
entropy

Review

Attention Mechanisms and Their Applications to
Complex Systems

Adrián Hernández and José M. Amigó *

����������
�������

Citation: Hernández, A.;Amigó, J.M.

Attention Mechanisms and Their

Applications to Complex Systems.

Entropy 2021, 23, 283.

https://doi.org/10.3390/e23030283

Academic Editor: José A. Tenreiro

Machado

Received: 10 January 2021

Accepted: 23 February 2021

Published: 26 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Centro de Investigación Operativa, Universidad Miguel Hernández, Av. de la Universidad s/n,
03202 Elche, Spain; adrian.hernandez@goumh.umh.es
* Correspondence: jm.amigo@umh.es

Abstract: Deep learning models and graphics processing units have completely transformed the
field of machine learning. Recurrent neural networks and long short-term memories have been
successfully used to model and predict complex systems. However, these classic models do not
perform sequential reasoning, a process that guides a task based on perception and memory. In recent
years, attention mechanisms have emerged as a promising solution to these problems. In this review,
we describe the key aspects of attention mechanisms and some relevant attention techniques and
point out why they are a remarkable advance in machine learning. Then, we illustrate some important
applications of these techniques in the modeling of complex systems.

Keywords: attention; deep learning; complex and dynamical systems; self-attention; neural networks;
sequential reasoning

1. Introduction

The combination of deep neural networks and the computational capabilities of
Graphics Processing Units (GPUs) [1] has brought a breakthrough to the field of machine
learning, improving the performance of several tasks such as image recognition, machine
translation, language modelling, time series prediction, etc. [2–5].

Recurrent neural networks (RNNs) and long short-term memories (LSTMs), which were
specially designed for sequence modelling [6–9], and convolutional neural networks (CNNs)
to a lesser extent, have been successfully used to model, analyze and predict complex
systems. Indeed, they are able to capture temporal dependencies and nontrivial relationships
in complex systems, specifically in the sequential data generated by them. By complex
systems we mean, generally speaking, systems that evolve over time in a possibly more
general setting than that of dynamic systems.

However, these classic deep learning models do not perform sequential reasoning [10],
a process that is based on perception with attention. In the brain, attention mechanisms
allow to focus on one part of the input or memory (image, text, etc) while giving less
attention to others, thus guiding the process of reasoning.

Attention mechanisms have provided and will provide a paradigm shift in machine
learning [11,12]. These mechanisms allow a model to focus only on a set of elements and to
decompose a problem into a sequence of attention based reasoning tasks [13]. Moreover,
they can be applied to model complex systems in a flexible and promising way. When it
comes to their application, information processing in the system and internal structure
are crucial.

Here, as shown in Table 1, we describe the evolution of machine learning techniques
and demonstrate how attention mechanisms, in combination with classic models, al-
low modeling certain important characteristics of complex systems, e.g., sequential reason-
ing, integration of different parts and long term dependencies.

Entropy 2021, 23, 283. https://doi.org/10.3390/e23030283 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-7534-4612
https://orcid.org/0000-0002-1642-1171
https://doi.org/10.3390/e23030283
https://doi.org/10.3390/e23030283
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23030283
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23030283?type=check_update&version=2


Entropy 2021, 23, 283 2 of 18

Table 1. Classic deep learning and attention techniques described in this paper and their capabilities to model
complex systems.

Techniques Capabilities in Modeling Complex Systems

Classic models (RNNs, LSTMs . . .) Are universal approximators, provide perception, temporal dependence
and short memory

Seq2seq with attention Integrates parts, models long term dependencies, guides a task by focusing
on a set of elements (temporal, spatial, features . . .)

Memory networks Integrate external data with the current task and provide an explicit
external memory

Self-attention Generalization of neural networks, relates input vectors in a more direct
and symmetric way

In this paper, which is aimed at researchers with prior knowledge of deep learning,
we review recent progress in attention mechanisms. We focus on differentiable attention,
in which the attention weights are learned together with the rest of the model parameters.
In Section 2, we present a general overview of the use of deep learning in modeling
dynamical systems and, more generally, complex systems. We also elaborate on the need
for attention mechanisms. In Section 3, we present the key aspects, the advantages and
the main modes of operation of attention (Section 3.1). Then we describe some important
attention techniques such as attention in seq2seq models (Section 3.2), as well as self-
attention and memory networks (Section 3.3), emphasizing why they represent significant
progress in machine learning. Finally, in Sections 4.1–4.4 we illustrate some interesting
uses of theses techniques to model complex systems and in Section 5 we discuss these
techniques. For the convenience of the reader, all abbreviations in this paper are listed last.

2. Traditional Deep Learning and the Need for Attention

In recent years, we have seen major advances in the field of artificial intelligence and
machine learning. The combination of deep neural networks with the computational capa-
bilities of Graphics Processing Units (GPUs) [1] has improved the performance of several
tasks such as image recognition, machine translation, language modelling, time series
prediction, game playing and more [2–5]. Deep learning models have evolved to take into
account the computational structure of the problem to be resolved.

In a feedforward neural network (FNN) composed of multiple layers, the output
(without the bias term) at layer l, see Figure 1, is defined as

xl+1 = f (W l xl), (1)

W l being the weight matrix at layer l. f is the activation function and xl+1, the output
vector at layer l and the input vector at layer l + 1. The weight matrices for the different
layers are the parameters of the model.

Learning is the mechanism by which the parameters of a neural network are adapted
to the environment in the training process. This is an optimization problem that has been
addressed using gradient-based methods, in which given a cost function f : Rn → R,
the algorithm finds local minima w∗ = arg minw f (w) by updating each layer parameter
wij with the rule wij := wij − η∇wij f (w), where η > 0 is the learning rate.

Therefore, a deep learning model consists of the forward pass, in which the com-
putational graph with the multiple layers is built, and the backward pass, in which the
gradients are calculated and the parameters are updated. Then, all the functions of the
parameters used in the model must be differentiable.



