
entropy

Article

A New Pooling Approach Based on Zeckendorf’s Theorem for
Texture Transfer Information

Vincent Vigneron 1,2,∗ , Hichem Maaref 1 and Tahir Q. Syed 3

����������
�������

Citation: Vigneron, V.; Maaref, H.;

Syed, T.Q. A New Pooling Approach

Based on Zeckendorf’s Theorem for

Texture Transfer Information. Entropy

2021, 23, 279. https://doi.org/

10.3390/e23030279

Academic Editor: Jerry D. Gibsone

Received: 12 December 2020

Accepted: 21 February 2021

Published: 25 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Computer Science Department, Univ Evry, Université Paris-Saclay, 91190 Saint-Aubin, France;
hichem.maaref@univ-evry.fr

2 School of Applied Sciences (FCA/UNICAMP), Limeira, Sao Paolo 13484-350, Brazil
3 Computer Sciences Department, Institute of Business Administration, Karachi, Sindh 75270, Pakistan;

tqsyed@iba.edu.pk
* Correspondence: vincent.vigneron@univ-evry.fr

Abstract: The pooling layer is at the heart of every convolutional neural network (CNN) contributing
to the invariance of data variation. This paper proposes a pooling method based on Zeckendorf’s
number series. The maximum pooling layers are replaced with Z pooling layer, which capture texels
from input images, convolution layers, etc. It is shown that Z pooling properties are better adapted
to segmentation tasks than other pooling functions. The method was evaluated on a traditional
image segmentation task and on a dense labeling task carried out with a series of deep learning
architectures in which the usual maximum pooling layers were altered to use the proposed pooling
mechanism. Not only does it arbitrarily increase the receptive field in a parameterless fashion but it
can better tolerate rotations since the pooling layers are independent of the geometric arrangement
or sizes of the image regions. Different combinations of pooling operations produce images capable
of emphasizing low/high frequencies, extract ultrametric contours, etc.

Keywords: deep learning; pooling function; Zeckendorf theorem; Fibonacci; LBP; image representa-
tion; segmentation; glioblastoma

1. Introduction

Deep neural networks (DNN) have revolutionized orthodox tasks of image analysis in
which they have accomplished outstanding results and continually do so [1–3]. By employ-
ing modifications to the architectures and introducing various techniques (often greedy),
considerable improvements have been achieved.

Convolutional Neural Networks (CNNs) architectures are increased through multires-
olution (pyramidal) structures, which come from an idea that the network needs to see
different levels of detail to produce good results. A CNN stacks four different processing
layers: convolution, pooling, and fully connected (dense) layers [4].

The pooling layer receives multiple feature maps from convolutional layers and
applies the pooling function to each of them. The pooling layer (a) reduces the number of
parameters in the model (subsampling) and calculations in the network while preserving
their important characteristics, (b) improves the efficiency of the network and prevents
overlearning [4]. To do this, the maximum pooling function downsamples the input
representation by reducing its dimensionality: the image is split into regular cells without
overlapping, then the maximum value is kept within each cell. Thus, the pooling layer
makes the network less sensitive to the position of features: the fact that a feature value is a
little higher or lower, or even that it has a slightly different orientation should not lead to a
drastic change in the image classification.

The weaknesses of pooling functions are well identified [5]: (a) they do not preserve
all the spatial information well by reducing the spatial resolution, (b) the discrete maxi-
mum chosen by the maximum pooling in the pixel grid may be not the true maximum,

Entropy 2021, 23, 279. https://doi.org/10.3390/e23030279 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/ 0000-0001-5917-6041
https://orcid.org/0000-0002-1192-7333
https://doi.org/10.3390/e23030279
https://doi.org/10.3390/e23030279
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23030279
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23030279?type=check_update&version=2

Entropy 2021, 23, 279 2 of 17

(c) average pooling assumes a single mode with a single centroid. Hence, the question is
how to take into account in an optimal way the characteristics of the input image being
grouped in the pooling operation [6]? Part of the response sets in Lazebnik’s work, which
demonstrated the importance of the spatial structure of pooling neighborhoods [7]. These
local spatial variations of image pixel intensities (named textures in popular image pro-
cessing) characterize an “organized area phenomenon” [8], which cannot be captured in
pooling layers.

This paper proposes a new pooling operation, independent of the geometric arrange-
ment or sizes of image regions, which can therefore better tolerate rotations. The operation
is based on the Zeckendorf theorem for the decomposition of integers, which is also simple
to implement. Zeckendorf theorem is mainly used in cryptography [9], e.g. to design small
microcontrollers that can resist certain Fault Attack.

The rest of article is organized as follows: Section 2 presents the related works on
pooling strategies. Zeckendorf additive partition is exposed in Section 3 and its implemen-
tation is explained in Section 4. Numerical experimentations and results are presented in
Section 5. Finally, experimental works are discussed and future works are mentioned in
Section 6.

2. Related Works

Throughout this paper small Latin letters a, b, . . . represent integers. small bold letters
a, b are put for vectors and capital letters A, B for matrices or tensor depending of the
context. ‘{. . . }’ brackets indicate set of values.

∣∣ · ∣∣ is put for the cardinal operator.

2.1. Pooling Strategies in Image Processing

Convolutions in CNNs are discrete convolutions of an image V with a kernel K.
Without loss of generality an input image V in a high dimensional space can be reduced
into a vector v. Let’s define N(i) as the set of all indices of elements in v which are
neighbors of vi in the neighborhood defined by the convolution kernel K

N(i) = {j ∈ N|vj ∈ neighborhood of vi given by K} (1)

As the structure of the neighborhood is fixed, we assume that N(i, j) ∈ {1, 2, . . . ,
∣∣N(i)

∣∣},
which is the index of j in N(i, j). The discrete convolution can then be defined as

c(k, v)i = ∑
j∈N(i)

kN(i,j)vj. (2)

where k are the the weights of the convolution kernel K.
The exponential growth of the number of parameters makes convolutions with large

kernel sizes computationally expensive. Therefore, most CNN architectures keep the kernel
size at 3 × 3 or 5 × 5. However, how does one do a sensitive prediction for an entire image,
if a single convolution “sees” only a 3 × 3 neighborhood? The solution is the stacking of
convolutional layers. With two layers following each other, the last one can “see” a 4 × 4
neighborhood. This means a lot of convolutions must be stacked to have a receptive field
as large as a reasonable input image. The increase in receptive field by convolution can
be considerably higher when the image is downsampled to a lower resolution between
two convolution operations. Various methods exist for resampling a given feature layer at
multiple rates prior to convolution such as dilated convolution that “inflate” the kernel by
inserting holes between the kernel elements [10] or astrous convolution [11].

Maximum pooling is a popular choice for this downsampling operation. The pool-
ing operations have been little revised beyond the main current maximum, average,
and stochastic pooling options despite indications that choosing multiple pooling functions
can improve performance [12].

