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Abstract: In this paper, we study a Hamiltonian system constituted by two coupled two-level
atoms (qubits) interacting with a nonlinear generalized cavity field. The nonclassical two-qubit
correlation dynamics are investigated using Bures distance entanglement and local quantum Fisher
information under the influences of intrinsic decoherence and qubit–qubit interaction. The effects of
the superposition of two identical generalized coherent states and the initial coherent field intensity
on the generated two-qubit correlations are investigated. Entanglement of sudden death and sudden
birth of the Bures distance entanglement as well as the sudden changes in local Fisher information are
observed. We show that the robustness, against decoherence, of the generated two-qubit correlations
can be controlled by qubit–qubit coupling and the initial coherent cavity states.

Keywords: nonclassical correlation; intrinsic decoherence SU(1, 1); SU(2)-algebraic treatment

1. Introduction

Nonclassical correlations (NCs) and quantum entanglement (QE) are substantial as
tools for quantum information [1–5]. Therefore, the generation of two-qubit correlated
states has been extensively investigated [3,6–8]. QE is an important type of NC, but it
is not a unique resource in nonclassical correlations [9]. Other types of NCs beyond QE
were defined via quantum Fisher information (QFI) [10], local quantum Fisher information
(LQFI) [11], quantum discord [12], and other geometrical correlation quantifiers based on
skew information [13] and distance norms [14].

Quantum entanglement and purity are recognized as primarily important in devel-
oping modern quantum technologies [2,15,16]. The entanglement can be created and
preserved between completely separated qubits inside the cavity [17–22]. Quantum Fisher
information is the most used to describe absolute accuracy in parameter estimation scenar-
ios [23].

Recently, several suggestions have been introduced based on QFI dynamics to demon-
strate the importance of quantum entanglement especially for quantum metrology [24] and
for parameter estimation precision [25]. On the other hand, Bures distance entanglement
(BDE) was used to measure correlations between the parts of a quantum system. The Gaus-
sian entanglement in an identical two-mode Gaussian cavity state was evaluated in terms
of its Bures distance with the set of separable Gaussian states [26]. The robustness of the
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Bures distance discord in comparison with the entanglement against local decoherence
was examined [27]. Furthermore, the relationship between the entanglement geometric
measure and entanglement distance quantifier was analyzed [28].

Cavity quantum electrodynamics (CQED) focus on the interaction between atoms
and a quantum field inside a cavity [29]. The study of CQED began with an emphasis on
analyzing basic processes in the interaction of atoms and cavity field based on exploring
classical and quantum properties in the presence of decoherence processes [30]. Most
of the theoretical and experimental studies concentrate on the single-mode cavity field
interacting with single atom [31]. Therefore, multi-mode cavity field interactions may
improve the correlation in the quantum system [32]. The high-order nonlinearity of the
interactions between atoms and multi-mode cavity were subjected to several applications
in quantum information [33,34]. The nonlinear models were widely used to study “exotic”
or nonclassical effects such as collapse and revival phenomena [35], quantum filters [36],
bistability [37,38], and chaos [39]. Multiple photon processes play an important role in the
nonlinear interactions [40,41], which are a convenient resource for quantum information
and metrology [24].

Nonlinear coherent states, entangled pair-coherent states [42] and Barut–Girardello
nonlinear coherent state (B-GCS) [43] are widely used and applied in physics. There are
different approaches to construct them. B-GCS [43] is of particular importance for quantum
information [44–46]. The construction of the B-GCS was realized for different physical sys-
tems as Morse potential [47], Pöschl–Teller potential [48], and charge carriers in anisotropic
2D-Dirac materials immersed in a constant homogeneous magnetic field [49].

In previous investigations of two-qubit dynamics based on new correlation quantifiers,
local quantum Fisher information, such as quantum discord and other geometrical correla-
tion quantifiers, were very limited [50], specifically for the case of two qubits interacting
with nonlinear coherent cavity fields under the effects of the decoherence/disspation.
Therefore, in this work, we study the dynamics of two qubits coupled to a nonlinear
cavity in the presence of intrinsic decoherence. An analytical solution for the Milburn
equation that describes intrinsic decoherence is obtained when the two qubits are initially
in an uncorrelated state and the cavity field is initially prepared in a superposition of two
identical generalized Barut–Girardello nonlinear coherent states. In addition, we use new
correlation measures, LQFI and BDE, to describe the features of the proposed model such
as (1) the ability of the unitary qubit–cavity interactions to generate new types of quantum
correlation, (2) the enhancement of two-qubit coupling for the generated correlations, and
(3) the robustness of the generated correlation against intrinsic decoherence and the sta-
bility of the generated stationary two-qubit state. Finally, sudden death and sudden birth
as well as sudden changes during the dynamical behavior of BDE and LQFI, respectively
also appear. These features have potential applications in quantum processing, which
depend on the generated stable correlation and entanglement [1–3], which are reported
experimentally [51,52].

