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Abstract: Obstructive sleep apnea (OSA) is associated with reduced heart rate variability (HRV) and
autonomic nervous system dysfunction. Sample entropy (SampEn) is commonly used for regularity
analysis. However, it has limitations in processing short-term segments of HRV signals due to
the extreme dependence of its functional parameters. We used the nonparametric sample entropy
(NPSampEn) as a novel index for short-term HRV analysis in the case of OSA. The manuscript
included 60 6-h electrocardiogram recordings (20 healthy, 14 mild-moderate OSA, and 26 severe OSA)
from the PhysioNet database. The NPSampEn value was compared with the SampEn value and
frequency domain indices. The empirical results showed that NPSampEn could better differentiate
the three groups (p < 0.01) than the ratio of low frequency power to high frequency power (LF/HF)
and SampEn. Moreover, NPSampEn (83.3%) approached a higher OSA screening accuracy than the
LF/HF (73.3%) and SampEn (68.3%). Compared with SampEn (|r| = 0.602, p < 0.05), NPSampEn
(|r| = 0.756, p < 0.05) had a significantly stronger association with the apnea-hypopnea index (AHI).
Hence, NPSampEn can fully overcome the influence of individual differences that are prevalent in
biomedical signal processing, and might be useful in processing short-term segments of HRV signal.

Keywords: heart rate variability (HRV); nonparametric sample entropy (NPSampEn); obstructive
sleep apnea (OSA); short-term HRV analysis

1. Introduction

Obstructive sleep apnea (OSA) is the most common type of apnea, which is character-
ized by repetitive collapse or partial collapse of the pharyngeal airway during sleep [1].
OSA is common in patients with high blood pressure, coronary artery disease, stroke,
and atrial fibrillation [2,3]. The primary pathophysiological mechanism is cardiovascular
autonomic dysfunction, which mainly manifests as sympathetic overactivation [4]. The
prevalence of OSA is 4% in men and 2% in women at the rate of 10 events per hour, but
more than 85% of OSA patients never receive a definite diagnosis [5–7].

Changes of respiration and blood pressure affect the balance of the autonomic nervous
system (ANS), thus affecting heart rate variability (HRV) [8]. The ANS modulates phys-
iological function through the sympathetic nervous system (SNS) and parasympathetic
nervous system (PNS) [9]. The parameters of HRV have been proven to be significant
indices for analyzing and diagnosing OSA [10]. Traditionally, linear methods such as time
and frequency domain analyses have been used to analyze OSA. The ratio of low-frequency
to high-frequency power (LF/HF) is the classic frequency domain index, which is con-
sidered to reflect the balance of the ANS. A higher LF/HF indicates that the sympathetic
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nerve is more active, and a lower LF/HF indicates that the parasympathetic nerve is more
active [11]. Gula, L.J. et al. found that the value of LF/HF was higher in patients with
moderate OSA than that in healthy subjects and severe OSA patients, and Gong, X. et al.
found that the value of the apnea-hypopnea index (AHI) was positively correlated with
the LF/HF [12,13]. These results suggest that the LF/HF is effective in discriminating
individuals with and without OSA.

The autonomic nervous system is nonlinear and nonstationary [14,15]; thus, nonlinear
methods are widely used for OSA detection. Entropy is considered as a nonlinear method
that is used to analyze the complexity of ANS. Sample entropy (SampEn) analysis has been
used to show that the HRV in normal individuals is significantly more complex than that
in individuals with OSA (p < 0.005) by Al-Angari, H.M. et al. [16]. Ravelo-Garcia, A. G et al.
used permutation entropy to better detect OSA with HRV analysis [17]. Sliding trend fuzzy
approximate entropy has been proposed for use in HRV analysis, and demonstrated high
accuracy (85%) with a sensitivity of 82.5% and a specificity of 90% for OSA detection [18].

