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Abstract: The present study investigates the similarity problem associated with the onset of the Mach
reflection of Zel’dovich–von Neumann–Döring (ZND) detonations in the near field. The results reveal
that the self-similarity in the frozen-limit regime is strictly valid only within a small scale, i.e., of the
order of the induction length. The Mach reflection becomes non-self-similar during the transition
of the Mach stem from “frozen” to “reactive” by coupling with the reaction zone. The triple-point
trajectory first rises from the self-similar result due to compressive waves generated by the “hot
spot”, and then decays after establishment of the reactive Mach stem. It is also found, by removing
the restriction, that the frozen limit can be extended to a much larger distance than expected. The
obtained results elucidate the physical origin of the onset of Mach reflection with chemical reactions,
which has previously been observed in both experiments and numerical simulations.

Keywords: ZND detonation; mach reflection; frozen-limit; length scale; numerical simulation

1. Introduction

The Mach reflection of detonation waves is a classical problem that attracts consid-
erable research attention, even in problems with multi-interfaces [1–3]. Because of the
complexity of the Mach reflection of detonations, which involve hydrodynamics, chemical
release, and length scale effects, the fundamental physics remains unclear and is prone
to contradictions and misunderstandings. This most likely results from the widespread
application of the classical three-shock theory for shocks [4–6] and the reactive three-shock
theory for detonation discontinuities (by ignoring the thickness) [7–11], both of which as-
sume self-similarity and a pseudo-steady state. However, even though a few investigators
have reported the absence of self-similarity based on experimental observations or numeri-
cal simulations [8,10,12–14], three-shock theory has nevertheless been applied to compare
with the results. Obviously no general agreement has been obtained [15–17]. Following
the work of Hornung et al. [18] and Sandeman et al. [15], who both studied the Mach re-
flection phenomena of dissociating strong shock waves, Akbar [8] and Shepherd et al. [10]
first turned research attention to the failure of self-similarity due to characteristic length
scales (i.e., cell size λ, reaction length ∆, or hydrodynamic length H), and introduced
the concept of frozen and equilibrium limits to the Mach reflection of detonations on a
wedge. The frozen limit applies when the Mach stem travels a sufficiently small distance as
compared to λ. In contrast, when the Mach stem traveling in the far field is large compared
to λ, the reactive three-shock theory can be expected to hold (i.e., an equilibrium limit exits).
However, no quantitative definition about how and when the two limits apply have been
given. Actually, the frozen limit for a detonation is an incomplete concept. The mechanism
of how the chemical release breaks down the frozen limit remains unclear. Based on the
assumptions of the above two limiting regimes for detonations, Fontin et al. [12] and
Li et al. [13] studied the Mach reflection of gaseous detonations by means of experiments
and numerical simulations, respectively. Their results suggested that the existence of
characteristic length scales (cell size λ in [12] and Zel’dovich–von Neumann–Döring (ZND)
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detonation thickness ∆ in [13]) renders the overall self-similarity of the Mach reflection
invalid. In the far field, when λ or ∆ are negligible compared to the distance traveled by the
Mach stem, the Mach reflection process approaches self-similarity asymptotically, and the
local asymptotic trajectory angle exhibits good agreement with the self-similar reactive
three-shock theory, indicating that the equilibrium limit is obtained. Note that neither
the non-reactive three-shock theory for shock nor the reactive three-shock theory for a
detonation discontinuity under the assumption of similarity are able to predict the overall
behavior of the Mach reflection of detonation waves. However, within the limit (frozen or
equilibrium), the above two three-shock theories can also be applied to describe the local
self-similar Mach reflection process either in the near field or in the far field. In their papers,
the triple-point trajectory of a detonation Mach reflection appears to maintain self-similarity
under the frozen limit (non-reactive three-shock theory) for a relatively large distance (sev-
eral λ in [12] or 30–40 ∆ in [13]). However, this violates the definition of the frozen limit,
which requires that the Mach stem travel distance is sufficiently small compared to the
characteristic length scales, so as to ensure the detonation front is “frozen”. However,
no reason has been given to interpret this discrepancy. In addition, Fontin et al. [12] and
Li et al. [13] did not pay additional attention to the details of the transit physics of a ZND
detonation in the very near field where the frozen limit may hold.