The paper is organized as follows: Section 2 introduces the proposed model of the
intrinsic decoherence and the nonclassical correlation quantifiers, while the dynamics of
the quantum correlations are discussed in Section 3. Finally, the conclusion is presented in
Section 4.

2. Preliminary
2.1. The Physical Model

The problem of the two algebraic systems SU(1, 1) and SU(2) in the presence of a
Kerr-like medium was studied in [53]. The effect of Stark shift on the interaction between
the algebraic system SU(1, 1) and one atom was also studied [54]. Therefore, a multiplicity
of K̂+ and K̂− generators appears. As an extension of this generalization, we consider the
mth-order degeneracy of the generators K̂+ and K̂−. The considered system is formed
by identical two coupled qubits (A and B) with the same transition frequency ω between
their lower and upper states |0i〉 and |1i〉 (i = A, B) identified by the energies h̄ωi

0 and h̄ωi
1,
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respectively. The two qubits interact with the nonlinear generalized cavity field through
m-photon processes (m = 1, 2, . . . ). The Hamiltonian can be written as

Ĥ = ω f K̂0 + ω(σ̂A
z + σ̂B

z ) + ∑
i=A,B

λ(K̂m
−|1i〉〈0i|+ K̂m

+|0i〉〈1i|)

+J(|1A0B〉〈0A1B|+ |0A1B〉〈1A0B|), (1)

where ω f represents the cavity field frequency, λ is the coupling interaction constant
between the qubits and the two-mode cavity fields, and J represents the dipole–dipole
coupling. The SU(1, 1) generators satisfy the following:

[K̂0, K̂±] = ±K̂±, [K̂−, K̂+] = 2K̂0, (2)

K̂+K̂− = K̂2
0 − (K̂0 + K̂2), (3)

K̂2 = K̂2
0 −

1
2
(K̂+K̂− + K̂−K̂+) = k(k− 1) Î. (4)

The K̂2 = k(k− 1) Î is the Casimir operator, whereas k represents the Bargmann number.
For the complete orthonormal basis, {|n, k〉(n = 0, 1, 2, ...; k = const.)},

Km
+|n, k〉 = Λn,m |n + m, k〉, (5)

Km
−|n, k〉 = Λn−1,m |n−m, k〉, (6)

Λn,m =

√
(m + n)!(m + n + 2k− 1)!

n!(n + 2k− 1)!
(7)

There are physical Hamiltonians system that could be converted to the above Hamiltonian
using Lie algebraic operators. For example, (1) let us first consider the case where the qubit
interacts with the cavity field containing a two-mode nondegenerate parametric amplifier.
In this case, the SU(1, 1) generators [55,56], K̂±, and K̂0 are introduced as follows:

K̂− =
1
2

â1 â2 = K̂†
+, (8)

K̂0 =
1
4
(â†

1 â1 + â†
2 â2 + Î), (9)

where â†
i and âi are the creation and annihilation operators of the field inside the cavity. (2)

We consider also a second case where the qubit interacts with a nonlinear ( f -deformed)
cavity field, K̂− = â f (â† â) = (K̂+)†, where f (â† â) represents the hermitian operator-
valued functions responsible for intensity-dependent coupling. (3) The third considered
case is for the qubit interacting with a two-photon process. In this case,

K̂− =
1
2

â2 = K̂†
+, K̂0 =

1
2
(â† â + Î). (10)

To study the decoherence effect on the cavity–qubit system dynamics, we use the
intrinsic decoherence (ID) model [57], which describes the decoherence effect as the system
evolves. The Milburn equation governs the dynamics of this system:

d
dt

ρ(t) = L̂ρ(t), L̂∗ = −i[Ĥ, ∗]− γ

2
[Ĥ, [Ĥ, ∗]], (11)

where Ĥ is the physical considered Hamiltonian system of Equation (1), γ represents the
intrinsic parameter, and the Milburn equation is reduced to the Schrödinger equation if
γ = 0. The condition of intrinsic decoherence is that, for a short time, the cavity–qubit
system evolves by stochastic sequences of identical unitary transformations rather than by
continuous unitary evolutions [57].