For HRV analysis, most of the previous studies used a 5-min segment of electrocar-
diogram (ECG) ECG signal to assess the ANS [12,19]. Nevertheless, reference annotations
were typically created for every minute with 60–100 R peak to R peak (RR) RR intervals to
indicate the presence or absence of apnea during that minute [20,21]. Furthermore, SampEn
is highly dependent on parameter r, which is the threshold of distance. SampEn is not
suitable for short-term HRV analysis because an improper r value may cause the SampEn
value to be undefined [22]. Several studies have also reported that inappropriate r was ran-
domly selected in the SampEn calculation, which led to misleading regular results [23,24].
Therefore, in this study, a method based on non-parametric sample entropy (NPSampEn)
is proposed to reflect the influence of self-fluctuation and overcome individual differences,
thus improving the performance of OSA screening and quantification.

For NPSampEn, the r sequence was generated based on the unique template distance
of the signal. The distribution of the template distance was estimated by r sequence to
evaluate the regularity of the signal and the fluctuation of the autonomic nerve. The process
was as follows. First, the distance matrix of 1-minute RR segments was calculated as in the
SampEn analysis. Then, the extracted sequence containing unique points from the distance
matrix was used as the packet interval to calculate the cumulative probability and identify
abnormal sympathetic signal variance. Finally, the NPSampEn was used to detect sleep
apnea and quantify the severity of OSA disease.

2. Materials and Methods

In our study, a new nonlinear analysis method was used for short-term HRV analysis.
The framework of the study is shown in Figure 1. First, the ECG signals were downloaded
from the database, and the RR intervals were extracted. Then, the corrected 1-min RR
segments were obtained and resampled to 2 Hz by interpolation. Then, short-term HRV
measures and the NPSampEn were used to determine the indices in the frequency domain
and nonlinear analyses. Finally, these short-term indices were validated by statistical
analysis and OSA screening.
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2.1. Data

To develop and evaluate our HRV-based algorithm, we used the Computers in Cardiol-
ogy Challenge 2000 of the PhysioNet database [21]. It contains 70 single channel overnight
ECG recordings from 32 subjects. The dataset provided a minute-by-minute sequence of
reference annotations for the ECG recordings. Based on the apnea-hypopnea index (AHI),
which was calculated by determining the sum of apneas and hypopnea events per hour
during sleep [25], all recordings were divided into three groups. Recordings with a 1-hour
AHI of 10 or more were included in the apnea group. There were 40 recordings in the
apnea group with AHI ≥ 5. The subjects were 15 males and one female between 29 and
63 years of age (50 ± 6.6 years). Recordings with five minutes or less of sleep apnea were
included in the normal group. There were 20 recordings in the normal group with AHI <
5. The subjects were six males and five females between 27 and 42 years of age (33 ± 5.8
years). In addition, the remaining recordings were included in the borderline group. In this
study, we used the normal group and apnea group to develop and evaluate the algorithm.

To analyze the severity of OSA disease, according to the study of Li et al. [26], the
apnea group was further divided into a mild-moderate OSA group and a severe OSA
group through AHI. The mild-moderate OSA group included 14 recordings with 5 ≤ AHI
< 30. The severe OSA group included 26 recordings with AHI ≥ 30.

2.2. Simulation Test

A simulation signal was created to compare the performance of SampEn and NPSam-
pEn in the short-term HRV analysis. The N-point simulation signal MIX (p) was defined as
follows [27]:

MIX(p)j =
(
1− Zj

)
Xj + ZjYj (1 ≤ j ≤ N), (1)

where Xj =
√

2 sin
(

2π j
12

)
; Yj was a set of real random variables within

[
−
√

3,
√

3
]
, and Zj

was a vector related to p, which consisted of 0 and 1, where Zj = 1 had a probability of
p and Zj = 0 had a probability of 1-p. Simply, when p = 0, Zj fully consisted of 0; when
p = 1, Zj fully consisted of 1. Hence, the value of p reflected the complexity of the MIX(p)
signals. As the p value increased, the random components and complexity of MIX(p)
increased. To compare the performance of SampEn and NPSampEn, we calculated the
SampEn and NPSampEn of the simulation signals with different lengths in the complexity
of MIX (0), MIX (0.3), MIX (0.5).

