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Abstract: An improved irreversible closed modified simple Brayton cycle model with one isothermal
heating process is established in this paper by using finite time thermodynamics. The heat reservoirs
are variable-temperature ones. The irreversible losses in the compressor, turbine, and heat exchangers
are considered. Firstly, the cycle performance is optimized by taking four performance indicators,
including the dimensionless power output, thermal efficiency, dimensionless power density, and
dimensionless ecological function, as the optimization objectives. The impacts of the irreversible
losses on the optimization results are analyzed. The results indicate that four objective functions
increase as the compressor and turbine efficiencies increase. The influences of the latter efficiency on
the cycle performances are more significant than those of the former efficiency. Then, the NSGA-II
algorithm is applied for multi-objective optimization, and three different decision methods are used
to select the optimal solution from the Pareto frontier. The results show that the dimensionless
power density and dimensionless ecological function compromise dimensionless power output and
thermal efficiency. The corresponding deviation index of the Shannon Entropy method is equal to
the corresponding deviation index of the maximum ecological function.

Keywords: closed simple Brayton cycle; power output; thermal efficiency; power density; ecological
function; multi-objective optimization

1. Introduction

Some scholars have studied performances of gas turbine plants (Brayton cycle (BCY)) [1–4]
all over the world for their small size and comprehensive energy sources. The gas-steam
combined, cogeneration, and other complex cycles have appeared for the requirements of
energy conservation and environmental protection. The thermal efficiency (η) of a simple
BCY is low, and the NOx content in combustion product is high. To further improve the
cycle performance, it has become a key research direction to improve the initial temperature
of the gas or to adopt the advanced cycles (such as regenerative, intercooled, intercooled
and regenerative, isothermal heating, and other complex combined cycles).

In the case of simple heating, when the compressible subsonic gas flows through the
smooth heating pipe with the fixed cross-sectional area, the gas temperature increases along
the pipe direction; in the case of simple region change, when the compressible subsonic
gas flows through the smooth adiabatic reductive pipe, the gas temperature decreases
along the pipe direction. Based on these two gas properties, the isothermal heating process
(IHP) can be realized when the compressible subsonic gas flows through the smooth
heating reductive pipe. The combustion chamber, which can recognize the IHP, is called
the convergent combustion chamber (CCC). The pipe of the CCC is assumed to be smooth.
During the heating process, the temperature of the gas is always constant. According to the
energy conservation law, the kinetic energy of the gas increases, that is, the pushing work of
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the gas increases. From the definition of enthalpy, it can be seen that enthalpy includes two
parts: the thermodynamic energy and the pushing work. Therefore, the enthalpy increases.
Based on this, Vecchiarelli et al. [5] proposed the CCC to perform the IHP of the working
fluid. The power output (W) and η of the BCY could be improved, and the emission of
harmful gases such as NOx could be reduced by adding this combustion chamber model.
The regenerative BCYs [6–8] and binary BCY [9] with IHPs were also studied by applying
the classical thermodynamics.

Finite time thermodynamics (FTT) is a useful thermodynamic analysis theory and
method [10–19]. In general, it is known that Curzon and Ahlborn [12] initialized FTT in
1975. In fact, the classical efficiency bound at the maximum power was also derived by
Moutier [10] in 1872 and Novikov [11] in 1957. The applications of FTT include majorly
two fields: optimal configurations [20–36] and optimal performances [37–61] studies for
thermodynamic cycles and processes. The W and η have been often considered as the
optimization objectives (OPOs) of the heat engines [62–72]. When the power density
(P) [73–81] was taken as the OPO, the operating unit had a smaller size and higher η.
Aditionally, the ecological function (E) [82–88] is also an OPO that balances the conflict
between W and η.

Kaushik et al. [89] first applied the FTT to studying the regenerative BCY with an
IHP. The regenerative, intercooled and regenerative complex BCYs with isothermal heating
combustor were further investigated [90–96]. Based on this, Chen et al. [97–99] studied
the endoreversible simple isothermal heating BCY with the W, η and E as OPOs. Arora
et al. [100,101] adopted NSGA-II and evolutionary algorithms to optimize the irreversible
isothermal heating regenerative BCY with the W and η as the OPOs. Chen et al. [102]
considered the variable isothermal pressure drop ratio (πt), established an improved
isothermal heating regenerative BCY model, and studied the regenerator’s role on cycle
performance. Qi et al. [103] demonstrated a closed endoreversible modified binary BCY
with IHPs and found the W and η raised as the heat reservoirs’ temperature ratios. Tang
et al. [104] considered the variable πt and established an improved irreversible binary BCY
model modified by isothermal heating. The heat exchanger’s heat conductance distribu-
tions (HCDs) and the top and bottom cycles’ pressure ratios were taken as optimization
variables to optimize the cycle performance.

In the process of the thermodynamic system optimization, single-objective optimiza-
tion often led to unacceptable objectives for other objectives when there were conflicts
among the considered goals. Multi-objective optimization would consider the trade-offs
among the goals, and the optimized results were more reasonable [99,100,102,105–125].

In applying the FTT, the heat transfer was introduced into the thermodynamic anal-
ysis of the thermodynamic process, and finite temperature difference was considered in
Refs. [11,12]. In this paper, the same method in Refs. [11,12] will be used, and the finite
temperature difference will be considered when establishing the model, which is the key
relation among this paper and the Refs. [11,12]. On this basis, the cycle’s irreversibility
will be further considered, and the corresponding conclusion will be more in line with the
actual situation. The compression and expansion losses in the model in Refs. [97–99] were
not considered, and they will be further considered in this paper alongside the losses in
the heat exchangers. Meanwhile, the thermal resistance loss and the optimal HCD will be
considered. With the W, η, P and E, respectively, as the OPOs, an improved irreversible
closed modified simple BCY with one IHP and coupled to variable-temperature heat reser-
voirs (VTHRs) will be optimized, and the optimization results will be compared. The
effects of the compressor and turbine efficiencies on optimization results will be analyzed.
The NSGA-II algorithm will be applied for multi-objective optimization to obtain the
Pareto frontier further. The results obtained in this paper will reveal the original results in
Refs. [10–12], which were the initial work of the FTT theory.
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2. Cycle Model and Performance Analytical Indicators

The schematic diagram of an improved irreversible closed modified simple BCY
with one IHP and coupled to VTHRs is shown in Figure 1. A compressor (C), a regular
combustion chamber (RCC), a CCC, a turbine (T), and a precooler are the main parts of
the cycle. The corresponding T − s diagram of the cycle is shown in Figure 2. The cycle
consists of five processes in total:

1. The process 1→ 2 is an irreversible adiabatic compression process in C, and the
process 1→ 2s is an isentropic process corresponding to the process 1→ 2 .

2. The process 2→ 3 is an isobaric endothermic process in RCC.
3. The process 3→ 4 is an IHP in CCC. In CCC, the working fluid is isothermally

heated, and its flow velocity rises from V3 to V4 (the Mach number increases from M3
to M4), and its specific enthalpy rises from h3 to h4. The parameter πt(= p4/p3 ≤ 1)
is the isothermal pressure drop ratio. The πt needs to be given in Refs. [97,98], but
the πt of the improved cycle established in this paper will change with the operation
state. The degree of the IHP can be represented by πt, and the greater the πt, the
greater the degree.

4. The process 4→ 5 is an adiabatic exothermic process in turbine, and the process
4→ 5s is the isentropic process corresponding to the process 4→ 5 .