The transition of the Mach reflection of a ZND detonation from “inert” to “reactive”
has been addressed by Ziegler [19] and Radulescu et al. [20] in a small length scale less
than a cell size. In Ziegler’s thesis [19], a reduced propane mechanism was used to simulate
a double Mach reflection in a direct numerical simulation (DNS) fashion to resolve all the
diffusive scales. Actually, he focused on resolving the Mach reflection structures in both
viscous and inviscid cases, and the developing process of cellular structures. His work
aimed to understand the mechanism of triple-point bifurcation of real detonation fronts by
studying the double Mach reflection process. This strategy is in accord with the work of
Radulescu et al. [21]. The two studies mentioned above did show some detailed structures
of Mach reflection but almost no effort was made to study the frozen limit in respect of the
self-similarity problem. The motivation of the present study on Mach reflection is not to
reveal the combustion mechanism of a triple-point wave complex in a cellular detonation
wave in a small length scale less than a cell size. Instead, we try to study the global front
structure of the detonation when encountering a boundary such as the wedge. Thus, a
long length scale compared to the cell size is used in the present work. Ziegler [19] and
Radulescu et al. [20] considered another pathway to study detonation by focusing on the
small scale inside a cell, but this is not the focus of our research.

Numerical and experimental observations indicate that the detonation front always
exhibits cellular properties [12,22–25]. For a stable detonation, one can locate the triple-
point trajectory by observing the shape and size of detonation cells behind the incident front
and Mach stem, respectively. However, for an unstable mixture, the triple-point trajectory
of Mach reflection is not well-defined due to the cellular properties of the detonation
front. Distinguishing the triple-point trajectory from smoke foils, or even from Schlieren
photographs, becomes extremely difficult, see Figure 1. One may find that a “smeared out”
region [12] rather than a “trajectory” is an acceptable way to describe the boundary. Thus,
in the near field where the order of cellular instabilities is comparable with the height of
the Mach stem, the triple-point trajectory of Mach reflection with fluctuations becomes
ill-defined [26].

All detonation waves are three-dimensional, and the cellular structures may blur the
triple-point trajectory throughout the propagation. Thus, it is almost impossible to compare
them with an inert shock (or a frozen detonation) without cellular structures in order to
elucidate when and where the frozen limit may hold. To avoid the influence of cellular
instabilities, numerical simulations of the Mach reflections of ZND detonations as well
as an inert shock with the same strength (which is essentially a “frozen” detonation) are
both conducted in the present study. We then attempt to perform an accurate comparison
between the Mach reflection of a ZND detonation with the self-similar shock case to
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study the self-similarity problem associated with the onset of the Mach reflection in detail,
especially the range of the frozen limit, by focusing on a relatively smaller scale near the
wedge apex. Although we calculate the simplest cases of the Mach reflection with planar
ZND detonations under the frozen limit in the present study, interesting results are still
obtained and much of the physics needed to understand the complex Mach reflection of
detonations is also introduced.

Figure 1. Mach reflection on the wedge: (a) inert shock (numerical simulation), (b) cellular detonation (numerical simulation),
(c) cellular detonation (experiments).

2. Problem Formulation and Numerical Details

The present simulation of the Mach reflection of ZND detonations is based on the
inviscid, reactive Euler equations for two-dimensional flows. Written in conserved form,
these equations are represented by:

∂ρ

∂t
+

∂(ρu)
∂x

+
∂(ρv)

∂y
= 0 (1)

∂(ρu)
∂t

+
∂(ρu2 + p)

∂x
+

∂(ρuv)
∂y

= 0 (2)

∂(ρv)
∂t

+
∂(ρuv)

∂x
+
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∂y

= 0 (3)

∂E
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+
∂((E + p)u)

∂x
+
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∂y

= 0 (4)
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∂y
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∂(ρyR)
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+
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+

∂(ρvyR)

∂y
= ωR (6)

assuming a polytropic equation of state and an ideal thermal equation of state:

