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Abstract: Electroencephalography/Magnetoencephalography (EEG/MEG) source localization in-
volves the estimation of neural activity inside the brain volume that underlies the EEG/MEG
measures observed at the sensor array. In this paper, we consider a Bayesian finite spatial mixture
model for source reconstruction and implement Ant Colony System (ACS) optimization coupled
with Iterated Conditional Modes (ICM) for computing estimates of the neural source activity. Our
approach is evaluated using simulation studies and a real data application in which we implement
a nonparametric bootstrap for interval estimation. We demonstrate improved performance of the
ACS-ICM algorithm as compared to existing methodology for the same spatiotemporal model.

Keywords: ant colony system; bayesian spatial mixture model; inverse problem; nonparamteric
boostrap; EEG/MEG data

1. Introduction

Electroencephalography (EEG) and Magnetoencephalography (MEG) are two non-
invasive approaches for measuring electrical activity of the brain with high temporal
resolution. These neuroimaging techniques allow us to study brain dynamics and the
complex informational exchange processes in the human brain. They are widely used
in many clinical and research applications [1,2], though estimating the evoked-response
activity within the brain from electromagnetic fields measured outside of the skull remains
a challenging inverse problem with infinitely many different sources within the brain that
can produce the same observed data [3].

Proposed solutions to the MEG/EEG inverse problem have been based on distributed
source and dipolar methods [4]. In the case of distributed source methods, every location
on a fine grid within the brain has associated neural activation source parameters. In
this case, the number of unknown current sources exceeds the number of MEG or EEG
sensors and estimation thus requires constraints through regularization or priors to obtain
a solution. For such methods, various steps have been taken to regularize the solution
by choosing minimum-norm solutions or by limiting the spatiotemporal variation of the
solution. These approaches impose L2 or L1 [5] norm regularization constraints that serve
to stabilize and condition the source parameter estimates. However, these methods do not
consider the temporal nature of the problem. In [6], the authors propose a dynamic state-
space model that accounts for both spatial and temporal correlations within and across
candidate intra-cortical sources using Bayesian estimation and Kalman filtering. Dipolar
methods, on the other hand, assume that the actual current distribution can be explained by
a small set of current dipoles with unknown locations, amplitudes and orientations (see [4]
for review). Hence, the resulting inverse problem becomes non-linear and a number
of dipoles is to be estimated. Proposed solutions to this problem include algorithms
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such as simulated annealing [7] to address nonlinear optimization in the localization of
neuromagnetic sources.

From the perspective of Bayesian approaches, the ill-posed nature of the inverse prob-
lem requires incorporation of prior assumptions when choosing an appropriate solution
out of an infinite set of candidates. For instance, the authors of [8] consider Gaussian scale
mixture models, with flexible, large covariance components representing spatial patterns
of neural activity. The authors of [9] also propose a hierarchical linear model with Gaussian
errors in a Parametric Empirical Bayes (PEB) framework whose random terms are drawn
from multivariate Gaussian distributions and covariances factor into temporal and spatial
components at the sensor and source levels. The authors of [10] propose an application of
empirical Bayes to the source reconstruction problem with automatic selection of multiple
cortical sources. The authors of [11] developed the Mesostate-Space Model (MSM) based
on the assumption that the unknown neural brain activity can be specified in terms of a set
of locally distributed and temporally coherent meso-sources for either MEG or EEG data,
while the authors of [12] extend this approach to propose a Switching Mesostate-Space
Model (SMSM) to allow flexibility by accounting for complex brain processes that cannot
be characterized by linear and stationary Gaussian dynamics.

By extending and building on the MSM, the authors of [13] developed a Bayesian
spatial finite mixture model incorporating the following two conditions, taken directly
from [13]:

1. Relaxing the assumption of independent mixture allocation variables and modeling
mixture allocations using the Potts model, which allows for spatial dependence in
allocations.

2. Formulate the model for combined MEG and EEG data for joint source localization.

This spatiotemporal model describes a joint model that combines MEG and EEG data,
in which brain neural activity is modeled from the Gaussian spatial mixture model. The
neural source activity is described in terms of a few hidden states, with each state having
its own dynamics and a Potts model used in representing the spatial dependence in the
mixture model.

For the Bayesian mixture model formulated, an Iterated Conditional Modes (ICM)
algorithm was developed by the authors of [13] for simultaneous point estimation and
model selection for the number of mixture components in the latent process. Whilst ICM is
a very simple and computationally efficient algorithm, convergence of this algorithm is
sensitive to starting values and local optima. This issue was left unresolved in [13]. Here
we investigate the potential for finding better solutions, and focus on implementing a
population-based optimization algorithm-based Ant Colony System (ACS) [14] .

ACS is a metaheuristic optimization algorithm inspired by the biological behavior
of ants constructing solutions based on their collective foraging behavior [14]. ACS has
been successfully applied in several areas such as clustering, data mining and image
segmentation problems [15–17]. ACS is a constructive algorithm that uses an analogue of
ant trail pheromones to learn about good features of solutions in combinatorial optimization
problems. New solutions are generated using a parameterized probabilistic model, the
parameters of which are updated using previously generated solutions so as to direct
the search towards promising areas of the solution space. The model used in ACS is
known as pheromone, an artificial analogue of the chemical substance used by real ants to
mark trails from the nest to food sources. Based on this representation, each artificial ant
constructs a part of the solution based on concentration of pheromone information released
by other ants. The amount of pheromone deposited by an ant reflects the quality of the
good solutions built and the traversed path. The pheromone deposited and volatilized
adds solution components to partial solutions. After some time and based on more ants’
communications through pheromone information, they tend to follow the same optimal
paths yielding the optimal solution, in our context maximization of the posterior density.

As an alternative to the ICM algorithm, we thus implement the ACS algorithm coupled
with a local search ICM algorithm to provide a new approach to model estimation and
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potentially better estimates of the model parameters. This approach is evaluated and found
to provide significant improvements. Within the context of a simpler spatial mixture, ACS
has been implemented for a Gaussian Potts mixture model in [18] and has been shown to
outperform both the Simulated Annealing and ICM algorithms for parameter and mixture
component estimation. The theoretical guarantees associated with simulated annealing to
reach a global optimum is dependent on the choice of a cooling schedule. The choice of
an optimal cooling schedule can be difficult in practice for large spatiotemporal models.
ACS has also proved to be competitive with genetic and other optimization algorithms in
several tasks, mainly in image classification and the traveling salesman problem [19,20].

Ant Colony Optimization (ACO) algorithms are implemented to solve Constraint
Satisfaction Problems (CSP) where ACO solutions to CSP face the challenge of high cost
and low solution quality. Motivated by this challenge, the authors of [21] proposed
Ant Colony Optimization based on information Entropy (ACOE). The idea is based on
incorporating a local search that uses a crossover operation to optimize the best solution
according to the feedback of information entropy. This is performed by comparing the
difference of the information entropy between the current global best solution and the best
solution in the current iteration. Datasets from four classes of binary CSP test cases were
generated and then ACOE was implemented for comparison. Results showed that ACOE
outperformed Particle Swarm Optimization (PSO), a Differential Evolution (DE) algorithm
and Artificial Bee Colony (ABC) in terms of the solution quality, data distribution and
convergence performance.

To our knowledge, this is the first attempt at solving the neuroelectromagnetic inverse
problem for combined EEG/MEG data using a population-based optimization approach
combined with a spatial mixture model. The primary contribution of this paper is the
design and implementation of the ACS algorithm to the dynamic spatial model and its
evaluation. Importantly, we demonstrate improved results both in the estimation of neural
activity and model selection uniformly across all conditions considered.

The rest of the paper proceeds as follows. The posterior distribution of the model
and the design and implementation of the ACS algorithm are presented in Section 2. In
Section 3 our algorithm is investigated using simulation studies and comparisons made
with an existing approach developed in [13] . Section 4 provides an illustration on real
data and the development of a nonparametric bootstrap for interval estimation in a study
of scrambled face perception. The paper concludes with a conclusion and directions for
future work in Section 4.