5. The process 5→ 1 is an isobaric exothermic process in a precooler.
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The working fluid is the ideal gas. The pressures and temperatures of the working
fluid are pi(i = 1, 2, 3, 4, 5, 2s, 5s) and Ti, and the ratio of specific heat is k. The outside
fluids’ temperatures are Tj(j = H1, H2, H3, H4, L1, L2). The specific heat at constant
pressure and the working fluid’s mass flow rate are Cp and

.
m. The working fluid’s thermal

capacity rate is Cw f where Cw f = Cp
.

m. The outer fluids’ thermal capacity rates at the RCC,
CCC, and precooler are CH , CH1 and CL, respectively; then, one has:

CHmax = max
{

CH , Cw f

}
, CLmax = max

{
CL, Cw f

}
, CHmin = min

{
CH , Cw f

}
, CLmin = min

{
CL, Cw f

}
(1)

The heat exchangers’ heat conductance is the product of the heat transfer coefficient
and the heat transfer area. The heat exchangers’ heat conductance values in the RCC, CCC,
and precooler are UH , UH1 and UL, the heat transfer units’ numbers are NH , NH1 and NL,
and the effectiveness values are EH , EH1 and EL, respectively:

NH = UH/CHmin, NH1 = UH1/CH1, NL = UL/CLmin (2)

EH =
1− e−NH(1−CHmin/CHmax)

1− (CHmin/CHmax)e−NH(1−CHmin/CHmax)
(3)

EH1 = 1− e−NH1 (4)

EL =
1− e−NL(1−CLmin/CLmax)

1− (CLmin/CLmax)e−NL(1−CLmin/CLmax)
(5)

When CHmax = CHmin and CLmax = CLmin, Equations (3) and (5) are, respectively,
simplified as:

EH = NH/(NH + 1) (6)

EL = NL/(NL + 1) (7)

The outside fluids’ temperature ratios at the RCC and CCC are:

τH1 = TH1/T0 (8)

τH3 = TH3/T0 (9)

where T0 is the ambient temperature.
The process 1→ 2s is the isentropic one, namely:

T2s/T1 = πm = x (10)

where m = (k− 1)/k and π is the pressure ratio of the compressor.
The process 4→ 5s is the isentropic one, namely:

T4/T5s = πmπm
t = xy (11)

The process 3→ 4 is the isothermal one, namely:

T3 = T4 (12)

.
Q3−4 =

.
m(h4 − h3)−

.
m
∫ 4

3
vdp = − .

mRgT3 ln πt (13)

where πt, M3 and M4 must satisfy the following relation:

ln πt = −cp(k− 1)(M2
4 −M2

3)/(2Rg) (14)

where the working fluid’s flow velocity must be subsonic, namely, M3, M4 < 1 Because
the working fluid has an initial speed, (M2

4 −M2
3) < 0.96 and πt > 0.5107 when M3 = 0.2.
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Because of M4 > M3, πt < 1. When πt = 1, the cycle model in this paper can be simplified
to a simple Brayton cycle.

According to the definition of πt, it can be obtained that:

πt =
p4

p3
=

p4

p3
· p1

p1
=

p4

p1
· π−1 ≥ π−1 (15)

Considering the irreversibilities in the compressor and the turbine, the efficiencies of
them are:

ηc = (T1 − T2s)/(T1 − T2) (16)

ηt = (T5 − T4)/(T5s − T4) (17)

The pressure drop is not considered in this paper. It will be considered in future, as it
was by Ref. [126]. The study in Ref. [126] showed that the pressure drop loss has a little
influence on the cycle performance quantitatively, and has no influence qualitatively.

The working fluid’s heat absorption rates at RCC and CCC are
.

Q2−3 and
.

Q3−4, respec-
tively:

.
Q2−3 = CH(TH1 − TH2) = Cw f (T3 − T2) = CHminEH(TH1 − T2) (18)
.

Q3−4 = CH1(TH3 − TH4) = CH1EH1(TH3 − T3) =
.

m(V2
4 −V2

3 )/2 (19)

The heat releasing rate at the precooler is
.

Q5−1, namely:

.
Q5−1 = CL(TL2 − TL1) = Cw f (T5 − T1) = CLminEL(T5 − TL1) (20)

The heat leakages between the heat source and the environment [127,128] are ne-
glected. Therefore, the W and η are:

W =
.

Q2−3 +
.

Q3−4 −
.

Q5−1 (21)

η = W/(
.

Q2−3 +
.

Q3−4

)
(22)

The dimensionless power output (W) is:

W = W/(Cw f T0) (23)

The maximum specific volume corresponding to state point 5 is v5. The P is calculated
as:

P = W/v5 (24)

The specific volume corresponding to state point 1 is v1. The dimensionless power
density (P) and dimensionless maximum specific volume (v5/v1) are obtained as:

P =
P

Cw f T0/v1
=

W/v5

Cw f T0/v1
=

W
Cw f T0

× T1

T5
= W × T1

T5
(25)

v5/v1 = T5/T1 (26)

There are two different methods for calculating the entropy production rate. One was
suggested by Bejan [129,130], and the another was suggested by Salamon et al. [131]. In
this article, the method used is the one suggested by the latter.

The entropy production rate (sg) and E are, respectively, calculated as:

sg = CH ln(TH2/TH1) + CH1 ln(TH4/TH3) + CL ln(TL2/TL1) (27)

E = W − T0sg (28)



Entropy 2021, 23, 282 6 of 33

The dimensionless ecological function (E) is obtained as:

E = E/(Cw f T0) (29)

Equations (10)–(12) and (16)–(29) are combined, and the four dimensionless perfor-
mance indicators of the cycle are obtained as follows:

W =

Cw f xy(CH1EH1TH3 + CLminELTL1) + CHminEHTH1

{
xy[Cw f

−CH1EH1 + CLminEL(ηt − 1)]− CLminELηt}+ a1{CLminEL
×[(ηt − 1)xy− ηt](Cw f − EHCHmin)− xy[Cw f CHminEH

+CH1EH1(Cw f − CHminEH)]
}

C2
w f T0xy

(30)

η =

CHminCLminEHELηtTH1 −
{

CHminEHTH1[Cw f − CH1EH1 + CLminEL(ηt − 1)]

+Cw f xy(CH1EH1TH3 + CLminELTL1)
}
+ a1

{
[CHminCw f EH + CH1EH1(Cw f

−EHCHmin)]xy− CLminEL(Cw f − CHminEH)[(ηt − 1)xy− ηt]
}

xy
{

a1[CH1Cw f EH1 + CHminEH(Cw f − CH1EH1)] + CHminEH(CH1EH1

−Cw f )TH1 − CH1Cw f EH1TH3

} (31)

P =

{
a1(Cw f − CHminEH)(Cw f − CLminEL)[xy(ηt − 1)− ηt]− CLminCw f ELTL1x

×y + EHCHminTH1(Cw f − CLminEL)[(ηt − 1)xy− ηt]
}{

Cw f xy(CH1EH1TH3

+CLminELTL1) +
{

xy[Cw f − CH1EH1 + CLminEL(ηt − 1)]− CLminELηt

}
CHmin

×EHTH1 + a1

{
CLmin(Cw f − EHCHmin)EL

{
(ηt − 1)xy− ηt − xy[CHminCw f EH

+CH1EH1(Cw f − CHminEH)]
}
}}

C3
w f T0xy[a1(Cw f − CHminEH) + CHminEHTH1][(ηt − 1)xy− ηt]

(32)

E =

{
Cw f xy(CH1EH1TH3 + CLminELTL1) + CHminEHTH1

{
xy[Cw f − CH1EH1

+CLminEL(ηt − 1)]− CLminELηt}+ a1

{
CLminEL(Cw f − CHminEH)[(ηt

−1)xy− ηt]− xy[Cw f CHminEH + CH1EH1(Cw f − CHminEH)]
}
}/(T0

×xy)− Cw f

{
CL ln

{
1 +

{
CLminEL

{
a1Cw f ηt − Cw f xy[a1(ηt − 1) + TL1]

+CHminEH(a1 − TH1)[(ηt − 1)xy− ηt]}}/(CLCw f TL1xy)
}
+ CH ln{[a1

×CHminEH + (CH − CHminEH)TH1]/(CHTH1)}+ CH1 ln
{

1 +
{

EH1[Cw f

×(a1 − TH3) + EHCHmin(TH1 − a1)]}/(Cw f TH3)
}
}

C2
w f

(33)

where

a1 =
(ηc + x− 1)