E =
p

γ − 1
+

ρ(u2 + v2)

2
− ρyRQ (7)
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p = ρRT (8)

The conservation laws are coupled with a two-step chain-branching-type reaction
model [16,17]. The first step represents a thermally neutral induction zone, with a
temperature-sensitive Arrhenius form of the reaction rate given by:

ωI = H(1 − yI)ρkI exp
[

EI

(
1

RTS
− 1

RT

)]
(9)

where H(1 − yI) is a step function defined as

H(1 − yI) =

{
1 if yI < 1
0 if yI ≥ 1

(10)

At the end of the induction zone, the second step describes the rapid energy release after
the branched-chain thermal explosion and the slow heat release in the radical recombination
stage. The reaction rate for this step is given by:

ωR = (1 − H(1 − yI))ρkR(1 − yR) exp
(

ER

RT

)
(11)

The induction length ∆I is controlled by the induction rate constant kI, and the reaction
rate constant kR determines the length of the reaction zone ∆R. Thus, the reaction rate
constant kR is also used as a bifurcation parameter to control the ratio of the reaction
length ∆R to the induction length ∆I, or the stability of a detonation wave. Generally, the
induction length is simply defined as the length of the thermally neutral period. As pointed
out by Ng et al. [27], no standard definition exits for the reaction length ∆R. In the ZND
detonation model, we determine this scale from the thermicity profile, i.e., ∆R is the half-
height width of the thermicity pulse. Thus, the overall thicknesses of the detonation front
can be obtained, i.e., ∆ = ∆I + ∆R.

In the present calculation, the global heat release Q is determined in order to reproduce
the correct CJ Mach number, given for a perfect gas [28] by:

Q
RT0

=
γ

2(γ2 − 1)

(
MCJ −

1
MCJ

)2

(12)

Some reaction parameters are evaluated and shown in Table 1. Typical values for
EI

RTVN
usually range from 4 (for hydrogen–oxygen mixtures) to 12 (for heavy hydrocarbon

mixtures) [17]. In contrast, the second step involves only reactions between energetic free
radicals. For typical chain-branching reactions, the induction stage generally has a larger
activation energy as compared to the reaction stage. Hence, we simply set ER

RTVN
= 1 for

the present study. The simplest way to obtain an inert shock within the framework of
ZND detonations with the present two-step model is to reduce the induction rate constant
kI to obtain a very large induction zone. The induction zone is thermally neutral, and in
essence, the “frozen” ZND detonation corresponds to an inert shock. Thus, the isentropic
exponent and the Mach number of inert shock waves are the same as ZND detonation
waves. By maintaining kI as a constant value and varying kR, we obtained ZND detonations
with the same induction lengths but different reaction widths, i.e., Case-A–Case-F in Table 2.
The effect of activation energies was also studied by additionally including Case-G and
Case-H in Table 2 for comparison purposes. The two-step model, as mentioned by Short
and Sharpe [16], serving as the simplest chain-branching kinetics, can mimic some features
of the chain-branching chemistry. Of course, the two-step model cannot describe the
physics in a quantitative manner compared to the detailed chemical kinetics. However,
the two-step model does have its unique features, such as decoupled detonation parameters
rendering a systematical parameter study, which is not possible when using the detailed
chemical kinetics.
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Table 1. Length scale parameters.

EI
RTS

ER
RTS

kI kR ∆I ∆R ∆

(m3/kg/s) (m3/kg/s) (mm) (mm) (mm)

Case-A 4.8 1.0 4.229 × 106 0.9 × 6.096 × 106 0.1 0.213 0.313
Case-B 4.8 1.0 4.229 × 106 0.8 × 6.096 × 106 0.1 0.239 0.339
Case-C 4.8 1.0 4.229 × 106 0.7 × 6.096 × 106 0.1 0.274 0.374
Case-D 4.8 1.0 4.229 × 106 0.6 × 6.096 × 106 0.1 0.319 0.419
Case-E 4.8 1.0 4.229 × 106 0.5 × 6.096 × 106 0.1 0.383 0.483
Case-F 4.8 1.0 4.229 × 106 1.1 × 6.096 × 106 0.1 0.193 0.293
Case-G 8.0 1.0 4.229 × 106 0.9 × 6.096 × 106 0.1 0.213 0.313
Case-H 12.0 1.0 4.229 × 106 0.9 × 6.096 × 106 0.1 0.213 0.313

Table 2. Reaction parameters.