Related Works

Merging EEG and MEG aims at accounting for information missed by one modality
and captured by the other. Fused reconstruction therefore appears promising to reach high
temporal and spatial resolutions in brain function imaging. The authors of [22] address the
added value of combining EEG and MEG data for distributed source localization, building
on the flexibility of parametric empirical Bayes, namely for EEG–MEG data fusion, group
level inference and formal hypothesis testing. The proposed approach follows a two-step
procedure by first using unimodal or multimodal inference to derive a cortical solution at
the group level, and second by using this solution as a prior model for single subject-level
inference based on either unimodal or multimodal data. Another popular approach for
non-globally optimized solutions of the MEG/EEG inverse problem is based on the use
of adaptive Beamformers (BF). However, the BFs are known to fail when dealing with
correlated sources acting like poorly tuned spatial filters with a low signal-to-noise ratio
(SNR) of the output time series and often meaningless cortical maps of power distribution.
To address this limitation, the authors of [23] developed a novel data covariance approach
to supply robustness to the beamforming technique when operating in an environment
with correlated sources. To reduce the impact of the low spatial resolution of MEG and EEG,
the authors of [24] developed a unifying framework for quantifying the spatial fidelity of
MEG/EEG source estimates. This method quantifies the spatial fidelity of MEG/EEG esti-
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mates from simulated patch activations over the entire neocortex superposed on measured
resting-state data. This approach grants more generalizability in the evaluation process that
allows for, e.g., comparing linear and non-linear estimates in the whole brain for different
Signal-to-Noise Ratios (SNR), number of active sources and activation waveforms. The
authors of [25] discuss a solution to the source reconstruction problem and developed a
novel hierarchical multiscale Bayesian algorithm for electromagnetic brain imaging using
MEG and EEG within the context of sources that vary in spatial extent. In this Bayesian
algorithm, the sensor data measurements are defined using a generative probabilistic
graphical model that is hierarchical across spatial scales of brain regions and voxels. This
algorithm enables robust reconstruction of sources that have different spatial extent, from
spatially contiguous clusters of dipoles to isolated dipolar sources.

In [26], the authors propose a methodological framework for inverse-modeling of
propagating cortical activity. Within this framework, cortical activity is represented in
the spatial frequency domain, which is more natural than the dipole domain when deal-
ing with spatially continuous activity. In dealing with multi-subject MEG/EEG source
imaging, he authors of [27] propose a sparse multi-task regression that takes into account
inter-subject variabilities known as the Minimum Wasserstein Estimates (MWE). This
work jointly localizes sources for a population of subjects by casting the estimation as
a multi-task regression problem in three key ideas. First, it proposes to use non-linear
registration to obtain subject-specific lead field matrices that are spatially aligned. Second,
it copes with the issue of inter-subject spatial variability of functional activations using
optimal transport. Finally, it makes use of non-convex sparsity priors and joint inference of
source estimates to obtain accurate source amplitudes. Various applications for MEG/EEG
source reconstruction have been applied in the clinical setting for detection of epileptic
spikes [28], identification of seizure onset zone [29] and presurgical workup of epilepsy
patients [30–32].

2. Methods

This section describes the Bayesian spatial mixture model developed in [13] and the
ACS-ICM algorithm.

2.1. Model

We provide details and mathematical description of the joint model below. Let
M(t) = (M1(t), M2(t), ..., MnM (t))′ and E(t) = (E1(t), E2(t), ..., EnE(t))

′ denote the MEG
and EEG, respectively, at time t, t = 1, . . . , T; where nM and nE denote the number of MEG
and EEG sensors, the model assumes:

M(t) = XMS(t) + εM(t), εM(t)|σ2
M

iid∼ MVN(0, σ2
M HM), t = 1, . . . , T,

E(t) = XES(t) + εE(t), εE(t)|σ2
E

iid∼ MVN(0, σ2
EHE), t = 1, . . . , T,

where XM and XE denote nM × P and nE × P forward operators, respectively computed
based on Maxwell’s equations under the quasi-static assumption [33] for EEG and MEG;
HM and HE are known nM × nM and nE × nE matrices, respectively, which can be obtained
from baseline data providing information on the covariance structure of EEG and MEG
sensor noise; and S(t) = (S1(t), . . . SP(t))′ represents the magnitude and polarity of neural
currents sources over a fine grid covering the cortical surface. In this case, P represents a
large number of point sources of potential neural activity within the brain covering the
cortical surface. It is assumed that the P cortical locations are embedded in a 3D regular
grid composed of Nv voxels to allow efficient computational implementation. Given this
grid of voxels, a mapping v : {1, ..., P} → {1, ..., Nv} is defined such that v(j) is the index
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of the voxel containing the jth cortical location. We assume a latent Gaussian mixture with
allocations at the level of voxels:

Sj(t)|µµµ(t), α, Z ind∼
K

∏
l=1

N(µl(t), αl)
Zv(j)l , (1)

j = 1, . . . , P, t = 1, . . . , T; where ZZZ = (Z
′
1, Z

′
2, ..., Z

′
Nv
)′ is a labeling process defined

over the grid of voxels such that for each v ∈ {1, ..., Nv}, ZZZ
′
v = (Zv1, Zv2, ..., ZvK) with

Zvl ∈ {0, 1} and ∑K
l=1 Zvl = 1; µµµ(t) = (µ1(t), µ2(t), ..., µK(t))′ = (µ1(t), µµµA(t)′)′, where

µµµA(t) = (µ2(t), ..., µK(t))′ denotes the mean of the “active” states over different com-
ponents of activity and µ1(t) = 0 for all t, so that the first component corresponds to
an “inactive” state. The variability of the lth mixture component about its mean µl(t) is
represented by αl , l = 1, . . . , K.

The labeling process assigns each voxel to a latent state and is assumed to follow a
Potts model:

P(ZZZ|β) =
exp{β ∑h∼j δ(Zj, ZhZj, ZhZj, Zh)}

G(β)
, δ(Zj, ZhZj, ZhZj, Zh) = 2Z

′
jZhZ
′
jZhZ
′
jZh − 1,

where G(β) is the normalizing constant for this probability mass function, β ≥ 0 is a
hyper-parameter that governs the strength of spatial cohesion, and i ∼ j indicates that
voxels i and j are neighbors, with a first-order neighborhood structure over the 3D regular
grid. The mean temporal dynamics for active components is assumed to follow a first-order
vector autoregressive process:

µµµA(t) = AAAµµµA(t− 1) + a(t), a(t)|σ2
a

i.i.d∼ MVN(000, σ2
a I)

t = 2, . . . , T, µµµA(1) ∼ MVN(000, σ2
µ1

III), with σ2
µ1

fixed and known, but σ2
a unknown and

assigned an inverse-Gamma (aa, ba) hyper-prior. Although in [13] a pseudo-likelihood
approximation is adopted to the normalizing constant of the Potts model and then assigned
a uniform prior to the spatial parameter to control the degree of spatial correlation, we
fixed the inverse temperature parameter and vary it as part of a sensitivity analysis.

For model selection, the number of mixture components, the value of K, in Equation (1)
will not be known prior and so it is estimated simultaneously with model parameters.
Thus this approach achieves simultaneous point estimation and model selection. We can
obtain a simple estimate for the number of mixture components based on the estimated
allocation variables Ẑ when the algorithm is run with a sufficiently large value of K. This
is achieved by running the algorithm with a value of K that is larger than the expected
number of mixture components. For example, the value of K can be set as K = 15 when
running the algorithm. The jth location on the cortex is allocated to one of the mixture
components based on the estimated value of Ẑv(j), where ẐZZv(j) = (Ẑv(j)1

, Ẑv(j)2
, . . . , Ẑv(j)K

)′

and Ẑv(j)l
= 1 if location j is allocated to component l ∈ {1, . . . , K}. When the algorithm

is run with a value of K that is large, there will result empty mixture components that
have not been assigned any voxel locations under Ẑ. In a sense these empty components
have been automatically pruned out as redundant. The estimated number of mixture
components can be obtained by counting the number of non-empty mixture components
as follows:

K̂ =
K

∑
l=1

I{
nv

∑
v=1

Ẑvl 6= 0}.

This estimator requires us to run our algorithm only once for a single value of K and
then the resulting number of mixture components assigned a location in Ẑ is determined
and K̂ ≤ K.
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2.2. Ant Colony System

Ant Colony System (ACS) is a population-based optimization algorithm introduced
in [14]. The basic structure of this algorithm is designed to solve the traveling salesman
problem in which the aim is to find the shortest path to cover a given set of cities without
revisiting any one of them. The inspiring source and development of this algorithm is the
observation of the foraging behavior of real ants in their colony. This behavior is exploited
in artificial ant colonies for the search of approximate solutions to discrete optimization
problems, for continuous optimization problems, and for important problems in telecom-
munications, such as routing and load balancing, telecommunication network design, or
problems in bioinformatics [34,35]. At the core of this algorithm is the communication be-
tween the ants by means of chemical pheromone trails, which enables them to collectively
find short paths between their nest and food source. The framework of this algorithm
can be categorized into four main parts: (1) construction of an agent ant solution, (2) local
pheromone update of the solution, (3) improving solution by local search, and (4) global
pheromone update of the best solution.