Sharma et al. analyzed and discussed qualitatively the performances of pooling
strategies on different datasets [13]. Lee et al. [6] experimentally demonstrate that their

Entropy 2021, 23, 279 3 of 17

pooling operations combining maximum and average pooling provide an increase in
invariance properties over the conventional pooling. Lee et al. proposed to combine
pooling filters that are themselves learned. In [14], Gulcehre et al. investigate a novel
nonlinear unit, called Lp unit that generalizes a number of conventional pooling operators
such as mean, root mean square, and maximum pooling.

Agostinelli learned activation functions to improve DNN in [15]. Boureau et al.
analyze theoretically why max pooling works well in a wide variety of contexts, even if
similar or different factors come into play in each case [16].

Many researchers are working on the development of advanced pooling mechanisms
to effectively use these essential features of pooling [13], in particular on how to bring
learning to the characteristics of the region being pooled into the pooling operation [6]?

2.2. Pooling and Statistics

In Statistics, “pooling” describes the practice of bringing together small datasets that
are assumed to have the same value of a characteristic, e.g., a mean, and using the larger
combined set (the “pool”) to get a more precise estimate of this feature. Poolability can
be formulated on the basis of the concept of statistical equivalence. Sheskin compiled
in [17] a bibliography dealing with pooling procedures, for example to combine several
independent tests of the same hypothesis.

The goal of pooling is to transform the convolutional characteristics into a new repre-
sentation that preserves important information while ignoring irrelevant details. For
instance, if a t-test between the two within-group slopes is not “passed”, these characteris-
tics cannot be grouped [18].

In some way, many other ensemble techniques, where a set of weak learners are
combined to create a stronger learner, are very near to this notion of pooling [19].

So, should we pool or not? Or, putting it a little differently, when should we pool
and when should we not? The answer depends on the training context. Moorthy et al.
in [20] proposed to weight the image quality measures by visual importance to improve
the correlations with subjective judgment. Achieving invariance to changes in position or
lighting conditions, robustness to size, and compactness of representation are all common
goals of pooling. We demonstrate experimentally here that these properties are achieved
successively with the Z pooling operator, based on Zeckendorf number theorem.

Experimental validation is continued in Section 5 on predefined architectures and
obtained by replacing the standard pooling operations with Z pooling.

2.3. Texture Coding

Most of image descriptors that encode local structures e.g., local binary patterns (LBP)
(and its variants) [21,22] depend on (a) the size of the neighborhood, (b) the reading order
of the neighbors, (c) the mathematical function that is used to compute the feature distance
between neighboring pixels. The new pixel value LR(P) in the image is an integer in the
range of 0 to 255 (for a 8-bit encoding) given by:

LR(P) =
P−1

∑
p=0

2p · t(gp − gc), with t(x) =

{
1 if x ≥ 0
0 otherwise

, (3)

where P is the number of pixels in the neighborhood considering the distance R between
central pixel gc and the neighboring pixels {gp|p = 0, . . . , P− 1}. In Equation (3), LBP
computes a pixel value from a 8− bit string from the 3× 3 neighborhood by computing
the Heaviside function t(·) of the difference between neighboring pixels and the central
pixel, (gi − gc) (Figure 1).

Entropy 2021, 23, 279 4 of 17

image example

121 201 200

190 100 164

78 77 65

→

thresholded

1 1 1

1 1

0 0 0

→

LBP weights

1 2 4

128 8

64 32 16

Pattern (10001111)2
LBP 128 + 8 + 4 + 2 + 1 = 143

Figure 1. Example of 3 × 3 image neighborhood (P = 8 and R = 1).

LBP-like texture descriptors have evolved into almost all fields of computer vision,
because of their robustness to monotonic gray-scale changes, illumination invariance,
and computational simplicity. Invariance w.r.t. any monotonic transformation of the gray
scale is achieved by considering in (Equation (3)) the signs of the differences t(gi − gc), i =
0, . . . , P− 1. The local texture can be represented as a joint distribution of the values of
the differences at the center pixel gc. Assuming the independence of gc with respect to the
differences (gi − gc), i = 0, . . . , P− 1. However, under certain circumstances such as very
low or high values of gc, the range of possible differences and so, LBP can miss the local
structure as it does not consider the central pixel. To reduce the noise sensitivity, mostly in
uniform regions, a three-level operator has been proposed by Tan and Trigg [23], which
describes a pixel relationship with its neighbors by a ternary encoding, i.e., −1, 0, 1 rather
than a binary code, i.e., 0, 1. The size of this code is reduced by splitting it into two LBP
(Positive and Negative) codes, which results into two 8-bit strings thus needing a 16 bit
space for representation.

In the next section, an algorithm is proposed for generating Z images, which could be
utilized in contour detection or image segmentation.

3. Z Representation
3.1. Zeckendorf Additive Partition

In this section, an algorithm is proposed for so called Z pooling. In [24] the Belgian
mathematician Édouard Zeckendorf states that any integer N may be uniquely represented
as the sum of distinct Fibonacci numbers so that the sum does not include any two non-
consecutive Fibonacci numbers. The Fibonacci series 1, 1, 2, 3, 5, 8, . . . is a sequence of
numbers f (n) such that f (n) is the sum of the 2 previous values with initial conditions
f (0) = f (1) = 1:

f (n) = f (n− 1) + f (n− 2) for n ≥ 0. (4)

Here we have a second-order linear constant coefficient difference equation that we
want to solve. Specifically, consider the following by rewriting it in a slightly different form:

f (n)− f (n− 1)− f (n− 2) = δ(n− 1) (5)

The solution to the Equation (4) may be found using z-transforms as follows: F(z)−

z−1F(z)− z−2F(z) = z−1. Solving for F(z) we have F(z) =
z−1

1− z−1 − z−2 .

Theorem 1 (Zeckendorf’s additive theory). Any positive integer N can be expressed as a sum
of distinct Fibonacci numbers (f (1), f (2), f (3), . . . , f (m) with appropriate coefficients σi ∈ {0, 1}
such as

N =
m

∑
i=0

σi f (i). (6)

such that σiσi+1 = 0, i = 1, 2,

Entropy 2021, 23, 279 5 of 17

Proof. For any positive integer N, there is always a positive integer m such that f (m) ≤
n ≤ f (m + 1). If n 6= f (m),

0 < N − f (m) < f (m + 1)− f (m) = f (m− 1). (7)

Since N − f (m) is positive, there exists a positive integer p such that

f (p) ≤ N − f (m) < f (p + 1). (8)

Now f (p) ≤ N − f (m) < f (m − 1) implies p ≤ m − 2, i.e., f (p) and f (m) are
not consecutive Fibonacci numbers. If N − f (m) 6= f (p), there exists a positive integer
q ≤ p− 2 such that

f (q) ≤ N − f (m)− f (p) < f (q + 1) (9)

and the process continues. Ultimately, we must reach the point where the partial sum
equals a Fibonacci number—say f (t)—and thereby obtain the desired representation

N = f (m) + f (p) + f (q) + . . . + f (t). (10)

Zeckendorf partition is complete and canonical, i.e., every positive integer is the sum of
distinct elements of Fibonacci series and, in the binary base, the sequence σk, σk−1, . . . σ3, σ2
with σi ∈ {0, 1} in Equation (6) contains the smallest number of 1. The number of Fibonacci
sequences of length k− 1 is exactly f (k + 1).

