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Abstract: In this paper, we generalize the notion of Shannon’s entropy power to the Rényi-entropy
setting. With this, we propose generalizations of the de Bruijn identity, isoperimetric inequality, or
Stam inequality. This framework not only allows for finding new estimation inequalities, but it also
provides a convenient technical framework for the derivation of a one-parameter family of Rényi-
entropy-power-based quantum-mechanical uncertainty relations. To illustrate the usefulness of the
Rényi entropy power obtained, we show how the information probability distribution associated
with a quantum state can be reconstructed in a process that is akin to quantum-state tomography. We
illustrate the inner workings of this with the so-called “cat states”, which are of fundamental interest
and practical use in schemes such as quantum metrology. Salient issues, including the extension of
the notion of entropy power to Tsallis entropy and ensuing implications in estimation theory, are also
briefly discussed.

Keywords: Rényi entropy; Tsallis entropy; entropic uncertainty relations; quantum metrology

1. Introduction

The notion of entropy is undoubtedly one of the most important concepts in modern
science. Very few other concepts can compete with it in respect to the number of attempts
to clarify its theoretical and philosophical meaning [1]. Originally, the notion of entropy
stemmed from thermodynamics, where it was developed to quantify the annoying ineffi-
ciency of steam engines. It then transmuted into a description of the amount of disorder
or complexity in physical systems. Though many such attempts were initially closely
connected with the statistical interpretation of the phenomenon of heat, in the course of
time, they expanded their scope far beyond their original incentives. Along those lines,
several approaches have been developed in attempts to quantify and qualify the entropy
paradigm. These have been formulated largely independently and with different appli-
cations and goals in mind. For instance, in statistical physics, entropy counts the number
of distinct microstates compatible with a given macrostate [2], in mathematical statistics, it
corresponds to the inference functional for an updating procedure [3], and in information
theory, it determines a limit on the shortest attainable encoding scheme [2,4].

Particularly distinct among these are the information-theoretic entropies (ITEs). This
is not only because they discern themselves through their firm operational prescriptions
in terms of coding theorems and communication protocols [5–9], but because they also
offer an intuitive measure of disorder phrased in terms of missing information about a
system. Apart from innate issues in communication theory, ITEs have also proved to be
indispensable tools in other branches of science. Typical examples are provided by chaotic
dynamical systems and multifractals (see, e.g., [10] and citations therein). Fully developed
turbulence, earthquake analysis, and generalized dimensions of strange attractors provide
further examples [11]. An especially important arena for ITEs in the past two decades has
been quantum mechanics (QM) with applications ranging from quantum estimation and
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coding theory to quantum entanglement. The catalyst has been an infusion of new ideas
from (quantum) information theory [12–15], functional analysis [16,17], condensed matter
theory [18,19], and cosmology [20,21]. On the experimental front, the use of ITEs has been
stimulated not only by new high-precision instrumentation [22,23] but also by, e.g., recent
advances in stochastic thermodynamics [24,25] or observed violations of Heisenberg’s
error-disturbance uncertainty relations [26–30] .

In his seminal 1948 paper, Shannon laid down the foundations of modern information
theory [5]. He was also instrumental in pointing out that, in contrast with discrete signals
or messages where information is quantified by (Shannon’s) entropy, the cases with contin-
uous variables are less satisfactory. The continuous version of Shannon’s entropy (SE)— the
so-called differential entropy, may take negative values [5,31], and so it does not have the
same status as its discrete-variable counterpart. To solve a number of information-theoretic
problems related to continuous cases Shannon shifted the emphasis from the differential
entropy to yet another object—entropy power (EP). The EP describes the variance of a
would-be Gaussian random variable with the same differential entropy as the random
variable under investigation. EP was used by Shannon [5,6] to bound the capacity of non-
Gaussian additive noise channels. Since then, the EP has proved to be essential in a number
of applications ranging from interference channels to secrecy capacity [32–36]. It has also
led to new advances in information parametric statistics [37,38] and network information
theory [39]. Apart from its significant role in information theory, the EP has found wide use
in pure mathematics, namely in the theory of inequalities [39] and mathematical statistics
and estimation theory [40].

Recent developments in information theory [41], quantum theory [42,43], and complex
dynamical systems in particular [10,44,45] have brought about the need for a further
extension of the concept of ITE beyond Shannon’s conventional type. Consequently,
numerous generalizations have started to proliferate in the literature ranging from additive
entropies [31,46] through a rich class of non-additive entropies [47–52] to more exotic types
of entropies [53]. Particularly prominent among such generalizations are ITEs of Rényi and
Tsallis, which both belong to a broader class of so-called Uffink entropic functionals [54,55].
Both Rényi entropy (RE) and Tsalli entropy (TE) represent one-parameter families of
deformations of Shannon’s entropy. An important point related to the RE is that the RE is
not just a theoretical construct, but it has a firm operational meaning in terms of various
coding theorems [8,9]. Consequently, REs, along with their associated Rényi entropy
powers (REPs), are, in principle, experimentally accessible [8,56,57]. That is indeed the case
in specific quantum protocols [58–60]. In addition, REPs of various orders are often used
as convenient measures of entanglement—e.g., REP of order 2, i.e., N2 represents tangle
τ (with

√
τ being concurrence) [61], N1/2 is related to both fidelity F and robustness R of a

pure state [62], N∞ quantifies the Bures distance to the closest separable pure state [63], etc.
Even though our main focus here will be on REs and REPs since they are more pertinent in
information theory, we will include some discussion related to Tsallis entropy powers at
the end of this paper.

The aim of this paper is twofold. First, we wish to appropriately extend the notion
of SE-based EP to the RE setting. In contrast to our earlier works on the topic [13,64], we
will do it now by framing REP in the context of RE-based estimation theory. This will be
done by judiciously generalizing such key notions as the De Bruijn identity, isoperimetric
inequality (and ensuing Cramér–Rao inequality), and Stam inequality. In contrast to other
similar works on the subject [65–68], our approach is distinct in three key respects: (a) we
consistently use the notion of escort distribution and escort score vector in setting up the
generalized De Bruijn identity and Fisher information matrix, (b) we generalize Stam’s
uncertainty principle, and (c) Rényi EP is related to variance of the reference Gaussian
distribution rather than the Rényi maximizing distribution. As a byproduct, we derive
within such a generalized estimation theory framework the Rényi-EP-based quantum
uncertainty relations (REPUR) of Schrödinger–Roberston type. The REPUR obtained
coincides with our earlier result [13] that was obtained in a very different context by
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means of the Beckner–Babenko theorem. This in turn serves as a consistency check of the
proposed generalized estimation theory. Second, we identify interesting new playgrounds
for the Rényi EPs obtained. In particular, we asked ourselves a question: assuming one
is able in specific quantum protocols to measure Rényi EPs of various orders, how does
this constrain the underlying quantum state distribution? To answer this question, we
invoke the concept of the information distribution associated with a given quantum state.
The latter contains a complete “information scan” of the underlying state distribution.
We set up a reconstruction method based on Hausdorff’s moment problem [69] to show
explicitly how the information probability distribution associated with a given quantum
state can be numerically reconstructed from EPs. This is a process that is analogous
to quantum-state tomography. However, whereas tomography extracts the full density
matrix from an ensemble using many measurements on a tomographically complete
basis, the EP reconstruction method extracts the probability density on a given basis.
This is an alternative approach that may be advantageous, for example, in quantum
metrology schemes, where only knowledge of the local probability density rather than the
full quantum state is needed [70].