Entropy 2021, 23, 283 3 of 18

Figure 1. Multilayer neural network.

RNNs (see Figure 2) are a basic component of modern deep learning architectures,
especially of encoder–decoder networks. The following equations define the time evolution
of an RNN:

ht = f h(Wihxt + Whhht−1), (2)

yt = f o(Whoht), (3)

where Wih, Whh and Who are weight matrices. f h and f o are the hidden and output
activation functions while xt, ht and yt are the network input, hidden state and output.

Figure 2. Temporal structure of a recurrent neural network.

LSTMs [14] are an evolution of RNNs in that they feature an RNN structure with gated
units, i.e., regulators. Specifically, LSTMs are composed of a memory cell, an input gate,
an output gate and a forget gate, and allow gradients to flow unchanged. The memory cell
remembers values over arbitrary time intervals and the three gates regulate the flow of
information into and out of the cell.

Here we refer to systems that contain a very large number of variables interacting with
each other in non-trivial ways as complex systems [15]. Their behaviour is intrinsically
difficult to model due to the dependencies and interactions between their parts and they
have emergence properties arising from those interactions such as adaptation, evolution,
learning, etc. In Section 4, we describe the use of attention mechanisms to model the
sequential data generated by complex systems.

Dynamical systems are a special class of complex systems. At any given time, a dy-
namical system has a state that can be represented by a point in a state space (manifold).
The evolution equations of the dynamical system describes what future states follow from
the current state. This process can be deterministic, if its entire future is uniquely deter-
mined by its current state, or non-deterministic otherwise [16] (e.g., a random dynamical



Entropy 2021, 23, 283 4 of 18

system [17]). Furthermore, it can be a continuous-time process, represented by differential
equations or a discrete-time process, represented by difference equations or maps. Thus,

ht = f (ht−1; θ) (4)

for autonomous discrete-time deterministic dynamical systems with parameters θ, and

ht = f (ht−1, xt; θ) (5)

for non-autonomous discrete-time deterministic dynamical systems driven by an exter-
nal input xt. Dynamical systems with multiple time lags can be rewritten as a higher
dimensional dynamical system with time lag 1.

A key aspect in modelling dynamical systems is, of course, temporal dependence. Tra-
ditionally, there have been two ways to implement it in the neural network paradigm [18]:

1. Classic feedforward neural networks with time delayed states in the inputs but
perhaps with an unnecessary increase in the number of parameters.

2. RNNs since, as shown in Equations (2) and (3), they have a temporal recurrence that
make them appropriate for modelling discrete dynamical systems of the form given
in Equations (4) and (5). As said in the Introduction, RNNs were precisely designed
for sequence modelling. [6].

Therefore, RNNs seem the ideal candidates to model, analyze and predict dynamical
systems and more generally complex systems. Theoretically, the temporal recurrence of
RNNs allows to model and identify dynamical systems described with equations with any
temporal dependence.

To learn chaotic dynamics, recurrent radial basis function (RBF) networks [19] and
evolutionary algorithms that generate RNNs have been proposed [20]. “Nonlinear Autore-
gressive model with exogenous input” (NARX) [21] and boosted RNNs [22] have been
applied to predict chaotic time series.

LSTMs have also succeeded in various applications to complex systems such as model
identification and time series prediction [7–9]. Another remarkable application of the LSTM
is machine translation [3,23].

Although the classic models above work well, they have limitations that make it
difficult to perform sequential reasoning and achieve more general intelligence [10,24].
Among these limitations, we highlight the following:

1. Classic models only perform perception, representing a mapping between inputs
and outputs.

2. Classic models follow a hybrid model where synaptic weights perform both process-
ing and memory tasks but do not have an explicit external memory.

3. Classic models do not carry out sequential reasoning. This essential process is based
on perception and memory through attention and guides the steps of the machine
learning model in a conscious and interpretable way.

In the next section, we present attention mechanisms as an important step to address
these limitations.

3. Attention Mechanisms
3.1. Differentiable Attention

As explained in Section 2, classic deep learning models do not perform sequential
reasoning, a process that is based on attention.

In the brain, reasoning is the process of establishing and verifying facts combining
attention with new or existing information. The role of the attention mechanisms is to focus
on one part of the input or memory (image, text, etc), thus guiding the process of reasoning.

As described in [25], there are several classes of attention in neuroscience: attention
as a level of alertness, attention over sensory inputs, attention to select and execute tasks



Entropy 2021, 23, 283 5 of 18

and attention for memory encoding and retrieval. In [26], the authors modeled the inter-
action between top-down attention and bottom-up stimulus contrast effects and found
that external attention inputs bias neurons to move to different parts of their nonlinear
activation functions. Insects have been a source of inspiration in intelligence and attention
mechanisms. In [27], a multiclass support vector machine with inhibition is inspired by
the brain structure of insects. In [28], a multi-layer spiking neural network is presented
that models the Mushroom Bodies and their interactions to other key elements of the insect
brain, the Central Complex and the Lateral Horns.

Analogously, a learning problem in machine learning can be decomposed into a
sequence of tasks, where in each task it is necessary to focus on one part of an input (or
transformed input) or a memory. Once again, neural information processing in the brain,
in which several layers interact with each other [29], has been a source of inspiration for
machine learning.

Generally formulated, attention in machine learning is a sequential process in which
a learning task is guided by a set of elements of the input source (or memory). This is
achieved by integrating the attention value into the task.

Attention mechanisms have provided and will provide a paradigm shift in machine
learning. Specifically, this change is from traditional large-scale vector transformations to
more conscious processes (i.e., that focus only on a set of elements), e.g., decomposing a
problem into a sequence of attention based reasoning tasks [13,30–34].