Model Parameters Value Unit

R 218.79 J/kg·K
p0 50 kPa
T0 295 K
ρ0 0.775 kg/m3

Q/RT0 19.7
γ 1.44
MCJ 5.6

Adaptive mesh refinement techniques are widely used in computational mechan-
ics to increase the computation efficiency. The pseudo-arc-length method for hyperbolic
conservation laws has been successfully used in the simulation of shock and detonation
waves [29,30] by twisting and converging the grid near a discontinuity. Structured adap-
tive mesh refinement techniques that locally split the grid are also popular in simulation
problems with large discontinuities. In the present study, the governing equations were
solved using a parallel AMROC code [31] built with a block-structured adaptive mesh
refinement (AMR) technique [32]. A fractional step method was used to decouple the hy-
drodynamic transport and the chemical reaction numerically. The reactive Euler equations
were then solved with an explicit second-order Godunov-type scheme incorporating a
hybrid Roe-solver-based method. Slip wall conditions were imposed on solid boundaries.
The upper and lower boundaries as well as the wedge surface were all set as solid walls.
The outlet boundary condition was imposed on the right boundary. The simulation was
initialized with a planar ZND detonation placed at the wedge apex. The left boundary
was fixed with the Chapman–Jouguet (CJ) solution such that there was no expansion wave
behind the CJ point of the ZND detonation wave. The computational domain with a 30◦

wedge is shown in Figure 2. The default wedge length was set to 400∆I throughout the
present study except in Section 3.1, where a wedge of length of 800∆I was used to compare
the Mach reflection of a ZND detonation and a cellular detonation. Besides the original
coordinates (x–y), a convenient coordinate system (Mach stem travel–Mach stem height)
was also used to facilitate the study to the self-similarity of Mach reflection. In the present
work, the wedge boundary was implemented using the embedded boundary condition,
which has been well described and verified in [31]. This permitted the use of a Cartesian
grid upon which the boundary geometry was mapped.
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Figure 2. Setup of the computational domain.

The convergence of the numerical results in the present study was tested by consider-
ing different grid resolutions for the Mach reflection of a ZND detonation on a wedge of
30◦ with Case-A. Figure 3 shows the density gradient of the Mach reflection at the same po-
sition for different grid resolutions. It is observed that there is a convergence of the features
of the flow field as the resolution increases. Similar grid resolution convergence can also be
seen in Figure 4, which shows the temperature profiles behind the Mach stem front along
the wedge surface corresponding to the case in Figure 3. For a grid resolution of 32 pts/∆I,
the temperature profile is in good agreement with that of the highest grid resolution of
64 pts/∆I. Hence, in the present work, a maximum grid resolution of 32 pts/∆I with four
levels of Cartesian mesh adaptation with refinement factors (2, 2, 2, 4) was used to ensure
that the detailed features of ZND detonation waves were properly resolved.

Figure 3. Schlieren plots of flow field near the triple-point for different grid resolutions: (a) 8 pts/∆I,
(b) 16 pts/∆I, (c) 32 pts/∆I, (d) 64 pts/∆I.
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Figure 4. Temperature profiles along the wedge surface for different grid resolutions.

