algorithms:
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Figure 6. Simulation setup. The opaque area is an area that has not been searched yet. The green
shapes represent obstacles, the orange circles depict the radar range of search robots, and the different
lines represent path plans of rescue robots while victims are depicted by boxes.

Figure 7. Ontological representation of the simulation.

• Replan_heuristic_comm: represents our designed ontological relevance based infor-
mation sharing algorithm where robots inference semantic information received and
pro-actively share the information so that less information is relayed, but robots are
rewarded with shorter length of routes being traveled for saving the same number of
victims.

• Replan_without_comm: Performing search victims and rescuing them by the robots
themselves without sharing any information. It is considered as the baseline of team
performance.

• Replan_free_comm: each robot connects with all others, which forms a fully connected
network. A robot shares its own information to any of the others freely. As there is
no information sharing cost being considered, robots are able to get the full map of
information. Although its performance could be understood as the upper limit, the
information sharing cost should be huge.

In each simulation, unless otherwise explained, the default setting is: there are 10
search robots and 50 rescue robots to rescue the same number of victims randomly placed in
the map. Victims are grouped into 10 types in different colors. Rescue robots are attributed
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with the same number of types and five robots in each type. Moreover, 30 obstacles are set
randomly in the environment. Several simulation screen shots are shown in Figure 8.

Figure 8. Simulation screen shots. On the left is a few moments after simulation started, when the victims found are rescued
by appropriate robots. Towards the end (right), as the search area reduces drastically, some of the search robots started
returning to the base while the rescue is ongoing.

4.2. Simulation Results as Time Varies

The first simulation investigated the algorithm’s performance over time. We use default
settings in this simulation, and settings remained unchanged during the process. Sum of
distances traveled and number of information communicated were recorded at each time
step of the simulation. The results are shown in Figure 9. Use of Replan_free_comm achieved
the shortest distance traveled with the greatest cost in communication. Without communica-
tion, simulation using Replan_withou_comm resulted in the largest sum of distance traveled.
In fact, robots can only plan paths based on their own knowledge without information
sharing. Replan_heuristic_comm achieved a moderate sum of distance with a much lower
communication cost than the first algorithm. Taking both factors into consideration, our
algorithm has the best utility.

Figure 9. Relevance of robot planning results and time.

As simulation proceeds and more victims are spotted, more rescue robots are as-
signed with rescue tasks. During this process, more knowledge is discovered and shared
causing communication costs to go up. The total messages sent between robots using the
Replan_heuristic_comm algorithm are always less than Replan_free_comm algorithm. Because
of the free and all connected communication, robots using Replan_free_comm algorithm
are always up-to-date, and manage to achieve the lowest total travel length cost with a
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significant cost in communication. Due to the lack of communication, robots using Re-
plan_without_comm are not able to replan their path ahead of time, which leads to the
highest travel length cost among three algorithms.

4.3. Scalability under Variable Number of Rescue Robots

The second simulation examined in more detail the scalability of our algorithm under
different team size settings. We set up five scout robots in all settings and 5, 10, 20, and
50 rescue robots and victims for each setting. Performance was measured by the sum of
distances traveled by rescue robots and the amount of information communicated between
robots. The results are shown in Figure 10. As the results suggest, our algorithm produced
less communication costs while maintaining a moderate distance cost. We give the same
conclusion as the first simulation. Our simulation keeps the best utility among different
team sizes.

Figure 10. Simulation results under variable team size.

4.4. Scalability under Variable Exploration Rate

In this simulation, we focus on the scalability under varied exploration rates. We set up
five rescue robots, five victims in all settings and 3, 5, and 10 scout robots for each settings.
The results are shown in Figure 11. As the results show, our algorithm maintains the best
utility among three algorithms under all conditions.

Figure 11. Simulation results under variable exploration rates.
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5. Summary and Future Works

In this paper, we presented information sharing as a fundamental decision problem,
which directly influences the performance of large scalable self-organizing systems. Since
computing utility from theoretical decision models is not feasible for large teams, we
proposed a heuristic approach that utilizes the relevance of information to aid members in
self-organizing teams with making communication decisions. We also defined the numerical
representation of the key factors of information relevance in this heuristic approach, and
introduced an ontological method to evaluate it. Our experiments proved that this design is
feasible for self-organizing teams coordination in many application domains.