As stated in Section 2, to integrate a component into a deep learning model that learns
using gradient descent, all the functions of the parameters in the component must be
differentiable. One way to make attention mechanisms differentiable is to formulate them
as a convex combination of the input or memory. In this case, all the steps are differentiable
and can be learned, and the combination weights must add up to one (forcing them to
focus on some parts more than others). In this way, the mechanisms learn which parts it
needs to focus on.

As in [11], this convex combination, shown in Figure 3, is described as mapping a
query and a set of key-value pairs to an output:

att(q, s) =
T

∑
i=1

αi(q, ki)V i, (6)

where, as seen in Figure 3, ki and V i are the key and the value vectors from the source/memory
s, and q is the query vector (task). αi(q, ki) is the similarity function between the query and
the corresponding key and is calculated by applying the softmax function,

So f tmax(zi) =
exp(zi)

∑i′ exp(zi′)
, (7)

to the score function score(q, ki):

αi =
exp(score(q, ki))

∑T
i′=1 exp(score(q, ki′))

. (8)

The score function can be computed using a feedforward neural network:

score(q, ki) = Za tanh(W a[q, ki])), (9)

as proposed in [35], where Za and W a are matrices to be jointly learned with the rest of the
model and [q, ki] is a linear function or concatenation of q and ki. Furthermore, in [36] the
authors use a cosine similarity measure for content-based attention, namely,

score(q, ki) = cos((q, ki)), (10)



Entropy 2021, 23, 283 6 of 18

where ((q, ki)) denotes the angle between q and ki.

Figure 3. Attention diagram. Attention as a sequential process of reasoning in which the task (query)
is guided by a set of elements (values) of the source (or memory).

Then, attention can be seen as a sequential process of reasoning in which the task
(query) is guided by a set of elements of the input source (or memory) using attention.

The attention process can focus on:

1. Temporal dimensions, e.g., different time steps of a sequence.
2. Spatial dimensions, e.g., different regions of an image.
3. Different elements of a memory.
4. Different features or dimensions of an input vector, etc.

Depending on where the process is initiated, we have:

1. Top-down attention, initiated by the current task.
2. Bottom-up, initiated spontaneously by the source or memory.

To apply the attention mechanism, it is necessary to break down the learning process
into a sequence of attention-guided tasks.

Then, due to its flexibility, an attention mechanism can be added in multiple ways to
any deep learning architecture that models a complex system. In Section 4, we illustrate
this flexibility as follows:

1. Through a conventional attention (the query is different from the key and the value)
in Section 4.2, with the encoder selecting input features and the decoder selecting
time steps.

2. Through a memory network in which a memory of historical data guides the current
prediction task in Section 4.3.

3. Through self-attention (the keys, values and queries come from the same source) in
Section 4.4. Here, to encode a vector of the input sequence, self-attention allows the
model to focus in a direct way on other vectors in the sequence.

3.2. Attention in seq2seq Models

An encoder–decoder model maps an input sequence to a target one with both se-
quences of arbitrary length [3]. They have applications ranging from machine translation
to time series prediction.

More specifically, this mechanism uses an RNN (or any of its variants such as an
LSTM or a GRU, Gated Recurrent Unit) to map the input sequence to a fixed-length vector,
and another or any of its variants (RNN) to decode the target sequence from that vector
(see Figure 4). Such a seq2seq model typically features an architecture composed of:



Entropy 2021, 23, 283 7 of 18

1. An encoder which, given an input sequence X = (x1, x2, ..., xT) with xt ∈ Rn,
maps xt to

ht = f1(ht−1, xt), (11)

where ht ∈ Rm is the hidden state of the encoder at time t, m is the size of the hidden
state and f1 is an or any of its variants (RNN).

2. A decoder, where st is the hidden state and whose initial state s0 is initialized
with the last hidden state of the encoder hT . It generates the output sequence
Y = (y1, y2, ..., yT′), yt ∈ Ro (the dimension o depending on the task), where

yt = f2(st−1, yt−1), (12)

and f2 is an or any of its variants (RNN) with an additional layer depending on the
task (e.g., a linear layer for series prediction or a softmax layer for translation).

Figure 4. An encoder–decoder network.

Because the encoder compresses all the information of the input sequence in a fixed-
length vector (the final hidden state hT), the decoder possibly does not take into account
the first elements of the input sequence. The use of this fixed-length vector is a limitation
to improve the performance of the encoder–decoder networks. Moreover, the perfor-
mance of encoder–decoder networks degrades rapidly as the length of the input sequence
increases [37]. This occurs in applications such as machine translation and time series
prediction, where it is necessary to model long time dependencies.

The key to solve this problem is to use an attention mechanism to guide the decoding
task. In [35], an extension of the basic encoder–decoder architecture was proposed by
allowing the model to automatically search and learn which parts of a source sequence
are relevant to predict the target element. Instead of encoding the input sequence in a
fixed-length vector, it generates a sequence of vectors, choosing the most appropriate subset
of these vectors during the decoding process.

Equipped with the attention mechanism, the encoder is a bidirectional RNN [38]
with a forward hidden state

−→
hi = f1(

−→
h i−1, xi) and a backward one

←−
hi = f1(

←−
h i+1, xi).

The encoder state is represented as a simple concatenation of the two states,

hi = [
−→
hi ;
←−
hi ], (13)

with i = 1, . . . , T. The encoder state includes both the preceding and following elements of
the sequence, thus capturing information from neighbouring inputs.