At each step of this constructive algorithm a decision is made concerning which
solution component to add to the sequence of solution components already built. These
decisions are dependent on the pheromone information, which represents the learned
experience of adding a particular solution component given the current state of the solution
under construction. The accumulated amount of pheromone mirrors the quality of the
solution constructed based on the value of the objective function. The pheromone update
aims to concentrate the search in regions of the search space containing high quality
solutions while there is a stochastic component facilitating random exploration of the
search space. In particular, the reinforcement of solution components depending on the
solution quality is an important ingredient of ACS algorithms. To learn which components
contribute to good solutions can help assembling them into better solutions. In general,
the ACS approach attempts to solve an optimization problem by iterating the following
two steps: (1) candidate solutions are constructed using a pheromone model, that is, a
parameterized probability distribution over the solution space; (2) the candidate solutions
are used to modify the pheromone values in a way that is deemed to bias future sampling
toward high quality solutions.

The posterior distribution of the dynamic model takes the form P(Θ|E, M) =
P(Θ, E, M)/P(E, M), where:

P(Θ, E, M) = P(E, M|Θ)P(Θ) = P(E|Θ)P(M|Θ)P(Θ)

=
T

∏
t=1

MVN(E(t); XES(t), σ2
EHE) ×MVN(M(t); XMS(t), σ2

M HM)

× IG(σ2
E; aE, bE)× IG(σ2

M; aM, bM)× [
p

∏
j=1

T

∏
t=1

K

∏
l=1

N(Sj(t); µl(t), αl)
Zv(j)l ]

× [
T

∏
t=2

MVN(µµµA(t); AAAµA(t− 1), σ2
a III)]×MVN(µµµA(1); 000, σ2

µ1
III)× Potts(Z; β) (2)

×
K

∏
l=1

IG(αl ; aα, bα)××[
K−1

∏
i=1

K−1

∏
j=1

N(Aij; 0, σ2
A)]× IG(σ2

a ; aa, ba)

where MVN(x; µ, Σ) denotes the density of the dim(x)-dimensional multivariate normal
distribution with mean µ and covariance Σ evaluated at x; IG(x; a, b) denotes the density
of the inverse gamma distribution with parameters a and b evaluated at x; N(x; µ, σ2)
denotes the density of the normal distribution with mean µ and variance σ2 evaluated at
x; Potts(Z; β) is the joint probability mass function of the Potts model with parameter β
evaluated at Z. Equation (2) represents the objective function to be maximized over Θ. The
goal is to optimize over Θ = {S(t), Z, µµµ(t), ααα, σ2

E, σ2
M, AAA, σ2

a }maximizing the posterior (2).
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ACS is based on set of agents, each representing artificial ants that construct solutions
as sequences of solution components. Agent ant k builds a solution by allocating label `
from a set of voxel labels Λ = {1, . . . K} to the voxel s ∈ {1, ..., Nv} based on a probabilistic
transition rule pk(s, `). The transition rule quantifies the probability of ant k, assigning
voxel s to label `. This transition rule depends on the pheromone information τ(s, `) of the
coupling (s, `) representing the quality of assigning voxel s to label ` based on experience
gathered by ants in the previous iteration. We let:

` =

{
arg maxu τ(s, u) if q ≤ qo

pk(s, `) if q > qo

pk(s, `) =
τ(s, `)

∑u∈Λ τ(s, u)
(3)

where ` is a label for voxel s selected according to the transition rule above; q ∼ Uni f orm(0, 1);
qo ∈ (0, 1) is a tuning parameter. An artificial ant chooses, with probability q0, the so-
lution component that maximizes the pheromone function τ(s, `) or it performs, with
probability 1− q0, a probabilistic construction step according to (3). The ACS pheromone
system consists of two update rules; one rule is applied whilst constructing solutions
(local pheromone update rule) and the other rule is applied after all ants have finished
constructing a solution (global pheromone update rule). After assigning a label to a voxel,
an ant modifies the amount of pheromone of the chosen couples (s, `) by applying a local
pheromone update (4):

τ(s, `)← (1− ρ)τ(s, `) + ρτo (4)

where ρ ∈ (0, 1) is a tuning parameter that controls evaporation of the pheromone and τo
is the initial pheromone value. This operation simulates the natural process of pheromone
evaporation preventing the algorithm from converging too quickly (all ants constructing
the same solution) and getting trapped into a poor solution. In practice, the effect of this
local pheromone update is to decrease the pheromone values via evaporation (1− ρ)τ(s, `)
on the visited solution components, making these components less desirable for the sub-
sequents ants. The value of the evaporation rate indicates the relative importance of the
pheromone values from one iteration to the following one. If ρ takes a value near 1, then
the pheromone trail will not have a lasting effect, and this mechanism increases the random
exploration of the search space within each iteration and helps avoid a too rapid conver-
gence of the algorithm toward a sub-optimal region of the parameter space, whereas a
small value will increase the importance of the pheromone, favoring the exploitation of the
search space near the current solution.

To improve all solutions constructed and also update the other model parameters, we
considered incorporating ICM as a local search method. Here, the ICM algorithm is used for
both updating the model parameters and also for a local search over the mixture allocation
variables. Thus, the update steps corresponding to ACS are combined with running ICM
to convergence at each iteration. Finally, after all solutions have been constructed by
combined ACS and ICM steps, the quality of all solutions is evaluated using the objective
function where the corresponding best solution is selected. We use a global update rule,
where pheromone evaporation is again applied on the best solution chosen. Assuming
voxel j is assigned to label v for the best solution, the global update is given as:

τ(j, v)←
{
(1− ρ)τ(j, v) + ρτo,
(1− ρ)τ(j, k), and for all k 6= v

The steps described are performed repeatedly until a change in the objective function
becomes negligible and the model parameters from the best solution are returned as the
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final parameter estimates. The optimal values for the tuning parameters (qo, τo, ρ) used
in our ACS-ICM algorithm depend on the data. The strategy we adopt for choosing the
tuning parameters is by using an outer level optimization on top of the ACS-ICM algorithm
to optimize over tuning parameters (qo, τo, ρ) within updates at the outer level based on
the Nelder–Mead algorithm [36] applied to optimize over tuning parameters.

In order to reduce the dimension of parameter space and computing time, we apply
clustering to the estimated neural sources. This is achieved by implementing a K-means
algorithm to cluster the P locations on the cortex into a smaller number of J ≤ P clusters,
assuming that Sj(t) = Sl(t) for cortical locations l, j belonging to the same cluster. We
investigated different values of J = 250, 500, 1000 in our simulation studies. Within the
ICM algorithm, the labeling process Z is updated using an efficient chequerboard updating
scheme [13]. The update scheme starts with partitioning Z into two blocks Z = {ZW , ZB}
based on a three-dimensional chequerboard arrangement, where ZW corresponds to “white”
voxels and ZB corresponds to “black” voxels. Under the Markov random field prior with
a first-order neighborhood structure, the elements of ZW are conditionally independent
given ZB, the remaining parameters, and the data E, M. This allows us to update ZW in a
single step, which involves simultaneously updating its elements from their full conditional
distributions. The variables ZB are updated in the same way.

It is well-known that the ICM algorithm is sensitive to initial values and the authors
of [13] found this to be the case with the ICM algorithm developed for the spatiotemporal
mixture model. The solution obtained, and even the convergence of the algorithm depend
rather heavily on the starting values chosen. In the case of ACS-ICM, regardless of the initial
values, the algorithm finds a better solution with the optimal tuning parameters and this
solution tends to be quite stable. This is because ACS-ICM is a stochastic search procedure
in which the pheromone update concentrates the search in regions of the search space
containing high quality solutions to reach an optimum. When considering a stochastic
optimization algorithm, there are at least two possible types of convergence that can be
considered: convergence in value and convergence in solution. With convergence in value,
we are interested in evaluating the probability that the algorithm will generate an optimal
solution at least once. On the contrary, with convergence in solution we are interested in
evaluating the probability that the algorithm reaches a state that keeps generating the same
optimal solution. The convergence proofs are presented in [37,38]. The authors of [37]
proved convergence with a probability of 1− ε for the optimal solution and more in general
for any optimal solution in [38] of the ACS algorithm. This supports the argument that
theoretically the application of ACS-ICM to source reconstruction should improve ICM .

The local search ICM algorithm procedure is presented in Algorithm 1 and the ACS-
ICM algorithm is presented in Algorithm 2. Convergence of the ICM algorithms is mon-
itored by examining the relative change of the Frobenius norm of the estimated neural
sources on consecutive iterations.

Algorithm 1 presents a detailed description of the ICM algorithm. The ICM algo-
rithm requires full conditional distributions of each model parameter where the mode
of the distribution is taken as the update step for the parameter. The full conditional
distribution are described and presented in [13]. This ICM algorithm is embedded in our
ACS-ICM algorithm.
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Algorithm 1 Iterated Conditional Modes (ICM) Algorithm.