The paper is structured as follows. In Section 2, we introduce the concept of Rényi’s
EP. With quantum metrology applications in mind, we discuss this in the framework
of estimation theory. First, we duly generalize the notion of Fisher information (FI) by
using a Rényi entropy version of De Bruijn’s identity. In this connection, we emphasize
the role of the so-called escort distribution, which appears naturally in the definition of
higher-order score functions. Second, we prove the RE-based isoperimetric inequality and
ensuing Cramér–Rao inequality and find how the knowledge of Fisher information matrix
restricts possible values of Rényi’s EP. Finally, we further illuminate the role of Rényi’s EP
by deriving (through the Stam inequality) Rényi’s EP-based quantum uncertainty relations
for conjugate observables. To flesh this out, the second part of the paper is devoted to
the development of the use of Rényi EPs to extract the quantum state from incomplete
data. This is of particular interest in various quantum metrology protocols. To this end, we
introduce in Section 3 the concepts of information distribution, and, in Section 4, we show
how cumulants of the information distribution can be obtained from knowledge of the EPs.
With the cumulants at hand, one can reconstruct the underlying information distribution in
a process which we call an information scan. Details of how one could explicitly realize such
an information scan for quantum state PDFs are provided in Section 5. There we employ
generalized versions of Gram–Charlier A and the Edgeworth expansion. In Section 6,
we illustrate the inner workings of the information scan using the example of a so-called
cat state. This state is of interest in applications of quantum physics such as quantum-
enhanced metrology, which is concerned with the optimal extraction of information from
measurements subject to quantum mechanical effects. The cat state we consider is a
superposition of the vacuum state and a coherent state of the electromagnetic field; two
cases are studied comprising different probabilistic weightings of the superposition state
corresponding to balanced and unbalanced cat states. Section 7 is dedicated to EPs based
on Tsallis entropy. In particular, we show that Rényi and Tsallis EPs coincide with each
other. This, in turn, allows us to phrase various estimation theory inequalities in terms of
TE. In Section 7, we end with conclusions. For the reader’s convenience, we relegate some
technical issues concerning the generalized De Bruijn identity and associated isoperimetric
and Stam inequalities to three appendices.

2. Rényi Entropy Based Estimation Theory and Rényi Entropy Powers

In this section, we introduce the concept of Rényi’s EP. With quantum metrology
applications in mind, we discuss this in the framework of estimation theory. This will
not only allow us to find new estimation inequalities, such as the Rényi-entropy-based
De Bruijn identity, isoperimetric inequality, or Stam inequality, but it will also provide a
convenient technical and conceptual frame for deriving a one-parameter family of Rényi-
entropy-power-based quantum-mechanical uncertainty relations.
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2.1. Fisher Information—Shannon’s Entropy Approach

First, we recall that the Fisher information matrix J(X ) of a random vector {Xi} in
RD with the PDF F (x) is defined as [38]

J(X ) = cov(V(X )) , (1)

where the covariance matrix is associated with the random zero-mean vector—the so-called
score vector, as

V(x) = ∇F (x)/F (x) . (2)

A corresponding trace of J(X ), i.e.,

J(X ) = Tr(J(X )) = var(V(X )) = E(V2(X )) , (3)

is known as the Fisher information. Both the FI and FI matrix can be conveniently related
to Shannon’s differential entropy via De Bruijn’s identity [66,67]. De Bruijn’s identity: Let
{Xi} be a random vector in RD with the PDF F (x) and let {ZG

i } be a Gaussian random
vector (noise vector) with zero mean and unit-covariance matrix, independent of {Xi}. Then,

d
dε
H(X +

√
εZG )|ε=0 =

1
2

J(X ) , (4)

where

H(X ) = −
∫
RD
F (x) logF (x) dx , (5)

is Shannon’s differential entropy (measured in nats). In the case when the independent
additive noise {Zi} is non-Gaussian with zero mean and covariance matrix Σ = cov(Z),
then the following generalization holds [67]:

d
dε
H(X +

√
εZ)|ε=0 =

1
2

Tr(J(X )Σ). (6)

The key point about De Bruijn’s identity is that it provides a very useful intuitive
interpretation of FI, namely, FI quantifies the sensitivity of transmitted (Shannon type)
information to an arbitrary independent additive noise. An important aspect that should be
stressed in this context is that FI as a quantifier of sensitivity depends only on the covariance
of the noise vector, and thus it is independent of the shape of the noise distribution. This
is because De Bruijn’s identity remains unchanged for both Gaussian and non-Gaussian
additive noise with the same covariance matrix.

2.2. Fisher Information—Rényi’s Entropy Approach

We now extend the notion of the FI matrix to the Rényi entropy setting. A natural
way to do it is via an extension of De Bruijn’s identity to Rényi entropies. In particular,
the following statement holds:

Generalized De Bruijn’s identity: Let {Xi} be a random vector in RD with the PDF F (x)
and let {Zi} be an independent (generally non-Gaussian) noise vector with the zero mean
and covariance matrix Σ = cov(Z), then, for any q > 0

d
dε
Iq(X +

√
εZ)|ε=0 =

1
2q

Tr
(
Jq(X )Σ

)
, (7)

where

Iq =
1

1− q
log

∫
RD
F q(x)dx , q > 0 , (8)
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is Rényi’s differential entropy (measured in nats) with I1 = H. The ensuing FI matrix of order
q has the explicit form

Jq(X ) = covq(V q(X )) , (9)

with the score vector

V q(x) = ∇ρq(x)/ρq(x) = q∇F (x)/F (x) = qV(x) . (10)

Here, ρq = F q/
∫
RD F qdx is the so-called escort distribution [71]. The “covq” denotes the

covariance matrix computed with respect to ρq. Proofs of both the conventional (i.e.,
Shannon entropy based) and generalized (i.e., Rényi entropy based) De Bruijn’s identity
are provided in Appendix A. There we also discuss some further useful generalizations of
De Bruijn’s identity. Finally, as in the Shannon case, we define the FI of order q—denoted
as Jq(X ), as

Tr
(
Jq(X )

)
≡ Jq(X ) . (11)

2.3. Rényi’s Entropy Power and Generalized Isoperimetric Inequality

Similarly as in conventional estimation theory, one can expect that there should exist
a close connection between the FI matrix Jq(X ) and the corresponding Rényi entropy
power Np(X ). In Shannon’s information theory, such a connection is phrased in terms
of isoperimetric inequality [67]. Here, we prove that a similar relationship works also in
Rényi’s information theory.

Let us start by introducing the concept of Rényi’s entropy power. This is defined as
the solution of the equation [13,64]

Ip(X ) = Ip

(√
Np(X ) · ZG

)
, (12)

where {ZG
i } represents a Gaussian random vector with a zero mean and unit covariance

matrix. Thus, Np(X ) denotes the variance of a would be Gaussian distribution that has
the same Rényi information content as the random vector {Xi} described by the PDF
F (x). Expression (12) was studied in [13,64,72], where it was shown that the only class of
solutions of (12) is

Np(X ) =
1

2π
p−p′/p exp

(
2
D
Ip(X )

)
, (13)

with 1/p + 1/p′ = 1 and p ∈ R+. In addition, when p → 1+, one has Np(X ) → N(X ),
where N(X ) is the conventional Shannon entropy power [5]. In this latter case, one can use
the asymptotic equipartition property [55,73] to identify N(X ) with “typical size” of a state
set, which in the present context is the effective support set size for a random vector. This,
in turn, is equivalent to Einstein’s entropic principle [74]. In passing, it should be noted that
the form of the Rényi EP expressed in (13) is not universally accepted version. In a number
of works, it is defined merely as an exponent of RE, see, e.g., [75,76]. Our motivation for
the form (13) is twofold: first, it has a clear interpretation in terms of variances of Gaussian
distributions and, second, it leads to simpler formulas, cf. e.g., Equation (22).