The two two-level systems are initially in the upper state, i.e., ρ̂A(0) = |1A1B〉〈1A1B|,
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while the initial cavity density matrix is described by a superposition of two identical
generalized Barut–Girardello nonlinear coherent states (B-GCS) with π-angle, |α, k〉 and
| − α, k〉 [43,58], as follows:

ρ̂ f (0) =
1
A
(|α, k〉+ r| − α, k〉)(|α, k〉+ r| − α, k〉)†, (12)

where A designs the normalization factor. The cavity is initially in the Barut–Girardello
nonlinear coherent state for r = 0, while it is in even B-GCS for r = 1. For the basis
{|n, k〉(n = 0, 1, 2, . . . ; k = const.)}, the B-GCS is defined as follows [43]:

|α, k〉 =
∞

∑
m=0

Fm|m, k〉, F2
m =

|α|2k−1α2m

n!(m + 2k− 1)I2k−1(2|α|)
, (13)

where α represents the initial intensity Barut–Girardello nonlinear coherent cavity and Iν(x)
is the modified Bessel function. The even and odd coherent states are special cases for the
Barut–Girardello coherent states when k = 1

4 and k = 3
4 , respectively. Another special case

from the B-GCS is the nonlinear coherent state |α, 1
2 〉 (k = 1

2 ). Consequently, the initial state
of the cavity–qubit system is given by

ρ̂(0) = ρ̂ f (0)⊗ |1A1B〉〈1A1B|. (14)

By using Equation (11) and the initial state of Equation (14), in the space eigenstates
{ |Dn

i 〉 } of the Hamiltonian of Equation (1), the qubit–cavity density matrix is given by

ρ̂(t) = ∑
m,n=0

∑
r=1,3,4

FmF∗n{Cm
r1Cn

11Hr1|Dm
r 〉〈Dn

1 | (15)

+Cm
r1Cn

31Hr3|Dm
r 〉〈Dn

3 |+ Cm
r1Cn

41Hr4|Dm
r 〉〈Dn

4 |},

where
Hr,s = [cos(Vm

r −Vn
s )t− i sin(Vm

r −Vn
s )t]T

rs
erm.

where Trs
erm = e−

γ
2 (V

m
r −Vn

s )
2t(r, s = 1, 3, 4) represents the decoherence term. Cn

rj is the coeffi-
cients of the eigenstates { |Dn

r 〉 } of the Hamiltonian of Equation (1) with the corresponding
eigenvalues Vn

r (r = 1− 4).
Based on the cavity number state |n〉 (for n = 0, 1, 2, 3, ...) and the two-qubit system

space state {|1A1B〉, |1A0B〉, |0A1B〉, |0A0B〉, the space eigenstates SU(1, 1)–SU(2) system
is identified by {|v1〉 = |n, 1A1B〉, |v2〉 = |n + m, 1A0B〉, |v3〉 = |n + m, 0A1B〉, |v4〉 =
|n + 2m, 0A0B〉} and

|Dn
r 〉 =

4

∑
j=1

Cn
rj|vj〉. (16)

Therefore, |Dn
r 〉 satisfies

Ĥ|Dn
r 〉 = Vn

r |Dn
r 〉 (r = 1− 4), (17)
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where the corresponding eigenvalues Vn
r are given by

Vn
1 = ω(m + n + k),

Vn
2 = ω(m + n + k)− J, (18)

Vn
3 = ω(m + n + k) +

1
2

J

−1
2

√
J2 + 8λ2(Λ2

n,m + Λ2
n,m),

Vn
4 = ω(m + n + k)

+
1
2

J +
1
2

√
J2 + 8λ2(Λ2

n,m + Λ2
n,m).

After obtaining the general solution ρ̂(t), we consider the case of m = 1 and the
resonance case (ω = ω f ) to investigate some quantum correlations under the effects of
unitary interaction, intrinsic noise, and qubit–qubit coupling. The case m = 1 corresponds
to a one-photon process for the case of a nonlinear ( f -deformed) cavity field and a one-
photon process when the cavity field contains a two-mode parametric amplifier.

2.2. Nonclassical Correlation Quantifiers

Nonclassical correlations are important resources for quantum information [59]. The
two-qubit nonclassical correlations are investigated by using local quantum Fisher infor-
mation and Bures distance entanglement.