1: Θ = {S(t), Z, µµµ(t), ααα, σ2
E, σ2

M, AAA, σ2
a } ← Initial Value

2: Converged← 0

3: while Converged = 0 do

4: σ2
M ←

[
∑T

t=1
1
2
(

M(t)− XMS(t)
)′H−1

M
(

M(t)− XMS(t)
)
+ bM

]
/
[

aM + TNM
2 + 1

]
5: σ2

E ←
[

∑T
t=1

1
2
(
E(t)− XES(t)

)′H−1
E
(
E(t)− XES(t)

)
+ bE

]
/
[

aE + TNE
2 + 1

]
6: σ2

a ←
[

∑T
t=2

1
2 (µµµ

A(t)− AµAµAµA(t− 1))′(µµµA(t)− AµAµAµA(t− 1)) + ba

]
/
[

aa +
(T−1)(K−1)

2 + 1
]

7: vec(AAA)←
(

1
σ2

a

(
∑T

t=2 µµµA(t)′KrtKrtKrt

)
×CCC−1

1

)′
, where C1 = 1

σ2
A

III(K−1)2 + 1
σ2

a

(
∑T

t=2 KrtKrtKrt
′KrtKrtKrt

)
,

and KrtKrtKrt =
(

µµµA(t− 1)′ ⊗ IIIK−1

)
8: for l = 1, ..., K do

9: αl ←
[ P

∑
j=1

T
∑

t=1
Zv(j)l(Sj(t)−µl(t))2

2 + bα

]
/
[ T

P
∑

j=1
Zv(j)l

2 + aα + 1
]

10: end for

11: µµµ(1) ←
((

∑P
j=1(Sj(1)~IK−1)

′DDDj +
1
σ2

a
µµµA(2)′AAA

)
× BBB−1

1

)′
, where BBB1 = ∑P

j=1 DDDj +
1
σ2

a
A′AA′AA′A + 1

σ2
µ1

IIIK−1, DDDj = Diag(
Zv(j)l

αl
, l =

2, ..., K), ~IK−1 = (1, 1, . . . , 1)′ with dim (~IK−1) = K− 1

12: for t = 2, ..., T − 1 do

13: µµµ(t)←
((

∑P
j=1(Sj(t)~IK−1)

′DDDj +
1
σ2

a
(µµµA(t + 1))′AAA + 1

σ2
a
(µµµA(t− 1)′AAA′)

)
× BBB−1

2

)′
where BBB2 = ∑P

j=1 DDDj +
1
σ2

a
(A′AA′AA′A + IIIK−1)

14: end for

15: µµµ(T)←
((

∑P
j=1(Sj(T)~IK−1)

′DDDj +
1
σ2

a
(µµµA(T − 1)′AAA′)

)
× BBB−1

3

)′
where BBB3 = ∑P

j=1 DDDj +
1
σ2

a
IIIk−1

16: for j = 1, ..., P do

17: SSSj ← − 1
2ΣΣΣSjWWW2j . SSSj = (Sj(1), Sj(2), ..., Sj(T))′

ΣΣΣ−1
Sj

= W1j IT , WWW ′2j = (W2j(1), W2j(2), ..., W2j(T))

where W1j =
1

σ2
M

(
XM[, j]′H−1

M XM[, j]
)
+ 1

σ2
E

(
XE[, j]′H−1

E XE[, j]
)
+ ∑K

l=1
Zv(j)l

αl

W2j(t) = 1
σ2

M

(
− 2M(t)′H−1

M XM[, j] + 2(∑v 6=j XM[, v]Sv(t))′H−1
M XM[, j]

)
+ 1

σ2
E

(
− 2E(t)′H−1

E XE[, j] + 2(∑v 6=j XE[, v]Sv(t))′H−1
E XE[, j]

)
− 2 ∑K

l=1
µl(t)

αl

XM[, j], XE[, j] denote the jth column of XE and XM

18: end for

19: Let B denote the indices for “black” voxels and W denote the indices for “white” voxels.
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Algorithm 1 Cont.
20: for κ ∈ B simultaneously do

21: Zκq ← 1 and Zκl ← 0, ∀l 6= q
where q = argmaxh∈{1,...,K} P(h), and

22: P(h) =
α
−TNjκ /2

h ×exp
(
− 1

2 ∑j|v(j)=κ α−1
h ∑T

t=1(Sj(t)−µh(t))2+2β ∑v∈δκ Zvh

)
∑K

l=1 α
−TNjκ /2

l ×exp
(
− 1

2 ∑j|v(j)=κ α−1
l ∑T

t=1(Sj(t)−µl(t))2+2β ∑v∈δκ Zvl

)
where Njκ is the number of cortical locations contained in voxel κ.

23: end for

24: for κ ∈W simultaneously do

25: Zκq ← 1 and Zκl ← 0, ∀l 6= q
where q = argmaxh∈{1,...,K} P(h), and

26: P(h) =
α
−TNjκ /2

h ×exp
(
− 1

2 ∑j|v(j)=κ α−1
h ∑T

t=1(Sj(t)−µh(t))2+2β ∑v∈δκ Zvh

)
∑K

l=1 α
−TNjκ /2

l ×exp
(
− 1

2 ∑j|v(j)=κ α−1
l ∑T

t=1(Sj(t)−µl(t))2+2β ∑v∈δκ Zvl

)
where Njκ is the number of cortical locations contained in voxel κ.

27: end for

28: Check for convergence. Set Converged = 1 if so.

29: end while

Algorithm 2 Ant Colony System (ACS)-ICM Algorithm.

1: Θ � Initial Value; set tuning parameters τo, qo, ρ and Nants.

2: Initialize pheromone information τ(i, `) = τo, for each (i, `) ∈ {1, . . . Nv} × {1, . . . K} representing information gathered by ants.

3: Construct candidate solutions for each of Nants ants. For ant j, we find a candidate voxel labeling Z(j) = (Z
′ (j)

1 , Z
′ (j)

2 , . . . , Z
′ (j)

Nv
)′. This

is done sequentially for each ant j.

• Construct candidate by assigning label l to voxel s using the transition probability rule:

` =

{
arg maxu τ(s, u) if q ≤ qo

p(s, `) if q > qo

where if q > qo the label for voxel s is drawn randomly from {1, . . . , K} with probability

p(s, `) =
τ(s, `)

∑u∈Λ τ(s, u)
,

and where q ∼ uniform[0, 1].

• Assuming voxel s is assigned label ` set:
τ(s, `)← (1− ρ)τ(s, `) + ρτo

and for all k 6= l
τ(s, `)← (1− ρ)τ(s, k)

where ρ is a tuning parameter in (0,1), which represents evaporation of the pheromone trails and τo > 0.
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Algorithm 2 Cont.

4: For all ants, improve candidate solutions by running ICM to convergence (this also allows an update to the other model parameters)
Θ = {{µµµA(1), µµµA(2), ..., µµµA(T)}, {α1, α2, ..., αk}, σ2

E, σ2
M, {Sj(t), t = 1, 2 . . . , T, j = 1, 2, ..., P}, AAA, σ2

a }.

5: For all Nants solutions, evaluate the quality of each ant’s solution using objective function: P(Θ, E, M). Keep track of the best value.
The current solution for each ant serves as the starting value for the next iteration.

6: Apply global updating of the pheromone function. For the best solution, (s, `) update the pheromone as follows:
Assuming voxel s is assigned label ` set:

τ(s, `)← (1− ρ)τ(s, `) + ρτo

and for all k 6= `:
τ(s, `)← (1− ρ)τ(s, k)

Check for convergence via increase in logP(Θ, E, M). Go back to step 3

7: Return all voxel labeling Z and model parameters Θ from the best solution.

3. Simulation Studies

In this section, we use a simulation study to evaluate the performance of our algorithm.
The simulation study assesses the quality of the source estimates and the optimized
objective function values obtained when using our proposed algorithm in comparison
to the existing ICM algorithm developed in [13]. We then make comparisons between
ACS-ICM and the ICM algorithm applied to combined simulated EEG and MEG data.

3.1. Proposed Approach

The MEG and EEG data were both generated from four scenarios with two, three, four
and nine latent states corresponding to regions of neural activity. In each of the four cases,
one of the states is inactive, while the remaining states represent different regions of brain
activity generated by Gaussian signals. The temporal profile of brain activity at each of
the brain locations in the activated regions is depicted in Appendix A, Figures A1 and A2.
We projected the source activity at 8196 brain locations from the cortex onto the MEG and
EEG sensor arrays using the forward operators XM and XE. The simulated data were
then obtained by adding Gaussian noise at each sensor, where the variance of the noise
at each sensor was set to be 5% of the temporal variance of the signal at that sensor. The
number of mixture components K was set to be the true number of latent states (either
two, three, four, or nine) in the model. We simulated 500 replicate datasets and both
ACS-ICM and ICM were applied to each dataset. For each simulated dataset we applied
our algorithm with J = 250, 500, 1000 clusters so as to evaluate how the performance varies
as this tuning parameter changes. We initialized both algorithms using the same starting
values. For each replicate we computed the correlation between the estimated sources
and the true sources Corr[(S(1)′, S(2)′, . . . , S(T)′), (Ŝ(1)′, Ŝ(2)′, . . . , Ŝ(T)′)] as a measure of
agreement. This measure was also averaged over the 500 replicate datasets to compute
average correlation. In addition, we estimated the Mean-Squared Error (MSE) of the
estimator Ŝj(t) based on the R = 500 simulation replicates for each brain location j and time
point t. The Total MSE (TMSE) was computed by adding all the MSE’s over brain locations
and time points. This was done separately for locations in active and inactive regions.