An 8-bit gray scale image has the intensity values in the range [0, 255]. The first
Fibonacci numbers below 255 is the discrete set F = {1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233}
of cardinality |F | = 12. So the Fibonacci sequence can be used for 12-bit image coding
and each pixel intensity of an image can be encoded as a sum of distinct consecutive or
non-consecutive Fibonacci numbers. For instance the pixel value 255 can be represented by
the sequences (1, 21, 233)fi (1, 8, 13, 233)fi (1, 21, 89, 144)fi (1, 3, 5, 13, 233)fi (1, 8, 13, 89, 144)fi
(1, 21, 34, 55, 144)fi (1, 3, 5, 13, 89, 144)fi (1, 8, 13, 34, 55, 144)fi (1, 3, 5, 13, 34, 55, 144)fi but Zeck-
endorf decomposition (233, 21, 1)Zck is unique. bit patterns.

From this additive property of integers, a new image encoding is proposed (see
Algorithm 1), which encodes the local dependencies of pixels by combining a pooling
operation and an integration operation, both chosen from supremum (max), infimum
(min), summation, intersection (∩) or set difference (\) [25]. A texel is a texture element or
texture pixel.

The way these operators are combined results in images that could be directly used
in the computer vision pipeline for object segmentation or contour extraction. The result
of applying various arithmetic operations after the intersection leads to different types of
image variations.

Four of these variations on Lenna’s image are shown on Figure 2. Each produces a
characteristic inference line, which we explore below.

The first Figure 2a is produced by applying the supremum operation followed by
another supremum. The edges are quite smooth and many edges are missed due to the
maximum operation. This operation leaves smaller values in the intersection, resulting in
fewer or no edges. Figure 2b is constructed by applying the supremum operation followed
by an infimum. As expected, the max operator at the initial stage will produce the set
of relatively larger values leaving small Fibonacci numbers. A minimum operator at the
end slightly overcomes the maximum effect by selecting the minima for the central pixel.
Figure 2c could be considered the complete opposite of the second. All the minimum
values are first extracted using the infimum operator, then the supremum of the set is taken.
It is totally intuitive to think of it as a double of the second image. Figure 2d is produced
by applying a summation operator, which is then followed by the minimum operation.

Entropy 2021, 23, 279 6 of 17

The difference between the fourth and the second images is that the values are out of range
for some pixels due to the intensity ranges saturating the summation operator.

(a) original Lenna (b) ∩ with max(min). (c) ∩ with min(max). (d) ∩ with max(max).

Figure 2. Z-images resulting from the application of Algorithm 1 on Lenna picture by combining ∩ with four arithmetic
operations from top left clockwise.

Algorithm 1: Image Z coding.
Data: Image I of size J × K
Result: Z-image of size J × K of input image I
Input: Initialization: Z ← ∅; j = 2, k = 2; N: neighborhood size around center pixel I0 of a w× w sliding

window W, w ≥ 3 an odd number
1 for j = w+1

2 to J − w−1
2 do

2 for k = w+1
2 to K− w−1

2 do
3 I0 = I(j, k); /* central pixel of W */
4 t(I0)← 0 /* N−vector of neighboring pixel values around I0 */

5 Z0 ← Zeck (I0)
6 for i = 1 to N do
7 T(i)← Zeck(W(j, k)); /* T is a stack filled with Fibonacci numbers */

8 stack← Z0 ∧ T(i) /*
∧
: pooling operator */

9 if (stack = ∅) then
10 F(i)← I0 /* F: Fibonacci number */

11 else
12 F(i)← Zeck−1(stack)/* integer reconstruction from Fibonacci numbers */

13 Z(j, k)← ∨
(F(1), . . . , F(N)) /*

∨
: integrating operator */

14 return Z
15 Function nearestSmallerEqFib(n):
16 if (n = 0 or n = 1) then
17 return n

18 f1, f2, f3 = 0, 1, 1 /* Find the greatest Fibonacci number f smaller than x */
19 while (f3 ≤ n) do
20 f1 = f2; f2 = f3; f3 = f1 + f2;
21 return f2;

22 Function Zeck(x):
/* finds representation of x as sum of non-neighbouring Fibonacci numbers. */

23 while x ≥ 0 do
24 f = nearestSmallerEqFib(x)
25 x = x− f

26 return f

Entropy 2021, 23, 279 7 of 17

In Algorithm 1, e.g., for w = 3, the list of neighbor pixels surrounding I0 is W(j, k) =
[I(j − 1, k − 1) I(j − 1, k) I(j − 1, k + 1) I(j, k + 1) I(j + 1, k + 1) I(j + 1, k) I(j + 1, k −
1) I(j, k− 1)].

Example 1 (Z coding). Consider a pixel I0 of intensity 183, surrounded by the eight neighbor
pixels of values t = (210, 106, 231, 233, 79, 142, 209, 188)T .

The Zeckendorf decomposition T of the neighbor pixels are respectively (144, 55, 8, 3)Zck
(89, 13, 3, 1)Zck (144, 55, 21, 8, 3)Zck (233)Zck (55, 21, 3)Zck (89, 34, 13, 5, 1)Zck (144, 55, 8, 2)Zck
(144, 34, 8, 2)Zck and for the central pixel Z0 = (144, 34, 5)Zck. Then T(1) = (144, 55, 8, 3)Zck,
T(2) = (89, 13, 3, 1)Zck, etc.

Following Algorithm 1, consider first the pooling operation ∩ (line 10) applied to the center
pixel and the first neighbor pixel. Then Z0 ∩ T(1) = (144, 34, 5)Zck ∩ (144, 55, 8, 3)Zck =
(144)Zck. Therefore, F(1) = 144.

Similarly for the second pixel Z0 ∩ T(1) = (144, 34, 5)Zck ∩ (89, 13, 3, 1)Zck = ∅. Therefore,
F(2) = I0 = 183.

Finally, for the last pixel (144, 34, 8, 2)Zck, Z0 ∩ T(8) = (144, 34, 5)Zck ∩ (144, 34, 8, 2)Zck =
(144, 34)Zck. If one choose suppremum operator, then F(8) = max(144, 44) = 144.