2.3. Local Quantum Fisher Information (LQFI)

Recently, local quantum Fisher information was introduced as an important quantifier
of NCCs, which is defined as the minimum quantum Fisher information (LQFI). Let us
consider a given bipartite quantum state (with parts A and B) ρAB in the Hilbert space
H = HA ⊗ HB (Hl , l = A, B), which is the local Hamiltonian acting on the l-part. The LQFI
of ρAB, associated with the local evolution generated by a Hermitian operator IA ⊗ HB
with the A-part identity operator IA, can be written as follows [60]

F( ρAB , HB)

= 4∑
πm+πn>0

(πm − πn)2

πm + πn
|〈ψm|IA ⊗ HB|ψn〉|2. (19)

where {πm} and {|ψm〉} represent the eigenvalues and the eigenstates of the bipartite state
ρAB, where ρAB = ∑m πm|ψm〉〈ψm|, with πm ≥ 0 and ∑m πm = 1. Therefore, Equation (19)
can be rewritten as

F(ρAB, HB) = 4Tr{ρABH2
B} (20)

− ∑
m,n

8πmπn

πm + πn
|〈ψm|IA ⊗ HB|ψn〉|2.

If the bipartite quantum state ρAB is for the case of the two qubits, then the nonclassical
correlation can be quantified by the minimum QFI over all local Hamiltonians HB of a fixed
spectral class, which are reduced to HB =~r.~σ, where |~r| = 1 and~σ = σx, σy, σz is the Pauli
vector. The local quantum Fisher information is given by the following expression [11,61]:

F(t) = 1− πmax
W , (21)
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where πmax
W represents the highest eigenvalue of the real 3× 3 symmetric matrix W[wij]

with elements wij,

wij =
4

∑
m,n=1

2πmπn

πm + πn
〈ψm|U |ψn〉〈ψn|U †|ψm〉,

and U = IA ⊗ σi
B. {πm} and {|ψm〉} are the eigenvalues and the eigenstates of the two-

qubit reduced density matrix ρAB(t), which are determined numerically. In Equation (15),
the two-qubit reduced density matrix ρAB(t) is defined as

ρAB(t) = TrC{ρ̂(t)}. (22)

where the operation TrC traces the cavity states.

2.4. Bures Distance Entanglement

The measure of the BDE [28] depends on the concurrence [62], which is defined by

B(t) =

√
2−

√
2 + 2

√
1− C(t)2, (23)

where C(t) is the concurrence function,

C(t) = max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4 }, (24)

where λ1 ≥ λ2 ≥ λ3 ≥ λ4 designate the enginevalues of the matrix: R = ρAB(σy ⊗
σy)ρAB∗(σy ⊗ σy). The value of B(t) is bounded by two values: zero, which represents the

case of unentangled states, and
√

2−
√

2 for a maximal entangled state.

3. Nonclassical Correlation Dynamics

In this section, we are interested in studying the effects of qubit–qubit coupling
(Figure 1), intrinsic decoherence (Figure 2), and the initial coherent cavity field
(Figures 3 and 4). Finally, the effect of the intensity coherent field |α|2 is presented in
Figures 5 and 6.
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Figure 1. Local quantum Fisher information (LQFI) and Bures distance entanglement (BDE) dynamics of the uncorrelated
two-qubit state when the initial cavity field is in the B-GCS (r = 0) with k = 1

2 and the initial coherent intensity |α|2 = 16 in
the absence of the intrinsic decoherence. The qubit–qubit coupling effect is shown with different values J = 0 in (a) and
J = 20 λ in (b).
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Figure 2. LQFI and BDE dynamics when the initial cavity field is in the B-GCS with k = 1
2 and the initial coherent intensity

|α|2 = 16 in the presence of the intrinsic decoherence effect γ = 0.01λ in (a,b), γ = 0.1λ in (c). The qubit–qubit coupling
effect is shown with different values J = 0 in (a) and J = 20 λ in (b).
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Figure 3. LQFI and BDE dynamics in the case where the initial cavity field is in the even B-GCS (r = 1) with the initial
coherent intensity |α|2 = 16 and the intrinsic decoherence is absent. With different values of qubit–qubit coupling, J = 0 in
(a) and J = 20 λ in (b).
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Figure 4. LQFI and BDE dynamics when the initial cavity field is in the even B-GCS with k = 1
2 and the initial coherent