3. Results and Discussion
3.1. The Overall Behavior of the Mach Reflection of Detonations on a Wedge

A two-dimensional planar ZND detonation cannot be maintained because the cellular
structures always develop at some distance downstream. Thus, the initial Mach reflection
process corresponds to that of a planar ZND detonation as shown in Figure 5a. Then,
the weak cellular structures appear on the detonation front such that the Mach reflection
of a weak cellular detonation is obtained. Note that it usually takes a long time for
a stable planar ZND detonation to evolve into a fully established cellular detonation.
In Figure 5b, an initially fully developed cellular detonation with a regular cell pattern is
placed immediately before the wedge tip such that this refers to the Mach reflection of
a cellular detonation. A comparison of the triple-point trajectories for these two cases is
shown in Figure 5c. As can be observed, the triple-point trajectories for the two cases almost
coincide except for some fluctuations due to cellular instability, thereby indicating that the
Mach reflection of a cellular detonation essentially behaves like that of a ZND detonation
wave. The comparison suggests that even though the Mach reflection of a ZND detonation
never occurs in reality, it still provides an alternative, simple, and meaningful way to
interpret the physics of the Mach reflection of cellular detonations. Note that the limitation
of using a ZND detonation is that the physics may not be “real” and a characteristic length
scale, i.e., the cell size, is also ignored. By using a ZND detonation, on the one hand, we
do lose some intrinsic information about the real physics, but on the other hand, the self-
similarity that can be clearly observed renders an accurate comparison with inert shock
possible. Thus, in the following study, only the stage before the presentation of cellular
instabilities (i.e., a wedge length of 400 ∆I) is investigated, as shown in Figure 5a, in order
to ensure the Mach reflection of a ZND detonation other than a cellular detonation. Case-A
was chosen as a default case in the present study for simulation unless specified.
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Figure 5. Numerical smoke foils and triple-point trajectories for Case-A with θw = 30◦: (a) Zel’dovich–von Neumann–
Döring (ZND) detonation, (b) cellular detonation, (c) triple-point trajectories.

3.2. Evolution of the Mach Reflection Configuration
3.2.1. L < 5∆I

The Mach reflection of an inert shock is self-similar because of the absence of char-
acteristic length scales. In a ZND model, the detonation front can be treated as a neutral
shock front followed by a region in which the chemical energy is released. Thus, when a
ZND detonation arrives at the wedge tip, a Mach reflection of the neutral shock front is
first observed, as shown in Figure 6a. This reflection corresponds to the so-called frozen
limit. Note that this can only occur within an extremely small scale, i.e., of the order of
the induction length ∆I, when the Mach stem is truly “frozen”. Obviously, in this region,
the Mach reflection is exactly self-similar, and the triple-point trajectory is a straight line.
In Figure 6a, it is also observed that the pressure and temperature profiles in the case of a
ZND detonation coincide with those for an inert shock with the same strength. However,
as the ZND detonation propagates forwards, the following reaction front also reflects
on the wedge, and the chemical release begins to influence the Mach reflection config-
uration. As shown in Figure 6a–e, the pressure of the reaction zone behind the leading
front decreases because of the chemical release in the reaction zone, resulting in a bowed
reflected wave that travels slightly faster than in the case of an inert shock. Thus, at this
very moment, the Mach reflection configuration in the case of a ZND detonation does not
coincide exactly with that of an inert shock with the same strength, except in respect of the
leading front, which has not been disturbed yet. Thus, the triple-point trajectory of the
Mach reflection in the ZND model is still a straight line, and coincides with that in the case
of an inert shock.
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Figure 6. Sequences of combined contour plots for the Mach reflection of a ZND detonation (Case-A) and an inert shock
with θw = 30◦ at different positions: (a) 1∆I, (b) 2∆I, (c) 3∆I, (d) 4∆I, (e) 5∆I. (The red lines represent the chemical
reaction progress).
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An interesting phenomenon occurs during the onset of the Mach reflection of a ZND
detonation (i.e., the transition of the Mach stem from “frozen” to “reactive”), as shown
in Figure 6. A chemical reaction zone induced by the reflection follows behind the inert
Mach stem, with an induction length approximately equal to that behind the incident
detonation wave (see Figure 6b). Then, another reactive front appears immediately behind
the inert Mach stem due to the shock ignition, as shown in Figure 6c. Thus, two chemical
reaction zones both exist at this very moment, one from the reflection of the original ZND
detonation and the other due to the leading shock ignition. An unreacted “gap” that has
already been compressed (or shocked) by the Mach stem front is now located between these
two reaction zones. This unreacted “gap” is in accordance with the so-called “hot spot” as
described by Zel’dovich et al. [33] and many others [34–36]. In Figure 6d,e, the gap between
the two chemical reaction zones emerges, and then a continuous reaction zone is finally
created behind the Mach stem. The emergence of the “hot spot” causes compression waves
that develop subsequently to catch up with the precursor Mach stem front ahead of it,
and forms a more overdriven detonation. Finally, a typical Mach reflection configuration for
a ZND detonation is fully established, with a reactive Mach stem (overdriven detonation)
of shorter induction length than that of the incident detonation (i.e., a CJ detonation).