After the stack F is populated with the Fibonacci values, F = (144, 183, 144, 183, 183, 34, 144, 144)T .
the supremum of this set is calculated (line 15) and treated as the Z-code, which replaces the central
pixel value 183 in this example.

Figure 3 shows image variations on other types of pictures.

3.2. Evaluation and Result for Segmentation

Local image descriptors perform well on various computer vision tasks such as image
retrieval [26], action recognition [27,28], object detection and recognition [29] etc. We
discuss the Zeckendorf representation as a local image descriptor for two of these tasks.

Algorithm 1 results in ultrametric contours or segmented images based on the associa-
tion of the aforementioned operations.

The union operator was not included in this work because computer vision generally
derives directly from the ability of image descriptors to be discriminating, and this is
achieved by intersection or set difference operators.

Table 1 reports the performances of the top 10 algorithms and the Zeckendorf seg-
mentation on 500 test images of BSD500 [30], combining set difference and max(max)
operators. Segmented images obtained after region merging were also compared with
the human annotated images using the benchmark code available at Berkeley’s website
in Table 2 [30]. We evaluated the quality of the extracted boundaries using Precision and
Recall measures. Here, the Precision P is the probability that the extracted borderline pixel
is a true borderline pixel and Recall (sensitivity) R is the probability that the real borderline
pixels are correctly extracted:

P =
TP

TP + FP
R =

TP
TP + FN

, (11)

where TP, FP and FN are resp. the true positives, the false positives, and the false negatives.
Precision is how sure one is of true positives whilst Recall is how sure one is about not
missing any positives. Due to the trade-off between the two mentioned measures, we
calculated an F-score from Equation (11) to compare the results obtain after regions are merged:

F =
PR

αP + (1− α)R
(12)

with α an adjustable perimeter, selected here as 0.5 to compare our results with results
available from other algorithms. The F-measure of Z coding is 0.6652 with an average
Recall of 0.833 (the highest), indicating that the edge pixels are rarely misclassified. This

Entropy 2021, 23, 279 8 of 17

F-score could be further improved by refining certain factors such as postsegmentation
region-fusion procedures.

(a) (b) (c) (d)

Figure 3. Z-coded images. (a) original images. Segmented images obtained by combining intersection with (b) max(max)
(c) min(max) (d) max(min).

Figure 4 illustrates the calculus of the performance metric of the segmentation process
on the “horse” image from BSD500.

Table 1. Comparison of Z coding with 10 top-ranked segmentation algorithms for the BSD500 benchmark using set
difference and max(max) operators. See [31] for a review.

Rank Algorithm Average Recall Average Precision Average F-Measure

1 gPb-UCM 0.7397 0.7241 0.7226
2 Global Probability of Boundary (GPB) 0.7261 0.6902 0.7031
3 Ren 0.7198 0.6959 0.7019
4 Z-coding 0.833 0.5875 0.6652
5 Brightness/Texture Gradients (BTG) 0.6999 0.637 0.6592
6 Boosted Edge Learning (BEL) 0.699 0.6254 0.6557
7 Brightness Gradient (BG) 0.6946 0.6011 0.6348
8 Multiscale Gradient Magnitude (MGM) 0.6562 0.5939 0.6133
9 Gradient Magnitude (GM) 0.6961 0.5677 0.6119

10 Texture Gradient (TG) 0.6231 0.6053 0.6076
11 Second order Moment Matrix (SMM) 0.6501 0.5891 0.6042

Entropy 2021, 23, 279 9 of 17

Table 2. Performance metrics when using Z coding versus human segmented images on BSD500.

Indicators Average Recall Average Precision Average F-Measure

Proposed vs. manual
benchmark 0.8326 0.2495 0.3675

(a) original image. (b) ground truth. (c) z-image.

Figure 4. Z-coded color images using Zeckendorf representation. (a) original images (b) ground truth
image (c) binary segmented images obtained with set difference and min(max) operators. Precision:
0.5833. Recall: 0.7871. F-Score: 0.6700.

4. Z Pooling

Let h be the input volume (or image) with axis sizes nk and g the convolution kernel
with axis sizes mk. In CNN the channel or feature axis has a special role. By convention g
is the identity along the feature axis and the output of the convolution can have multiple
features. The number of input features is nN , given by h. The number of output features
is netal.pha and a parameter of the convolution operation. This is achieved by packing
multiple convolutions into one operation, one for each output feature. The set of valid
indices for the input volume h is defined as A = {(i1, i2, . . . , iN)|ik ∈ [1, . . . , nk], k ∈
[1, . . . , N]}. As there are multiple output features the kernel g gets an additional axis and
thus the indices of g are in the set B = {(j1, j2, . . . , jN+1)|jb ∈ [1 . . . mk], b ∈ [1, . . . , N +
1], mN = nN , mN+1 = netal.pha}. The resulting volume of the convolution operation has
the same axis sizes as h except for the feature axis. The convolution with zero padding
written in the terms of volumes becomes:

ak = ik − jk + dmk/2e k ∈ [1 . . . N − 1] (13)

aN = jN (14)

ha1a2 ...aN = 0 ∀(a1a2 . . . aN) 6∈ A (15)

(h ∗ g)i1i2 ...iN = ∑
j1 j2 ...jN

ha1a2 ...aN gj1 j2 ...jN (16)

with ∗ is the convolution operation and d·e the ceiling function. In many publications the
kernel size is split into a image and feature part, i.e., the convolution operation defined
by Equation (16) would be described as a convolution with a m1 ×m2 × . . . mN−1 kernel
and mN input features/channels and mN+1 output features/channels. The number of
input features is determined by the (known) size of the input image h and thus almost
always omitted.

Maximum pooling is an important operation for contemporary neural networks
defined for a input volume (or image) h : A→ R, A = {(i1, i2, . . . , iN)|ik ∈ [1, . . . , nk], k ∈

Entropy 2021, 23, 279 10 of 17

[1, . . . , N]} and a set B = {(i1, i2, . . . , iN−1, 0)|ib ∈ [−Kb, . . . , Kb], b ∈ [1, . . . , N − 1]} called
window where either Kb = Kb or Kb = Kb − 1 with Kb ∈ N:

max pool(h, B)(x) = max
y∈B

h(x− y). (17)

The x and y are indices for the volume h and B can be seen simply as a selection
mask. Note that this operation looks for the maximum in a neighborhood defined by
B along the image axis. Unlike the convolution the channels are not mixed in this ope-
ration. Often the maximum pooling operation is used for downsampling the volume
by restricting x. This restriction is called striding with stride s ∈ N and A is restricted
to A′ = {(i1, i2, . . . , iN)|ik ∈ [1, 1 + s, 1 + 2s, . . . , 1 + nss], ns = dnk/se − 1, k ∈ [1 . . . N]}.
The strided max pooling operation is then:

x′ = 1 + sx, max pool(h, B, s)(x) = max
y∈B

h(x′ − y). (18)

The strided max pooling reduces the size of the input image by only considering every
s-th entry along all image axes and discarding all others. The concept of strides can be
used for convolution operations as well and where fractional strides can even be used for
upsampling [32].