Entropy 2021, 23, 283 8 of 18

The decoder has an output

yt = f2(st−1, yt−1, ct) (14)

for t = 1, . . . , T′. f2 is an RNN with an additional layer depending on the task (e.g.,
a linear layer for series prediction or a softmax layer for translation), and the input is a
concatenation of yt−1 with the context vector ct, which is a sum of hidden states of the
input sequence weighted by alignment scores:

ct =
T

∑
i=1

αtihi. (15)

Similar to Equation (8), the weight αti of each state hi is calculated by

αti =
exp(score(st−1, hi))

∑T
i′=1 exp(score(st−1, hi′))

. (16)

In this attention mechanism, the query is the state st−1 and the key and the value are the
hidden states hi. The score measures how well the input at position i and the output at
position t match. αti are the weights that implement the attention mechanism, defining
how much of each input hidden state should be considered when deciding the next state st
and generating the output yt (see Figure 5).

Figure 5. An encoder–decoder network with attention.

As we have described previously, the score function can be parametrized using
different alignment models such as feedforward networks and the cosine similarity.

An example of a matrix of alignment scores is shown in Figure 6. This matrix provides
interpretability to the model since it allows to know which part (time-step) of the input is
more important to the output.

The attention mechanism then transforms an encoder–decoder sequential model into
a non-sequential model in which the attention mechanism guides the decoding task based
on the encoded states.



Entropy 2021, 23, 283 9 of 18

Figure 6. A matrix of alignment scores. It represents how much of each input state should be
considered when deciding the next state and generating the output.

3.3. Self-Attention and Memory Networks

A variant of the attention mechanism is self-attention, in which the attention compo-
nent relates different positions of a single sequence in order to compute a representation
of the sequence. In this way, the keys, values and queries come from the same source.
The mechanism can connect distant elements of the sequence more directly than using
RNNs [12].

Similar to the description given in [11], for an input sequence X = (x1, x2, . . . , xT),
the self-attention process can be implemented by the following steps:

1. For each of the input vectors, create a query Qt, a key Kt and a value vector V t by
multiplying the input vector xt by three matrices that are trained during the learning
process, WQ

i ∈ Rd×dk , WK
i ∈ Rd×dk and WV

i ∈ Rd×dv .
2. For each query vector Qt, the self-attention value is computed by mapping the query

and all the key-values to an output, Attention(Qt, K, V) = ∑T
j=1 αj(Qt, K j)V j, where

αj(Qt, K j) = so f tmax(
QtKj

T
√

dk
) (17)

3. This self-attention process is performed h times in what is called multi-headed at-
tention. Each time, the input vectors are projected into a different query, key and
value vector using different matrices WQ

i , WK
i and WV

i for i = 1, . . . , h. On each
of these projected queries, keys and values, the attention function is performed in
parallel, producing dv dimensional output values, that are concatenated and once
again projected to the final values. This multi-headed attention process allows the
model to focus on different positions from different representation subspaces.

When the model is processing a vector of the input sequence, single self-attention
allows the model to focus on other vectors in the sequence to get a better representation of
this vector. With multi-headed self-attention (see Figure 7), each attention head is focusing
on a different set of vectors when processing the vector.

The transformer [11], a network architecture based only on self-attention, is composed
of an encoder and a decoder:

1. Encoder: Composed of a stack of six identical layers, each layer with a multi-head
self-attention process and a position-wise fully connected feed-forward network.
Around each of the sub-layers, a residual connections followed by layer normalization
is employed.



Entropy 2021, 23, 283 10 of 18

2. Decoder: Is also composed of a stack of six identical layers (with self-attention and
a feed-forward network) with an additional third sub-layer to perform attention
over the output of the encoder (as in the seq2seq with attention). The self-attention
sub-layer is modified to prevent a vector from attending to subsequent vectors in
the sequence.

Figure 7. Multi-headed attention. Self-attention process performed in parallel h times in different subspaces. The output
values are concatenated and projected to a final value.

The transformer allows to replace CNNs and RNNs, improving machine translation
tasks while using less training time. The transformer is also the basic component of GPT-3
(Generative Pre-Trained transformer-3), a pre-trained language model which achieves good
performance in few-shot learning on many Natural Language Processing tasks without
fine-tuning [39].

Another variant of attention are end-to-end memory networks [40], which are neu-
ral networks with a recurrent attention model over an external memory. The model,
trained end-to-end, is described in more detail in Section 4.3 and outputs an answer based
on a query and a set of inputs x1, x2, . . . , xn stored in a memory.

4. Attention Mechanisms in Complex Systems
4.1. Where and How to Apply Attention

In the previous sections we have described various attention mechanisms. These mech-
anisms allow a task to focus on a set of elements of an input sequence, an intermediate
sequence or a memory source.

Due to its flexibility, an attention mechanism can be added to any deep learning
model in multiple ways. Therefore, when applying it to model complex systems, it will be
necessary to decide the following issues:

1. In which part of the model should be introduced?
2. What elements of the model will the attention mechanism relate?
3. What dimension (temporal, spatial, input dimension, etc.) is the mechanism going to

focus on?
4. Will self-attention or conventional attention be used?
5. What elements will correspond to the query, the key and the value?

In the following sections we describe some illustrative cases of application of attention
mechanisms to model complex systems. As we will see, how the information is processed
in the system and how the different elements are related will be key when defining the
aforementioned issues.



Entropy 2021, 23, 283 11 of 18

4.2. Attention in Different Phases of a Model

In a non-autonomous dynamical system, the current state is a transformation of the
previous states and the current input, which contains n dimensions or features. More gen-
erally, the dependencies between time steps can be dynamic, i.e., time-changing. In such
complex systems, attention mechanisms learn to focus on the most relevant parts of the
system input or state.

A representative attention mechanism in this context implements a dual-stage at-
tention, namely, an encoder with input features attention and a decoder with temporal
attention, as pointed out in [41]. Next we describe this architecture, in which the first
stage extracts the relevant input features and the second selects the relevant time steps of
the model.

Let X = (x1, x2, . . . , xT) with xt ∈ Rn be the input sequence. T is the length of the
time interval and n the number of input features or dimensions. xt = (x1

t , x2
t , . . . , xn

t ) is the
input at the time step t and xk = (xk

1, xk
2, . . . , xk

T) is the k input feature series.