Critically, in our lightweight simulation, we only considered a few ontological in-
stances, and abstracted many important factors required for real domain coordination.
In the future, we will build ontology databases and encode our algorithm into a large
scale team coordination domain such as a city rescue operation, naval combats operations,
etc. Secondly, an extension of the information sharing model is imperative because our
approach is based on a peer-to-peer information sharing, whereas, in many application
domains, the communication infrastructure is based on broadcasting.

Author Contributions: All authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: There is no conflict of interest.

References
1. Di Marzo Serugendo, G.; Gleizes, M.P.; Karageorgos, A. Self-organization in multi-agent systems. Knowl. Eng. Rev. 2005, 20,

165–189. [CrossRef]
2. Parunak, H.V.D.; Brueckner, S.A. Software engineering for self-organizing systems. Knowl. Eng. Rev. 2015, 30, 419–434. [CrossRef]
3. Narzisi, G.; Mysore, V.; Mishra, B. Multi-objective evolutionary optimization of agent-based models: An application to emergency

response planning. In Proceedings of the 2nd IASTED International Conference on Computational Intelligence, CI 2006,
San Francisco, CA, USA, 20–22 November 2006; pp. 224–230.

4. Castillo, O.; Trujillo, L.; Melin, P. Multiple Objective Genetic Algorithms for Path-planning Optimization in Autonomous Mobile
Robots. Soft Comput. 2007, 11, 269–279. [CrossRef]

5. Aberdeen, D.; Thiébaux, S.; Zhang, L. Decision-Theoretic Military Operations Planning. In Proceedings of the ICAPS, Whistler,
BC, Canada, 3–7 June 2004.

6. Schranz, M.; Umlauft, M.; Sende, M.; Elmenreich, W. Swarm Robotic Behaviors and Current Applications. Front. Robot. AI 2020,
7, 36. [CrossRef] [PubMed]

7. Morisawa, T.; Hayashi, K.; Mizuuchi, I. Allocating Multiple Types of Tasks to Heterogeneous Agents Based on the Theory of
Comparative Advantage. J. Robot. 2018, 2018. [CrossRef]

8. Ashby, W.R. Principles of the Self-Organizing Dynamic System. J. Gen. Psychol. 1947, 37, 125–128. [CrossRef] [PubMed]
9. Kuze, N.; Kominami, D.; Kashima, K.; Hashimoto, T.; Murata, M. Controlling Large-Scale Self-Organized Networks with Lightweight

Cost for Fast Adaptation to Changing Environments. ACM Trans. Auton. Adapt. Syst. 2016, 11. [CrossRef]
10. Kuze, N.; Kominami, D.; Kashima, K.; Hashimoto, T.; Murata, M. Hierarchical Optimal Control Method for Controlling Large-Scale

Self-Organizing Networks. ACM Trans. Auton. Adapt. Syst. 2017, 12. [CrossRef]
11. Gao, C.; Zhen, Z.; Gong, H. A self-organized search and attack algorithm for multiple unmanned aerial vehicles. Aerosp. Sci.

Technol. 2016, 54, 229–240. [CrossRef]
12. Orfanus, D.; Pignaton de Freitas, E.; Eliassen, F. Self-Organization as a Supporting Paradigm for Military UAV Relay Networks.

IEEE Commun. Lett. 2016, 20, 804–807. [CrossRef]
13. Sokhova, Z.B. Model of Self-organizing System of Autonomous Agents. In Advances in Neural Computation, Machine Learning, and

Cognitive Research IV; Kryzhanovsky, B., Dunin-Barkowski, W., Redko, V., Tiumentsev, Y., Eds.; Springer International Publishing:
Cham, Switzerland, 2021; pp. 93–100.