In our simulation studies, the ACS-ICM algorithm had four tuning parameters. The
first denoted as qo ∈ (0, 1) controlled the degree of stochasticity, with larger values
corresponding to less stochasticity and thus less random exploration of the parameter
space. When a solution is chosen, another tuning parameter τ0 controlled the amount of
pheromone reinforcing this solution in the information available to the other ants. A third
tuning parameter ρ controlled the evaporation of pheromone, and finally a fourth tuning
parameter Nants controlled the number of ants. The number of ants (Nants) was fixed at 10,
a value for which we have seen generally good performance. This was chosen based on
computing efficiency and similar results (objective function values) from using Nants ≥ 10.
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The remaining optimal tuning parameters (qo, τ0, ρ) for all simulations cases were chosen
using an outer level optimization using the Nelder–Mead algorithm.

3.2. Simulation Results
3.2.1. Evaluation of Neural Source Estimation

We present the average correlation between the estimated values and the truth for
the algorithms considered in our study in Appendix A, Table A1. Inspecting Table A1,
we observe that for all cases considered for the true number of latent states (either two,
three, four, or nine), the estimates obtained from the ACS-ICM algorithm yielded a higher
average correlation than those obtained from ICM. In addition, with respect to the number
of clusters, ACS-ICM resulted in a higher average correlation than ICM uniformly for
all cluster sizes (250, 500, 1000). In summary, the average correlation was significantly
improved when estimates were computed using the ACS-ICM algorithm for both large
and small numbers of latent states as well as cluster sizes. In addition, we present in
Appendix A, Figure A4, violin plots comparing the correlation values obtained from each
of the algorithms for different simulation cases across all replicates. These plots show
the entire distribution and provide a better assessment of each algorithm for simulation
replicates. Observing Figure A4, we can see that ACS-ICM provides the highest correlation
values uniformly in all simulation scenarios.

The TMSE for all simulation scenarios is presented in Appendix A, Table A2. To im-
prove the readability of the results from TMSE values, we computed the relative percentage
improvement in TMSE of the neural source estimators from ICM to ACS-ICM. Here, using
ICM as the reference algorithm, the relative percentage improvement is defined as the ratio
of the difference in TMSE between ICM and ACS-ICM to its ICM TMSE value multiplied by
100. The results of this computation are presented in Table 1. In all simulation scenarios for
Table 1, ACS-ICM performed better and showed a significant improvement as compared
to ICM. Specifically with respect to the number of clusters, ACS-ICM was roughly 10%
better than ICM with respect to TMSE when the cluster size was 250. For both small and
large numbers of latent states, ACS-ICM was better than ICM in the active region with
significant improvements. This shows that ACS-ICM outperforms ICM in active regions
using both small and large numbers of latent states. The total MSEs were decomposed into
total variance and total squared bias for the same distinct cases of the simulation depicted
in Table 1. From the results, when we considered active regions with different numbers
of clusters, and observed that ACS-ICM was better than ICM based on the total squared
bias due to the percentage of relative change. Based on the total variance we also noticed a
similar positive change from ICM to ACS-ICM uniformly for all values of K. It is also clear
that for inactive regions, ACS-ICM was better than ICM for both total variance and squared
bias for all simulation cases considered. Overall, these results from the TMSE demonstrate
a significant improvement obtained from our algorithm when considering total squared
bias and variance for our simulation studies. This improvement was observed uniformly
across all conditions.

We present in Figure 1 boxplots comparing the final objective function values obtained
from each of the algorithms for the different simulation scenarios across all replicates.
Again, a clear pattern emerged showing that ACS-ICM yielded the highest objective
function values uniformly in all cases. Overall, ACS-ICM outperformed the ICM algorithm
uniformly with respect to both neural source estimates and the values of the objective
function. This indicates the superiority of the ACS-ICM algorithm over ICM for computing
neural source estimates for the spatiotemporal model.

3.2.2. Evaluation of Mixture Component Estimation

In addition to evaluating point estimation and objective function maximization, we
also evaluated model selection, comparing K̂ACS and K̂ICM, that is, the estimators obtained
from ACS-ICM and ICM, respectively. We focused on estimating the number of mixture
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components and evaluating the sampling distribution of K̂ACS and K̂ICM. The following
five scenarios were considered in our experiments:

1. Two latent states with Gaussian source activity in the active regions depicted in
Appendix A, Figure A1, panel (a).

2. Three latent states with Gaussian source activity in the active regions depicted in
Appendix A, Figure A1, panel (c).

3. Four latent states with Gaussian source activity in the active regions depicted in
Appendix A, Figure A1, panel (e).

4. Four latent states with Gaussian and sinusoidal source activity in the active regions
depicted in Appendix A, Figure A1, panel (g).

5. Nine latent states with Gaussian source activity in the active regions depicted in
Appendix A, Figure A2, panel (a).

Table 1. Simulation study I-Percentage of relative improvement in Total Mean-Squared Error (TMSE) of the neural source
estimators decomposed into variance and squared bias from ICM to ACS-ICM. This total was obtained separately for
locations in active regions and then for the inactive region.

Active Region Inactive Region

Algorithm Clusters TMSE (%) (Bias)2 Variance TMSE (%) (Bias)2 Variance
% % % % % %

K = 2

ICM→ACS-ICM 250 9.78 11.11 8.93 9.93 6.15 13.16
ICM→ACS-ICM 500 6.63 4.39 8.57 9.48 9.71 9.26
ICM→ACS-ICM 1000 2.95 2.04 4.03 3.86 1.57 5.70

K = 3

ICM→ACS-ICM 250 5.10 7.80 2.76 4.97 4.31 5.60
ICM→ACS-ICM 500 24.85 25.42 24.31 15.89 18.26 13.61
ICM→ACS-ICM 1000 36.57 53.61 20 10.83 10 11.61

K = 4

ICM→ACS-ICM 250 12.24 11.11 12.88 8.90 14.19 4.94
ICM→ACS-ICM 500 17.94 14.75 20.71 2.86 3.10 2.64
ICM→ACS-ICM 1000 29.28 30.30 30.65 2.76 3.62 2.06

K = 9

ICM→ACS-ICM 250 31.14 22.77 27.65 15.44 13.07 17.58
ICM→ACS-ICM 500 14.83 11.40 18.20 17.0 20.39 13.71
ICM→ACS-ICM 1000 23.79 25.52 22.08 8.65 7.03 10.14
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Figure 1. Box-plots comparing the objective function values obtained in the simulation studies for the ICM and ACS-ICM
algorithms. The first row corresponds to the case when K = 2, second row corresponds to when K = 3, third row is when
K = 4 and the last row is when K = 9.
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We simulated the data for each of the five scenarios considered, and added 5% Gaus-
sian noise at the sensors with 1000 replicate datasets used in each case. The algorithms
were run with an upper bound of K = 10 for each of the 5000 simulated datasets. For
each dataset, we computed the value of the estimator, and histograms representing the
sampling distributions are presented in Figure 2, for each of the five cases above illustrating
the sampling distribution of K̂ICM (panels (a)–(e)) and K̂ACS (panels (f)–(j)) corresponding
to the first and second row, respectively. Observing Figure 2, where the true signals are
well separated in the simulation experiments, in all cases except for the case with a larger
number of latent states (K = 9), the mode of the sampling distributions corresponds to the
true number of latent states for both the ACS-ICM and ICM algorithms. In the case of nine
neural sources, ACS-ICM gave better and improved results than ICM. Additionally, Table 2
reports both the bias and mean-squared error of the estimators from ACS-ICM (K̂ACS) and
ICM (K̂ICM). From Table 2, both ACS-ICM and ICM are biased and over-estimated for
the small number of latent states but underestimated for the large number of latent states.
More importantly, the estimate for the number of mixture components obtained from ACS-
ICM exhibited the best performance in terms of both bias and MSE uniformly for all cases
considered. This is based on |Bias(K̂ACS)| < |Bias(K̂ICM)| and MSE(K̂ACS) < MSE(K̂ICM).