{
CLminCw f ELTL1xy− CHminEHTH1(Cw f − CLminEL)[(ηt − 1)xy− ηt]

}
CHminCLminEHEL(ηc + x− 1)(ηtxy− xy− ηt) + C2

w f [xy− x2y + ηt(ηc + x
−1)(xy− 1)]− Cw f (ηc + x− 1)(EHCHmin + ELCLmin)[(ηt − 1)xy− ηt]

(34)

Parameters x and y in Equations (30)–(34) can be obtained by Equations (13) and (19),
and then the arithmetic solution of W, η, P and E can be gained. When CH , CH1, CL, EH ,
EH1, EL, ηc and ηt are specific values, the cycle could be transformed into different cycle
models. Equations (30)–(34) could be simplified into the performance indicators of the
various cycle models, which have certain universality.
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1. When CH1 = CL → ∞ , Equations (30)–(34) can be simplified into the performance indi-
cators of the irreversible simple BCY with an IHP and coupled to constant-temperature
heat reservoirs (CTHRs) whose T − s diagram is shown in Figure 3a:

W =

Cw f xy(CH1EH1TH3 + CLminELTL1) + CHminEHTH1

{
xy[Cw f

−CH1EH1 + CLminEL(ηt − 1)]− CLminELηt}+ a1{CLminEL
×[(ηt − 1)xy− ηt](Cw f − EHCHmin)− xy[Cw f CHminEH

+CH1EH1(Cw f − CHminEH)]
}

C2
w f T0xy

(35)

η =

Cw f EHELηtTH1 −
{

EHTH1[Cw f − CH1EH1 + Cw f EL(ηt − 1)] + (CH1EH1TH3

+Cw f ELTL1)
}

xy + a2

{
[Cw f EH + CH1EH1(1− EH)]xy− Cw f EL(1− EH)

×[−ηt + (−1 + ηt)xy]}

xy
{

a2[CH1EH1 + EH(Cw f − CH1EH1)] + EHTH1(CH1EH1 − Cw f )− CH1EH1TH3

} (36)

P =

Cw f {−ELTL1xy + a2(1− EH)(1− EL)[(ηt − 1)xy− ηt] + EHTH1(1− EL)[(ηt

−1)xy− ηt]}
{

xy(CH1EH1TH3 + Cw f ELTL1) + EHTH1

{
xy[Cw f − CH1EH1 + Cw f

×EL(ηt − 1)]− Cw f ELηt

}
+ a2Cw f (1− EH)EL

{
(ηt − 1)xy− ηt − Cw f xy[Cw f EH

+CH1EH1(1− EH)]}}
C3

w f T0xy[a2(1− EH) + EHTH1][(ηt − 1)xy− ηt]
(37)

E =

{
xy(CH1EH1TH3 + Cw f ELTL1) + EHTH1

{
[Cw f − CH1EH1 + Cw f EL(ηt − 1)]xy− ELηt

}
+a2Cw f

{
Cw f EL(1− EH)[(ηt − 1)xy− ηt]− xy[Cw f EH + CH1(1− EH)EH1]

}
}/(T0xy)

−
{

CH ln[(a2Cw f EH + CHTH1 − Cw f EHTH1)/(CHTH1)] + CH1 ln
{

1 +
{

EH1[a2 + Cw f EH

×(TH1 − a2)/Cw f − TH3]
}

/TH3}+ CL ln
{

1 +
{

Cw f EL{a2ηt − xy[a2(ηt − 1) + TL1] + EH

×(a2 − TH1)[(ηt − 1)xy− ηt]}}/(CLTL1xy)}}
Cw f

(38)

where

a2 =
(ηc + x− 1){−ELTL1xy− EHTH1(1− EL)[(ηt − 1)xy− ηt]}

EHEL(ηc + x− 1)[(xy− 1)ηt − xy] + [xy− x2y + ηt(ηc + x− 1)
×(xy− 1)]− [(ηt − 1)xy− ηt](ηc + x− 1)(EH + EL)

(39)

2. When ηc1 = ηt1 = 1, Equations (30)–(34) can be respectively simplified into the
performance indicators of the endoreversible simple BCY with an IHP and coupled to
VTHRs [99], whose T − s diagram is shown in Figure 3b:

W =

Cw f x
{

CLminCw f ELTL1(y− 1) + CH1EH1[Cw f TH3(y− 1) + CLminEL(TH3

−TL1xy)]}+ EHCHmin

{
CLminEL[Cw f TH1(x− 1) + Cw f TL1x(1− xy) + CH1

×EH1x(TL1xy− TH3)] + xCw f [(y− 1)Cw f TH1 + CH1EH1(TH3 − TH1y)]
}

Cw f T0x[C2
w f y− (Cw f − CHminEH)(Cw f − CLminEL)]

(40)

η =

Cw f T0x
{

CLminCw f ELTL1(y− 1) + CH1EH1[Cw f TH3(y− 1) + CLminEL(TH3 − TL1xy)]
}

+CHminEH

{
CLminEL[Cw f TH1(x− 1) + Cw f TL1x(1− xy) + CH1EH1x(TL1xy− TH3)]

+Cw f x[Cw f TH1(y− 1) + CH1EH1(TH3 − TH1y)]
}

Cw f T0x{CHminEH [C2
w f TH1(y− 1) + CH1Cw f EH1(TH3 − TH1y) + CLminCw f EL(TH1 − TL1xy)

+CH1CLminEH1EL(TL1xy− TH3)] + CH1Cw f EH1[Cw f TH3(y− 1) + CLminEL(TH3 − TL1xy)]}

(41)
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P =

[CHminEHTH1(Cw f − CLminEL) + CLminCw f ELTL1xy]
{

Cw f x
{

CLminCw f ELTL1(y− 1) + CH1EH1

×[Cw f TH3(y− 1) + CLminEL(TH3 − TL1xy)]
}
+ CHminEH

{
Cw f x[Cw f TH1(y− 1) + (TH3 − TH1

×y)CH1EH1] + CLminEL[Cw f TH1(x− 1) + Cw f TL1x(1− xy) + CH1EH1x(TL1xy− TH3)]
}
}

Cw f T0x[C2
w f y− (Cw f − CHminEH)(Cw f − CLminEL)][CLmin(Cw f − CHminEH)EL

×TL1x + CHminCw f EHTH1]

(42)

E =

Cw f x
{

CLminCw f ELTL1(y− 1) + CH1EH1[Cw f TH3(y− 1) + CLminEL(TH3

−TL1xy)]}+ CHminEH

{
CLminEL[Cw f TH1(x− 1) + Cw f TL1x(1− xy) + CH1

×EH1x(TL1xy− TH3)] + Cw f x[Cw f TH1(y− 1) + (TH3 − TH1y)CH1EH1]
}

Cw f T0x[C2
w f y− (Cw f − CHminEH)(Cw f − CLminEL)]

− CH
Cw f T0

ln{1 +

CHminCw f EH(Cw f TH1 − CLminELTH1 − Cw f TH1y + CLmin
×ELTL1xy)

TH1[CHC2
w f y−CH(Cw f−CHminEH)(Cw f−CLminEL)]

}

− CH1
Cw f T0

ln

{
(Cw f − CHminEH)(EH1 − 1)(Cw f − CLminEL)TH3 + Cw f y

×[CHminEHEH1TH1 − Cw f (EH1 − 1)TH3] + CLminEH1ELTL1xy

×(Cw f − CHminEH)
}

C2
w f TH3y−TH3(Cw f−CHminEH)(Cw f−CLminEL)

