
entropy

Article

Matroidal Entropy Functions: A Quartet of Theories of
Information, Matroid, Design, and Coding

Qi Chen 1,* , Minquan Cheng 2,* and Baoming Bai 1,*

����������
�������

Citation: Chen, Q.; Cheng, M.; Bai, B.

Matroidal Entropy Functions: A

Quartet of Theories of Information,

Matroid, Design, and Coding. Entropy

2021, 23, 323. https://doi.org/

10.3390/e23030323

Academic Editor: Boris Ryabko

Received: 29 December 2020

Accepted: 26 February 2021

Published: 9 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 State Key Laboratory of Integrated Service Networks, Xidian University, Xi’ an 710071, China
2 Guangxi Key Lab of Multi-Source Information Mining & Security, Guangxi Normal University,

Guilin 541004, China
* Correspondence: qichen@xidian.edu.cn (Q.C.); chengqinshi@hotmail.com (M.C.);

bmbai@mail.xidian.edu.cn (B.B.)

Abstract: In this paper, we study the entropy functions on extreme rays of the polymatroidal
region which contain a matroid, i.e., matroidal entropy functions. We introduce variable strength
orthogonal arrays indexed by a connected matroid M and positive integer v which can be regarded
as expanding the classic combinatorial structure orthogonal arrays. It is interesting that they are
equivalent to the partition-representations of the matroid M with degree v and the (M, v) almost
affine codes. Thus, a synergy among four fields, i.e., information theory, matroid theory, combinatorial
design, and coding theory is developed, which may lead to potential applications in information
problems such as network coding and secret-sharing. Leveraging the construction of variable strength
orthogonal arrays, we characterize all matroidal entropy functions of order n ≤ 5 with the exception
of log 10 ·U2,5 and log v ·U3,5 for some v.

Keywords: entropy function; matroidal entropy function; matroid; orthogonal array; variable
strength orthogonal array; almost affine code; MDS code; polymatroid

1. Introduction

Given N := {1, 2, · · · , n} and discrete random vector X := (Xi : i ∈ N), the set
function hX : 2N → R defined by

hX(A) = H(XA), ∀A ⊆ N

is called the entropy function of X, where XA := (Xi : i ∈ A) and H(X∅) = 0 by
convention. We also say X characterizes hX, or X is the characterizing random vector of hX.
An entropy function h can be considered as a vector in the entropy spaceHn := R2N

. (For
a set A and a finite set B, AB denotes the |B| Cartesian product of A with each coordinate
indexed by b ∈ B. When A = F is a field, FB is a |B|-dimensional vector space over F with
each coordinate indexed by b ∈ B.) We sayHn and the vectors in it have order n. The set
of all entropy functions of order n, denoted by Γ∗n, is called the entropy region of order n.
The closure of Γ∗n, denoted by Γ∗n, is called almost entropic region. It is a convex cone [1].
A vector h ∈ Hn is called entropic if h ∈ Γ∗n, almost entropic if h ∈ Γ∗n, and non-entropic
if h 6∈ Γ∗n. Characterization of entropy functions, i.e., for a vector h ∈ Hn, determining
whether it is in Γ∗n or Γ∗n, is of fundamental importance in information theory.

For a vector h ∈ Hn, if it is nonnegative, i.e., h(A) ≥ 0 for all A ⊆ N, monotone, i.e.,
h(A) ≤ h(B) for all A ⊆ B ⊆ N, and submodular, i.e., h(A∩ B)+h(A∪ B) ≤ h(A)+h(B)
for all A, B ⊆ N, the pair (N, h) is called a polymatroid, where N is the ground set and
h is the rank function of the polymatroid. For a polymatroid (N, h), if h(A) ∈ Z and
h(A) ≤ |A| for all A ⊂ N, (N, h) is called a matroid. By frequent abuse of terminology,
we do not distinguish a (poly)matroid and its rank function if there is no ambiguity. See
Section 2.1 for a more detailed discussion on matroids.
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The set of all polymatroids inHn, denoted by Γn, is called the polymatroidal region of
order n. It is proved in [2] that any entropy function is a polymatroid, thus Γn is an outer
bound of Γ∗n. As Γn is closed, it is also an outer bound of Γ∗n. As inequalities bounding
Γn are equivalent to the nonnegativity of Shannon information measures, they are called
Shannon-type information inequalities, and Γn is also called the Shannon outer bound of
Γ∗n and Γ∗n. For more about entropy functions and information inequalities, readers are
referred to [3], (Chapter 13–15) [4,5].