Generalized isoperimetric inequality: Let {Xi} be a random vector in RD with the PDF
F (x). Then,

1
D

Nq(X )Jq(X ) ≥ Nq(X )[det(Jq(X ))]1/D ≥ 1 , (14)

where the Rényi parameter q ≥ 1. We relegate the proof of the generalized isoperimetric
inequality to Appendix B.
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It is also worth noting that the relation (14) implies another important inequality. By
using the fact that the Shannon entropy is maximized (among all PDF’s with identical
covariance matrix Σ) by the Gaussian distribution, we have N1(X ) ≤ det(Σ)1/D (see,
e.g., [77]). If we further employ that Iq is a monotonously decreasing function of q, see,
e.g., [31,78], we can write (recall that q ≥ 1)

q1/(q−1)

e
Nq ≤ N1 =

exp( 2
DI1)

2πe
≤ det(Σ)1/D. (15)

The isoperimetric inequality (14) then implies

det(Σ(X )) ≥

(
q1/(q−1)

)D

eD det(Jq(X ))
≥ 1

eD det(Jq(X ))
. (16)

We can further use the inequality

1
D

Tr(A) ≥ [det(A)]1/D , (17)

(valid for any positive semi-definite D× D matrix A) to write

σ2(X ) =
1
D

Tr(Σ(X )) =
1
D

D

∑
i=1

Var(Xi) ≥
Dq1/(q−1)

eJq(X )
≥ D

eJq(X )
, (18)

where σ2 is an average variance per component.
Relations (16)–(18) represent the q-generalizations of the celebrated Cramér–Rao

information inequality. In the limit of q → 1, we recover the standard Cramér–Rao
inequality that is widely used in statistical inference theory [38,79]. A final logical step
needed to complete the proof of REPURs is represented by the so-called generalized Stam
inequality. To this end, we first define the concept of conjugate random variables. We say
that random vectors {Xi} and {Yi} in RD are conjugate if their respective PDF’s F (x) and
G(y) can be written as

F (x) = |ϕF (x)|2/||ϕF ||
2
2 , G(y) = |ϕG (y)|

2/||ϕG ||
2
2 , (19)

where the (generally complex) probability amplitudes ϕF (x) ∈ L2(RD) and ϕG (y) ∈
L2(RD) are mutual Fourier images, i.e.,

ϕF (x) = ϕ̂G (x) =
∫
RD

e2πix.y ϕG (y) dy , (20)

and analogously for ϕG (y) = ϕ̂F (y). With this, we can state the generalized Stam inequality.
Generalized Stam inequality (Stam’s uncertainty principle): Let {Xi} and {Yi} be conjugate

random vectors in RD. Then,

16π2Nq(Y) ≥ [det(Jr(X ))]1/D , (21)

is valid for any r ∈ [1, ∞) and q ∈ [1/2, 1] that are connected via the relation 1/r + 1/q = 2.
In particular, if we define r′ = 2r and q′ = 2q, then r′ and q′ are Hölder conjugates. A proof
of the generalized Stam inequality is provided in Appendix C.
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Let us now consider Hölder conjugate indices p and q with p ∈ [2, ∞) (so that
q ∈ [1, 2]). Combining the isoperimetric inequality (14) together with the generalized Stam
inequality (21), we obtain the following one-parameter class of REP-based inequalities

Np/2(X )Nq/2(Y) = Np/2(X )
[det(Jp/2(X ))]1/D

[det(Jp/2(X ))]1/D Nq/2(Y)

≥
Nq/2(Y)

[det(Jp/2(X ))]1/D ≥
1

16π2 . (22)

By symmetry, the role of q and p can be reversed. In Refs. [13,64], we presented an
alternative derivation of inequalities (22) that was based on the Beckner–Babenko theorem.
There it was also proved that the inequality saturates if and only if the distributions
involved are Gaussian. The only exception to this rule is for the asymptotic values p = 1
and q = ∞ (or vice versa) where the saturation happens whenever the peak of F (x) and
tail of G(y) (or vice versa) are Gaussian.

The passage to quantum mechanics is quite straightforward. First, we realize that,
in QM, the Fourier conjugate wave functions are related via two reciprocal relations

ψF (x) =
∫
RD

eiy·x/h̄ ψG (y)
dy

(2πh̄)D/2 ,

ψG (y) =
∫
RD

e−iy·x/h̄ ψF (x)
dx

(2πh̄)D/2 .

(23)

The Plancherel (or Riesz–Fischer) equality implies that, when ||ψF ||2 = 1, then also auto-
matically ||ψG ||2 = 1 (and vice versa). Thus, the connection between amplitudes ϕF and ϕG
from (19) and amplitudes ψF and ψG from (23) is

ϕF (x) = (2πh̄)D/4ψF (
√

2πh̄x) ,

ϕG (y) = (2πh̄)D/4ψG (
√

2πh̄y) .
(24)

The factor (2πh̄)D/4 ensures that also ϕF and ϕG functions are normalized (in the sense
of || . . . ||2) to unity; however, due to Equation (19), it might be easily omitted. The corre-
sponding Rényi EPs change according to

Np/2(X ) ≡ Np/2(F ) 7→ Np/2(|ψF |
2) = 2πh̄Np/2(F ) ,

Nq/2(Y) ≡ Nq/2(G) 7→ Nq/2(|ψG |
2) = 2πh̄Nq/2(G) ,

(25)

and hence REP-based inequalities (22) acquire in the QM setting a simple form

Np/2(|ψF |
2)Nq/2(|ψG |

2) ≥ h̄2

4
. (26)

This represents an infinite tower of mutually distinct (generally irreducible) REPURs [13].
At this point, some comments are in order. First, historically, the most popular quan-

tifier of quantum uncertainty has been variance because it is conceptually simple and
relatively easily extractable from experimental data. The variance determines the measure
of uncertainty in terms of the fluctuation (or spread) around the mean value, which, while
useful for many distributions, does not provide a sensible measure of uncertainty in a
number of important situations including multimodal [12,13,64] and heavy-tailed distribu-
tions [13,14,64]. To deal with this, a multitude of alternative (non-variance based) measures
of uncertainty in quantum mechanics (QM) have emerged. Among these, a particularly
prominent role is played by information entropies such as the Shannon entropy [63], Rényi
entropy [63,64], Tsallis entropy [80], associated differential entropies, and their quantum-
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information generalizations [13,15,64]. REPURs (26) fit into this framework of entropic
QM URs. In connection with (26), one might observe that the conventional URs based
on variances—so-called Robertson–Schrödinger URs [81,82]) and Shannon differential
entropy based URs (e.g., Hirschman or Białynicki–Birula URs [15,83]) naturally appear
as special cases in this hierarchy. Second, the ITEs enter quantum information theory
typically in three distinct ways: (a) as a measure of the quantum information content (e.g.,
how many qubits are needed to encode the message without loss of information), (b) as
a measure of the classical information content (e.g., amount of information in bits that
can be recovered from the quantum system) and (c) to quantify the entanglement of pure
and mixed bipartite quantum states. Logarithms in base 2 are used because, in quantum
information, one quantifies entropy in bits and qubits (rather than nats). This in turn also
modifies Rényi’s EP as

1
2π

p−p′/pe(
2
D ··· ) 7→ 1

2π
p−p′/p 2(

2
D ··· ) . (27)

In the following, we will employ this QM practice.

3. Information Distribution

To put more flesh on the concept of Rényi’s EP, we devote the rest of this paper to
the development of the methodology and application of Rényi EPs in extracting quantum
states from incomplete data. The technique of quantum tomography is widely used for this
purpose and involves making many different measurements on an ensemble of identical
copies of a quantum state with a tomographically complete measurement basis [84,85]. This
process is very measurement-intensive, scaling exponentially with the number of particles
and so methods have been developed to approximate it with fewer measurements [86].

However, the method of Rényi EPs provides an efficient alternative approach. Instead
of reconstructing the full quantum state, this process extracts the PDF of the quantum state
in a given basis. For a broad class of quantum metrology problems, local rather than global
approaches are preferred [70] and, for these, the local PDF of the state at each sensor is
needed rather than the full density matrix. With this in mind, we first start with the notion
of the information distribution.

Let F (x) be the PDF for the random variable X . We define the information random vari-
able iX (X ) so that iX (x) = log2 1/F (x). In other words, iX (x) represents the information
in x with respect to F (x). In this connection, it is expedient to introduce the cumulative
distribution function for iX (X ) as

℘(y) =
∫ y

−∞
d℘(iX ) =

∫
RD
F (x)θ(log2 F (x) + y)dx . (28)

The function ℘(y) thus represents the probability that the random variable iX (X ) is less
than or equal to y. We have denoted the corresponding probability measure as d℘(iX ).
Taking the Laplace transform of both sides of (28), we get

L{℘}(s) =
∫
RD
F (x)

es log2 F (x)

s
dx =

E
[
es log2 F

]
s

, (29)

where E[· · · ] denotes the mean value with respect to F . By assuming that ℘(x) is smooth,
then the PDF associated with iX (X )—the so-called information PDF—is

g(y) =
d℘(y)

dy
= L−1

{
E
[
es log2 F

]}
(y) . (30)

Setting s = (p− 1) log 2, we have

L{g}(s = (p− 1) log 2) = E
[
2(1−p)iX

]
. (31)
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The mean here is taken with respect to the PDF g. Equation (31) can also be written
explicitly as ∫

RD
dxF p(x) =

∫
R

g(y)2(1−p)ydy . (32)

Note that, whenF p is integrable for p ∈ [1, 2], then (32) ensures that the moment-generating
function for g(x) PDF exists. Thus, in particular, the moment-generating function exists
when F (x) represents Lévy α-stable distributions, including the heavy-tailed stable distri-
butions (i.e, PDFs with the Lévy stability parameter α ∈ (0, 2]). The same holds for F̂ and
p′ ∈ [2, ∞) due to the Beckner–Babenko theorem [13,87,88].