− CL
Cw f T0

ln{1 + CLminCw f EL [CHminEH(TH1−TL1x)−Cw f TL1x(y−1)]
CLTL1[(CHminEH−Cw f )(Cw f CLminEL)x+C2

w f xy]
}

(43)

3. When ηc1 = ηt1 = 1 and CH1 = CH2 = CL → ∞ , Equations (30)–(34) can be simpli-
fied into the performance indicators of the endoreversible simple BCY with an IHP
and coupled to CTHRs, whose T − s diagram is shown in Figure 3c:

W =

Cw f x
{

Cw f ELTL1(y− 1) + CH1EH1[ELTH3 − ELTL1xy + TH3(y− 1)]
}

+Cw f EH

{
EL[TH1Cw f (x− 1) + Cw f TL1x(1− xy) + CH1EH1x(TL1xy

−TH3)] + x[Cw f TH1(y− 1) + CH1EH1(TH3 − TH1y)]
}

C2
w f T0x(EH + EL + y− EHEL − 1)

(44)

η =

T0x
{

Cw f ELTL1y− Cw f ELTL1 + CH1EH1[TH3y− TH3 + TH3EL − ELTL1xy]
}

+
{

EH

{
x[Cw f TH1y− Cw f TH1 + CH1EH1(TH3 − TH1y)] + EL[Cw f TH1x− Cw f

×TH1 + Cw f TL1x(1− xy) + CH1EH1x(−TH3 + TL1xy)]
}

Cw f T0x
{
[Cw f TH1y− Cw f TH1 + CH1EH1(TH3 − TH1y) + Cw f EL(TH1 − TL1xy)

+CH1EH1EL(TL1xy− TH3)]EH + CH1EH1[TH3(y− 1) + EL(TH3 − TL1xy)]}

(45)

P =

[EHTH1(1− EL) + ELTL1xy]
{

Cw f x
{

Cw f ELTL1(y− 1) + CH1EH1[TH3(y− 1)

+EL(TH3 − TL1xy)]}+ EHCw f

{
x[Cw f TH1(y− 1) + CH1EH1(TH3 − TH1y)]

+EL[Cw f TH1(x− 1) + Cw f TL1x(1− xy) + CH1xEH1(TL1xy− TH3)]
}
}

C2
w f T0x(EH + EL + y− EHEL − 1)(EHTH1 + ELTL1x− ELTL1xEH)

(46)
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E =

{
Cw f ELTL1(y− 1) + CH1EH1[TH3(y− 1) + ELTH3TL1xy]

}
x

+EH

{
EL[Cw f TH1(x− 1) + (1− xy)Cw f TL1x + CH1EH1x(TL1

×xy− TH3)] + x[Cw f TH1(y− 1) + CH1EH1(TH3 − TH1y)]
}

Cw f T0xy− Cw f T0x(1− EH − EL + EHEL)

− CH1
Cw f T0

ln

Cw f TH3(1− EH − EL + EHEL)(EH1 − 1) + Cw f
×y[EHEH1TH1 − TH3(EH1 − 1)] + EH1ELTL1xy
×(1− EH)

Cw f [TH3y−TH3(1−EH)(1−EL)]

− CH
Cw f T0

ln{1 + EHCw f (TH1−EL×TH1−TH1y+ELTL1xy)
TH1CH [y−(1−EH)(1−EL)]

}

− CL
Cw f T0

ln{1 + ELCw f [EH(TH1−TL1x)−TL1x(y−1)]
CLTL1[(EH−1)(1−EL)x+xy] }

(47)

4. When EH1 = 0, Equations (30)–(34) can be simplified into the performance indicators
of the simple irreversible BCY coupled to VTHRs [79], whose T− s diagram is shown
in Figure 3d:

W =

CLminCw f ELTL1x + CHminEHTH1

{
CLminEL[ηt(x− 1)− x] + Cw f x

}
+a3

{
CLmin(Cw f − CHminEH)EL[ηt(x− 1)− x]− CHminCw f EHx

}
C2

w f T0x
(48)

η =

a3

{
CHminCw f EHx− CLminEL(Cw f − CHminEH)[ηt(x− 1)− x]

}
− CLmin

×Cw f ELTL1x + CHminEHTH1[CLminEL(ηt + x− ηtx)− Cw f x]
xCHminEHCw f (a3 − TH1)

(49)

P =

{
−a3[ηt(x− 1)− x](Cw f − CHminEH)(Cw f − CLminEL)− CHminEHTH1[ηt(x− 1)− x]

×(Cw f − CLminEL) + CLminCw f ELTL1x
}{

a3

{
CLminEL[ηt(x− 1)− x](Cw f − CHminEH)

−CHminCw f EHx
}
+ CHminEHTH1

{
CLminEL[ηt(x− 1)− x] + Cw f x

}
+CLminCw f ELTL1x

}
−C3

w f T0x[ηt(x− 1)− x][a3(Cw f − CHminEH) + CHminEHTH1]
(50)

E =

{
CLminCw f ELTL1x + CHminEHTH1

{
CLminEL[ηt(x− 1)− x] + Cw f x

}
+ a3

{
CLmin(Cw f

−CHminEH)EL[ηt(x− 1)− x]− CHminCw f EHx
}
}/(T0x)− Cw f {CH ln[1 + CHminEH

×(a3 − TH1)/(CHTH1)] + CL ln
{

1 + CLminEL

{
a3Cw f ηt + CHminEH(a3 − TH1)[ηt(x− 1)

−x]− Cw f [a3(ηt − 1) + TL1]x
}

/(CLCw f TL1x)
}
}

C2
w f

(51)

where

a3 =
(ηc + x− 1)

{
CLminCw f ELTL1x− CHminEHTH1(Cw f − CLminEL)[(ηt − 1)x− ηt]

}
CHminCLminEHEL(ηc + x− 1)(ηtx− x− ηt) + C2

w f [x− x2 + ηt(ηc + x− 1)(x
−1)]− Cw f (ηc + x− 1)(EHCHmin + ELCLmin)× [(ηt − 1)x− ηt]

(52)

5. When EH1 = 0 and CH = CL → ∞ , Equations (30)–(34) can be simplified into the
performance indicators of the simple irreversible BCY coupled to CTHRs [76], whose
T − s diagram is shown in Figure 3e:

W =
ELTL1x− a4{(EH − 1)EL[ηt(x− 1)− x] + EHx}+ EHTH1[ELηt(x− 1) + x− ELx]

T0x
(53)
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η =

a4(EH − 1)EL[ηt(x− 1)− x] + a4EHx− EHTH1x− ELTL1x
+EHELTH1(ηt + x− ηtx)

xEH(a4 − TH1)
(54)

P =

{a4(EH − 1)(EL − 1)[ηt(x− 1)− x]− EHTH1(EL − 1)[ηt(x
−1)− x]− ELTL1x}{a4(EH − 1)EL[ηt(x− 1)− x] + a4EHx
−EHTH1x− ELTL1x + EHELTH1(ηt + x− ηtx)}

T0[a4(EH − 1)− EHTH1][ηt(x− 1)− x]x
(55)

E = {ELTL1x− a4{EL(EH − 1)[ηt(x− 1)− x] + EHx}+ EHTH1[ELηt(x
−1) + x− ELx]}/(T0x)− CH ln[1 + Cw f EH(a4 − TH1)/(CHTH1)]/Cw f

−CL ln
{

1 + Cw f EL{a4(EH − 1)[ηt(x− 1)− x]− TL1x + EHTH1(ηt + x
−ηtx)}/(CLTL1x)}/Cw f

(56)

where

a4 =
(ηc + x− 1)EHTH1(EL − 1)[ηt(x− 1)− x] + ELTL1x}

(EH − 1)(EL − 1)(x− 1)(ηc + x− 1)ηt − x[x− 1 + EH(EL − 1)(ηc + x− 1)− EL(ηc + x− 1)]
(57)