It is well known that Γ∗n ( Γn when n ≥ 4 due to the existence of non-Shannon-type
inequalities, e.g., Zhang-Yeung inequality [6]. However, though Γ∗3 = Γ3, Zhang and Yeung
also discovered that on an extreme ray of Γ3, only countably many vectors are entropic,
which implies that Γ∗3 ( Γ∗3 , and therefore there exists a gap between Γ∗n and Γ∗n [1]. Given
a random vector X = (X1, X2, X3) with Xi, i = 1, 2, 3 mutually independent and each of
them the function of the other two, it is proved in [1] that Xi must be uniformly distributed
on a finite set, say Zv := {0, 1, · · · , v− 1}, thus hX(A) = log v ·min{2, |A|}, A ⊆ {1, 2, 3}.
On the other hand, for each integer v ≥ 1, they proved that polymatroid h with h(A) =
log v ·min{2, |A|}, A ⊆ {1, 2, 3} is entropic: let X1 and X2 uniformly distributed on Zv and
X3 ≡ X1 + X2 (mod v), then h is the entropy function of (X1, X2, X3).

As the rank function of U2,3 is equal to min{2, |A|}, A ⊆ {1, 2, 3}, Zhang-Yeung
indeed proved that for any vector h = c ·U2,3 on the ray RU2,3 := {c ·U2,3 : c ≥ 0}, h is
entropic if and only if c = log v for some positive integer v. In [7], Matúš proved that, for
any extreme ray RM := {c ·M : c ≥ 0} of Γn containing a connected matroid M with rank
≥ 2, h = c ·M is entropic only if c = log v for some positive integer v. However, on the
other hand, h = c ·M is not entropic for all positive integers. For example, we will see in
Section 4 that h = log v ·U2,4 is non-entropic when v = 2, 6.

Definition 1. For a connected matroid M with rank ≥ 2, we call the set χM of all positive integers
v such that h = log v ·M is entropic the probabilistically (p-)characteristic set of M.

The term p-characteristic set of a matroid M is first coined in [7]. As discussed above,
χU2,3 = Z+, the set of all positive integers, and χU2,4 = {v ∈ Z+ : v 6= 2, 6}. In this paper,
we study the p-characteristic set of an arbitrary connected matroid with rank ≥ 2.

Definition 2. For a connected matroid M with rank ≥ 2 and a positive integer v, if v ∈ χM,
we call the entropy function h = log v ·M a matroidal entropy function induced by M with
degree v.

It can be seen in the proof of Zhang-Yeung, characterizing random vectors of matroidal
entropy functions on RU2,3 is constructed by the multiplication table of an additive group
on Zv. It is not difficult to see that a random vector constructed by any quasigroup on Zv,
or equivalently, a Latin square with symbols in Zv, or equivalently, an orthogonal array
OA(2, 3, v), characterizes log v ·U2,3. (See Section 2.2 for the definition of an orthogonal
array.) More generally, an OA(t, n, v) can be used to construct a characterizing random
vector of the matroidal entropy function log v ·Ut,n with t ≥ 2. It is a natural question to ask
whether such construction can be generalized to an arbitrary connected matroid M with
rank ≥ 2? In [8], partition-representations ξi, i ∈ N of a matroid M = (N, r) with degree v
was defined, where each ξi is partition of a set Ω with cardinality vh(N). See more details
in Sections 3.1.2. Characterizing random vectors of h = log v · r can be obtained by the
uniform distributions on the blocks of ξi. In [9], an equivalent definition in coding theory
called almost affine code was defined. In this paper, in coordinate with the language in
combinatorial design, we introduce variable strength orthogonal arrays(VOA) indexed by
matroid M and integer v ≥ 2, which is equivalent to a partition-representation of M with
degree v and an (M, v) almost affine code. We denoted it by VOA(M, v). A VOA(M, v) can
be regarded as expanding the concept of orthogonal array. If a VOA(M, v) exists, we will
prove that the matroidal entropy function log v ·M is entropic and a characterizing random
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vector of log v ·M can be constructed by VOA(M, v). On the other hand, if VOA(M, v)
does not exist, log v ·M is non-entropic.