4. Reconstruction Theorem

Since L{g}(s) is the moment-generating function of the random variable iX (X ), one
can generate all moments of the PDF g(x) (if they exist) by taking the derivatives of L{g}
with respect to s. From a conceptual standpoint, it is often more useful to work with
cumulants rather than moments. Using the fact that the cumulant generating function is
simply the (natural) logarithm of the moment-generating function, we see from (32) that
the differential RE is a reparametrized version of the cumulant generating function of the
information random variable iX (X ). In fact, from (31), we have

Ip(X ) =
1

(1− p)
log2 E

[
2(1−p)iX

]
. (33)

To understand the meaning of REPURs, we begin with the cumulant expansion (33), i.e.,

pI1−p(X ) = log2 e
∞

∑
n=1

κn(X )

n!

(
p

log2 e

)n
, (34)

where κn(X ) ≡ κn(iX ) denotes the n-th cumulant of the information random variable
iX (X ) (in units of bitsn). We note that

κ1(X ) = E[iX (X )] = H(X ) ,

κ2(X ) = E
[
iX (X )2

]
− (E[iX (X )])2 ,

(35)

i.e., they represent the Shannon entropy and varentropy, respectively. By employing the identity

I1−p(X ) =
D
2

log2

[
2π(1− p)−1/pN1−p(X )

]
, (36)

we can rewrite (34) in the form

log2
[
N1−p(X )

]
= log2

[
(1− p)1/p

2π

]
+

2
D

∞

∑
n=1

κn(X )

n!

(
p

log2 e

)n−1
. (37)

From (37), one can see that

κn(X ) =
nD
2

(log2 e)n−1 dn−1 log2
[
N1−p(X )

]
dpn−1

∣∣∣∣∣
p=0

+
D
2
(log2 e)n[(n− 1)! + δ1n log 2π] , (38)
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where δ1n is the Kronecker delta function that has a value of one if n = 1, or zero otherwise.
In terms of the Grünwald–Letnikov derivative formula (GLDF) [89], we can rewrite (38) as

κn(X ) = lim
∆→0

nD
2

(log2 e)n

∆n−1

n−1

∑
k=0

(−1)k
(

n− 1
k

)
log[N1+k∆(X )]

+
D
2
(log2 e)n[(n− 1)! + δ1n log 2π] . (39)

Thus, in order to determine the first m cumulants of iX (X ), we need to know all N1, N1+∆,
. . . , N1+(m−1)∆ entropy powers. In practice, ∆ corresponds to a characteristic resolution
scale for the entropy index which will be chosen appropriately for the task at hand, but is
typically of the order 10−2. Note that the last term in (38) and (39) can be also written

D
2
(log2 e)n[(n− 1)! + δ1n log 2π] = κn(Z1I

G) ≡ κn(iY ) , (40)

with Y being the random variable distributed with respect to the Gaussian distribution Z1I
G

with the unit covariance matrix.
When all the cumulants exist, then the problem of recovering the underlying PDF

for iX (X ) is equivalent to the Stieltjes moment problem [90]. Using this connection, there
are a number of ways to proceed; the PDF in question can be reconstructed e.g., in terms
of sums involving orthogonal polynomials (e.g., the Gram–Charlier A series or the Edge-
worth series [91]), the inverse Mellin transform [92], or via various maximum entropy
techniques [93]. Pertaining to this, the theorem of Marcinkiewicz [94] implies that there
are no PDFs for which κm = κm+1 = . . . = 0 for m ≥ 3. In other words, the cumulant
generating function cannot be a finite-order polynomial of degree greater than 2. The
important exceptions, and indeed the only exceptions to Marcinkiewicz’s theorem are the
Gaussian PDFs that can have the first two cumulants nontrivial and κ3 = κ4 = . . . = 0.
Thus, apart from the special case of Gaussian PDFs where only N1 and N1+∆ are needed,
one needs to work with as many entropy powers N1+k∆, k ∈ N (or ensuing REPURs) as
possible to receive as much information as possible about the structure of the underlying
PDF. In theory, the whole infinite tower of REPURs would be required to uniquely specify
a system’s information PDF. Note that, for Gaussian information PDFs, one needs only N1
and N1+∆ to reconstruct the PDF uniquely. From (37) and (39), we see that knowledge
of N1 corresponds to κ1(X ) = H(X ) while N1+∆ further determines κ2, i.e., the varen-
tropy. Since N1 is involved (via (39)) in the determination of all cumulants, it is the most
important entropy power in the tower. Thus, the entropy powers of a given process have
an equivalent meaning to the PDF: they describe the morphology of uncertainty of the
observed phenomenon.

We should stress that the focus of the reconstruction theorem we present is on cumu-
lants κn which can be directly used for a shape estimation of g(x) but not F (x). However,
by knowing g(y), we have a complete “information scan” of F (x). Such an information
scan is, however, not unique, indeed, two PDFs that are rearrangements of each other—i.e.,
equimeasurable PDFs, have identical ℘(y) and g(y). Even though equimeasurable PDFs
cannot be distinguished via their entropy powers, they can be, as a rule, distinguished via
their respective momentum-space PDFs and associated entropy powers. Thus, the infor-
mation scan has a tomographic flavor to it. From the multi-peak structure of g(y), one can
determine the number and height of the stationary points. These are invariant characteristics
of a given family of equimeasurable PDFs. This will be further illustrated in Section 6.

5. Information Scan of Quantum-State PDF

With knowledge of the entropy powers, the question now is how we can reconstruct
the information distribution g(x). The inner workings of this will now be explicitly illus-
trated with the (generalized) Gram-Charlier A expansion. However, other—often more
efficient methods—are also available [91]. Let κn be cumulants obtained from entropy
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powers and let G(x) be some reference PDF whose cumulants are γk. The information PDF
g(x) can be then written as [91]

g(x) = exp

[
∞

∑
k=1

(κk − γk)(−1)k (d
k/dxk)

k!

]
G(x) . (41)

With hindsight, we choose the reference PDF G(x) to be a shifted gamma PDF, i.e.,

G(x) ≡ G(x|a, α, β) =
e−(x−a)/β(x− a)α−1

βαΓ[α]
, (42)

with a < x < ∞, β > 0, α > 0. In doing so, we have implicitly assumed that the
F (y) PDF is in the first approximation equimeasurable with the Gaussian PDF. To reach
a corresponding matching, we should choose a = log2(2πσ2)/2, α = 1/2 and β = log2 e.
Using the fact that [95]

(β)k+1/2 dkG(x|a, 1/2, β)

k!dxk =

(
x− a

β

)−k
L(−1/2−k)

k

(
x− a

β

)
G(x|a, 1/2, β) , (43)

(where Lδ
k is an associated Laguerre polynomial of order k with parameter δ) and given

that κ1 = γ1 = αβ + a = log2(2πσ2e)/2, and γk = Γ(k)αβk = (log2 e)k/2 for k > 1 we
can write (41) as

g(x) = G(x|a, 1/2, β)

[
1 +

(κ2 − γ2)

β1/2(x− a)2 L(−5/2)
2

(
x− a

β

)

− (κ3 − γ3)

β1/2(x− a)3 L(−7/2)
3

(
x− a

β

)
+ · · ·

]
. (44)

If needed, one can use a relationship between the moments and the cumulants (Faà di
Bruno’s formula [94]) to recast the expansion (44) into more familiar language. For the
Gram–Charlier A expansion, various formal convergence criteria exist (see, e.g., [91]).
In particular, the expansion for nearly Gaussian equimeasurable PDFsF (y) converges quite
rapidly and the series can be truncated fairly quickly. Since in this case one needs fewer
κk’s in order to determine the information PDF g(x), only EPs in the small neighborhood of
the index 1 will be needed. On the other hand, the further the F (y) is from Gaussian (e.g.,
heavy-tailed PDFs), the higher the orders of κk are required to determine g(x), and hence a
wider neighborhood of the index 1 will be needed for EPs.