Z pooling can easily replace maximum pooling in a CNN in Equation (17) when writing

Z pooling(h, B)(x) = max
y∈B

f (x
∧

ZCK(y))), (19)

where
∧

is the intersection or set difference operation. B is the mask (neighborhood) in
which x is selected. Note that Z pooling is an operator without parameters as well as
max pooling.

With respect to fully connected neural networks, CNN are translation invariant.
The translation invariance comes from the fact that the convolution kernel W is the same
for every possible position of the input. So once the network learns to recognize an object
in one position on the image it automatically will recognize it at any position. However,
the use of convolutions comes with a cost: the number of parameters grows with the input
and output size. Different pooling operations were carried out in a categorization context
to compare the behavior of the different pooling operations.

The most relevant question at this stage is: are pooling layers more efficient when they
pool texels or when they pool pixels? Experiments proposed in the following section give
some answers.

5. Numerical Evaluation with CNN
5.1. Implementation

The experiments using the aforementioned algorithms were implemented in Python©
3.7 using Tensorflow and Keras frameworks except for the cascaded network for which the
authors provide an implementation based on Niftynet [33]. Computation were completed
on a Tesla VT100 CPU @ 3.60 Ghz with 64 GB of RAM. This study focuses on the use of a
magnetic resonance imaging (MRI) dataset of acquired brain tumors from the challenge of
multimodal brain tumor segmentation Brain Tumor Segmentation (BraTS) challenge [34].

The BraTS publicly available dataset contains preoperative MRI scans for 285 patients.
The database is divided into two categories: High-Grade Gliomas (HGG) (210 patients)
and Low-Grade Gliomas (LGG) (75 patients). Four MRI modalities of each scan are
presented: native (T1), postcontrast T1-weighted (T1Gd), T2-weighted (T2) and T2 Fluid
Attenuated Inversion Recovery (FLAIR). The ground truth segmentation is provided
(manual segmentation validated by one-to-four experienced neuroradiologists).

Entropy 2021, 23, 279 11 of 17

5.2. Miccai BraTS Dataset

Segmentation of brain tumors from multiple modalities can produce a prediction that
facilitates surgical planning, postoperative analysis and radiotherapy [35].

Brain tumors require early detection and sometimes prolonged treatment. They can
be benign or malignant when they have a faster growth rate, although benign tumors are
slower in growth and include low-grade variants (1–4). Lower grade glioma (LGG) have
a higher life expectancy and do not require immediate treatment. Both cases still require
neuroimaging prior, during and after treatment. Medical imaging helps to assess tumor
progression, surgical planning, and overall treatment [34]. Glioblastoma (GBM) is a very
aggressive grade-4 brain tumor, the deadliest among cancers with a five-year survival rates
of only 7%.

BraTS challenge requires not only the segmentation of the whole tumor but also
subsequently the tumor core and enhancing tumor (Figure 5). The Dice coefficient is used
to measure the quality of the segmentation.

Figure 5. BraTS task description [36]. The whole tumor is visible in FLAIR (A), the tumor core in
T2 (B), the enhancing tumor structures in T1c (blue), surrounding the cystic/necrotic components
of the core (green) (C). Combined segmentation give the final labeled image (D): edema (yellow),
nonenhancing solid core (red), necrotic/cystic core (green), enhancing core (blue).

5.3. Experiment Details

In the first experiment we consider 2D U-Net, 3D U-Net, and Cascaded Network for
which the training details are presented in Table 3.

The second experiment combines the best method in terms of the highest Dice (i.e.,
2D U-Net) with the proposed enhancement methods. Hence, the results of the retrained
model are presented following a curricular learning (CL) and data augmentation (DA).
The third experiment considers the equally weighted majority voting performed using the
3D U-Net, Cascaded Network and the best performing model (i.e., 2D U-Net + CL) from
the second experiment. When used, all the DA and CL transformation are applied on 25%
of the initial training dataset.

Table 3. Experiment Details.

Method Loss Function Training Set
Size # of Trainable Parameters Test Set

Size Epochs Training Duration (Hours)

Cascaded
Network Dice Loss 100 n/a 25 30 9

2D U-Net Dice Loss 100 31,032,451 25 300 13
3D U-Net Dice Loss 100 14,491,619 25 300 24

Curricular learning was first proposed by Bengio [37] to deal with nonconvex opti-
mization to avoid the local optimum issue. The intuition behind Curricular Learning is to
mimic the learning of human with a gradual training process with examples sorted in an

Entropy 2021, 23, 279 12 of 17

increasing level of difficulty. Following this idea, we propose to pretrain the considered
models from artificially downsampled MRIs by a progressive increasing level of resolu-
tions. This enhancement was carried out by downsampling then upsampling by successive
factors equal to eight, four and two. Hence, the first model is trained with the data that is
downsampled/upsampled by a factor eight. Once saved, it is retrained with the data that
is downsampled/upsampled by a factor four. This process is then repeated with the data
downsampled/upsampled by a factor two. Finally, the resulting model is trained with the
data in its original resolution.

Data augmentation is used to improve the robustness of the model by artificially
increasing the size of the training dataset. In this study, the following geometrical trans-
formations are used with randomly chosen settings: (a) 90 degrees rotation, (b) Horizon-
tal/vertical flip, (c) Cropping, (d) Gaussian white noise.

In order to simultaneously take benefit of all the investigated methods, this proposal
consists in developing an original method which combines the predictions provided by
each technique (i.e., 2D U-Net, 3D U-Net, Cascaded network). An equally-weighted
majority voting is then applied to each pixel of the input MRI. For the prediction, all the
methods have the same relevance (weight) to assign a score to each prediction. The final
decision is set to use the prediction, which obtains the highest voting score. If several
different predictions obtain an identical score, the final prediction is randomly chosen
among the best proposed choices.

5.3.1. Data

BraTS dataset was split using 125 patients: 25 patients are used for test, 75% for
training, 25% for validation. To improve the computation efficiency of our evaluation,
each MRI of the dataset was cropped from 240 × 240 × 155 to 144 × 160 × 60, removing
background region pixels.