intensity |α|2 = 16 in the presence of the intrinsic decoherence effect γ = 0.01λ in (a,b), γ = 0.1λ in (c). The qubit–qubit
coupling effect is shown with different values J = 0 in (a) and J = 20 λ in (b).
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Figure 5. LQFI and BDE dynamics when the initial cavity field is in the B-GCS with k = 1
2 , small initial coherent intensity

|α|2 = 1, and the qubit–qubit coupling effect is absent. The decoherence effect is shown with different values γ = 0.0 in (a)
and γ = 0.01 λ in (b).
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Figure 6. LQFI and BDE dynamics when the initial cavity field is in the B-GCS with k = 1
2 , small initial coherent intensity

|α|2 = 1 in the presence of the qubit–qubit coupling effect J = 20 λ. The decoherence effect is shown with different values
γ = 0.0 in (a) and γ = 0.01λ in (b).

For the generalized Barut–Girardello nonlinear coherent state r = 0, we estimated the
correlation between the two qubits by the LQFI and BDE, respectively, in Figure 1 where
the intrinsic decoherence is absent. We note that the oscillatory behaviors of the correlation
functions F(t) and B(t) have different amplitudes and frequencies. Figure 1a shows the dy-
namics of the LQFI and BDE for the case where there is no decoherence γ = 0 and no direct
qubit interaction J = 0 with m = 1. The evolution in this case is unitary for the two qubits
that interact with the generalized Barut–Girardello nonlinear coherent cavity field via the
interaction term: λ(K̂−|1i〉〈0i|+ K̂+|0i〉〈1i|), where the operators K̂± might be close to a
two-mode cavity field operator. Note that the LQFI correlation is periodically generated
with 2π-period. In each period, the ability of the cavity–qubit interactions to induce the
LQFI correlation depends on time. In contrast, the irregular oscillatory behavior of the BDE
vanishes suddenly for short intervals and then stands up suddenly. This process shows
that the phenomena of sudden death (i.e., abrupt disappearance of the Bures distance
entanglement at a finite time) and sudden birth (the Bures distance entanglement sudden
revival) of the Bures distance entanglement can be achieved; see Figure 1a. In the intervals
between the sudden death and the sudden birth, the generated two-qubit entanglement
can spread throughout the qubit–cavity system. This means that the transitions of the
Bures distance entanglement are intimately related to sudden death and sudden birth of
entanglement. The distribution of the entanglement, including sudden death and sudden
birth phenomena of the entanglement, has been theoretically [63–65] and experimentally
reported [66,67].

Figure 1b illustrates that qubit–qubit coupling generates the LQFI correlation and the
BDE. We find that the increase in qubit–qubit coupling leads to enhancement of the ampli-
tudes and frequencies of the nonclassical correlations. The phenomenon sudden death and
sudden birth of the BDE and the initial disentanglement interval disappear completely only
in the presence of qubit–qubit coupling. It is difficult to transfer qubit–qubit entanglement
to the cavity fields. Qubit–qubit coupling plays an important role in generating qubit–
qubit entanglement. This qubit-qubit coupling effect is expected from the Hamiltonian of
Equation (1), where the interaction terms involving the two-qubit operators naturally turn
a superable state of the type |1A0B〉 into a state (α|1A0B〉+ β|0A1B〉), |α|2 + |β|2 = 1, which
could be close to the maximally entangled state. We deduce that the generated qubit–qubit
correlations of LQFI and BDE can be enhanced by increasing the qubit–qubit coupling.

In Figure 2 we display the influence of intrinsic decoherence on the qubit–qubit cor-
relation. In the absence of qubit–qubit coupling, the LQFI oscillations are decayed, while
its correlation grows to a stationary value. In this case, two-qubit LQFI correlation is still
time-dependent; see Figure 2a. The dashed curve of Figure 2a shows that the amplitudes
of BDE are reduced and that the two-qubit state quickly reaches a quasi-steady entangled
state. The stability of the stationary LQFI is more pronounced than that of Bures distance
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entanglement. The entangled two-qubit state and the stability of the LQFI correlation
as well as the BDE depend on intrinsic decoherence. The entanglement sudden death and
sudden birth of the Bures distance disappears due to the intrinsic decoherence effect, which
leads to increased minima of the Bures distance function to a stationary value.