6. Example—Reconstruction Theorem and (Un)Balanced Cat State

We now demonstrate an example of the reconstruction in the context of a quantum
system. Specifically, we consider cat states that are often considered in the foundations
of quantum physics as well as in various applications, including solid state physics [96]
and quantum metrology [97]. The form of the state we consider is |ψ〉 = N (|0〉+ ν|α/ν〉),
where N = [1 + 2ν exp(−α2/2ν2) + ν2]−1/2 is the normalization factor, |0〉 is the vacuum
state, ν ∈ R a weighting factor, and |α〉 is the coherent state given by

|α〉 = e−α2/2
∞

∑
n=0

αn
√

n!
|n〉 , (45)
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(taking α ∈ R). For ν = 1, we refer to the state as a balanced cat state (BCS) and for ν 6= 1,
as an unbalanced cat state (UCS). Changing the basis of |ψ〉 to the eigenstates of the general
quadrature operator

Ŷθ =
1√
2

(
âe−iθ + â†eiθ

)
, (46)

where â and â† are the creation and annihilation operators of the electromagnetic field, we
find the PDF for the general quadrature variable yθ to be

F (yθ) = N 2π−
1
2 e−y2

θ

∣∣∣∣1 + ν exp
[
− α2

ν22

(
1 + e2iθ − 2

√
2eiθ ν

α
yθ

)]∣∣∣∣2 , (47)

whereN is the normalization constant. Setting θ = 0 and ν = 1 returns the PDF of the BCS
for the position-like variable y0. With this, the Rényi EPs N1−p(χ) are calculated and found
to be constant across varying p. This is because F (y0) for the BCS is in fact a piecewise
rearrangement of a Gaussian PDF (yet has an overall non-Gaussian structure) as depicted in
Figure 1, thus N1−p(χ) = σ2 for all p, where σ2 is the variance of the ‘would be Gaussian’.
Taking the reference PDF to be G(x) = G(x|a, α, β), with a = log2(2πσ2)/2, α = 1/2 and
β = log2(e), it is evident that (κk − γk) = 0 for all k ≥ 1, and from the Gram–Charlier A
series (41), a perfect matching in the reconstruction is achieved. Furthermore, it can be
shown that the variance of (47) increases with α, i.e., the variance increases as the peaks
of the PDF diverge, which is in stark contrast to the Rényi EPs which remain constant for
increasing α. This reveals the shortcomings of variance as a measure of uncertainty for
non-Gaussian PDFs.

The peaks, located at F (yθ) = 2−a+j , where j is an index labelling the distinct peaks,
give rise to sharp singularities in the target g(x). With regard to the BCS position PDF, dis-
tributions of the conjugate parameter F (yπ/2) distinguish F (y0) from its equimeasurable
Gaussian PDF and hence the Rényi EPs also distinguish the different cases. The number of
available cumulants k is computationally limited, but, as this grows, information about the
singularities will be recovered in the reconstruction. In the following, we show how the
tail convergence and location of a singularity for g(x) can be reconstructed using k = 5.

-4 -2 0 2 4 6 8 10 12

y0

0

0.05

0.1

0.15

0.2

0.25

0.3

F
(y

0
)

Figure 1. Probability distribution function of a balanced cat state (BCS) for the quantum mechanical
state’s position-like quadrature variable with α = 5. This clearly displays an overall non-Gaussian
structure; however, as this is a piecewise rearrangement of a Gaussian PDF for all α, we have that
N1−p = σ2 for all p and α.

We consider the case of a UCS with ν = 0.97, α = 10 and we take θ = 0 in Equation (47) to
find the PDF in the y0 quadrature which is non-Gaussian for all piecewise rearrangements.
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As such, all REPs N1−p vary with p and consequently all cumulants κk carry information
on g(x). Here, we choose to reconstruct the UCS information distribution by means of the
Edgeworth series [91] so that

g(x) = exp

[
n

∞

∑
j=2

(κj − γj)
(−1)j

j!
dj

dxj n−j/2

]
G(x), (48)

where the reference PDF G(x) is again the shifted gamma distribution. Using the Edge-
worth series, the information PDF is approximated by expanding in orders of n, which
has the advantage over the Gram–Charlier A expansion discussed above of bounding
the errors of the approximation. For the particular UCS of interest, expanding to order
n−3/2 reveals convergence toward the analytic form of the information PDF shown as the
target line in Figure 2. This shows that, for a given characteristic resolution, control over
the first five Rényi EPs can be enough for a useful information scan of a quantum state
with an underlying non-Gaussian PDF. In the example shown in Figure 2, we see that
the information scan accurately predicts the tail behavior as well as the location of the
singularity, which corresponds to the second (lower) peak of F (y0).

1.85 1.9 1.95 2 2.05 2.1 2.15 2.2 2.25 2.3 2.35

x

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
g(x)

Target

Reconstructed g(x)

Reference PDF G(x)

Figure 2. Reconstructed information distribution of an unbalanced cat state with ν = 0.97 and
α = 10. The Edgeworth expansion has been used here to order n−3/2 requiring control of the first
five REPs. Good convergence of the tail behavior is evident as well as the location of the singularity
corresponding to the second peak; a+2 corresponds to the value of x at the point of intersection with
the second (lower) peak of F (y0).

7. Entropy Powers Based on Tsallis Entropy

Let us now briefly comment on the entropy powers associated with yet another
important differential entropy, namely Tsallis differential entropy, which is defined as [47]

Sq(F ) =
1

(1− q)

[∫
RD

(F q(x)−F (x))dx
]

, (49)

where, as before, the PDF F (x) is associated with a random vector {Xi} in RD.
Similarly to the RE case, the Tsallis entropy power NT

p (X ) is defined as the solution of
the equation

Sq(X ) = ST
q

(√
NT

q (X ) · ZG
)

. (50)
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The ensuing entropy power has not been studied in the literature yet, but it can be easily
derived by observing that the following scaling property for differential Tsallis entropy
holds, namely

Sq(aX ) = Sq(X ) ⊕q lnq |a|D , (51)

where a ∈ R and the q-deformed sum and logarithm are defined as [11]: x ⊕q y = x +
y + (1− q)xy and lnq x = (x1−q − 1)/(1− q), respectively. Relation (51) results from the
following chain of identities:

Sq(aX ) =
1

1− q

[∫
RD

dDy
(∫

RD
dDxδ(y− ax)F (x)

)q
− 1
]

=
1

1− q

[
|a|D(1−q)

∫
RD

dDyF q(y)− 1
]

= |a|D(1−q)
(
Sq(X ) +

1
1− q

)
− 1

1− q
= |a|D(1−q)Sq(X ) + lnq |a|D

=
[
(1− q) lnq |a|D + 1

]
Sq(X ) + lnq |a|D = Sq(X ) ⊕q lnq |a|D . (52)

We can further use the simple fact that

Sq(ZG) = lnq(2πqq′/q)D/2 . (53)

Here, q and q′ satisfy 1/q + 1/q′ = 1 with q ∈ R+. By combining (50), (51), and (53), we get

Sq(X ) = lnq(2πqq′/q)D/2 ⊕q lnq(NT
q )

D/2 = lnq(2πqq′/qNT
q )

D/2 , (54)

where we have used the sum rule from the q-deformed calculus: lnq x⊕q lnq y = lnq xy.
Equation (54) can be resolved for NT

p by employing the q-exponential, i.e., ex
q = [1 + (1−

q)x]1/(1−q), which (among others) satisfies the relation e
lnq x
q = lnq(ex

q ) = x. With this,
we have

NT
q (X ) =

1
2π

q−q′/q
[
expq

(
Sq(X )

)]2/D
=

1
2π

q−q′/q exp1−(1−q)D/2

(
2
D
Sq(X )

)
. (55)

In addition, when q→ 1+, one has

lim
q→1

NT
q (X ) =

1
2πe

exp
(

2
D
H(X )

)
= N(X ) , (56)

where N(X ) is the conventional Shannon entropy power and H(X ) is the Shannon en-
tropy [5].