It is well known that orthogonal arrays with index unity in design theory are equiv-
alent to maximum distance saperable (MDS) codes in coding theory. In discussions of
our paper, we also see a more generalized equivalence, i.e., the equivalence between a
VOA and an almost affine code. Thus, we review and develop the correspondences and
equivalences in literatures such as [8,9] among four fields, i.e., information theory, matroid
theory, combinatorial design, and coding theory, which may help them benefit from each
other. In this paper, VOAs are also leveraged to characterize matroidal entropy functions
induced by matroids of order n ≤ 5.

The rest of this paper is organized as follows. Section 2 gives the preliminaries on
matroid theory and orthogonal arrays. In Section 3, we first define variable strength
orthogonal arrays and show their equivalence to the partition representation of a matroid
and almost affine codes. Then we characterize matroid entropy functions via variable
strength orthogonal arrays. in Section 4 , we characterize matroidal entropy functions of
order n ≤ 5. A discussion of the applications and further research is in Section 5.

2. Preliminary
2.1. Matroids

There exist various cryptomorphic definitions of a matroid. In this paper we discuss
matroid theory mainly from the perspective of rank functions. For a detailed treatment of
matroid theory, readers are referred to [10,11]. In Section 1, we defined matroids as special
cases of polymatroids. Here we restate the definition in the following.

Definition 3. A matroid M is an ordered pair (N, r), where the ground set N is a finite set and
the rank function r is a set function on 2N , and they satisfy the conditions that: for any A, B ⊆ N,

• 0 ≤ r(A) ≤ |A| and r(A) ∈ Z,
• r(A) ≤ r(B), if A ⊆ B,
• r(A) + r(B) ≥ r(A ∪ B) + r(A ∩ B).

The value r(N) is called the rank of M.

With a slight abuse of terminology and notations, we do not distinguish a matroid
and its rank function. So M, rM and r may all denote the rank function of M when there is
no ambiguity.

Definition 4. For integer n ≥ 1 and 0 ≤ t ≤ n, the uniform matroid Ut,n with rank t and order
n is defined by

Ut,n(A) := min{t, |A|} ∀A ⊆ N.

Given a matroid M = (N, r), for i ∈ N, if r(i) = 0, element i is called a loop of M.
For A ⊆ N, if r(A) = 1, we call A a parallel class. If |A| ≥ 2, the parallel class is called
non-trivial. A matroid is called simple if it contains no loops and no non-trivial classes.
For a matroid M, if we delete its loops and in each non-trivial parallel class, we delete all
elements but one, then we obtain a simple matroid M′. We call M′ the simplification of M.

For a matroid M = (N, r), a nonempty C ⊆ N is called a circuit with size |C| of M if
r(C− x) = r(C) = |C| − 1 for any x ∈ C. It can be seen that any loop of M is a circuit of
size 1 and a parallel pair {i, j} is a circuit of size 2. For a uniform matroid Ut,n, circuits are
exactly those (t + 1)-subsets C of N. In particular, U0,n contains n loops, any two elements
of U1,n are parallel, and the ground set of Un−1,n forms the unique circuit of Un−1,n.

Definition 5. A matroid is connected if any two elements in the ground set are contained in
a circuit.
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It is easy to be verified that any uniform matroid Ut,n with 1 ≤ t ≤ n− 1 is connected.
This is because any x ∈ N is contained in a t + 1 subset of N which is a circuit of Ut,n.

An extreme ray R of a convex cone C is a subset of C and for any r ∈ R such that
r = c1 + c2 and c1, c2 ∈ C, we have c1, c2 ∈ R, where c1 = ar and c2 = (1− a)r for some
a ∈ R.

Lemma 1. [12] A loopless matroid is connected if and only if M is contained in an extreme ray
of Γn.

Each extreme ray of Γn contains an integer-valued polymatroid, some of which are
matroids. Such a matroid on an extreme ray is either a loopless connected matroid as stated
in the above lemma, or a matroid obtained by adding loops to a connected matroids.

2.2. Orthogonal Arrays

Orthogonal array is a well studied topic in design theory. In this paper, orthogonal
arrays are leveraged to characterize matroidal entropy functions. For a detailed treatment
of this topic, readers are referred to [13].

Definition 6. A λvt × n array T with entries from Zv is called an orthogonal array of strength
t, factor n, level v and index λ if for any λvt × t subarray T′ of T, each t-tuple in Zt

v occurs in the
rows of T′ exactly λ times. We call T an OA(λ× vt; t, n, v). When λ = 1, we say such orthogonal
array has index unity and call it an OA(t, n, v) for short.