5.3.2. Training Protocol

All the three supervised methods were trained using the Dice Loss Function (DLF)
equal to one minus the Sørensen–Dice index:

DLF(P, T) = 1− 2 ∑i Pi × Ti

∑i Pi + ∑i Ti + ε
(20)

where P denotes the set of the predicted pixels (Pi being the i-th element) and T the set
of the corresponding ground truth. We arbitrary defined in Equation (20) ε = 1 to deal
with the particular case when P and T only contain background values equal to zero. The
2D and 3D U-Net were trained with 300 epochs while the Cascaded Network was only
trained for 30 epochs due to time constraints. The network requires separate training for
each region and each of the three views, which increases training time.

2D U-NET was first proposed for biomedical image segmentation by Ronneberger et al. [38]
(Figure 6). This architecture contains two paths respectively called encoder and decoder,
which contain several convolutional and maximum pooling layers at the encoder level and
transposed convolution (up-conv) layers at the decoder. The autoencoder is designed to
find a latent representation of a dimension smaller than the input that is used for the seg-
mentation task. Unlike the U-Net originally proposed, zero-padding is used as well rather
than maximum pooling to preserve the dimension of the output at each layer, allowing
more flexibility for the dimension of the input. The U-Net used in this article follows the
U-Net architecture proposed by Dong et al. [39] depicted in Figure 6.

Entropy 2021, 23, 279 13 of 17

Figure 6. U-Net architecture with its encoder and decoder structure. The arrows represent the
operations and the volumes are the characteristics: the height of the volume corresponds to the
number of feature maps and the width and depth of the volume for the size of the feature maps. This
U-Net uses 5 different resolutions.

3D U-NET extends the U-Net network for volumetric segmentation [40]. The input is
taken as the voxels of the volumetric images and the resulting output is a 3D segmentation
mask. All the operations are in 3D and a batch normalization of 10 has shown to improve
the training convergence. Another difference is the reduction in the number of blocks in
each path from five to four. The Dice loss function Equation (20) was also used for the
training of this network. The encoder path contains two 3D convolutions followed by
a Rectified Linear Unit (ReLU), and a 2 × 2 × 2 maximum pooling with strides of two.
The decoder path blocks include 2 × 2 × 2 transposed convolution (up-conv) by strides of
two in each dimension and two 3D convolutions followed by ReLU. The entire image is
analyzed in the contracting path and subsequent extensions produce the final segmentation.

CASCADE NETWORK proposed by Wang et al. [33] includes a combination of three
CNNs that segment each of three subregions sequentially: whole tumor, tumor core and
enhancing tumor. Hence, anisotropic convolution (i.e., dependent on the direction) are used
to deal with 3D MRI but it results in a higher model complexity and memory consumption.
Lastly the fusion of the CNN outputs in three orthogonal views: axial, sagittal, and coronal
is used to enhance the segmentation of the brain tumor. The three CNNs follow the
hierarchical structure of the tumor subregions as depicted in Figure 7.

After the convolutional layer with zero padding, we get feature maps of the same
size as the input. Then each feature map is passed through Z pooling with stride one
and k different windows of sizes d1 × d1, d2 × d2, . . . , dk × dk are used. The second layer is
responsible for the increase of the receptive field, which is determined by the larger window
size dk. For an input of size s× s we suggest dk = 2s to ensure that the receptive field is as
large as the input image. In these experiments, the multiplicity is chosen at m = 10 and the
window size di = 2i−1 + 1 i.e., di ∈ {1, 3, 5, 9}. This is a good compromise between the size
of the network and the expected performance. Hence k = blog2(s) + 2c. The other window
sizes determine the scales for which the information is collected. The initial convolution
ensures that the features are relevant for each scale. The multiplicity m makes it possible to
collect multiple features by scale. The convolution layers are followed by ELU [41] as an
activation function.

Entropy 2021, 23, 279 14 of 17

(a) Original FLAIR image (b) Ground truth (c) 2D U-Net+CL

(d) 3D U-Net (e) Cascade network

Figure 7. Brain tumor segmentation of a MRI slice using three different methods (c–e). Given the
original FLAIR image in (a), the different sub-regions correspond to predicted whole tumor region
(green+yellow+blue), tumor core region (yellow+blue) , enhancing core (blue). Ground truth image
(b) is obtained with manual segmentation.

5.3.3. Results and Discussion

Results presented in Table 4 (and illustrated in Figure 7) show the effectiveness of
each method measured in terms of Sørensen–Dice index, Recall and Precision only on the
tumor core region, the most difficult to segment. The pooling layers with configuration-2
favor segmentation unlike configuration-3, which favor ultrametric contours.

According to Table 4, the 2D U-Net obtains the highest Dice scores for the three
subregions during the first experiment: tumor core = 0.65 (and for the record whole tumor
= 0.65 and increased tumor = 0.46). The scores for the Cascade and 3D U-Net are not drastic.
Given this result, the 2D U-Net was chosen for the improvement experiences: CL and DA.
In regard to the equally weighted majority vote, the prediction of the first three methods
was used to obtain the final prediction. The improvement in 2D U-Net results shows that
the three improvement methods proposed improve Dice score and Precision, but the 2D
U-Net formed with CL outperforms the others. Z pooling works comparatively better than
maximum pooling in terms of accuracy, Recall, and Dice score. The Dice score indicates
that Z pooling with max(min) misses fewer tumor cores on average than the max(max)
combination. The best combination is obtained with a 2D U-Net with Curricular Learning,
Zeck min(max) (Dice = 0.77, Recall = 0.8, Precision = 0.87) while comparatively 2D U-Net
alone gives lower scores (Dice = 0.72, Recall = 0.79, Precision = 0.77). Note that the 2D
U-Net association with DA and CL provides disappointing performances.

Entropy 2021, 23, 279 15 of 17

Table 4. Comparative results for segmentation of tumor core. Pooling layer choice: ¬ = (regular)
maximum pooling = Zeck ∩ followed max(max) ® = Zeck ∩ followed min(max).

DL Network Dice Score Recall Precision

Z Pooling Config ¬ ® ¬ ® ¬ ®

Cascaded Network 0.58 0.71 0.52 0.73 0.71 0.76 0.80 0.88 0.88

2D U-Net 0.65 0.62 0.72 0.77 0.77 0.79 0.81 0.86 0.77

3D U-Net 0.46 0.55 0.46 0.72 0.73 0.75 0.86 0.83 0.84

2D U-Net + CL 0.68 0.73 0.77 0.77 0.76 0.80 0.80 0.81 0.87

2D U-net+DA 0.67 0.75 0.62 0.77 0.76 0.82 0.81 0.83 0.78

2D U-Net + DA + CL 0.65 0.68 0.53 0.78 0.77 0.80 0.82 0.90 0.88

Majority Voting 0.61 0.67 0.60 0.76 0.75 0.79 0.82 0.85 0.84
CL = Curricular Learning, DA = Data Augmentation.