3.2.2. 5∆I < L < 40∆I

Figure 7 shows a sequence of numerical Schlieren photography of the Mach reflection
of a ZND detonation (5∆I < L < 40∆I). Note that the Mach reflection of an inert shock
with the same strength as the ZND detonation is also plotted in Figure 7 for comparison.
In Figure 7a, the coincidence of Mach reflection in the vicinity of the triple-point in both
of the two cases is observed. However, the bowed reflected shocks separate as a result of
the pressure decay in the chemical reaction zone in the case of a ZND detonation, whereas
in Figure 7b–d, the Mach reflection of the ZND detonation is no longer in accordance
with that in the case of an inert shock except for the incident waves, which have the same
strength. It is well known that the Mach reflection of an inert shock is self-similar by
ignoring the viscosity and dissociation effect, indicating a straight triple-point trajectory
from the wedge tip. Figure 8 shows that, within a distance of approximately 10 ∆I, the triple-
point trajectory of the Mach reflection of a ZND detonation is the same as that of an inert
shock. Subsequently, the triple-point trajectory of the Mach reflection of a ZND detonation
deviates from the triple-point trajectory of the Mach reflection of an inert shock and rises,
thereby suggesting that the strength (or the velocity) of the Mach stem increases. This is
probably due to the compression waves created by the hot spot during the transition to the
Mach reflection of a ZND detonation (or the formation of the reactive Mach stem) near the
wedge tip as discussed above. As shown in Figure 9, the pressure of the Mach stem of an
inert shock remains constant due to self-similarity. However, the Mach stem pressure in
the case of a ZND detonation is approximately 5% higher than that in the case of an inert
shock, due to the “hot spot” effect discussed above, indicating the loss of self-similarity.
Thus, if we only consider a straight triple-point trajectory to characterize self-similarity,
the frozen limit is about 10∆I (i.e., of the order of a ∆).
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Figure 7. Schelieren photography of Mach reflection of a ZND detonation for Case-A with θw = 30◦ at different positions:
(a) 8∆I, (b) 15∆I, (c) 22∆I, (d) 28∆I. (blue line—ZND detonation, black line—inert shock).
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Figure 8. Comparison of the triple-point trajectories of a ZND detonation and an inert shock in the
very near field for Case-A with θw = 30◦.
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Figure 9. Pressure profiles at different times of the Mach stem front along the wedge surface within 5∆I < L < 40∆I:
(a) inert shock, θw = 20◦, (b) ZND detonation, θw = 20◦, (c) inert shock, θw = 30◦ , (d) ZND detonation, θw = 30◦, (e) inert
shock, θw = 40◦, (f) ZND detonation, θw = 40◦.

3.2.3. 40∆I < L < 400∆I

In this region (40∆I < L < 400∆I), the Mach reflection of a ZND detonation continues
to be unsteady as shown in Figure 10. The triple-point in the case of a ZND detonation
continues to remain above that of an inert shock, yet as the detonation front travels forwards,
the triple-point in the case of a ZND detonation starts to fall and coincides with the triple-
point in the case of an inert shock at the moment of Figure 10f. The triple-point trajectories
and their slopes in the case of a ZND detonation are shown in Figure 11. The corresponding
pressure curves of the Mach stem are shown in Figure 12. The pressure increase results in
the triple-point trajectory rising, whereas a decrease causes the triple-point trajectory to
decay. This is in accordance with the analysis of Ben-Dor [4], in which the effect of shock
strength on the triple-point trajectory angle of Mach reflection, i.e., the triple-point trajectory
angle increase as the shock strength increases, was investigated. The increase in the Mach
stem pressure is due to the “hot spot” effect discussed above, whereas the subsequent
decrease is because of the effect of length scales on the Mach reflection configuration, which
has been fully discussed by Fortin et al. [12] and Li et al. [13].