By the definition, for any 1 ≤ t′ < t, an OA(λ × vt; t, n, v) is also an OA(λ′ ×
vt′ ; t′, n, v), where λ′ = λvt−t′ . In this paper, we only consider the strength of the or-
thogonal array largest possible.

An important research problem of orthogonal arrays is the existence of an OA(t, n, v).
The following lemmas state some results of this problem, in which Lemmas 2–4 can be
found in Handbook [14].

Lemma 2 ([14], (III.7.16)). There exists an OA(t, t + 1, v) for any v ∈ Z+.

Lemma 3 ([14], (III.3.28, III.3.39)). For v ∈ Z+, an OA(2, 4, v) exists if and only if v 6= 2, 6.

The nonexistence of OA(2, 4, 6) in Lemma 3 is the famous Euler’s 36 officer problem.

Lemma 4 ([14], (III.3.28, III.3.36, III.3.39)). An OA(2, 5, v) exists for all v ∈ Z+ with three
exceptions v = 2, 3, 6 and one possible exception v = 10.

Lemma 5. For v = 2, 3, 6, there does not exist an OA(3, 5, v).

This lemma is a folklore in the combinatorial design community. For self-contain, we
prove it in the following.

Proof. We prove the non-existence of OA(3, 5, v) for v = 2, 6 by contradiction. Assume
there exists an OA(3, 5, 2) A, i.e., a 23 × 5 array whose each 23 × 3 subarray contains
each 3-tuple in Z3

2 as a row exactly one time. By permuting the rows of A, we obtain an
OA(3, 5, 2) A′ such that the entries in the first 22 rows and the 5-th column of A′ are all 0.
Let ci, 1 ≤ i ≤ 5 be the 5 columns of A′ and c′i be the vector consisting of the first 22 entries
in ci. Now consider the subarray [ci, cj, c5] with 1 ≤ i < j ≤ 4. As its rows are exactly all
3-tuples in Z3

2 and c′5 is a zero vetor, it can be seen that the rows of [c′i, c′j] are exactly all
2-tuples in Z2

2. Thus, [c′1, c′2, c′3, c′4] forms an OA(2, 4, 2) which contradicts Lemma 3. The
non-existence of OA(3, 5, 6) can be proved similarly.

For OA(3, 5, 3), assume such an array B exists. As each 33 × 3 subarray of B contains
each 3-tuple in Z3

3 as a row exactly one time, for each two rows of the 33 = 27 rows of B,



Entropy 2021, 23, 323 5 of 11

their Hamming distance must be ≥ 3. Therefore, any two Hamming balls with center a
row of B and radius 1 are disjoint. As there are 27 such Hamming balls with each size
11, there are at least 27× 11 = 297 5-tuples, which contradicts the fact that only 35 = 243
5-tuples exist.

Lemma 6 ([15]). If v ≥ 4 and v 6≡ 2 (mod 4), then there is an OA(3, 5, v).

Lemma 7 ([16]). Let x be an arbitrary odd positive integer. Let g be an arbitrary positive integer
whose prime power factors are all ≥ 7 such that g ≡ 3 (mod 4). Then

1. there is an OA(3, 5, v) with v = 35xg + 5, if x ≡ 1 (mod 4);
2. there is an OA(3, 5, v) with v = 35xg + 7, if x ≡ 3 (mod 4).

3. Characterizing Matroidal Entropy Functions via Voa

In this section, we introduce variable strength orthogonal arrays and then show that
they are equivalent to partition-representations of a matroid and almost affine code. We
then characterize matroidal entropy functions via variable strength orthogonal arrays.

3.1. Three Equivalent Definitions
3.1.1. Variable-Strength Orthogonal Array

Definition 7. Given a loopless matroid M = (N, r) with r(N) ≥ 2, a vr(N) × n array T with
columns indexed by N, entries from Zv, is called a variable strength orthogonal array(VOA) induced
by M with level v if for any A ⊆ N, vr(N) × |A| subarray of T consisting of columns indexed by
A satisfy the following condition: each row of this subarray occurs vr(N)−r(A) times. We also call
such T a VOA(M, v).

It can be seen that for each vr(N) × |A| subarray T′ of T, vr(A) distinct |A|-tuples in
Z|A|v occur in T′. When A is independent, i.e., r(A) = |A|, they are exactly all tuples in Z|A|v .

Example 1. Let M1 = (N, r1) be a matroid with N = {1, 2, 3, 4, 5} and rank function

r1(A) =


|A| |A| ≤ 2
2 A ∈ {{1, 2, 3}, {3, 4, 5}}
3 o.w.