14. Rosas, F.; Mediano, P.A.; Ugarte, M.; Jensen, H.J. An Information-Theoretic Approach to Self-Organisation: Emergence of
Complex Interdependencies in Coupled Dynamical Systems. Entropy 2018, 20, 793. [CrossRef]

15. Kuze, N.; Kominami, D.; Kashima, K.; Hashimoto, T.; Murata, M. Self-Organizing Control Mechanism Based on Collective
Decision-Making for Information Uncertainty. ACM Trans. Auton. Adapt. Syst. 2018, 13. [CrossRef]

16. Tamma, V.; Bench-Capon, T. An ontology model to facilitate knowledge-sharing in multi-agent systems. Knowl. Eng. Rev. 2002,
17, 41–60. [CrossRef]

http://doi.org/10.1017/S0269888905000494
http://dx.doi.org/10.1017/S0269888915000089
http://dx.doi.org/10.1007/s00500-006-0068-4
http://dx.doi.org/10.3389/frobt.2020.00036
http://www.ncbi.nlm.nih.gov/pubmed/33501204
http://dx.doi.org/10.1155/2018/1408796
http://dx.doi.org/10.1080/00221309.1947.9918144
http://www.ncbi.nlm.nih.gov/pubmed/20270223
http://dx.doi.org/10.1145/2856424
http://dx.doi.org/10.1145/3124644
http://dx.doi.org/10.1016/j.ast.2016.03.022
http://dx.doi.org/10.1109/LCOMM.2016.2524405
http://dx.doi.org/10.3390/e20100793
http://dx.doi.org/10.1145/3183340
http://dx.doi.org/10.1017/S0269888902000371


Entropy 2021, 23, 342 17 of 17

17. Heylighen, F. Self-organization in Communicating Groups: The Emergence of Coordination, Shared References and Collective
Intelligence. In Complexity Perspectives on Language, Communication and Society; Massip-Bonet, À., Bastardas-Boada, A., Eds.;
Springer: Berlin/Heidelberg, Germany, 2013; pp. 117–149.

18. Xuan, P.; Lesser, V.; Zilberstein, S. Communication Decisions in Multi-agent Cooperation: Model and Experiments. Proc. Int.
Conf. Auton. Agents 2001. [CrossRef]

19. Gmytrasiewicz, P.; Durfee, E.; Wehe, D.K. The Utility of Communication in Coordinating Intelligent Agents. In Proceedings of
the AAAI-91, Anaheim, CA, USA, 14–19 July 1991; pp. 166–172.

20. Bernstein, D.S.; Zilberstein, S.; Immerman, N. The Complexity of Decentralized Control of Markov Decision Processes. arXiv
2013, arXiv:1301.3836.

21. Carlin, A.; Zilberstein, S. Myopic and Non-myopic Communication under Partial Observability. In Proceedings of the 2009
IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, Milan, Italy, 15–18
September 2009; Volume 2, pp. 331–338.

22. Biswas, S.; Kundu, S.; Das, S. Inducing Niching Behavior in Differential Evolution Through Local Information Sharing. IEEE
Trans. Evol. Comput. 2015, 19, 246–263. [CrossRef]

23. Wanasinghe, T.R.; Mann, G.K.I.; Gosine, R.G. Decentralized Cooperative Localization for Heterogeneous Multi-robot System
Using Split Covariance Intersection Filter. In Proceedings of the 2014 Canadian Conference on Computer and Robot Vision,
Montreal, QC, Canada, 6–9 May 2014; pp. 167–174.

24. Charniak, E. Bayesian Networks Without Tears: Making Bayesian Networks More Accessible to the Probabilistically Unsophisti-
cated. AI Mag. 1991, 12, 50–63.

25. Burgard, W.; Moors, M.; Stachniss, C.; Schneider, F.E. Coordinated multi-robot exploration. IEEE Trans. Robot. 2005, 21, 376–386.
[CrossRef]

26. Amato, C.; Konidaris, G.D.; Kaelbling, L.P. Planning with Macro-actions in Decentralized POMDPs. In Proceedings of the
2014 International Conference on Autonomous Agents and Multi-agent Systems, AAMAS ’14, Paris, France, 5–9 May 2014;
International Foundation for Autonomous Agents and Multiagent Systems: Richland, SC, USA, 2014; pp. 1273–1280.