3.3. Length Scale Effect

The triple-point trajectory can be divided into three parts (I, II, and III) as shown in
Figure 11. In part I, the Mach stem can be regarded as a “frozen” detonation, the reactive
front of which is far behind the precursor shock front compared to the CJ detonation. Thus,
the triple-point trajectories for the two examined cases (inert shock and ZND detonation)
coincide. In part II, during the transition of the Mach stem from “frozen” to “reactive”,
the temperature and pressure both increase, and the propagation velocity accelerates due
to the “hot spot” effect. This causes the triple-point trajectory to rise from the inert shock
case. In part III, the reactive Mach stem behaves as an overdriven detonation, which can
be influenced by the flow field behind the Mach stem front. The bowed reflected wave
of the Mach reflection can be regarded as the rear boundary of the reactive Mach stem.
Furthermore, the pressure decrease caused by the chemical energy release in the reaction
zone attenuates the reactive Mach stem. The pressure changes are in accordance with
the rise and fall of the triple-point trajectory of the Mach reflection of ZND detonations.
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A pressure increase corresponds to a rise in the triple-point trajectory, whereas a pressure
decrease causes the triple-point trajectory to decay. Figure 13 shows the streamlines of
Mach reflection in the case where θw = 30◦ at different positions in a frame fixed at the
triple-point. The deflection of the flow across the incident wave, reflected wave, and Mach
stem can be clearly observed by following the streamline. In the near field with short
travel of the Mach stem, the streamlines in the vicinity of the triple-point are straight lines
unless passing through a discontinuity due to the domination of freeze of chemical reaction.
However, as the Mach stem travel becomes larger, the exothermic process will become
more significant and the flow will deflect back to the direction of the inflow ahead of the
reflected shock or Mach stem within the reaction zone. The decreasing deflection angle θ
therefore results in the decrease of the triple-point trajectory angle as shown in Figure 11.
Conclusively, the progress of the exothermic process controls the change of the triple-point
trajectory and its slope.

The shock and detonation polars are extensively used in the Mach and regular reflec-
tion fields to predict the flow states and the critical angle. Note that the shock or detonation
polars are obtained from the inert or reaction three-shock theory based on the assumption
of shock or detonation discontinuity. Thus the shock and detonation polars can only be
used to predict the equilibrium states, and are not capable of describing the transient
processes. Figure 14 shows the shock and detonation polars based on the three-shock
theory and the numerical results extracted from the streamlines, as shown in Figure 13.
According to the inert shock polar, points a and b at the shock polars refer to the flow states
(pressure and flow deflection angle θ) behind the incident wave and reflected wave (Mach
stem), respectively. Point c at the detonation polars corresponds to flow states behind the
reflected wave or reactive Mach stem based on the reactive three-shock theory. It can be
observed that, as the detonation travels along the wedge in the far-field, the streamlines
approach connecting points b and c, indicating the transient reaction process from the
frozen to equilibrium states. It also suggests that the flow deflection angle θ approaches
point c in which the state is obtained based on the assumption of detonation discontinuity
(reactive three-shock theory).