In Figure 2b, we combine the effects of ID and qubit–qubit coupling. A smooth growth
arises in the correlations, and both measures take a long time to reach a steady state after
considering coupling to the cavity. Through these results, we deduce that qubit–qubit
coupling leads to an increase in LQFI and BDE nonclassical correlations. The stability of
LQFI and BDE is delayed. The generated qubit–qubit correlations via LQFI and BDE are
more robust against decoherence in the presence of qubit–qubit coupling. Figure 2c shows
that, to observe the stationary qubit–qubit state with qubit–qubit coupling, the parameter
of the intrinsic decoherence must be increased, γ = 0.1λ.

Figures 3 and 4 display the time evolution of Bures distance entanglement and the
local quantum Fisher information for the even coherent cavity field with the same parame-
ter values as in Figure 1 (coherent state). From Figure 3a, we observe that the maximum
values of the LQFI and BDE functions increase compared to the case of the coherent state.
Moreover, setting the cavity in the even coherent state enhances generation of the nonclas-
sical correlation between the two qubits. The sudden birth and sudden death phenomena
of Bures distance entanglement are achieved during several time intervals.

The results of Figure 3b confirm the effects of qubit–qubit coupling. The intensity of
the oscillations of F(t) decreases while its amplitudes increase after adding qubit–qubit
coupling to the cavity. In addition, a strong BDE between the two qubits is present. The phe-
nomena of sudden death and sudden birth of the BDE are almost disappeared. In the case
of the even coherent state, the qubit–qubit coupling enhances remarkably the correlations
presented by Bures distance entanglement and local quantum Fisher information.

After considering decoherence, LQFI and BDE correlations are generated, and after a
short time, their amplitudes are substantially reduced to constant values; see Figure 4a. The
correlation identified by the LQFI quantifier is more stable and robust against decoherence
than that of Bures distance entanglement. The phenomenon of sudden changes occurs
(which was observed experimentally [51] and analytically in several systems [68–70]) only
during the dynamic behavior of the LQFI function F(t). A strong correlation arises be-
tween the two qubits. Therefore, coupling between the qubits and the cavity field can
conserve or enhance the correlations which resist to decoherence. Figure 4b confirms
that the qubit–qubit interaction enhances the qubit–qubit correlation. Furthermore the
phenomenon of sudden changes in the LQFI correlation is clearly observed. Figure 4c
shows that, after adding qubit–qubit coupling, the phenomenon of sudden changes and
the stationary correlations depend on the increase in the intrinsic decoherence.

Figures 5 and 6 display the effect of the intensity coherent field |α|2 for a cavity initially
in an even generalized coherent state. The generated nonclassical correlation of the LQFI
has regular oscillatory behavior, while the Bures distance entanglement has irregular oscil-
lations that are reduced during most of the interaction period; see Figure 5. By comparing
the results of the two cases of the large and small intensity coherent values, we find that,
with small intensity coherent value, the LQFI correlation is enhanced while the Bures dis-
tance two-qubit entanglement is reduced. The sudden death and sudden birth phenomena
of the two-qubit entanglement are observed. The disentanglement time intervals are very
large compared to previous cases. Note that, in these time intervals, the disentangled
two-qubit state has a partial LQFI correlation. For a small intensity coherent field, the effect
of the intrinsic decoherence is weakened. The dynamics of the LQFI is more robust than
the BDE.

Figure 6 shows the effect of the two-qubit coupling with a small intensity coherent field.
A symmetric relation appears between the correlation functions. Moreover, the maximum
values of the quantum correlations increase while their minimum values are shifted up.
In other words, nonclassical correlations can be enhanced and are more robust against ID
due to the intensity coherent field.
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4. Conclusions

In this paper, we considered a system constituted by two coupled qubits interacting
with a nonlinear generalized SU(1,1) cavity field. An analytical solution of the intrinsic
decoherence model for the considered system was obtained when the SU(1,1) cavity field
initially had a superposition of two identical generalized coherent states. The two-qubit
nonclassical correlation dynamics were investigated by using Bures distance entanglement
and local quantum Fisher information under the influence of intrinsic decoherence and
qubit–qubit coupling. In a generalized coherent state, two-qubit nonclassical correlations
were generated and improved in the presence of qubit–qubit coupling. The phenomena
of sudden death and sudden birth were observed in the Bures distance entanglement
dynamics. The two-qubit nonclassical correlations can be enhanced for the even generalized
coherent cavity field. They are more pronounced after considering qubit–qubit coupling
for the qubit–cavity interaction. The generated correlations are stabilized by intrinsic
decoherence. The nonclassical correlations can be enhanced and are more robust against
decoherence due to the intensity coherent field.
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