We repeated the simulation studies for all five cases but where true signals are less
well separated by altering the true signals depicted in Appendix A, Figure A3. We present
histograms depicted in Figure 3, for each of the five cases above, illustrating the sampling
distribution of K̂ICM (panels (a)–(e)) and K̂ACS (panels (f)–(j)). In this case, the mode of the
sampling distribution corresponds to the true number of latent states when K = 2 and K =
3 but not for the case with four and nine latent states with both algorithms. In Table 2 we
compare the bias and mean square error of K̂ICM and K̂ACS under this simulation settings.
Similarly, under these settings, ACS-ICM outperformed ICM in terms of the bias and
mean square error; thus, |Bias(K̂ACS)| < |Bias(K̂ICM)| and MSE(K̂ACS) < MSE(K̂ICM). In
summary, for model selection, based on the results presented in Table 2, ACS-ICM showed
an overall better performance over ICM uniformly for all eight conditions considered.

Whereas the ACS-ICM algorithm showed superiority in terms of quality of source
estimates, a drawback is that it is computationally expensive relative to ICM due to its
population-based and iterative procedure. Notwithstanding, this might not be a serious
challenge for source localization problems, which do not require real-time solutions in
most situations. With regards to computation time, on the Niagara cluster running R
software on a single core (Intel Skylake 2.4 GHz, AVX512), ICM computed source estimates
in approximately 2 min whereas ACS-ICM computed estimates in roughly 6 h and 30 min.

Table 2. Simulation study II—bias and Mean Square Error (MSE) of estimated number of mixture components (K̂) from the
1000 simulation replicates when the algorithms were run with K = 10.

K = 2 K = 3 K = 4 K = 9

Algorithm Bias(K̂) MSE(K̂) Bias(K̂) MSE(K̂) Bias(K̂) MSE(K̂) Bias(K̂) MSE(K̂)

The case where the true signals were well-separated

ICM 0.11 0.13 0.06 0.42 0.20 0.44 −2.54 6.19
ACS-ICM 0.04 0.06 0.02 0.38 0.10 0.31 −2.01 4.46

The case where the true signals were less well-separated

ICM 0.11 0.13 0.525 0.58 −1.02 1.63 −4.83 16.12
ACS-ICM 0.05 0.07 0.35 0.41 −1.00 1.31 −3.68 10.47
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Figure 2. Histograms illustrating the sampling distribution of K̂ in the case where the true signals were well separated in
the simulation studies. The first row corresponds to the sampling distribution of K̂ICM; panel (a), K = 2; panel (b), K = 3;
panel (c), K = 4 with three Gaussian signals; panel (d), K = 4 with two Gaussian signals and one sinusoid; panel (e), K = 9
with eight Gaussian signals. The second row corresponds to the sampling distribution of K̂ACS; panel (f), K = 2; panel (g),
K = 3; panel (h), K = 4 with three Gaussian signals; panel (i), K = 4 with two Gaussian signals and one sinusoid; panel (j),
K = 9 with eight Gaussian signals. In each case the vertical red line indicates the true number of latent states underlying the
simulated data.
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Figure 3. Histograms illustrating the sampling distribution of K̂ in the case where the true signals were less well-separated
in the simulation studies. The first row corresponds to the sampling distribution of K̂ICM; panel (a), K = 2; panel (b), K = 3;
panel (c), K = 4 with three Gaussian signals; panel (d), K = 4 with two Gaussian signals and one sinusoid; panel (e), K = 9
with eight Gaussian signals. The second row corresponds to the sampling distribution of K̂ACS; panel (f), K = 2; panel (g),
K = 3; panel (h), K = 4 with three Gaussian signals; panel (i), K = 4 with two Gaussian signals and one sinusoid; panel (j),
K = 9 with eight Gaussian signals. In each case the vertical red line indicates the true number of latent states underlying the
simulated data.

4. Application to Scrambled Face Perception MEG/EEG Data

In this section, we present the application of our methodology for comparison with
EEG and MEG data measuring an event-related response to the visual presentation of
scrambled faces in a face perception study. In addition, we demonstrate how a nonpara-
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metric bootstrap can be used to obtain standard errors, confidence intervals and T-maps.
The data from both MEG and EEG were obtained from a single subject in an experimental
paradigm that involved repeated random presentation of a picture showing either a face
or a scrambled face while the subject was required to make a symmetry judgement. The
scrambled faces were created through 2D Fourier transformation, random phase permuta-
tion, inverse transformation and outline-masking of each face. The experiment involved a
sequence of trials, each lasting 1800 ms, where in each trial the subject was presented with
one of the pictures for a period of 600 ms while being required to make a four-way, left–
right symmetry judgment while brain activity was recorded over the array. Both scrambled
faces and unscrambled faces were presented to the subject; however, our analysis will focus
only on trials involving scrambled faces. This produced a multivariate time series for each
trial, and the trial-specific time series were then averaged across trials to create a single
multivariate time series; the average evoked response is depicted in Figure 4, panel (a),
for MEG data, and panel (c), for EEG data. Looking from a spatial perspective, at a given
time point, each array recorded a spatial field such as that depicted in Figure 4, panel (b),
which shows the MEG spatial field at a particular time point, and Figure 4, panel (d), which
shows the EEG spatial field at the same time point. The degree of inter-trial variability was
quite low. This experiment was conducted while EEG data were recorded, and then again
on the same subject while MEG data were recorded.

The EEG data were acquired on a 128-sensors ActiveTwo system with a high sampling
rate of 2048 Hz and down-sampled to 200 Hz. The EEG data were re-referenced to the
average over good channels. The resulting EEG data were a trial-specific multivariate time
series and contained 128 sensors, 161 time points and 344 trials. For real data analysis, the
trial-specific time series were averaged across trials to produce a single average evoked
response. The MEG data were acquired on 274 sensors with a CTF/VSM system, with
a high sampling rate of 480 Hz and down-sampled to 200 Hz. The MEG data obtained
were a trial -specific multivariate time series and contained 274 sensors, 161 time points
and 336 trials. We obtained a temporal segment of the data from time point t = 50 to
t = 100, resulting in 51 time points for both the EEG and MEG data. The trial-specific
time series were averaged across trials to produce a single average evoked response.
Detailed description of the data and related analysis can be found in [9,39,40]. In addition,
a link to the open access data repository used for analysis can be found here: https:
//www.fil.ion.ucl.ac.uk/spm/data/mmfaces (accessed on 14 November 2020).

We set the upper bound at K = 10 mixture components, voxels as nv = 560, β = 0.3
(hyperparameter of Potts model) and a cluster size of J = 250. For our real data application,
the optimal tuning parameters (qo, τ0, ρ, Nants) = (0.43, 0.05, 0.64, 10) were selected simi-
larly using the Nelder–Mead algorithm. First, the ICM algorithm was run to convergence
and the estimates obtained were used as the initial values for the ACS-ICM algorithm.
Our primary interest lies in the estimated neural sources Ŝ(t) and we computed the total
power of these estimated sources obtained from both algorithms at each brain location,
which was then mapped onto the cortex. The cortical maps showing the spatial patterns
from the estimated power of the reconstructed sources are displayed in Figure 5. The first
and second row depict the corresponding results obtained from the ICM and ACS-ICM
algorithms, respectively. As shown in Figure 5, the greatest power occurred on the bilateral
ventral occipital cortex for both estimated sources from the ACS-ICM and ICM algorithms.
Interestingly, the results from ACS-ICM estimates also differed when compared with the
results from ICM in the left ventral frontal and right ventral temporal regions. In particular,
the ACS-ICM estimate detected higher power, whereas ICM showed low activation in
these regions. The estimated source locations of these region is responsible for high-level
visual processing. Therefore, the cortical power map seems to represent regions that would
be expected to show scrambled face-related activity. To compare the general quality of
the estimates from ACS-ICM versus ICM, we show the plot of the final objective function
values obtained from the algorithms in Figure 6. We see clearly that the application of
ACS-ICM has led to higher quality estimates with much larger posterior density values.

https://www.fil.ion.ucl.ac.uk/spm/data/mmfaces
https://www.fil.ion.ucl.ac.uk/spm/data/mmfaces
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The ACS-ICM algorithm used to maximize the posterior distribution produces only
point estimates of the neural source activity. In addition to the point estimates, we applied
a nonparametric bootstrap on the trial-specific multivariate time series to obtain confi-
dence interval estimates and characterize the variability in our source estimates, which
is another extension to [13]. The interval estimates were constructed by resampling the
trial-specific MEG/EEG time series data with replacement. From each resampled dataset,
we obtained the average evoked response and then run the ACS-ICM algorithm for a total
of 400 nonparametric bootstrap replicates. This procedure was made feasible using parallel
computation on a large number of computing cores. We constructed a cortical map of the
bootstrap standard deviations of the total power of the estimated source. To account for
uncertainty in our point estimates, we constructed a T-map and this is depicted in Figure 7.
A T-map is the ratio of the ACS-ICM point estimate of the source activity to its bootstrap
standard deviations. The T-map represents the best depiction of reconstructed power since
it accounts for standard errors that a simple map of the point estimates does not. Broadly,
the T-map seems to indicate similar results to those obtained from point estimates, in
particular with respect to high power activation on the bilateral ventral occipital cortex and
right ventral temporal region. An interesting observation from the T-map is the detection of
a high signal in the left ventral temporal region but a low activation from the point estimate.