6. When EH1 = 0 and ηc = ηt = 1, Equations (30)–(34) can be simplified into the
performance indicators of the simple endoreversible BCY coupled to VTHRs [78],
whose T − s diagram is shown in Figure 3f:

W =
CHminCLminEHEL(−1 + x)(TH1 − TL1x)

T0x[CLminCw f EL + CHminEH(Cw f − CLminEL)]
(58)

η = (x− 1)/x (59)

P =

CHminCLminEHEL(−1 + x)(TH1 − TL1x)[CHminEH(Cw f
−CLminEL)TH1 + CLminCw f ELTL1x]

T0x[CLminCw f EL + CHminEH(Cw f − CLminEL)][CLminCw f
×ELTL1x + CHminEH(Cw f TH1 − CLminELTL1x)]

(60)

E =

CHminCLminCw f EH EL(x−1)(TH1−TL1x)

[CLminCw f EL + CHminEH(Cw f
−CLminEL)]T0x

− CH ln[1 +
CHminCLminCw f EH EL(TL1x−TH1)

CH [CLminCw f EL + CHminEH
(Cw f − CLminEL)]TH1

]

−CL ln{CLCLminCw f ELTL1x+CHminEH [CLCw f TL1x+CLminEL(Cw f TH1−CLTL1x−Cw f TL1x)]
CL [CLminCw f EL+CHminEH(Cw f−CLminEL)]TL1x }

Cw f
(61)

7. When EH1 = 0, ηc = ηt = 1 and CH = CL → ∞ , Equations (30)–(34) can be simpli-
fied into the performance indicators of the simple endoreversible BCY coupled to
CTHRs [77], whose T − s diagram is shown in Figure 3g:

W =
EHEL(−1 + x)(TL1x− TH1)

[EH(EL − 1)− EL]T0x
(62)

η = (x− 1)/x (63)

P =
EHEL(x− 1)(TL1x− TH1)[EH(EL − 1)TH1 − ELTL1x]
T0x(EHELTL1x− EHTH1 − ELTL1x)[EH(EL − 1)− EL]

(64)

E =

Cw f EHEL(x− 1)(TL1x− TH1) + CHT0x(EH + EL − EHEL) ln
{

1− Cw f EH

×EL(TH1 − TL1x)/[CHTH1(EH + EL − EHEL)]}+ CLT0x(EH + EL − EH
×EL) ln[1 + Cw f EHEL(TH1 − TL1x)/(CL(EH + EL − EHEL)TL1x)]

Cw f [EH(EL − 1)− EL]T0x
(65)
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8. When EH = EL = 0, ηc = ηt = 1 and Cw f → ∞ , the cycle in this paper can become the
endoreversible Carnot cycle coupled to VTHRs [14], whose T − s diagram is shown
in Figure 3h. However, Equations (30), (33), and (34) need to be de-dimensionalized
to simplify to W, P and E of the endoreversible Carnot cycle coupled to VTHRs. The
performance indicators of the cycle are:

W =
CHCLEHEL(x− 1)(TH1 − TL1x)

x(CHEH + CLEL)
(66)

η = (x− 1)/x (67)

P =
CHCLEHEL(x− 1)(TH1 − TL1x)

x(CHEH + CLEL)
(68)

E = CHCLEH EL(x−1)(TH1−TL1x)
(CH EH+CLEL)x − CHT0 ln[1 + CLEH EL(TL1x−TH1)

(CH EH+CLEL)TH1
]

−CLT0 ln[CH EH ELTH1+CH EH TL1x+CLELTL1x−CH EH ELTL1x
CH EH TL1x+CLELTL1x ]

(69)

9. When EH = EL = 0, ηc = ηt = 1 and CH1 = CL = Cw f → ∞ , the cycle in this paper
can become the endoreversible Carnot cycle coupled to CTHRs [12], whose T − s
diagram is shown in Figure 3i. However, Equations (30), (33), and (34) also need to be
de-dimensionalized to simplify to W, P and E of the cycle [12,74,82]. The performance
indicators of the cycle are:

W =
UHUL(−1 + x)(TH1 − TL1x)

(UH + UL)x
(70)

η = (x− 1)/x (71)

P =
UHUL(−1 + x)(TH1 − TL1x)

(UH + UL)x
(72)

E =
UHUL(TH1 − TL1x)[(T0 + TH1)TL1x− TH1(T0 + TL1)]

TH1TL1(UH + UL)x
(73)

10. When EH = EL = 0, ηc = ηt = 1, CH1 = CL = Cw f → ∞ , and UL → ∞ , the cycle
in this paper can become the endoreversible Novikov cycle coupled to CTHRs [11],
whose T− s diagram is shown in Figure 3j. However, Equations (30), (33), and (34)
also need to be de-dimensionalized to simplify to W, P and E of the cycle [11]. The
performance indicators of the cycle are:

W =
UH(x− 1)(TH1 − TL1x)

x
(74)

η = (x− 1)/x (75)

P =
UH(x− 1)(TH1 − TL1x)

x
(76)

E =
UH(TH1 − TL1x)[TH1TL1(x− 1) + T0(TL1x− TH1)]

TH1TL1x
(77)
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11. Through comparison with the results in Refs [11–14,59,76–79,99], it is found that
the results of this paper are consistent with those in Refs [11–14,59,76–79,99], which
further illustrates the accuracy of the model established in this paper. In particular,
when the powers in Equations (58), (62), (66), (70), and (74) take the maximum values,
namely x =

√
TH1/TL1, the efficiencies at the maximum power point, Equations (59),

(63), (67), (71), and (75) are η = 1−
√

TL1/TH1, which was derived in Refs. [10–12]
by Moutier [10], Novikov [11], and Curzon and Ahlborn [12]. One can see that the
results of this paper include the Novikov–Curzon–Ahlborn efficiency.

12. FTT is the further extension of conventional irreversible thermodynamics. The cycle
model established by Curzon and Ahlborn [12] was a reciprocating Carnot cycle, and
the finite time was its major feature. The methods used for solving the FTT problem
are usually variational principle and optimal control theory. Therefore, such prob-
lems of extremal of thermodynamic processes were first named as FTT by Andresen
et al. [132] and as Optimization Thermodynamics or Optimal Control in Problems
of Extremals of Irreversible Thermodynamic Processes by Orlov and Rudenko [133].
When the research object was extended from reciprocating devices characterized by
finite-time to the steady state flow devices characterized by finite-size, one realizes
that the physical property of the problems is the heat transfer owing to temperature
deference. Therefore, Grazzini [14] termed it Finite Temperature Difference Ther-
modynamics, and Lu [134] termed it Finite Surface Thermodynamics. In fact, the
works performed by Moutier [10] and Novikov [11] were also steady state flow device
models. Bejan introduced the effect of temperature difference heat transfer on the total
entropy generation of the systems, taking the entropy generation minimization as the
optimization objective for designing thermodynamic processes and devices, termed
“Entropy Generation Minimization” or “Thermodynamic Optimization” [15,135]. For
the steady state flow device models, Feidt [136–146] termed it Finite Physical Di-
mensions Thermodynamics (FPDT). The model established herein is closer to FPDT.
For both reciprocating model and steady state flow model, the suitable name may
be thermodynamics of finite size devices and finite time processes, as Bejan termed
it [15,135]. According to the idiomatic usage, the theory is termed FTT in this paper.
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3. Analyses and Optimizations with Each Single Objective
3.1. Analyses of Each Single Objective

The impacts of the irreversibility on cycle performance indicators (W, η, P and E)
are analyzed below. In numerical calculations, it is set that CL = CH = 1.2 kW/K,
Cw f = 1 kW/K, T0 = 300 K, CH1 = 0.6 kW/K, k = 1.4, Rg = 0.287 kJ/(kg · K), EH =
EH1 = EL = 0.9, Cp = 1.005 kW/K, τH1 = 4.33, τH3= 5 and τL = 1.