Then
0 0 0 0 0
0 1 1 0 1
1 0 1 0 1
1 1 0 0 0
0 0 0 1 1
0 1 1 1 0
1 0 1 1 0
1 1 0 1 1

is a VOA(M1, 2).

For a matroid M, let C be the set of all its circuits. From the definition, it can be
seen that a VOA(M, v) is an OA(vr(N); t, n, v) with t = minC∈C |C| − 1, and so it has index
λ = vr(N)−t. For the matroid M1 in Example 1, as r(N) = 3 and smallest circuits {1, 2, 3}
and {3, 4, 5} have size 3, the VOA(M, v) is an OA(8; 2, 5, 2) and index λ = 2.

However, on the other hand, two OA(λvt; t, n, v)s may be VOAs induced by two
distinct matroids as long as they have the same rank and the same size of the smallest circuit.
This is because the rank of a matroid provides richer parameters in VOA description than
strength and index in OA description. The VOA description provides accurate information
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on the vary of strength on different set of columns of the array. This is why we term it
“variable strength orthogonal array”.

Example 2. Let M2 = (N, r2) be a matroid with N = {1, 2, 3, 4, 5} and rank function

r2(A) =


2 A = {1, 2, 3}
|A| |A| < 3
3 o.w.

Then VOA(M1, v) and VOA(M2, v) are both OA(v3; 2, 5, v).

However, when the matroid is uniform, the two descriptions are equivalent. For
a uniform matroid Ut,n, as any circuit has size t + 1, a VOA(Ut,n, v) has strength t and
index λ = 1, i.e., an OA(t, n, v). On the other hand, it can be seen any OA(t, n, v) is
a VOA(Ut,n, v). So in the following of this paper, we write VOA(Ut,n, v) as OA(t, n, v)
for simplicity.

3.1.2. Partition-Representation of A Matroid

We will see that a partition-representation of a matroid M with degree v defined in [8]
is equivalent to an VOA(M, v).

Definition 8. Let M = (N, r) be a matroid with ground set N and rank function r. Let v ∈ Z+.
The matroid M is partition representable of degree v if there exist a finite set Ω of cardinality vr(N)

and partitions ξi of Ω, i ∈ N, such that for any A ⊆ N, the meet-partition ξA = ∧i∈Aξi has vr(A)

blocks all the same cardinality.

Let Ω be the set of all rows of an VOA(M, v). Let ξi be a partition of Ω such that the
rows in each block of ξi have the same entry in the i-th column. It can be seem that ξi, i ∈ N
is a partition-representation of M with degree v.

On the other hand, let ξi, i ∈ N, be a partition-representation of a loopless matroid M
with degree v, living on Ω. As each ξi has v blocks, we label them from 0 to v− 1. Now for
each x ∈ Ω, it is labelled by an |N|-tuple (xi, i ∈ N) where xi is the label of the block of ξi
to which x belong. Let A be an array whose rows are exactly the labels of all x ∈ Ω. It can
be checked that A is an VOA(M, v).

3.1.3. Almost Affine Codes

Almost affine codes were introduced in [9]. For vector space FN
q over finite field Fq,

where q is a prime power, a linear subspace of FN
q forms a linear code of length n, while

each coset of a linear code are called an affine code. For an affine code C ⊂ FN
q and any

A ⊆ N, let CA be the projection of C onto FA
q , it can be seen that |CA| is a power of q. But

there are other codes satisfy this property even if they are not codes over a finite fields.

Definition 9. For a set of v symbols, say Zv, C ⊆ ZN
v is called an almost affine code if

r(A) := logv |CA| (1)

is an integer for all A ⊆ N.

For any almost affine code C, (N, r) forms a matroid M, where the rank function r is
defined in (1). We call such almost affine code an (M, v) (almost affine) code.

For an (M, v) code, if M is a uniform matroid Ut,n, it coincides with an (n, t, v) maxi-
mum distance separable (MDS) code.

By checking the definition of a VOA(M, v) and an (M, v) almost affine code, it can be
seen that rows of a VOA(M, v) are exactly codewords of an (M, v) almost affine code and
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vice versa. In particular, the rows of a OA(t, n, v) are exactly codewords of an (n, t, v)-MDS
code and vice versa.

If there exists an (M, v) almost affine code, M is called almost affinely representable
with degree v.