Encoder with input attention

Given an input sequence X, the encoder maps ut to

ht = f1(ht−1, ut), (18)

where ht ∈ Rm is the hidden state of the encoder at time t, m is the size of the hidden state
and f1 is an or any of its variants (RNN). xt is replaced by ut, which adaptively selects the
relevant input features as follows:

ut = (α1
t x1

t , α2
t x2

t , ..., αn
t xn

t ). (19)

Here

αk
t =

exp(score(ht−1, xk))

∑n
i=1 exp(score(ht−1, xi))

, (20)

is the attention weight measuring the importance of the k input feature at time t,
where xk = (xk

1, xk
2, . . . , xk

T) is the k input feature series and the score function can be
computed using a feedforward neural network, a cosine similarity measure or other
similarity functions.

Therefore, this first attention stage extracts the relevant input features with the query,
keys and values shown in Figure 8.

Figure 8. Diagram of the input features attention mechanism.



Entropy 2021, 23, 283 12 of 18

Decoder with temporal attention

Similar to the attention decoder described in Section 3.2, the decoder has an output

yt = f2(st−1, yt−1, ct) (21)

for t = 1, . . . , T′. f2 is an or any of its variants (RNN) with an additional linear or softmax
layer, and the input is a concatenation of yt−1 with the context vector ct, which is a sum of
hidden states of the input sequence weighted by alignment scores:

ct =
T

∑
i=1

βi
thi. (22)

The weight βi
t of each state hi is computed using the similarity function, score(st−1, hi),

and applying a softmax function, as described in Section 3.2.
This second attention stage selects the relevant time steps, as shown in Figure 9 with

the corresponding query, keys and values.

Figure 9. Diagram of the temporal attention mechanism.

Further remarks

In [41], the authors define this dual-stage attention RNN and show that the model
outperforms a classical model in time series prediction.

A comparison is made between LSTMs and attention mechanisms for financial time
series forecasting in [42]. It is shown that an LSTM with attention performs better than
stand-alone LSTMs.

A temporal attention layer is used in [43] to select relevant information and to provide
model interpretability, an essential feature to understand deep learning models. In [44],
interpretability is further studied in detail, concluding that attention weights partially
reflect the impact of the input elements on model prediction.

4.3. Memory Networks

Memory networks allow long-term or external dependencies in sequential data to be
learned thanks to an external memory component. Instead of taking into account only the
most recent states, memory networks also consider the entire list of states or the states of
a memory.

Here we define one possible application of memory networks to complex systems,
following an approach based on [40]. We are given a time series of historical data n1, . . . , nT′

with ni ∈ Rn and the input series x1, . . . , xT with xt ∈ Rn the current input, which is the
query in the attenton mechanism.



Entropy 2021, 23, 283 13 of 18

The set {ni} are converted into memory vectors {mi} and output vectors {ci} of
dimension d. The query xt is also transformed to obtain a internal state ut of dimension d.
These transformations correspond to a linear transformation: Ani = mi, Bni = ci, Cxt = ut,
where A, B, C are parameterizable matrices.

A match between ut and each memory vector mi is computed by taking the inner
product followed by a softmax function:

pi
t = So f tmax(uT

t mi). (23)

The final vector from the memory, ot, is a weighted sum over the transformed memory
inputs {ci}:

ot = ∑
i

pi
tci. (24)

To generate the final prediction yt, a linear layer is applied to the sum of the output
vector ot and the transformed input ut, and to the previous output yt−1:

yt = f (W1(ot + ut) + W2yt−1) (25)

A basic diagram of the model is shown in Figure 10. This model is differentiable end-
to-end by learning the matrices (the final matrices W1 and W2, and the three transformation
matrices A, B and C) to minimize the prediction error.

Figure 10. Basic diagram of a memory network. For each input, the attention mechanism integrates a
weighted sum over the memory vectors.

In [45], the authors propose a similar model based on memory networks with a
memory component, three encoders and an autoregressive component for multivariate
time-series forecasting. Compared to non-memory RNN models, their model is better at
modeling and capturing long-term dependencies and, moreover, it is interpretable.

Differentiable Neural Computers (DNCs) [46] consist of a neural network that uses
attention and can read from, and write to, an external memory. Taking advantage of these
capabilities, an enhanced DNC for electroencephalogram (EEG) data analysis is proposed
in [47]. By replacing the LSTM network controller with a recurrent convolutional network,
the potential of DNCs in EEG signal processing is convincingly demonstrated.

4.4. Self-Attention

An important aspect to model complex systems is to capture the temporal dependence
and the relationship between the parts that make up the system.



Entropy 2021, 23, 283 14 of 18

If we compare the computational graph of an see Figure 2 (RNN) with the graph of
an attention module (Figure 11), we observe that even adding a memory unit (LSTM),
the attention module relates each of the inputs in a more direct and symmetric way to form
the output vector.

Figure 11. Self-attention graph. The self-attention component calculates how much each input vector
contributes to form each output vector.

The distance, in number of edges in the graph, between an input and an output distant
in time, is shorter and is the same for all input vectors in the self-attention module. However,
this is at the cost of not prioritizing local interactions, which has a high computational cost
for very long sequences.

The transformer, as we have pointed out, is composed of a stack of multi-headed
self-attention components. With multi-headed attention, the input vectors are projected
into a different query, key and value vector, performing the self-attention process h times.
When processing a vector, each attention head is focusing on a different set of vectors from
different representation subspaces.

These mentioned characteristics make self-attention and the transformer a promising
building block in deep learning models for complex systems.

In [48], the authors propose a dual self-attention network for multivariate time
(dynamic-period or non-periodic) series forecasting. In [49], the authors utilize attention
models for clinical time-series modeling. They employ a masked self-attention mechanism
and use positional encoding and dense interpolation for incorporating temporal order.