In connection with Tsallis EP, we might notice one interesting fact, namely by starting
from Rényi’s EP (considering RE in nats), we can write

Nq(X ) =
1

2π
q−q′/q exp

(
2
D
Iq(X )

)
=

1
2π

q−q′/q
(∫

dDxF q(x)
)2/(D(1−q))

=
1

2π
q−q′/q

[
e
ST

q (X )
q

]2/D
= NT

q (X ) . (57)
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Here, we have used a simple identity(∫
dDxF q(x)

)1/(1−q)
=
[
(1− q)ST

q (X ) + 1
]1/(1−q)

= e
ST

q (X )
q . (58)

Thus, we have obtained that Rényi and Tsallis EPs coincide with each other. In particular,
Rényi’s EPI (22) can be equivalently written in the form

NT
p/2(X )NT

q/2(Y) ≥
1

16π2 . (59)

Similarly, we could rephrase the generalized Stam inequality (21) and generalized isoperi-
metric inequality (14) in terms of Tsallis EPs. Though such inequalities are quite interesting
from a mathematical point of view, it is not yet clear how they could be practically utilized
in the estimation theory as there is no obvious operational meaning associated with Tsallis
entropy (e.g., there is no coding theorem for Tsallis entropy). On the other hand, Tsallis
entropy is an important concept in the description of entanglement [98]. For instance,
Tsallis entropy of order 2 (also known as linear entropy) directly quantifies state purity [63].

8. Conclusions

In the first part of this paper, we have introduced the notion of Rényi’s EP. With
quantum metrology applications in mind, we carried out our discussion in the framework
of estimation theory. In doing so, we have generalized the notion of Fisher information
(FI) by using a Rényi entropy version of De Bruijn’s identity. The key role of the escort
distribution in this context was highlighted. With Rényi’s EP at hand, we proved the
RE-based isoperimetric and Stam inequalities. We have further clarified the role of Rényi’s
EP by deriving (through the generalized Stam inequality) a one-parameter family of Rényi
EP-based quantum mechanical uncertainty relations. Conventional variance-based URs
of Robertson-Schrödinger and Shannon differential entropy-based URs of Hirschman or
Białynicki-Birula naturally appear as special cases in this hierarchy of URs. Interestingly,
we found that the Tsallis entropy-based EP coincided with Rényi’s EP provided that the
order is the same. This might open quite a new, hitherto unknown role for Tsallis entropy
in estimation theory.

The second part of the paper was devoted to developing the application of Rényi’s EP
for extracting quantum states from incomplete data. This is of particular interest in various
quantum metrology protocols. To that end, we introduced the concepts of information dis-
tribution and showed how cumulants of the information distribution can be obtained from
knowledge of EPs of various orders. With cumulants thus obtained, one can reconstruct
the underlying information distribution in a process which we call an information scan.
A numerical implementation of this reconstruction procedure was technically realized via
Gram-Charlier A and Edgeworth expansion. For an explicit illustration of the information
scan, we used the non-Gaussian quantum states—(un)balanced cat states. In this case,
it was found that control of the first five significant Rényi EPs gave enough information
for a meaningful reconstruction of the information PDF and brought about non-trivial
information on the original balanced cat state PDF, such as asymptotic tail behavior or the
heights of the peaks.

Finally, let us stress one more point. Rényi EP-based quantum mechanical uncertainty
relations (26) basically represent a one-parameter class of inequalities that constrain higher-
order cumulants of state distributions for conjugate observables [13]. In connection with
this, the following two questions are in order. Assuming one is able to control Rényi EPs of
various orders: (i) how do such Rényi EPs constrain the underlying state distribution and
(ii) how do the ensuing REPURs restrict the state distributions of conjugate observables?
The first question was tackled in this paper in terms of the information distribution and
reconstruction theorem. The second question is more intriguing and has not yet been
properly addressed. Work along these lines is presently under investigation.
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Appendix A

Here, we provide an intuitive proof of the generalized De Bruijn identity.
Generalized De Bruijn identity I: By denoting the PDF associated with a random vector {Xi}
as F (x) and the noise PDF as G(z), we might write the LHS of (7) as

d
dε
Iq(X +

√
εZ)|ε=0

=
1

1− q
d
dε

log
[∫

RD
dy
(∫

RD
dx
∫
RD

dzδ(D)
(
y− (x +

√
εz)
)
F (x)G(z)

)q]∣∣∣∣
ε=0

=
1

1− q
d
dε

log
[∫

RD
dy
(∫

RD
dzF (y−

√
εz)G(z)

)q]∣∣∣∣
ε=0

=
1

1− q
d
dε

log
{∫

RD
dy
[∫

RD
dz
(
F (y)−

√
εzi∇iF (y)

+
1
2

εzizj∇i∇jF (y) + O(ε3/2)

)
G(z)

]q}∣∣∣∣
ε=0

=
q

1− q

[∫
RD

dyρq(y)Σij
∇i∇jF (y)

2F (y)

]
=

q
2

[∫
RD

dyρq(y)ΣijVi(y)Vj(y)
]

=
q
2

Tr[covq(V)Σ] =
1
2q

Tr[covq(V q)Σ] =
1
2q

Tr(JqΣ) . (A1)
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It should be noted that our manipulations make sense only for any q > 0, as only in
these cases are RE and escort distributions well defined. The right-hand-side of (A1) can
also be equivalently written as

1
2q

Eq
{
[(Vq)i −Eq((Vq)i)]Σij[(Vq)j −Eq((Vq)j))]

}
,

=
1
2q

E
{
[(Zi −E(Zi)](Jq)ij(X )[Zj −E(Zj)]

}
, (A2)

where the mean Eq{. . .} is performed with respect to the escort distribution ρq, while E
with respect to G distribution.

We note in passing that the conventional De Bruijn’s identity (6) emerges as a special
case when q→ 1. For the Gaussian noise vector, we can generalize the previous derivation
in the following way:

Generalized De Bruijn’s identity II: Let {Xi} be a random vector in RD with the PDF
F (x) and let {Zi} be an independent Gaussian noise vector with the zero mean and
covariance matrix Σ = cov(ZG ), then,

d
dΣij
Iq(X +ZG )|

Σ=0 =
q

1− q

[∫
RD

dyρq(y)
∇i∇jF (y)

2F (y)

]

=
1
2q

[∫
RD

dyρq(y)(Vq)i(Vq)j

]
=

1
2q

(Jq)ij . (A3)

The right-hand-side is equivalent to

1
2q

Eq
{
[(Vq)i −Eq((Vq)i)][(Vq)j −Eq((Vq)j))]

}
. (A4)

To prove the identity (A3), we might follow the same line of reasoning as in (A1). The only
difference is that, while in (A1) we had a small parameter ε in which one could expand to
all orders of correlation functions and easily perform differentiation and limit ε → 0 for
any noise distribution (with zero mean), the same procedure can not be done in the present
context for a generic noise distribution. In fact, only the Gaussian distribution has the
property that the higher-order correlation functions and their derivatives with respect to Σij
are small when Σ is small. The latter is a consequence of the Marcinkiewicz theorem [99].