By maintaining the induction length at a constant value and varying the reaction zone
length, ZND detonations with different ∆ are obtained. Figure 15a shows the triple-point
trajectories for different cases, and the curves within the black square are enlarged and
shown in Figure 15b. Here, we define the Mach stem travel from the wedge apex to
the point where the triple-point trajectory reunites with the shock curve (illustrated as
the black points in Figure 15) as the transition length. It is observed that ∆ can influence
the distance for which the frozen limit holds. Figure 16 shows the relationship of the
scaled transition length with detonation thickness ∆. For the cases studied in this section,
the transition length is approximately 50–60 ∆ and has a linear correlation with ∆. Note that
the correlation may vary due to a different definition of the reaction length. As discussed
earlier, the cellular structures of unstable mixtures develop faster than those of stable ones
and can result in a more fluctuated triple-point trajectory. Figure 17 shows the triple-point
trajectories for Case-A, Case-G, and Case-H, which have different activation energies.
The three triple-point trajectories coincide before cellular stabilities appear. This confirms
that it is the length scale effect, rather than the activation energy, that dominates the Mach
reflection of detonations. However, the activation energy does influence the fluctuation of
the triple-point trajectory via changing cellular stabilities.
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Figure 10. Schlieren photography of Mach reflection of a ZND detonation for Case-A with θw = 30◦ at different positions:
(a) 36∆I, (b) 80∆I, (c) 120∆I, (d) 165∆I, (e) 200∆I, (f) 250∆I, (g) 280∆I, (h) 330∆I.
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Figure 11. Comparison of (a) the triple-point trajectories and (b) their slopes of ZND detonations (Case-A) and inert shocks
with θw = 20◦, 30◦, 40◦ (40∆I < L < 400∆I).
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Figure 12. Pressure history of the Mach stem front of a ZND detonation and an inert shock for Case-A
with θw = 20◦, 30◦, 40◦ (40∆I < L < 400∆I).
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Figure 13. Streamlines of Mach stem in a frame fixed at the triple-point for Case-A with θw = 30◦ at different positions:
(a) 10∆I, (b) 20∆I, (c) 160∆I, (d) 400∆I.
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Figure 14. Shock and detonation polars as well as the numerical results for Case-A with θw = 30◦.
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Figure 17. Triple-point trajectories for cases with different activation energies.

4. Conclusions

The present study involved a numerical investigation of the problem of Mach reflection
of ZND detonations to investigate qualitatively the onset of the Mach reflection in the near
field. A simulation of the self-similar Mach reflection of an inert shock wave was also



Entropy 2021, 23, 314 18 of 20

conducted for reference purposes. The obtained results indicate that the assumption of a
self-similar Mach reflection for a ZND detonation is only valid (i.e., the self-similar three-
shock theory applies) for an extremely small distance along the wedge surface, which is
consistent with the argument presented by Akbar [11]. Afterwards, the reactive Mach stem
is found to accelerate rapidly to a more overdriven detonation, which subsequently decays
due to the effect of chemical release and length scale. The determined acceleration is most
likely due to the influence of the compression waves generated by the “hot spot” behind
the Mach stem, which appears when the reactive Mach stem develops. It should be noted
here that, even though the frozen limit is valid only for a very short distance of the Mach
stem travel when the flow is really “frozen” (without reaction), the triple-point trajectory
was found to be close to the self-similar results for an inert shock when the flow was no
longer “frozen”. Thus, from an engineering perspective, the self-similar three-shock theory
can be used to obtain approximate predictions of the triple-point trajectory for a much
longer Mach stem travel distance than that considered in the present paper. This finding
can also explain why the triple-point trajectories of reactive Mach reflections obtained in
many experiments conform to the predictions of the self-similar non-reactive three-shock
theory over quite a large Mach stem travel distance.

It should be pointed out that the conclusion obtained in the present study may differ
from that of the experiments due to the following aspects. Firstly, the Mach reflection of a
ZND detonation ignores the cellular stability effect. Secondly, although the two-step model
used in the present study is far from real chemistry, it is able to qualitatively represent
some hydrodynamic features of detonations. Thirdly, the viscous effect was not considered
in the present study. However, it is questionable as to whether or not the viscous effect
would be able to influence the Mach reflection process, and more work is needed to clarify
this problem.
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Nomenclature
λ Cell size
∆I, ∆R, ∆ Induction length, reaction length, detonation thickness
MCJ Mach number of the Chapman–Jouguet detonation wave
θw wedge angle
p0, T0, ρ0 Initial pressure, initial temperature, initial density
pVN, TVN von Neumann pressure and temperature
Ts von Neumann pressure
kI, kR Induction and reaction rate constants
EI, ER Induction and reaction activation energies
yI, yR Induction and reaction progress parameters
Q Heat release
R Gas constant
γ Specific heat ratio
L Distance of the Mach stem travel
Subscripts
w wedge
I Induction
R Reaction
CJ Chapman–Jouguet
ZND Zeldovich–von Neumann–Döring
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