Figures 4–6 present the relationships of W, η, P, E, πt and v5/v1 versus π with
different ηt. As shown in Figures 4 and 5, W, η, P and E increase and then decrease as
π increases. In the same situation, W, E, P and η reach the maximum value successively.
When ηt = 0.7 and π = 32.3, W = P = 0. If π keeps going up, W and P are going to go
negative. W, η, P and E increase as ηt increases. As π increases, W, η, P and E are affected
more significantly by ηt. As shown in Figure 6, πt goes up but v5/v1 goes down as π goes
up. πt and v5/v1 decrease as ηt rises. It illustrates that the degree of the IHP is improved
and the device’s volume is reduced as ηt increases.
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By numerical calculations, the influences of ηc on W, η, P, E and πt are the same as
those of ηt on W, η, P, E and πt. When ηt = 0.7 and π = 32.8, W = P = 0. However, the
impacts of ηc on W, η, P and E are less than those of ηt on W,

η, P, E. The effect of ηc on πt is more significant than that of ηt on πt. ηc has little
effect on v5/v1. In the actual design process, it is suggested that ηt should be given priority.

To further explain the difference between the models in this paper and Ref. [101], the
comparison of W under the variable and constant π is shown in Figure 7. As shown in
Figure 7, W increases and then decreases as π increases in both cases; that is, the qualitative
law is the same. However, there is an apparent quantitative difference between the two
points. Under the constant π, W corresponding to the constant π is always greater than
W conforming to the variable π. Similarly, there are quantitative differences in η, P and E
under the variable and constant π. The model whose π is variable is more realistic.
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3.2. Performance Optimizations for Each Single Objective

With four performance indicators as the OPOs, respectively, the HCDs are optimized
under the condition of given total heat conductance (UT). The optimal results under
different OPOs are compared. The HCDs among the RCC, CCC, and precooler are:

uH = UH/UT , uH1 = UH1/UT , uL = UL/UT (78)

The HCDs are must larger than 0, the sum of them is 1, and 2 ≤ π ≤ 50.
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Figure 8 shows the flowchart of HCD optimization. The steps are as follows:

1. Enter the known data and the initial values of the HCDs.
2. The πt is calculated according to Equation (13).
3. Judge whether the πtπ and HCDs meet the constraints. If they are satisfied, perform

step 4; if they are not satisfied, go back to step 1.
4. The performance indicator is solved.
5. Determine whether the inverse objective function is minimized by using the “fmincon”

in MATLAB. If it is the smallest, perform step 6; if it is not the slightest, go back to
step 1.

6. Calculate the other thermodynamic parameters, and the maximum of the performance
indicator is obtained.
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3.2.1. Optimizations of Each Single Objective

The optimization results of four performance indicators are similar. The optimization
results with η as the performance indicator will be mainly discussed herein, while the
results with W, P and E as the performance indicators are briefly discussed. The rela-
tionships of the optimal thermal efficiency (ηopt) and the corresponding dimensionless
power output (Wηopt ) versus π are shown in Figure 9. The relationships of the correspond-
ing dimensionless power density (Pηopt) and the corresponding dimensionless ecological
function (Eηopt) versus π are demonstrated in Figure 10. As shown in Figures 9 and 10,
Wηopt , ηopt, Pηopt and Eηopt first rise and then drops as π rises, which indicates a parabolic
relationship with the downward opening. The corresponding isothermal pressure drop
ratio ((πt)ηopt

) and dimensionless maximum specific volume ((v5/v1)ηopt
) versus π are

shown in Figure 11. (πt)ηopt
decreases and then increases as π increases. It indicates that

there is a πt that maximizes the degree of isothermal heating in the cycle. (v5/v1)ηopt

decreases as π increases. The relationships of the HCDs ((uH)ηopt
, (uH1)ηopt

and (uL)ηopt
)

versus π are shown in Figure 12. As π increases, (uH)ηopt
decreases, (uH1)ηopt

increases
rapidly and then slowly, and (uL)ηopt

decreases first and then increases gradually.
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Figure 12. Relationships of (uH)ηopt
, (uH1)ηopt

and (uL)ηopt
versus π.

By numerical calculations, Wopt, ηWopt
, PWopt

, EWopt
,WPopt

,.ηPopt
., Popt, EPopt

, WEopt
,

ηEopt
, PEopt

and Eopt increase first and then decrease as π increases. As π increases, (πt)Wopt
,

(πt)Popt
and (πt)Eopt

reduce first and then increase, and (πt)Wopt
, (πt)Eopt

, (πt)ηopt
and

(πt)Popt
reached the minimum successively. As π increases, (v5/v1)Wopt

, and (v5/v1)Eopt

decline, and their values have little difference. (uH)Wopt
, (uH)ηopt

, (uH)Popt
and (uH)Eopt

decrease as π increases, and (uH)ηopt
is always the smallest. (uH1)Wopt

and (uH1)Eopt
rise

firstly and then tend to keep constant as π rises. (uH1)Popt
first increases then decreases and

finally tends to stay stable as π rises. (uL)Wopt
, (uL)Popt

and (uL)Eopt
first increase rapidly

and then slowly as π increases.

3.2.2. Influences of Temperature Ratios on Optimization Results

With η as the performance indicator, the influences of the temperature ratios on the
optimization results are discussed. The relationship of the maximum thermal efficiency
(ηmax) versus τH1 and τH3 is shown in Figure 13. According to Figure 12, the surface is
divided into three parts by line τH3 = τH1 + 0.27 (the correlation coefficient is r1 = 0.9969)
and τH3 = 1.2τH1 + 0.1 (the correlation coefficient is r2 = 1.0000). τH1 has little influence on
ηmax. When τH3 < 1.2τH1 + 0.1, ηmax increases as τH3 increases; when τH3 > 1.2τH1 + 0.1,
τH3 has little impact on ηmax. It is recommended to magnify τH1.
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By numerical calculations, the surface is divided into three parts by line τH3 =
0.84τH1 + 0.41 (the correlation coefficient is r1 = 0.9973) and τH3 = 1.2τH1 + 0.23 (the
correlation coefficient is r2 = 0.9988) with W as the performance indicator. The surface
is divided into three parts by line τH3 = 0.78τH1 + 0.6 (the correlation coefficient is r1 =
0.9574) and τH3 = 1.2τH1 + 0.33 (the correlation coefficient is r2 = 0.9991) with P as the
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performance indicator. The surface is divided into three parts by line τH3 = 0.93τH1 +
0.058 (the correlation coefficient is r1 = 0.9978) and τH3 = 1.1τH1 + 0.41 (the correlation
coefficient is r2 = 0.9990) with E as the performance indicator. In practice, the difference
between τH1 and τH3 should be controlled and should not be too large.

3.2.3. Influences of the Compressor and the Turbine’s Irreversibilities on Optimization
Results

With the four performance indicators as OPOs, respectively, the influences of ηc and ηt
on optimization results are considered, and the thermodynamic parameters under various
optimal performance indicators are compared. Figures 14 and 15 show relationships of W
and π under various optimal performance indicators versus ηc and ηt, respectively Wmax,
Pmax, and Emax are the maximum dimensionless power output, maximum dimensionless
power density, and maximum dimensionless ecological function, respectively. When Wmax,
ηmax, Pmax, and Emax are used as subscripts, they indicate the corresponding values at
Wmax, ηmax, Pmax, and Emax points.
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As shown in Figure 14, W under various optimal performance indicators increases as
ηc or ηt increases. When ηc and ηt both approach 1, Wηmax first increases and then decreases
as ηc or ηt increases. When ηc = ηt = 1, η rises monotonically as π gains, and there is no
maximum value. In the case of the same ηc and ηt, there is Wmax > WEmax

> WPmax
>

Wηmax . As shown in Figure 15, π under various optimal performance indicators all increase
as ηc or ηt increases. But the influence of ηt on π is more significant than that of ηc on π.
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When ηc and ηt both approach 1, πηmax is always 50. Because the upper limit of π is 50. In
the case of the same ηc and ηt, there is πηmax > πPmax

> πEmax
> πWmax

. The given range
of π is 2 ≤ π ≤ 50, so when π= 50, the trends of Wηmax and πηmax change significantly.