Further understanding of the transformer architecture is carried out in [50], where the
authors show that the transformer architecture can be interpreted as a numerical Ordinary
Differential Equation (ODE) solver for a convection-diffusion equation in a multi-particle
dynamic system. They interpret how words (vectors) in a sentence are abstracted by
passing through the layers of the transformer as approximating the movement of multiple
particles in the space using the Lie–Trotter splitting scheme and the Euler’s method.

5. Discussion

After the success of recent years, one of the most important challenges that deep
learning faces is to improve input-output models, adopting new primitives that provide
reasoning, abstraction, search and memory capabilities.

Similar to what happens in the brain, attention mechanisms allow the reasoning or
cognitive process to be guided in a flexible way. This improvement is important when
modeling complex systems due to their temporal dependence and complex relationships.



Entropy 2021, 23, 283 15 of 18

As we have seen, attention mechanisms has the following benefits in modeling
such systems:

1. By focusing on a subset of elements, it guides the reasoning or cognitive process.
2. These elements can be tensors (vectors) from the input layer, from the intermediate

layer or be external to the model, e.g., a external memory.
3. It can focus on temporal dimensions (different time steps of a sequence), spatial di-

mensions (different regions of space) or different features of an input vector.
4. It can relate each of the input vectors in a more direct and symmetric way to form the

output vector.

More specifically, as shown in Table 2, for each of the techniques and applications
described, we discuss its application potential, characteristics and advantages.

1. One stage conventional attention. The attention mechanism allows guiding any complex
system task such as modeling, prediction, identification, etc. To do this, it focuses on
a set of elements from the input layer or from an intermediate layer. These elements
can be temporal, spatial or feature dimensions. For example, to model a dynamical
system with an input of dimension n, one can add an attention mechanism to focus
and integrate the different input dimensions. The attention mechanism is combined,
as we have seen, with an RNN or an LSTM and allows modeling long temporal
dependencies. This technique, like the rest, adds complexity to the model. To calculate
the attention weights between a task (query) of T elements and an attended region
(key, value) of T elements, it is necessary to perform T2 multiplications.

2. Several stages conventional attention. This case is similar to the previous, one-stage
conventional attention but with several attention phases or stages. The attention
mechanism is also combined with an RNN or an LSTM and allows modeling long
temporal dependencies. As we have seen, the model can focus on a set of feature
elements from the input layer and on a set of temporal steps from an intermediate
layer. This enables multi-step reasoning. The downside is that more computational
cost is added to the model with T2 multiplications for each attention stage.

3. Memory networks. In memory networks, any complex system task such as modeling,
prediction or identification is guided by an external memory. Then, memory networks
allow long-term or external dependencies in sequential data to be learned thanks to
an external memory component. Instead of taking into account only the most recent
states, these networks consider the states of a memory or external data as well. Such is
the case of time series prediction also based on an external source that can influence
the series. To calculate the attention weights between a task (query) of T elements and
an attended memory of T′ elements, it is necessary to perform TT′ multiplications.

4. Self-attention. In self-attention, the component relates different positions of a single
sequence in order to compute a transformation of the sequence. The keys, values
and queries come from the same source. It is a generalization of neural networks,
since they perform a direct transformation of the input but the weights are dynam-
ically calculated. The attention module relates each of the inputs in a more direct
way to form the output vector but at the cost of not prioritizing local interactions.
Their use case is general since they can replace neural networks, RNNs or even CNNs.
To calculate the attention weights for a sequence of T elements it is necessary to
perform T2 multiplications.

5. Combination of the above techniques. It is interesting to combine several of the previous
techniques but at the cost of increasing the complexity and adding the computational
cost of each of the components. For example, the transformer, which can be used
in a multitude of tasks such as sequence modeling, generative models, predictions,
machine translation, multi-tasking, etc. The transformer combines self-attention with
conventional attention. In the encoder, the transformer has a stack of self-attention
blocks. The decoder also has self-attention blocks and an additional layer to perform
attention over the output of the encoder.



Entropy 2021, 23, 283 16 of 18

Table 2. Characteristics of attention techniques in complex systems described in this paper.

Techniques Operation Use Cases Costs Applications

One-stage att. Over the input or an Integrate parts Complexity Modeling
intermediate layer Long term dependencies T2 operations Prediction
Temporal, spatial . . .

Several stages Over the input, over Integrate several parts Complexity Modeling
an intermediate layer Long term dependencies T2 operations Prediction
Temporal, spatial . . . Multi-step reasoning each att. stage Sequential reasoning

Memory networks Over external data Integrate a memory Complexity Modeling
Temporal, spatial . . . TT′ operations Reasoning over a memory

Self-attention Relate elements General Complexity Replace neural networks
of the same sequence Encode an input Non local T2 operations

Combination Combine the above elements All of the above Sum of the costs All of the above

However, despite the theoretical advantages and some achievements, further studies
are needed to verify the benefits of the attention mechanisms over traditional networks in
complex systems.

Author Contributions: Writing—original draft preparation, A.H.; Writing—review, J.M.A.; Con-
tent discussion and final version, A.H. and J.M.A. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the Spanish Ministry of Science and Innovation, grant PID2019-
108654GB-I00.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DNC Differentiable Neural Computers
CNN Convolutional neural network
EEG Electroencephalogram
FNN Feed-forward neural network
GPT-3 Generative Pre-Trained transformer-3
GPU Graphics Processing Units
LSTM Long short-term memory
MDPI Multidisciplinary Digital Publishing Institute
NARX Nonlinear Autoregressive model with exogenous input
ODE Ordinary Differential Equation
RBF Recurrent radial basis function
RNN Recurrent Neural Network

References
1. Yadan, O.; Adams, K.; Taigman, Y.; Ranzato, M. Multi-GPU Training of ConvNets. arXiv 2013, arXiv:1312.5853.
2. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
3. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to Sequence Learning with Neural Networks. In Proceedings of the NIPS 2014,

Montreal, QC, Canada, 8–13 December 2014.
4. Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.R.; Lai, M.; Bolton, A.; et al.