Figure 4. The Magnetoencephalography (MEG) and Electroencephalography (EEG) data considered in the face perception
study: panels (a,c) show the time series observed at each MEG sensor and EEG sensor, respectively; panels (b,d) depict
the spatially interpolated values of the MEG data and the EEG data, respectively, each observed at t = 80, roughly 200 ms
after presentation of the stimulus. In panels (b,d) the black circles correspond to the sensor locations after projecting these
locations onto a 2-dimensional grid (for presentation).
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Figure 5. Brain activation for scrambled faces—the power of the estimated source activity ∑T
t=1 Ŝj(t)2 at each location j of

the cortical surface. Row 1 displays results from our ICM algorithm applied to the combined MEG and EEG data; Row
2 displays results from ACS-ICM applied to the combined MEG and EEG data.

Figure 6. Objective function values obtained from the data with the ACS-ICM (left) and ICM (right) algorithms.

In addition, we present the temporal summary from our bootstrap replicates represent-
ing the interval estimation for the estimated temporal profile of brain activity at the peak
location of the T-map. The interval estimate represents a 95% confidence interval depicted
in Figure 8. One of the key components of our work is varying the inverse temperature
parameter for sensitivity analysis. We fixed the inverse temperature at β = (0.1, 0.44) and
run the ACS-ICM algorithm to convergence. We run our algorithm together with K = 10,
nv = 560 and a cluster size of J = 250. For β = 0.1, the corresponding results obtained are
depicted in the first row of Figure 9. The results indicate activation on the bilateral ventral
occipital cortex. Additionally, at β = 0.44, the power map results from ACS-ICM, depicted
in the second row of Figure 9, differ when compared with results from ACS-ICM at β = 0.1
In particular, the highest power signals occured in the right ventral temporal region where
there was low activation for using β = 0.1.

For our real data application we applied both algorithms with J = 500 clusters so as
to evaluate how the performance varies as this tuning parameter changes. The results are
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displayed in Appendix B. The corresponding results obtained from ACS-ICM are displayed
in the second row of Figure A5. Examining Figure A5, ACS-ICM seems to indicate similar
results to those obtained from using a tuning parameter of J = 250, in particular with
respect to activation on the bilateral ventral occipital cortex. For our sensitivity analysis, we
present results obtained from using inverse temperature (β = 0.1 and β = 0.44) displayed
in Figure A6. We observe that from ACS-ICM, the spatial spread of the high power occurs
on the bilateral ventral occipital cortex. In addition, source estimates obtained from ACS-
ICM indicate bilateral activation in the occipital cortex, and activation in the right temporal
and right frontal regions of the brain. These estimated source locations reveal activation
in areas known to be involved in the processing of visual stimuli. More interestingly,
ACS-ICM also detected high power in a region on the corpus callosum; given that the
inverse problem is ill-posed with an infinite number of possible configurations this may be
the reason.

In our real data analysis, the required computation time for ICM was 3 min on a
single core (Intel Skylake 2.4 GHz, AVX512) with R software, whereas the computation
time for the ACS-ICM was roughly 7 h. The choice of cluster size will have an impact on
the computational time required by the algorithm. With regards to ACS-ICM, the required
computing time for a cluster size of 250 was approximately 7 h, whereas for a cluster
size of 500, ACS-ICM required 12 h of computing time. While there is a substantially
increase in computation, the paper has demonstrated uniform improvements in the quality
of the solutions, in terms of both source estimation and model selection. Furthermore, the
bootstrap can be implemented in parallel on a computing cluster to obtain standard errors
with no increase to the required computation time.

Figure 7. The spatial profile of brain activity from ACS-ICM based on our bootstrap replicates. Row 1 displays standard
deviations of the total power of the estimated source activity; Row 2 displays the T-map.
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Figure 8. The 95% confidence interval for the estimated temporal profile of brain activity at the peak
location of the T-map from the bootstrap replicates.

Figure 9. Brain activation for scrambled faces—the power of the estimated source activity ∑T
t=1 Ŝj(t)2 at each location j of

the cortical surface. Row 1 displays results from our ACS-ICM algorithm applied to the combined MEG and EEG data with
β = 0.1; Row 2 displays results from ACS-ICM applied to the combined MEG and EEG data with β = 0.44.

Residual Diagnostics for the Scrambled Faces MEG and EEG Data

We assessed the goodness of fit of the model by checking the residual time series plot,
normal quantile–quantile plot and residuals versus fitted values after running the ACS-ICM
and ICM algorithms. This was done by computing the residuals for both EEG and MEG
after applying both algorithms. The residuals were computed as ε̂M(t) = M(t)− XMŜ(t)
and ε̂E(t) = E(t)− XEŜ(t) at each time point t = 1, . . . , T. The assumption made for the
residuals was that they should be draws from a mean-zero Gaussian distribution if the
assumed model generated the observed data. The residual time series plot for EEG and
MEG from the ACS-ICM algorithm is displayed in Figure 10, panels (a) and (b). The plots
from Figure 11, panels (a) and (b), also depicts residuals time series plots obtained from
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ICM for EEG and MEG, respectively. Examining the plots, the residual time series plots
obtained from both algorithms exhibit similar patterns for MEG and EEG. However, there
are significant improvements seen in estimates from ACS-ICM. Specifically for the EEG
data, there are sensors with relatively large peaks remaining from the ICM but significant
improvements from ACS-ICM as we observe no fewer residuals patterns relative to ICM.
In the case of MEG data, we observe that the residuals obtained from ACS-ICM reveal few
sensors with peaks remaining as compared to ICM, where there are more sensors with
large peaks and residuals.

In Figures 10 and 11, panels (c) and (d), we show plots of the residuals versus fitted
values from ACS-ICM and ICM. For the EEG data, the ACS-ICM residuals reveal fewer
extreme values with smaller residual patterns but more outliers are seen in the residuals
obtained from ICM comparably. The residuals obtained from ICM are characterized by
higher values to the left of zero and lower values to the right of zero. In the case of
MEG data, the residuals obtained from ACS-ICM also show fewer extreme values with
a smaller residual pattern but a similar resemblance for residuals obtained from the ICM
algorithm with few extreme values outside the zero band. We observe more extreme values
in the residual plot obtained from ICM than that obtained from ACS-ICM. This signifies
improvements of the ACS-ICM algorithm over ICM. Inspecting Figure 10, panels (e) and (f),
reveals normal quantile–quantile plots for the EEG and MEG residuals obtained from the
ACS-ICM algorithm. There is no deviation from normality observed from the EEG and
MEG data. Hence, the Gaussian assumption holds from using the ACS-ICM algorithm. In
the case of the ICM, in Figure 11, panels (e) and (f) depict the normal quantile–quantile
plots for the EEG and MEG data. In this case we observe a clear divergence from the normal
distribution for the EEG and MEG residuals. In particular, we see a strong deviation from
normality in the left and right tail of the distribution for the EEG data. There is also a
deviation from normality in the right tail of the distribution for the MEG data.

In summary, the residual analysis revealed the use of the ACS-ICM algorithm resulted
in estimates with a better fit of the spatial mixture model for the EEG and MEG data relative
to ICM. Thus our proposed approach leads to improvements in point estimation and model
selection uniformly in all settings in simulation studies and in our application with larger
objective function values and improved model fit based on residual analysis.

(a) (b)

Figure 10. Cont.
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(c) (d)

(e) (f)

Figure 10. Brain activation for scrambled faces using the ACS-ICM algorithm—residual diagnostics: time series of residuals,
(a) EEG, (b) MEG; residuals versus fitted values, (c) EEG, (d) MEG; residual normal quantile–quantile plots, (e) EEG,
(f) MEG.

(a) (b)

Figure 11. Cont.
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(c) (d)

(e) (f)

Figure 11. Brain activation for scrambled faces using icm algorithm—residual diagnostics: time series of residuals, (a) EEG,
(b) MEG; residuals versus fitted values, (c) EEG, (d) MEG; residual normal quantile–quantile plots, (e) EEG, (f) MEG.