Appendix B

Here, we prove the Generalized isoperimetric inequality from Section 2. The starting point
is the entropy-power inequality (EPI) [64]: Let X1 and X2 be two independent continuous
random vectors in RD with probability densities F (1) ∈ `q(RD) and F (2) ∈ `p(RD),
respectively. Suppose further that λ ∈ (0, 1) and r > 1, and let

q =
r

(1− λ) + λr
, p =

r
λ + (1− λ)r

, (A5)

then the following inequality holds:

Nr(X1 +X2) ≥
(

Nq(X1)

1− λ

)1−λ(Np(X2)

λ

)λ

. (A6)
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Let us now consider a Gaussian noise vector ZG (independent of X ) with zero mean and
covariance matrix Σ. Within this setting, we can write the following EPIs:

Nr(X +ZG ) ≥ ελ

(
1

1− λ

)1−λ( 1
λ

)λ

[Nq(X )]1−λ , (A7)

Nr(X +ZG ) ≥ ε1−λ

(
1

1− λ

)1−λ( 1
λ

)λ

[Np(X )]λ , (A8)

with ε ≡ det(Σ)1/D. Here, we have used the simple fact that Nr(ZG ) = det(Σ)1/D,
irrespective of the value of r.

Let us now fix r and maximize the RHS of inequality (A7) with respect to λ and q
provided we keep the constraint condition (A5). This yields the condition extremum

λ =
ε

Nq(X )
exp

[
q(1− q)

d log Nq(X )

dq

]
+ O(ε2) . (A9)

With this, q turns out to be

q = r +
ε(1− r)r

Nr(X )
exp

[
(1− r)r

d log Nr(X )

dr

]
+ O(ε2) , (A10)

which in the limit ε→ 0 reduces to q = r ≥ 1. The latter implies that p = 1. The result (A10)
implies that the RHS of (A7) reads

Nq(X ) + ε exp
[
(1− r)r

d log Nr(X )

dr

][
1− (1− r)r

d log Nr(X )

dr

]
+ O(ε2) . (A11)

Should we have started with the p index, we would arrive at an analogous conclusion. To
proceed, we stick, without loss of generality, to the inequality (A7). This implies that

Nr(X +ZG ) ≥ Nq(X ) + ε exp
[
(1− r)r

d log Nr(X )

dr

][
1− (1− r)r

d log Nr(X )

dr

]
+ O(ε2)

= Nr(X ) + [Nq(X )− Nr(X )]

+ ε exp
[
(1− r)r

d log Nr(X )

dr

][
1− (1− r)r

d log Nr(X )

dr

]
+ O(ε2)

≥ Nr(X ) + ε exp
[
(1− r)r

d log Nr(X )

dr

]
+ O(ε2) . (A12)

To proceed, we employ the identity log Nr(X ) = 2/D[Ir(X )−Ir(ZG
1I )] with ZG

1I represent-
ing a Gaussian random vector with zero mean and unit covariance matrix, and the fact that
Ir is monotonously decreasing function of r, i.e., dIr/dr ≤ 0 (see, e.g., Ref. [78]). With this,
we have

exp
[
(1− r)r

d log Nr(X )

dr

]
≥ exp

[
2(r− 1)r

D
dIr(ZG

1I )

dr

]
= exp

[
(r− 1)r

d
dr

(
1

r− 1
log r

)]

= err/(r−1) ≥ e2

r
. (A13)

Consequently, Equation (A12) can be rewritten as

Nr(X +ZG ) − Nq(X )

Σij
≥ ε

Σij

e2

r
+ O(ε2/Σij) . (A14)
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At this stage, we are interested in the Σij → 0 limit. In order to find the ensuing leading
order behavior of ε/Σij, we can use L’Hospital’s rule, namely

ε

Σij
=

dε

dΣij
=

d
dΣij

exp
[

1
D

Tr(log Σ)

]
=

ε

D
(Σ−1)ij . (A15)

Now, we neglect the sub-leading term of order O(ε2/Σij) in (A14) and take det(. . .)1/D on
both sides. This gives

det

(
dNr(X +ZG )

dΣij

)1/D
∣∣∣∣∣∣
Σ=0

=
1

rD
Nr(X )[det(Jr(X ))]1/D ≥ e2

rD
≥ 1

rD
, (A16)

or equivalently

Nr(X )[det(Jr(X ))]1/D ≥ 1 . (A17)

At this stage, we can use the inequality of arithmetic and geometric means to write (note
that Jr = covr(V r) is a positive semi-definite matrix)

1
D

Tr(Jr(X )) ≥ [det(Jr(X ))]1/D . (A18)

Consequently, we have

1
D

Nr(X )Tr(Jr(X )) =
1
D

Nr(X )Jr(X ) ≥ Nr(X )[det(Jr(X ))]1/D ≥ 1 , (A19)

as stated in Equation (14).

Appendix C

In this appendix, we prove the Generalized Stam inequality from Section 2. We start
with the defining relation (13), i.e.,

Nq(Y) =
1

2π
q1/(1−q)||G||2q/[(1−q)D]

q , (A20)

and consider q ∈ [1/2, 1] so that q/(1− q) > 0. For the q-norm, we can write

||G||q =

(∫
RD

dy |ψG (y)|
2q
)1/q

= ||ψG ||
2
2q ≥ ||ψ̂G ||

2
2r = ||ψF ||

2
2r = ||F ||r . (A21)

Here, 2r and 2q are Hölder conjugates so that r ∈ [1, ∞]. The inequality employed is due
to the Hausdorff–Young inequality (which in turn is a simple consequence of the Hölder
inequality [64]). We further have
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||F ||r =

(∫
RD

dx |ψF (x)|2r
)1/r

≥
∣∣∣∣∣
∫
RD

dx |ψF (x)|2r∇i∇i eia·x

a2
i

∣∣∣∣∣
1/r

=

∣∣∣∣r ∫RD
dx
[
(r− 1)ρr(x)Vi(x)Vi(x) + ρr(x)

∇i∇iF (x)
F (x)

]
eia·x

∣∣∣∣1/r

×
(∫

RD dx |ψF (x)|2r)1/r

a2/r
i

≥
∣∣∣∣r ∫RD

dx
[
(r− 1)ρr(x)Vi(x)Vi(x) + ρr(x)

∇i∇iF (x)
F (x)

]
cos(a · x)

∣∣∣∣1/r

×
(∫

RD dx |ψF (x)|2r)1/r

a2/r
i

≥
∣∣∣∣r ∫VD

dxρr(x)
∇i∇iF (x)
F (x)

cos(a · x)
∣∣∣∣1/r(∫

RD dx |ψF (x)|2r)1/r

a2/r
i

, (A22)

where a ∈ RD is an arbitrary x-independent vector, ∇i ≡ ∂/∂xi and VD denotes a regular-
ized volume of RD—D-dimensional ball of a very large (but finite) radius R. In the first
line of (A22), we have employed the triangle inequality |Er

(
eia·x)| ≤ 1 (with equality if

and only if a = 0), namely∣∣∣∣∫RD
dx |ψF (x)|2reia·x

∣∣∣∣ =

∣∣∣∣∫RD
dxρr(x)eia·x

∣∣∣∣ ∫RD
dx |ψF (x)|2r ≤

∫
RD

dx |ψF (x)|2r. (A23)

The inequality in the last line holds for ai = π/(2R) (for all i), since, in this case, cos(a · x) ≥ 0
for all x from the D-dimensional ball. In this case, one may further estimate the integral
from below by neglecting the positive integrand (r− 1)ρr(x)[Vi(x)]2.

Note that (A22) implies

r
∣∣Er
[
F−1∇i∇iF cos(a · x)

]∣∣
a2

i
≤ 1 , (A24)

with equality if and only if a→ 0 (to see this, one should apply L’Hospital’s rule). Equa-
tion (A24) allows for writing

||F ||r ≥
rγ
∣∣Er
[
F−1∇i∇iF cos(a · x)

]∣∣γ
a2γ

i

(∫
RD

dx |ψF (x)|2r
)1/r

≥
rγ
∣∣Er
[
F−1∇i∇iF cos(a · x)

]∣∣γ
a2γ

i

1

V1−1/r
D

=
rγ
∣∣Er
[
F−1∇i∇iF cos(a · x)

]∣∣γ
a2γ

i

1

C1−1/r
D RD−D/r

, (A25)
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where γ > 0 is some as yet unspecified constant and CD = πD/2/Γ(D/2 + 1). In deriving
(A25), we have used the Hölder inequality

1 =

(∫
RD

dx1 · |ψF (x)|2
)
≤
(∫

RD
dx1r′

)1/r′(∫
RD

dx |ψF (x)|2r
)1/r

= V1−1/r
D

(∫
RD

dx |ψF (x)|2r
)1/r

. (A26)

Here, and also in (A22) and (A25), VD = CDRD denotes the regularizated volume of RD.
As already mentioned, the best estimate of the inequality (A25) is obtained for a→ 0.