Mastering the game of Go without human knowledge. Nature 2017, 550, 354–359. [CrossRef]
5. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Available online: http:

//www.deeplearningbook.org (accessed on 26 February 2021).
6. Chang, B.; Chen, M.; Haber, E.; Chi, E.H. AntisymmetricRNN: A Dynamical System View on Recurrent Neural Networks.

In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.
7. Wang, Z.; Xiao, D.; Fang, F.; Govindan, R.; Pain, C.; Guo, Y. Model identification of reduced order fluid dynamics systems using

deep learning. Int. J. Numer. Methods Fluids 2018, 86, 255–268. [CrossRef]

http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1038/nature24270
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://dx.doi.org/10.1002/fld.4416


Entropy 2021, 23, 283 17 of 18

8. Wang, Y. A new concept using LSTM Neural Networks for dynamic system identification. In Proceedings of the 2017 American
Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017; pp. 5324–5329. [CrossRef]

9. Li, Y.; Cao, H. Prediction for Tourism Flow based on LSTM Neural Network. Procedia Comput. Sci. 2018, 129, 277–283. [CrossRef]
10. Marcus, G. Deep Learning: A Critical Appraisal. arXiv 2018, arXiv:1801.00631.
11. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All you Need.

In Proceedings of the NIPS 2017, Long Beach, CA, USA, 4–9 December 2017.
12. Tang, G.; Müller, M.; Rios, A.; Sennrich, R. Why Self-Attention? A Targeted Evaluation of Neural Machine Translation

Architectures. In Proceedings of the EMNLP 2018, Brussels, Belgium, 31 October–4 November 2018.
13. Hudson, D.A.; Manning, C.D. Compositional Attention Networks for Machine Reasoning. In Proceedings of the International

Conference on Learning Representations (ICLR), Vancouver, BC, Canada, 30 April–3 May 2018.
14. Hochreiter, S.; Schmidhuber, J. Long Short-term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
15. Gros, C. Complex and Adaptive Dynamical Systems. A Primer, 3rd ed.; Springer: Basel, Switzerland, 2008; Volume 1. [CrossRef]
16. Layek, G. An Introduction to Dynamical Systems and Chaos; Springer: Basel, Switzerland, 2015; pp. 1–622. [CrossRef]
17. Arnold, L. Random Dynamical Systems; Springer: Berlin/Heidelberg, Germany, 2003.
18. Narendra, K.S.; Parthasarathy, K. Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Netw.

1990, 1, 4–27. [CrossRef]
19. Miyoshi, T.; Ichihashi, H.; Okamoto, S.; Hayakawa, T. Learning chaotic dynamics in recurrent RBF network. In Proceedings

of the ICNN’95—International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 1,
pp. 588–593. [CrossRef]

20. Sato, Y.; Nagaya, S. Evolutionary algorithms that generate recurrent neural networks for learning chaos dynamics. In Proceedings
of IEEE International Conference on Evolutionary Computation, Nagoya, Japan, 20–22 May 1996; pp. 144–149. [CrossRef]

21. Diaconescu, E. The use of NARX neural networks to predict chaotic time series. WSEAS Trans. Comput. Res. 2008, 3, 182–191.
22. Assaad, M.; Boné, R.; Cardot, H. Predicting Chaotic Time Series by Boosted Recurrent Neural Networks. In Proceedings of the

International Conference on Neural Information Processing 2006, Hong Kong, China, 3–6 October 2006; Volume 4233, pp. 831–840.
[CrossRef]

23. Cho, K.; van Merriënboer, B.; Gulcehre, C.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; doi:10.3115/v1/D14-1179. [CrossRef]

24. Hernández, A.; Amigó, J.M. The Need for More Integration Between Machine Learning and Neuroscience. In Nonlinear Dynamics,
Chaos, and Complexity: In Memory of Professor Valentin Afraimovich; Springer: Singapore, 2021; pp. 9–19. [CrossRef]

25. Lindsay, G.W. Attention in Psychology, Neuroscience, and Machine Learning. Front. Comput. Neurosci. 2020, 14, 29. [CrossRef]
26. Deco, G.; Rolls, E. Neurodynamics of Biased Competition and Cooperation for Attention: A Model With Spiking Neurons.

J. Neurophysiol. 2005, 94, 295–313. [CrossRef] [PubMed]
27. Huerta, R.; Vembu, S.; Amigó, J.; Nowotny, T.; Elkan, C. Inhibition in Multiclass Classification. Neural Comput. 2012, 24, 2473–2507.

[CrossRef]
28. Arena, P.; Patané, L.; Termini, P.S. Modeling attentional loop in the insect Mushroom Bodies. In Proceedings of the 2012

International Joint Conference on Neural Networks (IJCNN), Brisbane, Australia, 10–15 June 2012; pp. 1–7.
29. Hernández, A.; Amigó, J.M. Multilayer adaptive networks in neuronal processing. Eur. Phys. J. Spec. Top. 2018, 227, 1039–1049.

[CrossRef]
30. Anderson, P.; He, X.; Buehler, C.; Teney, D.; Johnson, M.; Gould, S.; Zhang, L. Bottom-Up and Top-Down Attention for Image

Captioning and Visual Question Answering. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6077–6086.

31. Gan, Z.; Cheng, Y.; Kholy, A.E.; Li, L.; Liu, J.; Gao, J. Multi-step Reasoning via Recurrent Dual Attention for Visual Dialog.
In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019), Florence, Italy,
28 July–2 August 2019.