3.2. Characterizing Matroidal Entropy Functions via VOA

Given a random vector (Xi, N), let pXN (·) denote its joint probability mass function,
and for any A ⊆ N, pXA(·) be the marginal distribution function on A. Without loss of
generality, we assume each random variable Xi is distributed on Zvi and for each x ∈ Zvi ,
pXi (x) > 0.

Theorem 1. A random vector X = (Xi : i ∈ N) characterizes the matroidal entropy function
log v · M for a connected matroid M = (N, r) with rank r(N) ≥ 2 if and only if the random
variable X is uniformly distributed on the rows of a VOA(M, v).

Proof. Given a VOA(M, v), randomly pick a row from it according to the uniform distri-
bution. Let Xi, i ∈ N, be the random variable of i-th entries of picked n-tuple. For any
A ⊆ N, consider the vr(N) × |A| subarray of the VOA(M, v) consisting of columns indexed
by A. By definition, it contains vr(A) |A|-tuples in Z|A|v as rows with each vr(N)−r(A) times.
Hence hX(A) = log v · r(A). It proves that X characterizes log v ·M and thus the “if part”
of the theorem.

For the “only if part”, let X = (Xi : i ∈ N) be a characterizing random vector of
log v · M. Take C ⊆ N be a circuit of M of with cardinality n′ ≥ 3. WLOG, we asume
C = {1, 2, · · · , n′}. Then for each A ( C, Xi, i ∈ A are mutually independent, and for
each i ∈ C, Xi is a function of (Xj : j ∈ C− i). Then for each A ( C and xi ∈ Zvi , i ∈ A,
pXA(xi : i ∈ A) = ∏i∈A pXi (xi), and for each i ∈ C, pXC (xj : j ∈ C) = pXC−i (xj : j ∈ C− i).
In particular,

pXC (x1, x2 · · · , xn′) = pXC−1(x2, · · · , xn′) = pX2(x2)...pXn′
(xn′) (2)

and
pXC (x1, x2 · · · , xn′) = pXC−2(x1, x3 · · · , xn′) = pX1(x1)pX3(x3)...pXn′

(xn′) (3)

Equating (2) and (3), we have
pX1(x1) = pX2(x2). (4)

Let x′1 ∈ X1 and x′1 6= x1, with the same argument, we have

pX1(x′1) = pX2(x2). (5)

As x1 and x′1 are arbitrary chosen from Zv1 , X1 is uniformly distributed on it. Since
hx({1}) = log v, v1 = v. By symmetry, for all i ∈ C, Xi is uniformly distributed on Zv.
Since M is a connected matroid with r(N) ≥ 2, each element is contained in a circuit with
size not less than 3. Hence for all i ∈ N, Xi is uniformly distributed on Zv. Thus, in the
following X can be considered to distributed on ZN

v and for any A ⊆ N, XA is distributed
on ZA

v .
Now let B ⊆ N be a base of M, i.e., r(B) = |B| = r(N). Since hX(B) = log v · r(N), any

|B|-tuple xB in ZB
v , pXB(xB) = v−r(N) > 0. It implies that there exists at least vr(N) n-tuples

x ∈ ZN
v with pN(x) > 0 and the marginal distribution of them on B is uniform. As hX(N) =

hX(B) = log v · r(N), each x ∈ ZN
v with pN(x) > 0 is uniquely determined by their entries

indexed by B, and so there are exactly vr(N) n-tuples x ∈ ZN
v with pN(x) = v−r(N) and

other n-tuples has zero probability. Furthermore, for any A ⊆ N, as hX(A) = log v · r(A),
by taking sub-tuples indexed by A of these vr(N) n-tuples, we obtain vr(A) distinct |A|-tuple
in Z|A|v , each of which occur exactly vr(N)−r(A) times. Therefore, if we put these n-tuples in
an array and each as a row, they form a VOA(M, v).
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Corollary 1. A random vector X = (Xi : i ∈ N) characterizes matroidal entropy function
log v ·Ut,n with 2 ≤ t ≤ n− 1 if and only if random variable Y = X is uniformly distributed on
the rows of an OA(t, n, v).

4. P-Characteristic Set of Matroids with Order n ≤ 5

Rank 1 matroids of order n are exactly those matroids containing U1,n′ on N′ ⊆ N
as a submatroid and other elements loops. Let X be an arbitrary random variable. Let
(Xi : i ∈ N) be defined by

Xi =

{
X i ∈ N′

a constant. o.w.