By numerical calculations, η, P, and E under various optimal performance indicators
increases as ηc or ηt increases. When ηc and ηt both approach 1, Pηmax and Eηmax first rises
and then drops as ηc or ηt rises. In the same ηc and ηt, there are ηmax > ηPmax

> ηEmax
>

ηWmax
, Pmax > PEmax

> PWmax
> Pηmax , (when ηc and ηt both tend to 1, the relationship

does not work) and Emax > EPmax
> EWmax

> Eηmax (the difference between EPmax
and

EWmax
is very small).

The calculations also show that the thermal capacitance rate matchings among the
VTHRs and working fluid have influences on the cycle performance. Wmax, ηmax, Pmax,
and Emax increase first and then keep constants as CH/Cw f or CH1/Cw f increases, and
the effects of CH/Cw f on Wmax, ηmax, Pmax, and Emax are more significant than that of
CH1/Cw f .

4. Multi-Objective Optimization
4.1. Optimization Algorithm and Decision-Making Methods

It is impossible to achieve the maximums of W, η, P, and E under the same π. It shows
that there is a contradiction among the four performance indicators. The multi-objective
optimization problem is solved by applying the NSGA-II algorithm [99,100,102,105–125].
The detailed optimization process is shown in Figure 16. The Pareto frontier of the cycle
performance is obtained by taking W, η, P, and E as OPOs, using the NSGA-II algorithm.
The optimal scheme is selected by using the LINMAP, TOPSIS, and Shannon Entropy
methods [99,102], and the algorithm of “gamultiobj” in MATLAB is based on the NSGA-II
algorithm. The calculations are assisted by applying the “gamultiobj”, and the correspond-
ing Pareto frontier could be obtained. The parameter settings of “gamultiobj” are listed in
Table 1.
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Table 1. Parameter settings of “gamultiobj”.

Parameters Values

Nvars 4
ParetoFraction 0.3
PopulationSize 300

Generations 500
CrossoverFraction 0.8

The positive and negative ideal points are the optimal and inferior schemes of each
performance indicator. The LINMAP method is the Euclidian distance between each
scheme and the positive ideal point, among which the one with the smallest distance is the
best scheme. Suppose that the Pareto front contains n feasible solutions, and each viable
solution contains m objective values Fij(1 ≤ i ≤ m and 1 ≤ j ≤ n). After normalizing Fij,
the value Bij is:

Bij = Fij/
√

∑n
i=1 F2

ij (79)

The weight of the j-th OPO is wLINMAP
j , and the weighted value of Bij is Gij:

Gij = wLINMAP
j · Bij (80)

The j-th objective of the positive ideal point is normalized and weighted, and the
corresponding value is Gpositive

j . The Euclidean distance between the i-th feasible solution

and the positive ideal point is ED+
i :

ED+
i =

√
∑m

j=1 (Gij − Gpositive
j )

2
(81)

The best viable solution to the LINMAP method is iopt:

iopt ∈ min
{

ED+
i
}

(82)

The TOPSIS method considers the Euclidean distance among each scheme and the
positive and negative ideal points comprehensively, to further obtain the best scheme. The
weight of the j-th OPO is wTOPSIS

j , and the weighted value of Bij is Gij:

Gij = wTOPSIS
j · Bij (83)

The j-th objective of the negative ideal point is normalized and weighted, and the
corresponding value is Gnegative

j . The Euclidean distance between the i-th feasible solution

and the negative ideal point is ED−i :

ED−i =

√
∑m

j=1 (Gij − Gnegative
j )

2
(84)

The best feasible solution of the TOPSIS method is iopt:

iopt ∈ min{
ED−i

ED+
i + ED−i

} (85)

The Shannon Entropy method is a method to get the weight of multi-attribute decision-
making.
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After normalization of Fij, Pij is obtained:

Pij = Fij/
n

∑
i=1

Fij (86)

The Shannon Entropy and weight of the j-th OPO are:

SEj = −
1

ln n

n

∑
i=1

Pij ln Pij (87)

wShannon Entropy
j = (1− SEj)/

n

∑
j=1

(1− SEj) (88)

The best feasible solution of the TOPSIS method is iopt:

iopt ∈ min
{

Pij · w
Shannon Entropy
j

}
(89)

The deviation index D is defined as:

D =

√
∑m

j=1 (Giopt j − Gpositive
j )

2

√
∑m

j=1 (Giopt j − Gpositive
j )

2
+

√
∑m

j=1 (Giopt j − Gpositive
j )

2
(90)

In this paper, wLINMAP
j = wTOPSIS

j = 1 is chosen for the convenience of calculation.

4.2. Multi-Objective Optimization Results

Figure 17 shows the Pareto frontier and optimal schemes corresponding to the four
objectives (W, η, P and E) optimization. The color on the Pareto frontier denotes the size
of E. To facilitate the observation of the changing relationships among the objectives, the
pure red projection indicates the changing relationship between W and η. The pure green
projection shows the changing relationship between W and P, and the pure blue projection
indicates the changing relationship between η and P. It is easy to know that W and η, W
and P, η and P are all parabolic-like relationships with the opening downward. To analyze
the influence of the corresponding optimization variables ((uH)opt, (uH1)opt, (uL)opt and
πopt) on cycle performance, the distributions of (uH)opt, (uH1)opt, (uL)opt and πopt within
the Pareto frontier’s value range are shown in Figures 18–21. As shown in Figure 18, the
value range of (uH)opt is 0–1, but its distribution is between 0.167 and 0.272. As (uH)opt

increases, W, P, and E gradually increase, but η gradually decreases. As shown in Figure
19, the value range of (uH1)opt is 0–1, but its distribution is between 0.151 and 0.181. As
(uH1)opt increases, W, P, and E gradually decrease, but the changing trend of η is not
apparent. As shown in Figure 20, the value range of (uL)opt is 0–1, but its distribution is
between 0.568 and 0.662. As (uL)opt increases, W, P, and E gradually decrease, but the
changing trend of η is not apparent. As shown in Figure 21, the value range of πopt is 2–50,
but its distribution is between 9.692 and 24.426. As πopt increases, W gradually decreases,
η gradually increases, and P and E rise and then reduce.
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The Pareto frontier includes a series of non-inferior solutions, so the appropriate
solution must be chosen according to the actual situation. The results of the triple- and
double-objective optimizations are further discussed to compare the results of multi-
objective optimizations more comprehensively. The comparison of the optimal schemes
gotten by single- and double-, triple-, and quadruple-objective optimizations are listed in
Table 2. The deviation index (D) is applied to represent the proximity between the optimal
scheme and the positive ideal point. The appropriate optimal schemes are chosen by using
the three methods. For the quadruple-objective optimization, W, η, P, and E corresponding
to the positive ideal point are the maximum of the single-objective optimization. It indicates
that the Pareto frontier includes all single-objective optimization results. The D obtained by
the Shannon Entropy method is significantly smaller than that obtained by the LINMAP
and TOPSIS methods. Simultaneously, it can be found that the D obtained by the Shannon
Entropy method is the same as that with E as the OPO. For the triple-objective optimization,
the triple-objective (W, η and E) optimization D obtained by the LINMAP or TOPSIS
method is the smallest. For the double-objective optimization, the double-objective (W and
P) optimization D obtained by the LINMAP method is the smallest. For the single-objective
optimization, the D corresponding to Emax is the smallest. For single- and double-, triple-,
and quadruple-objective optimizations, the double-objective (W and P) optimization D
obtained by the LINMAP method is the smallest.
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Table 2. Comparison of the optimal schemes gotten by the single- and double-, triple-, and quadruple-objective optimizations.