32. Jetley, S.; Lord, N.; Lee, N.; Torr, P. Learn To Pay Attention. arXiv 2018, arXiv:1804.02391.
33. Hahne, L.; Lüddecke, T.; Wörgötter, F.; Kappel, D. Attention on Abstract Visual Reasoning. arXiv 2019, arXiv:1911.05990.
34. Xiao, T.; Fan, Q.; Gutfreund, D.; Monfort, M.; Oliva, A.; Zhou, B. Reasoning About Human-Object Interactions Through Dual

Attention Networks. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea,
27 October–2 November 2019; pp. 3918–3927.

35. Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. arXiv 2014,
arXiv:1409.0473.

36. Graves, A.; Wayne, G.; Danihelka, I. Neural Turing Machines. arXiv 2014, arXiv:1410.5401.
37. Cho, K.; van Merriënboer, B.; Bahdanau, D.; Bengio, Y. On the Properties of Neural Machine Translation: Encoder–Decoder

Approaches. In Proceedings of the SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, Doha,
Qatar, 25 October 2014; Association for Computational Linguistics: Doha, Qatar, 2014; pp. 103–111. [CrossRef]

38. Graves, A.; Jaitly, N.; Rahman Mohamed, A. Hybrid speech recognition with Deep Bidirectional LSTM. In Proceedings of the
2013 IEEE Workshop on Automatic Speech Recognition and Understanding, Olomouc, Czech Republic, 8–12 December 2013;
pp. 273–278.

http://dx.doi.org/10.23919/ACC.2017.7963782
http://dx.doi.org/10.1016/j.procs.2018.03.076
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1063/1.3177233
http://dx.doi.org/10.1007/978-81-322-2556-0
http://dx.doi.org/10.1109/72.80202
http://dx.doi.org/10.1109/ICNN.1995.488245
http://dx.doi.org/10.1109/ICEC.1996.542350
http://dx.doi.org/10.1007/11893257_92
http://dx.doi.org/10.3115/v1/D14-1179
http://dx.doi.org/10.1007/978-981-15-9034-4_2
http://dx.doi.org/10.3389/fncom.2020.00029
http://dx.doi.org/10.1152/jn.01095.2004
http://www.ncbi.nlm.nih.gov/pubmed/15703227
http://dx.doi.org/10.1162/NECO_a_00321
http://dx.doi.org/10.1140/epjst/e2018-800037-y
http://dx.doi.org/10.3115/v1/W14-4012


Entropy 2021, 23, 283 18 of 18

39. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.
Language Models are Few-Shot Learners. arXiv 2020, arXiv:2005.14165.

40. Sukhbaatar, S.; Szlam, A.; Weston, J.; Fergus, R. End-To-End Memory Networks. In Proceedings of the NIPS 2015, Montreal, QC,
Canada, 7–12 December 2015.

41. Qin, Y.; Song, D.; Cheng, H.; Cheng, W.; Jiang, G.; Cottrell, G.W. A Dual-Stage Attention-Based Recurrent Neural Network for
Time Series Prediction. arXiv 2017, arXiv:1704.02971.

42. Hollis, T.; Viscardi, A.; Yi, S.E. A Comparison of LSTMs and Attention Mechanisms for Forecasting Financial Time Series.
arXiv 2018, arXiv:1812.07699.

43. Vinayavekhin, P.; Chaudhury, S.; Munawar, A.; Agravante, D.J.; Magistris, G.D.; Kimura, D.; Tachibana, R. Focusing on What is
Relevant: Time-Series Learning and Understanding using Attention. In Proceedings of the 2018 24th International Conference on
Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018; pp. 2624–2629.

44. Serrano, S.; Smith, N.A. Is Attention Interpretable? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics (ACL 2019), Florence, Italy, 28 July–2 August 2019.

45. Chang, Y.Y.; Sun, F.Y.; Wu, Y.H.; de Lin, S. A Memory-Network Based Solution for Multivariate Time-Series Forecasting.
arXiv 2018, arXiv:1809.02105.

46. Graves, A.; Wayne, G.; Reynolds, M.; Harley, T.; Danihelka, I.; Grabska-Barwinska, A.; Colmenarejo, S.G.; Grefenstette, E.;
Ramalho, T.; Agapiou, J.; et al. Hybrid computing using a neural network with dynamic external memory. Nature 2016,
538, 471–476. [CrossRef] [PubMed]

47. Ming, Y.; Pelusi, D.; Fang, C.N.; Prasad, M.; Wang, Y.K.; Wu, D.; Lin, C.T. EEG data analysis with stacked differentiable neural
computers. Neural Comput. Appl. 2020, 32, 7611–7621. [CrossRef]

48. Huang, S.; Wang, D.; Wu, X.; Tang, A. DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting. In Proceed-
ings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, China, 3–7 November 2019;
pp. 2129–2132. [CrossRef]

49. Song, H.; Rajan, D.; Thiagarajan, J.J.; Spanias, A. Attend and Diagnose: Clinical Time Series Analysis using Attention Models.
arXiv 2017, arXiv:1711.03905.

50. Lu, Y.; Li, Z.; He, D.; Sun, Z.; Dong, B.; Qin, T.; Wang, L.; Liu, T. Understanding and Improving transformer from a Multi-Particle
Dynamic System Point of View. arXiv 2019, arXiv:1906.02762.

http://dx.doi.org/10.1038/nature20101
http://www.ncbi.nlm.nih.gov/pubmed/27732574
http://dx.doi.org/10.1007/s00521-018-3879-1
http://dx.doi.org/10.1145/3357384.3358132

	Introduction
	Traditional Deep Learning and the Need for Attention
	Attention Mechanisms
	Differentiable Attention
	Attention in seq2seq Models
	Self-Attention and Memory Networks

	Attention Mechanisms in Complex Systems
	Where and How to Apply Attention
	Attention in Different Phases of a Model
	Memory Networks
	Self-Attention

	Discussion
	References