It can be seen that (Xi : i ∈ N) characterizes h on the ray {h ∈ Hn : h = c ·M} as long as
we let H(X) = c.

Armed with the results of orthogonal arrays in Section 2.2 and Theorem 1, we can
characterize the matroidal entropy functions log v ·M for a connected matroid M with rank
≥ 2. In this section, we determine the p-characteristic set χM for all connected matroids
M = (N, r) with rank r(N) ≥ 2 and order n ≤ 5. For a disconnected matroid M with each
connected component Mi rank ≥ 2, χM is the intersections of all χMi . Thus, it is sufficient
to consider connected matroids and take them as building blocks. It matches the fact that
matroidal entropy functions indexed by a connected matroid live on an extreme rays of Γn
(see Lemma 1), while those indexed by a disconnected matroid can be written as the sum
of the matroidal entropy functions indexed by its connected components.

Among all connected matroids, we only need to consider those simple matroids
since the p-characteristic set of a matroid is the same as its simplification. For a matroid
M = (N, r) and its simplification M′ = (N′, r′) with N′ ⊆ N, if (Yj : j ∈ N′) characterizes
log v ·M′, for each parallel class A, let Xi = Yj : i ∈ A where j is the only element in A∩N′,
and let Xi be a constant if i is a loop of M. Then (Xi : i ∈ N) characterizes log v ·M. On
the other hand, if (Xi : i ∈ N) characterizes log v ·M, by the reverse method, we obtain
(Yj : j ∈ N′) characterizing M′. Hence they have the same p-characteristic set.

Non-isomorphic simple matroids with order ≤ 8 is listed in [17] (A simple matroid is
also called a combinatorial geometry.). Here we consider connected simple matroids with
rank r(N) ≥ 2 and order n ≤ 5. Before that we first consider Un−1,n for general n ≥ 3. By
Lemma 2 and Theorem 1, we have the following proposition.

Proposition 1.
χUn−1,n = {v ∈ Z : v ≥ 2}.

When n = 3, the case U2,3 is also proved by Zhang-Yeung [1] as we discussed in
Section 1. As U2,3 is the only case we need to consider for matroids with oder n = 3, in the
following we discuss the cases for n = 4 and 5.

4.1. n = 4

For n = 4, besides U3,4, one more matroid we need to consider is U2,4. By Theorem 1
together and Lemma 3, we have the following propositions.

Proposition 2.
χU2,4 = {v ∈ Z : v ≥ 3, v 6= 6}.

4.2. n = 5

For n = 5, besides U4,5, there are four more matroids we need to consider, namely,
U2,5, U3,5, M1 defined in Example 1 and M2 defined in Example 2.

For U2,5, by Theorem 1 and Lemma 4, we have the following propositions.

Proposition 3. For U2,5, 2, 3, 6 6∈ χU2,5 and Z+ \ {2, 3, 6, 10} ⊆ χU2,5 .
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For U3,5, by Theorem 1 and Lemmas 5–7, we have the following propositions.

Proposition 4. For U3,5, 2, 3, 6 6∈ χU3,5 and V ⊆ χU2,5 , where V = V1 ∪V2 and

1. V1 = {v ≥ 4 : v 6≡ 2 (mod 4)}
2. V2 is the set of v ≡ 2 (mod 4) such that

• v = 35xg + 5, if x ≡ 1 (mod 4);
• v = 35xg + 7, if x ≡ 3 (mod 4)

where x is an arbitrary odd positive integer, and g is an arbitrary positive integer whose prime
power factors are all ≥ 7 such that g ≡ 3 (mod 4).

For M1, we give a VOA(M1, 2) in Example 1, thus 2 ∈ χM1 . We will have in the
following proposition on the existence of VOA(M1, v) for an arbitrary v ≥ 2.

Proposition 5.
χM1 = {v ∈ Z : v ≥ 2}.

Proof. For any v ≥ 2, let (y1, y2, y3) be any 3-tuple in Z3
v. Now given (y1, y2, y3), let x1 = y1,

x2 = y2, x3 = y1 + y2, x4 = y3 and x5 = x1 + x2 + x3, we obtain a 5-tuple (x1, x2, x3, x4, x5).
Run out of all (y1, y2, y3) ∈ Z3

v, it can be checked that the resulting v3 5-tuples form a
VOA(M, v). Since v ≥ 2 is arbitrary, the proposition holds.

The following proposition determines the p-characteristic set of M2

Proposition 6.
χM2 = {v ∈ Z : v ≥ 3, v 6= 6}.