OPOs Decision Methods
Optimization Variables Performance Indicators Isothermal Pressure

Drop Ratio Deviation Indexes

uH uH1 uL π
¯
W η

¯
P

¯
E πt D

W, η, P, and E
LINMAP 0.245 0.154 0.601 14.194 0.787 0.397 0.380 0.462 0.572 0.172
TOPSIS 0.245 0.154 0.601 14.194 0.787 0.397 0.380 0.462 0.572 0.172

Shannon Entropy 0.259 0.151 0.590 11.901 0.802 0.386 0.376 0.467 0.572 0.167

W, η, and P
LINMAP 0.230 0.167 0.603 14.261 0.787 0.398 0.381 0.461 0.557 0.170
TOPSIS 0.231 0.167 0.602 14.115 0.788 0.397 0.380 0.462 0.557 0.168

Shannon Entropy 0.246 0.167 0.587 12.008 0.803 0.386 0.377 0.466 0.559 0.165

W, η, and E
LINMAP 0.231 0.163 0.606 13.947 0.790 0.397 0.380 0.462 0.557 0.160
TOPSIS 0.231 0.163 0.606 13.947 0.790 0.397 0.380 0.462 0.557 0.160

Shannon Entropy 0.257 0.153 0.590 11.92 0.803 0.386 0.376 0.467 0.570 0.165

W, P and E
LINMAP 0.252 0.177 0.571 13.339 0.793 0.393 0.380 0.463 0.566 0.162
TOPSIS 0.252 0.177 0.571 13.339 0.793 0.393 0.380 0.463 0.566 0.162

Shannon Entropy 0.259 0.151 0.590 11.906 0.802 0.386 0.376 0.467 0.572 0.167

η, P and E
LINMAP 0.241 0.170 0.589 17.016 0.761 0.406 0.380 0.444 0.575 0.319
TOPSIS 0.241 0.170 0.589 17.016 0.761 0.406 0.380 0.444 0.575 0.319

Shannon Entropy 0.245 0.169 0.585 16.674 0.764 0.405 0.381 0.447 0.577 0.297

W and η

LINMAP 0.230 0.169 0.601 14.293 0.787 0.398 0.381 0.461 0.557 0.170
TOPSIS 0.230 0.169 0.601 14.293 0.787 0.398 0.381 0.461 0.557 0.170

Shannon Entropy 0.248 0.168 0.585 12.061 0.802 0.387 0.377 0.466 0.560 0.162

W and P
LINMAP 0.247 0.176 0.578 13.384 0.793 0.394 0.380 0.463 0.563 0.158
TOPSIS 0.247 0.176 0.577 13.560 0.792 0.394 0.381 0.463 0.564 0.161

Shannon Entropy 0.245 0.171 0.584 11.855 0.803 0.385 0.376 0.466 0.555 0.170

W and E
LINMAP 0.258 0.154 0.589 11.765 0.803 0.385 0.376 0.467 0.570 0.169
TOPSIS 0.258 0.154 0.589 11.765 0.803 0.385 0.376 0.467 0.570 0.169

Shannon Entropy 0.259 0.152 0.589 11.902 0.802 0.386 0.376 0.467 0.572 0.167

η and P
LINMAP 0.232 0.192 0.576 16.452 0.765 0.405 0.381 0.446 0.562 0.295
TOPSIS 0.235 0.193 0.572 16.156 0.768 0.404 0.381 0.447 0.563 0.279

Shannon Entropy 0.241 0.196 0.563 15.603 0.772 0.402 0.381 0.450 0.564 0.255

η and E
LINMAP 0.237 0.1604 0.603 14.307 0.787 0.398 0.381 0.461 0.564 0.170
TOPSIS 0.236 0.163 0.601 14.173 0.788 0.398 0.381 0.462 0.562 0.164

Shannon Entropy 0.258 0.152 0.590 11.909 0.802 0.386 0.376 0.467 0.571 0.167

P and E
LINMAP 0.257 0.166 0.578 13.483 0.792 0.394 0.380 0.464 0.572 0.160
TOPSIS 0.257 0.165 0.578 13.386 0.793 0.393 0.380 0.464 0.572 0.161

Shannon Entropy 0.258 0.154 0.588 12.054 0.802 0.387 0.377 0.467 0.571 0.161
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Table 2. Cont.

OPOs Decision Methods
Optimization Variables Performance Indicators Isothermal Pressure

Drop Ratio Deviation Indexes

uH uH1 uL π
¯
W η

¯
P

¯
E πt D

W 0.249 0.162 0.589 9.678 0.810 0.369 0.365 0.459 0.550 0.242
η 0.152 0.174 0.674 24.542 0.672 0.416 0.358 0.369 0.532 0.783
P 0.251 0.183 0.567 15.149 0.777 0.400 0.382 0.454 0.571 0.225
E 0.259 0.151 0.590 11.903 0.802 0.386 0.376 0.467 0.572 0.167

Positive ideal point —— —— —— —— 0.810 0.416 0.382 0.467 0.810 ——
Negative ideal point —— —— —— —— 0.677 0.369 0.360 0.373 0.677 ——
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5. Conclusions

Based on FTT, an improved irreversible closed modified simple BCY model with one
IHP and coupled to VTHRs is established and optimized with four performance indicators
as OPOs, respectively. The optimization results are compared, and the influences of
compressor and turbine efficiencies on optimization results are analyzed. Finally, the cycle
is optimized, and the corresponding Pareto frontier is gained by adopting the NSGA-II
algorithm. Based on three different methods, the optimal scheme is gotten from the Pareto
frontier. The results obtained in this paper reveal the original results in Refs. [10–12], which
were the initial work of the FTT theory. The main results are summarized:

1. For the single-objective analyses and optimizations, performance indicators all rise as
ηc and ηt rise. The influences of ηt on four performance indicators are greater than
those of ηc. W of the models in this paper increase and then decrease as π increases
in both cases; that is, the qualitative law is the same. However, there is an apparent
quantitative difference between the two points. In practice, the difference between
τH1 and τH3 should be controlled and not be too large. P and E are the trade-offs
between W and η.

2. For single- and double-, triple-, and quadruple-objective optimizations, the Pareto
frontier includes a series of non-inferior solutions. The appropriate solution could
be chosen according to the actual situation. By comparison, it is found that the
double-objective (W and P) optimization D obtained by the LINMAP method is the
smallest.

3. The optimization results gained in this paper could offer theoretical guidelines for
the optimal designs of the gas turbine plants. In the next step, the improved closed
intercooling regenerated modified BCY model with one IHP will be optimized with
real gas as the working fluid, and the internal friction-based pressure drops during
heating and cooling processes and other processes, as well as the heat leakage losses
between the heat source and the environment, will be taken into account.
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Nomenclature

a, x, y Intermediate variables
C Thermal capacity rate (kW/K)
Cp Specific heat at constant pressure (kJ/(kg·K))
E Effectiveness of heat exchanger or ecological function (kW)
E Dimensionless ecological function
k Specific heat ratio
M Mach number
N Number of the heat transfer unit
.

Q Heat absorbing rate or heat releasing rate (kW)
P Dimensionless power density
T Temperature (K)
U Heat conductance (kW/K)
u Heat conductance distribution
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W Dimensionless power output
Greek symbols
η Efficiency
π Pressure ratio
τ Temperature ratio
Subscripts
H Hot-side heat exchanger
L Cold-side heat exchanger
w f Working fluid
1, 2, 3, 4, 5, 2s, 5s State points

Abbreviations

Brayton cycle BCY
CCC Convergent combustion chamber
CTHR Constant-temperature heat reservoir
FPDT Finite Physical Dimensions Thermodynamics
FTT Finite time thermodynamics
HCD Heat conductance distribution
IHP Isothermal heating process
OPO Optimization objective
RCC Regular combustion chamber
VTHR Variable-temperature heat reservoir
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