The intuitive explanation is that Z-pooling prepares CNN better than maximum
pooling for the segmentation tasks by sharpening the edges. The weights of the CNN shall
accentuate the edges during training whenever there is a significant difference between
two adjacent pixels. In capturing ultrametric contours Z-pooling can be seen as a kind of
pretraining of the network to accelerate the learning and enhance the segmentation result.

6. Conclusions

To conclude, the experiments presented along with the results have demonstrated a
pipeline of evaluation for the supervised segmentation MRI images with Z pooling. CNNs
have once again proven to excel in image processing and more specifically in learning and
distinguishing characteristics that then enables segmentation. Simple or complex addition
or changes based on Z pooling have proved to improve results, which reinforces the need
to further advance research in this area. The goal of this research was met, which was not
only to examine the presented methods but also to introduce the enhancements and enable
a thorough comparison.

Earlier, we raised two questions: when should we perform pooling? Is texel pooling
more efficient than pixel pooling?

It is advisable to pool when we can extract features contained in the binned subregions
from the input representation (input image, hidden layer, etc.) As mentioned in the discus-
sion, some of the enhancements in the pooling improved certain results and diminished
others. However, in most of our experiments, the texelization of the pooling layer improved
the image segmentation capacity of the CNN. It is because Z coding, compared to other
local descriptors: (a) can be extended to any neighborhood size or geometry, (b) is invariant
in shift (c) is invariant in rotation, (d) is nonlinear (e) follows a integer generating function,
(f) is less sensitive to noise.

The correct scale is therefore part of the definition of texture and plays an important
role. In other words, texel pooling is more efficient in general because our world is
“textured” but performance decreases directly as signal-to-noise ratio gets worse.

We challenged the concept for feature extraction, which has been uncontested for
three decades, the feature extraction pyramid. Our method translates the series of solutions
to enhance Z pooling with different window sizes. The effective receptive field of our
method can be modified freely through the pooling window sizes without affecting the
parameter number, whereas traditional feature extraction pyramids have a high parameter
cost associated with an increase of the receptive field.

Further investigations should target all combinations of Z pooling operators and find
out a performance criterion to maximize that describes the pixel organization.

Author Contributions: V.V. and H.M.: conceptualization; V.V. and T.Q.S.: investigation; V.V. and
T.Q.S.: data organization and analysis; V.V.: writing—original draft; V.V. and H.M.: writing—review
and editing; V.V. and H.M.: supervision; All authors have read and agreed to the published version
of the manuscript.

Entropy 2021, 23, 279 16 of 17

Funding: This research was funded by Catedra franceza Project VRERI 021/2016 from Faculdade de
Ciências Aplicadas, UNICAMP, Sao Paolo, Brazil.

Institutional Review Board Statement: Ethical review and approval were obtained by each individ-
ual institution which contributed with data to the BraTS dataset.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: BraTS dataset can be downloaded at URL https://www.med.upenn.
edu/sbia/brats2017/data.html (accessed on 12 December 2020). Python code can be found at
https://github.com/ikramabdel/tumorsegmentation (accessed on 12 December 2020).

Acknowledgments: The authors wish to express their sincere gratitude to the anonymous referee
whose suggestions have led to a substantial improvement in the presentation of this article. They
also want to thank Leonardo Tomazeli Duarte from FCA, Dominique Fourer from IBISC and Ikram
Ibrahim for their respective contributions in the digital implementation.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Shen, D.; Wu, G.; Suk, H. Deep Learning in Medical Image Analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [CrossRef]

[PubMed]
2. Serre, T.; Wolf, L.; Poggio, T. Object recognition with features inspired by visual cortex. In Proceedings of the 2005 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 2,
pp. 994–1000. [CrossRef]

3. Arel, I.; Rose, D.; Karnowski, T. Deep Machine Learning—A New Frontier in Artificial Intelligence Research [Research Frontier].
IEEE Comp. Int. Mag. 2010, 5, 13–18. [CrossRef]

4. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
5. Yu, D.; Wang, H.; Chen, P.; Wei, Z. Mixed Pooling for Convolutional Neural Networks. In Proceedings of the International

Conference on Rough Sets and Knowledge Technology, Shanghai, China, 24–26 October 2014; pp. 364–375.
6. Lee, C.; Gallagher, P.; Tu, Z. Generalizing Pooling Functions in Convolutional Neural Networks: Mixed, Gated, and Tree.

In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, San Diego, CA, USA, 9–12 May 2015.
7. Lazebnik, S.; Schmid, C.; Ponce, J. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories.

In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, NY, USA,
12–17 June 2006; Volume 2, pp. 2169–2178. [CrossRef]

8. Haralick, R. Statistical and Structural Approaches to Texture. Proc. IEEE 1979, 67, 786–804. [CrossRef]
9. Li, C.; Zhang, Y.; Xie, E.Y. When an attacker meets a cipher-image in 2018: A year in review. J. Inf. Secur. Appl. 2019, 48, 102361.

[CrossRef]
10. Yu, F.; Koltun, V. Multi-Scale Context Aggregation by Dilated Convolutions. In Proceedings of the International Conference on

Learning Representations (ICLR), San Juan, Puerto Rico, 2–4 May 2016.
11. Yang, M.; Yu, K.; Zhang, C.; Li, Z.; Yang, K. DenseASPP for Semantic Segmentation in Street Scenes. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018.
12. Scherer, D.; Müller, A.; Behnke, S. Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition.

In Proceedings of the 20th International Conference on Artificial Neural Networks: Part III; ICANN’10; Springer: Berlin/Heidelberg,
Germany 2010; pp. 92–101.

13. Sharma, S.; Rajesh, M. Implications of Pooling Strategies in Convolutional Neural Networks: A Deep Insight. Found. Comput.
Decis. Sci. 2019, 44, 303–330. [CrossRef]

14. Gulcehre, C.; Cho, K.; Pascanu, R.; Bengio, Y. Learned-Norm Pooling for Deep Feedforward and Recurrent Neural Networks.
In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, Nancy, France,
15–19 September 2014; pp. 530–546. [CrossRef]

15. Agostinelli, F.; Hoffman, M.; Sadowski, P.; Baldi, P. Learning Activation Functions to Improve Deep Neural Networks. arXiv
2014, arXiv:1412.6830.

16. Boureau, Y.L.; Ponce, J.; Lecun, Y. A Theoretical Analysis of Feature Pooling in Visual Recognition. In Proceedings of the 27th
International Conference on Machine Learning, Haifa, Israel, 21–25 June 2010; pp. 111–118.

17. Sheskin, D.J. Handbook of Parametric and Nonparametric Statistical Procedures, 4th ed.; Chapman & Hall/CRC: Boca Raton, FL,
USA, 2007.