As we have seen, ai goes to zero as π/(2R) which allows for choosing the constant γ
so that the denominator in (A25) stays finite in the limit R → ∞. This implies that
γ = D/2− D/(2r). Consequently, (A25) acquires in the large R limit the form

||F ||r ≥
[4(r− 1)/r]D/2−D/2r [Γ(D/2 + 1)]1−1/r

π3D/2−3D/2r [(Jr)ii(X )]D/2−D/2r , (A27)

With this, we can write [see Equations (A20)–(A21)]

Nq(Y) ≥
1

(2π)2 q1/(1−q) [(Jr)ii(X )] ≥ 1
16π2 [(Jr)ii(X )] , (A28)

where, in the last inequality, we have used the fact that q1/(1−q) ≥ 1/4 for q ∈ [1/2, 1] and
that [Γ(D/2 + 1)]2/D ≥ π/4. As a final step, we employ Equations (A18) and (A28) to write

Nq(Y) ≥
1

16π2D
Tr(Jr(X )) ≥ 1

16π2 [det(Jr(X ))]1/D , (A29)

which completes the proof of the generalized Stam’s inequality.
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61. Minter, F.; Kuś, M.; Buchleitner, A. Concurrence of Mixed Bipartite Quantum States in Arbitrary Dimensions. Phys. Rev. Lett.
2004, 92, 167902-1–167902-4.

62. Vidal, G.; Tarrach, R. Robustness of entanglement. Phys. Rev. A 1999, 59, 141–155.
63. Bengtsson, I.; Życzkowski, K. Geometry of Quantum States. An Introduction to Quantum Entanglement; Cambridge University Press:

Cambridge, UK, 2006.
64. Jizba, P.; Dunningham, J.A.; Joo, J. Role of information theoretic uncertainty relations in quantum theory. Ann. Phys. 2015, 355,

87–114.
65. Toranzo, I.V.; Zozor, S.; Brossier, J.-M. Generalization of the de Bruijn Identity to General φ-Entropies and φ-Fisher Informations.

IEEE Trans. Inf. Theory 2018, 64, 6743–6758.
66. Rioul, O. Information Theoretic Proofs of Entropy Power Inequalities. IEEE Trans. Inf. Theory 2011, 57, 33–55.
67. Dembo, A.; Cover, T.M. Information Theoretic Inequalitis. IEEE Trans. Inf. Theory 1991, 37, 1501–1517.
68. Lutwak, E.; Lv, S.; Yang, D.; Zhang, G. Extensions of Fisher Information and Stam’s Inequality. IEEE Trans. Inf. Theory 2012, 58,

1319–1327.
69. Widder, D.V. The Laplace Transform; Princeton University Press: Princeton, NJ, USA, 1946.
70. Knott, P.A.; Proctor, T.J.; Hayes, A.J.; Ralph, J.F.; Kok, P.; Dunningham, J.A. Local versus Global Strategies in Multi-parameter

Estimation. Phys. Rev. A 2016, 94, 062312-1– 062312-7.
71. Beck, C.; Schlögl, F. Thermodynamics of Chaotic Systems; Cambridge University Press: Cambridge, UK, 1993.
72. Gardner, R.J. The Brunn-Minkowski inequality. Bull. Am. Math. Soc. 2002, 39, 355–405.
73. Cover, T.M.; Thomas, J.A. Elements of Information Theory; Wiley-Interscience: Hoboken, NJ, USA, 2006.
74. Einstein, A. Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des kritischen

Zustandes. Ann. Phys. 1910, 33, 1275–1298.
75. De Palma, G. The entropy power inequality with quantum conditioning. J. Phys. A Math. Theor. 2019, 52, 08LT03-1–08LT03-12.
76. Ram, E.; Sason, I. On Rényi Entropy Power Inequalities. IEEE Trans. Inf. Theory 2016, 62, 6800–6815.
77. Stam, A. Some inequalities satisfied by the quantities of information of Fisher and Shannon. Inform. Control 1959, 2, 101–112.
78. Rényi, A. Probability Theory; Selected Papers of Alfred Rényi; Akadémia Kiado: Budapest, Hungary, 1976; Volume 2.
79. Cramér, H. Mathematical Methods of Statistics; Princeton University Press: Princeton, NJ, USA, 1946.
80. Wilk, G.; Włodarczyk, Z. Uncertainty relations in terms of the Tsallis entropy. Phys. Rev. A 2009, 79, 062108-1–062108-6.
81. Schrödinger, E. About Heisenberg Uncertainty Relation. Sitzungsber. Preuss. Akad. Wiss. 1930, 24, 296–303.
82. Robertson, H.P. The Uncertainty Principle. Phys. Rev. 1929, 34, 163–164.
83. Hirschman, I.I., Jr. A Note on Entropy . Am. J. Math. 1957, 79, 152–156.
84. D’Ariano, M.G.; De Laurentis, M.; Paris, M.G.A.; Porzio, A.; Solimeno, S. Quantum tomography as a tool for the characterization

of optical devices. J. Opt. B 2002, 4, 127–132.
85. Lvovsky, A.I.; Raymer, M.G. Continuous-variable optical quantum-state tomography. Rev. Mod. Phys. 2009, 81, 299–332.
86. Gross, D.; Liu, Y.-K.; Flammia, S.T.; Becker, S.; Eisert, J. Quantum State Tomography via Compressed Sensing. Phys. Rev. Lett.

2010, 105, 150401-1–150401-4.
87. Beckner, W. Inequalities in Fourier Analysis. Ann. Math. 1975, 102, 159–182.
88. Babenko, K.I. An inequality in the theory of Fourier integrals. Am. Math. Soc. Transl. 1962, 44, 115–128.
89. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: New

York, NY, USA, 1993.
90. Reed, M.; Simon, B. Methods of Modern Mathematical Physics; Academic Press: New York, NY, USA, 1975; Volume XI.
91. Wallace, D.L. Asymptotic Approximations to Distributions. Ann. Math. Stat. 1958, 29, 635–654.
92. Zolotarev, V.M. Mellin—Stieltjes Transforms in Probability Theory. Theory Probab. Appl. 1957, 2, 444–469.
93. Tagliani, A. Inverse two-sided Laplace transform for probability density functions. J. Comp. Appl. Math. 1998, 90, 157–170.
94. Lukacs, E. Characteristic Functions; Charles Griffin: London, UK, 1970.
95. Pal, N.; Jin, C.; Lim, W.K. Handbook of Exponential and Related Distributions for Engineers and Scientists; Taylor & Francis Group:

New York, NY, USA, 2005.
96. Kira, M.; Koch, S.W.; Smith, R.P.; Hunter, A.E.; Cundiff, S.T. Quantum spectroscopy with Schrödinger-cat states Nat. Phys. 2011, 7,

799–804.
97. Knott, P.A.; Cooling, J.P.; Hayes, A.; Proctor, T.J.; Dunningham, J.A. Practical quantum metrology with large precision gains in the

low-photon-number regime. Phys. Rev. A 2016, 93, 033859-1–033859-7.



Entropy 2021, 23, 334 24 of 24

98. Wei, L. On the Exact Variance of Tsallis Entanglement Entropy in a Random Pure State. Entropy 2019, 21, 539.
99. Marcinkiewicz, J. On a Property of the Gauss law. Math. Z. 1939, 44, 612–618.


	Introduction 
	Rényi Entropy Based Estimation Theory and Rényi Entropy Powers 
	Fisher Information—Shannon's Entropy Approach 
	Fisher Information—Rényi's Entropy Approach 
	Rényi's Entropy Power and Generalized Isoperimetric Inequality 

	Information Distribution 
	Reconstruction Theorem 
	Information Scan of Quantum-State PDF 
	Example—Reconstruction Theorem and (Un)Balanced Cat State 
	Entropy Powers Based on Tsallis Entropy 
	Conclusions 
	
	
	
	References