27. Kauffman, S.A. Origins of Order in Evolution: Self-Organization and Selection. In Understanding Origins: Contemporary Views on
the Origin of Life, Mind and Society; Varela, F.J., Dupuy, J.P., Eds.; Springer: Dordrecht, The Netherlands, 1992; pp. 153–181.

28. Xu, Y.; Lewis, M.; Sycara, K.; Scerri, P. An efficient information sharing approach for large scale multi-agent team. In Proceedings
of the 2008 11th International Conference on Information Fusion, Cologne, Germany, 30 June–3 July 2008; pp. 1–8.

29. Zambak, A.F. The Frame Problem. In Philosophy and Theory of Artificial Intelligence; Müller, V.C., Ed.; Springer: Berlin/Heidelberg,
Germany, 2013; pp. 307–319.

30. Shanahan, M. Solving the Frame Problem: A Mathematical Investigation of the Common Sense Law of Inertia; MIT Press: Cambridge,
MA, USA, 1997.

31. Alkahtani, N.H.; Almohsen, S.; Alkahtani, N.M.; abdullah almalki, G.; Meshref, S.S.; Kurdi, H. A Semantic Multi-Agent system to
Exchange Information between Hospitals. Procedia Comput. Sci. 2017, 109, 704–709. . [CrossRef]

32. Mitra, P.; Wiederhold, G.; Kersten, M. A graph-oriented model for articulation of ontology interdependencies. In Proceedings of the
International Conference on Extending Database Technology, Konstanz, Germany, 27–31 March 2000; Springer: Berlin/Heidelberg,
Germany, 2000; pp. 86–100.

33. Wu, Z.; Palmer, M. Verb Semantics and Lexical Selection. arXiv 1994, arXiv:cmp-lg/9406033.
34. Tsiogkas, N.; Papadimitriou, G.; Saigol, Z.; Lane, D. Efficient multi-AUV cooperation using semantic knowledge representation

for underwater archaeology missions. In Proceedings of the 2014 Oceans, St. John’s, NL, Canada, 14–19 September 2014; pp. 1–6.
35. Bevacqua, G.; Cacace, J.; Finzi, A.; Lippiello, V. Mixed-Initiative Planning and Execution for Multiple Drones in Search and

Rescue Missions. In Proceedings of the International Conference on Automated Planning and Scheduling, ICAPS, Jerusalem,
Israel, 7–11 June 2015.

36. Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Emaru, T. Symbiotic Navigation in Multi-Robot Systems with Remote Obstacle
Knowledge Sharing. Sensors 2017, 17, 1581. [CrossRef]

37. Developers, E. “Eclipse RDF4J | The Eclipse Foundation”, Eclipse RDF4J. 2021. Available online: https://rdf4j.org/ (accessed on
9 March 2021).

38. Michail, D.; Kinable, J.; Naveh, B.; Sichi, J.V. JGraphT—A Java Library for Graph Data Structures and Algorithms. ACM Trans.
Math. Softw. 2020, 46, 1–29. [CrossRef]

http://dx.doi.org/10.1145/375735.376469
http://dx.doi.org/10.1109/TEVC.2014.2313659
http://dx.doi.org/10.1109/TRO.2004.839232
http://dx.doi.org/10.1016/j.procs.2017.05.381
http://dx.doi.org/10.3390/s17071581
https://rdf4j.org/
http://dx.doi.org/10.1145/3381449

	Introduction
	Decentralized Information Sharing Problem
	Information Sharing Decision Process
	Decision Theoretical Model
	Practical Information Sharing Model

	Ontological Approach for Computing Information Relevance
	Ontology Graph Representation
	Information Semantic Relevance Model
	Concepts Relevance Computation Approach
	Dynamic Update of the Knowledge Graph

	Simulation and Results
	Simulation Setup
	Simulation Results as Time Varies
	Scalability under Variable Number of Rescue Robots
	Scalability under Variable Exploration Rate

	Summary and Future Works
	References