Proof. We prove that if there exist an OA(2, 4, v), then there exists a VOA(M2, v), and vice
versa. It implies that χM2 = χU2,4 and hence the proposition.

Now assume there is an OA(2, 4, v) with columns ai, i = 1, 2, 3, 4. So each ai is a
v2-vector. Let bi, i = 1, 2, 3, 4, 5 be v3-vectors defined as follows.

bi(kv2 + j) =


ai(j) i = 1, 2, 3
a4(j) + k mod v i = 4
k i = 5

for each j = 1, 2, · · · , v2 and k = 0, 1, · · · , v− 1. It can be checked that bi, i = 1, 2, 3, 4, 5
form a VOA(M2, v).

On the other hand, assume there is a VOA(M2, v) with columns bi, i = 1, 2, 3, 4, 5.
As r({5}) = 1 and r(N) = 3. The fifth column of VOA(M2, v) contains each i ∈ Zv v2

times. Rearrange the rows of VOA(M2, v) such that the first v2 entries of b5 are zeros,
i.e., b5(j) = 0 for j = 1, 2, · · · , v2. Let ai = 1, 2, 3, 4 be v2-vectors and ai(j) = bi(j) for
j = 1, 2, · · · , v2. Then it can be checked that ai = 1, 2, 3, 4 form an OA(2, 4, v).

5. Discussion
5.1. Applications

Matroidal entropy functions and its characterizations have many potential applica-
tions in information theory. In the following we discuss the applications to network coding
and secret sharing.

5.1.1. Network Coding

A method of building networks from matroids was given in [18]. In a matroidal
network G, messages generated in the source nodes and transmitted on the edges are
mapped to the ground set of a matroid M (See Section V.B of [18]). By the same mapping, a
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VOA(M, v) with v ≥ 2 can be considered as a (1, 1) coding solution with alphabet size v of
the network G. This coding solution is scalar but may not need to be linear.

5.1.2. Secret Sharing

Let M be a connected matroid with rank ≥ 2 and N be its ground set. Let 1 ∈ N be
the special element. Let Am = {C \ {1} : 1 ∈ C, C is a circuit of M} and A = {A ⊆ N :
∃B ∈ Am s.t. B ⊆ A}. It can the checked that a VOA(M, v) forms an ideal secret sharing
scheme of the access structure A, where the dealer is indexed by 1 and other participants
are indexed by x ∈ N \ {1}. Such constructions can be seen in literatures such as [19–23].

5.2. Further Research

In this paper, we review and developed correspondences among matroidal entropy
functions, connected matroids with rank ≥ 2, variable strength orthogonal arrays and
almost affine codes. These correspondences can make them benefit from each other, and
therefore yield more research topics in the following facets.

1. Results of orthogonal arrays can be leveraged to characterize matroidal entropy
functions as we do in Section 4 for those of order ≤ 5.

2. Abundant tools in matroid theory can be used to study matroidal entropy func-
tions, VOAs and almost affine codes. For example, in the proof of Lemma 5 and
Proposition 6 , we implicitly use the fact that U2,4 is minor of U2,5 and M2, and U2,4 is
a forbidden minor for characteristic 2 and 6.

3. Matroid representability is an important and well-studied area in matroid theory.
See [11], (Chapter 6). A matroid M = (N, r) is called representable over a field F if
there exists a matrix T with entries in F whose columns are indexed by N, and for
each A ⊆ N, the rank of the submatrix consisting of the columns indexed by A is
equal to r(A). As we discussed in Section 3.1.2 and 3.1.3, a matroid is called partition-
representable [8] or almost affinely representable [9] with degree v if there exists a
VOA(M, v). Obviously, an Fq-representable matroid is also partition-representable
with degree q. However, the converse of the statement may not hold in general.

4. The construction of an OA(t, n, v) is also an important problem in combinatorial
design. For some parameters, say OA(2, 5, 10), the problem is extremely difficult. The
definition of VOA provides more tools to attack the problem.

5. Matroidal entropy functions induced by Ut,n are called symmetric matroidal entropy
functions. They are special cases of the p-symmetrical entropy functions, where p is
the trivial partition of N with N being the only block. In general, for an arbitrary per-
mutation group G on N, symmetries of an G-symmetric matroidal entropy function,
i.e., an entropy function that is G-symmetric [24] and matroidal, can be utilized to
construct its characterizing random vectors via VOA. [25].
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