5. Discussion and Conclusions

In this section, we provide numerical results obtained in the data analysis, limitations
of the proposed approach and the prospects for future research. We have developed
an ACS-ICM algorithm for spatiotemporal modeling of combined MEG/EEG data for
solving the neuroelectromagnetic inverse problem. Adopting a Bayesian finite mixture
model with a Potts model as a spatial prior, the focus of our work has been to improve
source localization estimates, model selection and model fit. The primary contribution
is the design and implementation of the ACS-ICM algorithm as an approach for source
localization that result in better performance over ICM, which is very positive uniformly in
every setting on simulation studies and real data application. Another key development is
the technique implemented in choosing the tuning parameters for the ACS-ICM by using
an outer level optimization that numerically optimizes the choice of the tuning parameters
for this algorithm. This strategy ensures that the optimal tuning parameters based on the
data and problem complexity are selected.

5.1. Numerical Results

In our simulation studies, we observed four significant improvements associated with
ACS-ICM over ICM: (1) ACS-ICM neural source estimates provided improved correlation
between estimated and truth sources uniformly across all settings considered; (2) the
objective function values obtained from the posterior density values for ACS-ICM were
larger than those obtained from ICM uniformly across all settings considered; (3) ACS-ICM
showed significant improvement with respect to the total mean square error for all cluster
sizes considered compared to ICM; (4) ACS-ICM exhibited improved performance in terms
of both bias and mean square error for the non-regular problem of estimating number of
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mixture components. Moreover, the application of ACS-ICM to real data led to higher
quality estimates with larger maximized posterior density values. These improvements
have demonstrated the advantage of the ACS-ICM algorithm when compared with ICM
in both the face perception analysis as well as the simulation studies. In addition to
implementing the ACS-ICM algorithm for point estimation, we demonstrated how a
nonparametric bootstrap can be used to obtain standard errors, confidence intervals and
T-maps for the proposed methodology. This was done to account for uncertainty in our
point estimates of the neural source activity.

5.2. Limitations of the Proposed Approach

An important limitation of the simulation studies is the use of white noise added to
the signals. This is because MEG/EEG data would have structured noise that arise from,
e.g., motion, and such noise would be spatially correlated. The spatially correlated noise
will make the simulation scenarios more challenging, which we expect to result in a decline
in performance. We did not pursue this scenario in our simulation and we will consider it
in our future studies.

5.3. Prospects for Future Research

In our current work, we are implementing ACS-ICM for the spatial mixture model
developed in [13]. We hope in the future to extend the model by considering a robust
error structure in the MEG/EEG model. The model currently assumes that the errors are
independent in time. This will be extended by allowing for an autoregressive structure.
A second extension would be to relax the assumption that the errors have a Gaussian
distribution by incorporating a multivariate t distribution for the error terms. Integrating
these extensions, we will develop a new joint model for the MEG/EEG data and implement
the ACS-ICM and ICM algorithms for the neuroelectromagnetic inverse problem.

Furthermore, when we obtained the source estimates from the ACS-ICM algorithm,
we mapped a function of them (the total power) on the cortex and in that map we used
no thresholding. That is to say, the locations were not thresholded so we can see all the
locations with estimated power. For our future studies we hope to map the total power on
the cortex with a threshold so that we can see the locations with highest power. In a better
way to choose the threshold, our next objective is to extend this work by implementing
thresholding of cortical maps using random field theory [41]. Random field theory is
mainly applied in dealing with thresholding problems encountered in functional imaging.
This is used to solve the problem of finding the height threshold for a smooth statistical
map, which gives the required family-wise error rate. In going forward with our current
work, the idea is to take the point estimate obtained from ACS-ICM and standard errors
(obtained from bootstrap) to provide estimates of p-values for t-statistics pertaining to the
number of activated voxels comprising a particular region.

It should be noted that the ACS-ICM algorithm and spatial model developed can also
be applied to studies involving multiple subjects. Expanding from a single subject model
to a model developed for multiple subjects would be of great interest for the MEG/EEG
inverse problem. This will be based on developing a fully Bayesian analysis based on a
divide and conquer Markov Chain Monte Carlo (MCMC) method [42]. This approach
for Bayesian computation with multiple subjects is to partition the data into partitions,
perform local inference for each piece separately, and combine the results to obtain a global
posterior approximation.
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Figure A1. The true signal Sj(t) used in each of the distinct active and inactive regions in the simulation studies of Section 3
for K = 2; panel (a), K = 3; panel (c) and K = 4; panel (e) & (g) are depicted in the left column. The right column presents
the true partition of the cortex into active and inactive states for the corresponding states for K = 2; panel (b), K = 3; panel
(d) and K = 4; panel (f) & (h).

Table A1. Simulation study I—Average (Ave.) correlation between the neural source estimates and
the true values for the ICM and ACS-ICM algorithms. The simulation study is based on R = 500
simulation replicates where each replicate involves the simulation of MEG and EEG data based on a
known configuration of the neural activity depicted in Appendix A, Figures A1 and A2.

K = 2 K = 3 K = 4 K = 9

Algorithm Clusters Ave. Corr. Ave. Corr. Ave. Corr. Ave. Corr.

ICM 250 0.60 0.63 0.62 0.54
ACS-ICM 250 0.64 0.67 0.63 0.59
ICM 500 0.53 0.55 0.49 0.44
ACS-ICM 500 0.56 0.61 0.53 0.46
ICM 1000 0.41 0.43 0.40 0.37
ACS-ICM 1000 0.46 0.47 0.45 0.43
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Figure A2. The true signal Sj(t) in panel (a) and true partition of the cortex into active and inactive states for the case of
K = 9 states (panel b–f) used in simulation studies of Section 3.
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Figure A3. The true signal Sj(t) used in in each of the distinct active and inactive regions for K = 2; panel (a), K = 3; panel
(b), K = 4; panel (c) & (d), K = 9; panel (e) in the simulation study of Section 3.2, in the second part of the study where the
mixture components were less well separated.
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Table A2. Simulation study I—Total Mean-Squared Error (TMSE) of the neural source estimators decomposed into variance
and squared bias for the ICM and ACS-ICM algorithms. This total was obtained separately for locations in active regions
and then for the inactive region.

Active Region Inactive Region

Algorithm Clusters TMSE (Bias)2 Variance TMSE (Bias)2 Variance

K = 2

ICM 250 92 36 56 141 65 76
ACS-ICM 250 83 32 51 127 61 66
ICM 500 196 91 105 211 103 108
ACS-ICM 500 183 87 96 191 93 98
ICM 1000 271 147 124 285 127 158
ACS-ICM 1000 263 144 119 274 125 149

K = 3

ICM 250 490 237 253 523 255 268
ACS-ICM 250 465 219 246 497 244 253
ICM 500 1203 582 621 705 345 360
ACS-ICM 500 904 434 470 593 282 311
ICM 1000 1657 817 840 674 321 353
ACS-ICM 1000 1051 379 672 601 289 312

K = 4

ICM 250 776 378 396 674 289 385
ACS-ICM 250 681 336 345 614 248 366
ICM 500 1404 651 753 804 387 417
ACS-ICM 500 1152 555 597 781 375 406
ICM 1000 2493 1100 1393 796 359 437
ACS-ICM 1000 1763 797 966 774 346 428

K = 9

ICM 250 2100 918 1182 1541 727 814
ACS-ICM 250 1446 709 737 1303 632 671
ICM 500 2515 1246 1269 1260 618 642
ACS-ICM 500 2142 1104 1038 1046 492 554
ICM 1000 3561 1720 1839 1549 740 809
ACS-ICM 1000 2714 1281 1433 1415 688 727
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Figure A4. Violin plots comparing the correlation values obtained in the simulation studies for the ICM and ACS-ICM
algorithms. The first row corresponds to the case when K = 2, the second row corresponds to when K = 3, the third row is
when K = 4 and the last row is when K = 9.
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Appendix B

We present results from the ACS-ICM and ICM algorithms with tuning parameters
for the cluster size of 500. The cortical maps displaying the spatial patterns of the total
power for estimated sources are represented below.

Figure A5. Brain activation for scrambled faces—the power of the estimated source activity ∑T
t=1 Ŝj(t)2 at each location

j of the cortical surface. Row 1 displays results from our ICM algorithm applied to the combined MEG and EEG data;
Row 2 displays results from ACS applied to the combined MEG and EEG data.

Figure A6. Brain activation for scrambled faces—the power of the estimated source activity ∑T
t=1 Ŝj(t)2 at each location j

of the cortical surface. Row 1 displays results from our ACS applied to the combined MEG and EEG data with β = 0.1;
Row 2 displays results from ACS applied to the combined MEG and EEG data with β = 0.44.
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Figure A7. The spatial profile of brain activity from ACS-ICM based on our bootstrap replicates. Row 1 displays standard
deviations of the total power of the estimated source activity; Row 2 displays the T-map.
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