18. Howell, D. Statistical Methods for Psychology, 6th ed.; Thomson: Belmont, CA, USA, 2007.
19. Lowe, D.G. Object Recognition from Local Scale-Invariant Fea- tures. In Proceedings of the IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, Fort Collins, CO, USA, 23–25 June 1999; Volume 2, pp. 1150–1157.

https://www.med.upenn.edu/sbia/brats2017/data.html
https://www.med.upenn.edu/sbia/brats2017/data.html
https://github.com/ikramabdel/tumorsegmentation
https://github.com/ikramabdel/tumorsegmentation
http://doi.org/10.1146/annurev-bioeng-071516-044442
http://www.ncbi.nlm.nih.gov/pubmed/28301734
http://dx.doi.org/10.1109/CVPR.2005.254
http://dx.doi.org/10.1109/MCI.2010.938364
http://dx.doi.org/10.1109/CVPR.2006.68
http://dx.doi.org/10.1109/PROC.1979.11328
http://dx.doi.org/10.1016/j.jisa.2019.102361
http://dx.doi.org/10.2478/fcds-2019-0016
http://dx.doi.org/10.1007/978-3-662-44848-9_34

Entropy 2021, 23, 279 17 of 17

20. Moorthy, A.; Bovik, A. Visual Importance Pooling for Image Quality Assessment. IEEE J. Sel. Top. Signal Process. 2009, 3, 193–201.
[CrossRef]

21. Pietikinen, M.; Hadid, A.; Zhao, G.; Ahonen, T. Computer Vision Using Local Binary Patterns; Computer imaging and vision;
Springer: Berlin/Heidelberg, Germany, 2011; Volume 40.

22. Ojala, T.; Pietikäinen, M.; Harwood, D. A comparative study of texture measures with classification based on feature distributions.
Pattern Recognit. 1996, 29, 51–59. [CrossRef]

23. Tan, X.; Triggs, B. Enhanced local texture feature sets for face recognition under difficult lighting conditions. In Analysis and
Modeling of Faces and Gestures; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4778,
pp. 235–249.

24. Zeckendorf, E. Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas. Bull. Soc.
Roy. Sci. Liege 1972, 41, 179–182.

25. Vigneron, V.; Syed, T.; Duarte, L.; Lang, E.; Behlim, S.; Tomé, A. Z-Images. In Proceedings of the 7th Iberian Conference on
Pattern Recognition and Image Analysis, Faro, Portugal, 20–23 June 2017; pp. 177–184.

26. Yao, C.; Chen, S. Color texture retrieval, color texture segmentation, content-based retrieval, images, local edge pattern, similarity
measure, texture, texture region. Pattern Recognit. 2003, 36, 913–929. [CrossRef]

27. Kellokumpu, V.; Zhao, G.; Li, S.Z.; Pietikäinen, M. Dynamic Texture Based Gait Recognition. In Proceedings of the International
Conference on Biometrics, Alghero, Italy, 2–5 June 2009; pp. 1000–1009.

28. Wang, H.; Ullah, M.; Klaser, A.; Laptev, I.; Schmid, C. Evaluation of local spatio-temporal features for action recognition.
In Proceedings of the British Machine Vision Conference, London, UK, 7–10 September 2009; Volume 124.

29. Chen, J.; Zhao, G.; Pietikäinen, M. An improved local descriptor and threshold learning for unsupervised dynamic texture
segmentation. In Proceedings of the 2nd IEEE International Workshop on Machine Learning for Vision-based Motion Analysis
(MLVMA09), Kyoto, Japan, 28 September 2009; IEEE: Kyoto, Japan, 2009; pp. 460–467.

30. Stone, Z.; Zickler, T.; Darrell, T. Autotagging Facebook: Social network context improves photo annotation. In Proceedings of the
Computer Vision and Pattern Recognition Workshops, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8. [CrossRef]

31. Fowlkes, C.; Martin, D.; Malik, J. Learning affinity functions for image segmentation: Combining patch-based and gradient-based
approaches. In Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
Madison, WI, USA, 18–20 June 2003; Volume 2, pp. 2–54. [CrossRef]

32. Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach.
Intell. 2017, 39, 640–651. [CrossRef] [PubMed]

33. Wang, G.; Li, W.; Ourselin, S.; Vercauteren, T. Automatic Brain Tumor Segmentation Using Cascaded Anisotropic Convolutional
Neural Networks. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, Germany, 2018; Volume 10670 LNCS, pp. 178–190. [CrossRef]

34. Menze, B. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med Imaging 2014, 34, 1993–2024.
[CrossRef] [PubMed]

35. Razzak, M.; Naz, S.; Zaib, A. Deep learning for medical image processing: Overview, challenges and the future. In Classification in
BioApps; Springer: Berlin/Heidelberg, Germany, 2018; pp. 323–350.

36. Menze, B.H.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; et al.
The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 2015, 34, 1993–2024. [CrossRef]
[PubMed]

37. Bengio, Y.; Louradour, J.; Collobert, R.; Weston, J. Curriculum learning. In Proceedings of the 26th Annual International
Conference on Machine Learning, Montreal, QC, Canada, 14–18 June 2009; pp. 41–48.

38. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; pp. 234–241.

39. Dong, H.; Yang, G.; Liu, F.; Mo, Y.; Guo, Y. Automatic brain tumor detection and segmentation using U-Net based fully
convolutional networks. In Proceedings of the Annual Conference on Medical Image Understanding and Analysis, Edinburgh,
UK, 11–13 July 2017; pp. 506–517.

40. Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning dense volumetric segmentation from
sparse annotation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted
Intervention, Athens, Greece, 17–21 October 2016; pp. 424–432.

41. Clevert, D.A.; Unterthiner, T.; Hochreiter, S. Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs).
In Proceedings of the 4th International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015.

http://dx.doi.org/10.1109/JSTSP.2009.2015374
http://dx.doi.org/10.1016/0031-3203(95)00067-4
http://dx.doi.org/10.1016/S0031-3203(02)00124-3
http://dx.doi.org/10.1109/CVPRW.2008.4562956
http://dx.doi.org/10.1109/CVPR.2003.1211452
http://dx.doi.org/10.1109/TPAMI.2016.2572683
http://www.ncbi.nlm.nih.gov/pubmed/27244717
http://dx.doi.org/10.1007/978-3-319-75238-9_16
http://dx.doi.org/10.1109/TMI.2014.2377694
http://www.ncbi.nlm.nih.gov/pubmed/25494501
http://dx.doi.org/10.1109/TMI.2014.2377694
http://www.ncbi.nlm.nih.gov/pubmed/25494501

	Introduction
	Related Works
	Pooling Strategies in Image Processing
	Pooling and Statistics
	Texture Coding

	Z Representation
	Zeckendorf Additive Partition
	Evaluation and Result for Segmentation

	Z Pooling
	Numerical Evaluation with cnn
	Implementation
	Miccai brats Dataset
	Experiment Details
	Data
	Training Protocol
	Results and Discussion

	Conclusions
	References