2.3. Short-Term Heart Rate Variability (HRV) Analysis
2.3.1. Preprocessing

To obtain appropriate RR segments for short-term HRV analysis, the ECG signals
were preprocessed. The first six hours of overnight ECG signals were inputted. First, RR
intervals were extracted from the ECG signals using the Pan-Tompkins algorithm and
corrected using the local median filter proposed by Chen, L et al. [28,29]. Then, the 6-h RR
intervals were divided into multiple nonoverlapping 1-min RR segments (RRs) in each
recording for short-term HRV analysis. Finally, all 1-min RRs were resampled by 2 Hz
with interpolation.

2.3.2. Frequency Domain Analysis

There are three classic indices in short-term HRV analysis [11–13]: the power in the
low-frequency range (LF, 0.04–0.15 Hz), the power in the high-frequency range (HF, 0.15–
0.4 Hz), and the ratio of low-frequency and high-frequency power (LF/HF). The three
frequency domain indices of 1-min RRs were calculated by power spectrum density (PSD),
and the mean value in 6-h RRs was computed. Due to the short lengths of the RRs, the
6-order autoregressive Burg parametric method was used to calculate the PSD.
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2.3.3. Nonlinear Analysis

SampEn is a nonlinear method used to analyze the regularity of sequences by com-
puting the similarity between template vectors. The signal vector was divided into a
number of template vectors at the embedding dimensions m and m + 1, and the distance
between the template vector and every other vector was computed. Finally, the tolerance
parameter r (usually 0.1 to 0.25 times the standard deviation of the data [30]) was used as
the threshold, and the probability of the template distance being less than the parameter ‘r’
was calculated to determine the similarity between template vectors. However, SampEn
depends heavily on parameter ‘r’, and an incorrect r choice also leads to the opposite result.
Hence, a SampEn measure independent of parameter ‘r’ was proposed by Udhayakumar,
R.K. et al. [31].

The core process of SampEn is to compare the template distance with the threshold ‘r’
to compute the probability, and NPSampEn is a measure that maintains this core process
with improvements. For NPSampEn, the artificially selected parameter ‘r’ was not used
as the threshold, instead, a tolerant vector from the signal itself was generated, and then,
the probability was calculated based on the tolerant vector. The schemes of SampEn and
NPSampEn are shown in Figure 2, and the algorithms of NPSampEn and SampEn are
as follows:
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For a time series with N data points, denoted as {x(n)|n = 1, 2, . . . , N}.
Step 1: RR reconstruction. The time series x(n) was divided into a number of template

vectors at the embedding dimensions m and m + 1. When 1 ≤ i ≤ N −m:
At the embedding dimension m,

Xm
i = {x(i), . . . , x(i + m− 1)} (2)

Similarly, at the embedding dimension m + 1,

Xm+1
i = {x(i), . . . , x(i + m)} (3)
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Step 2: Distance calculation. At dimensions m and m + 1, the distance between the
template vector and every other vector was calculated.

dm
ij = max|x(i + k)− x(j + k)| (4)

0 ≤ k ≤ m− 1, 1 ≤ j ≤ N −m and j 6= i

Similarly,
dm+1

ij = max|x(i + k)− x(j + k)| (5)

0 ≤ k ≤ m, 1 ≤ j ≤ N −m and j 6= i

Self-matches were excluded in both SampEn and NPSampEn, and two distance ma-
trices, dm and dm+1, were obtained with N −m dimensions without dm

ij and dm+1
ij , when

i = j.
Step 3: In the probability calculation, the NPSampEn value is different from the

SampEn values.
For NPSampEn, let scope be the vector containing all unique elements of dm

ij and dm+1
ij ,

sorted in ascending order with the length of nbin. The pr is the probability, scope(q) is the
element of the scope vector (1 ≤ q ≤ nbin), and the cumulative distribution function pdm

i is
calculated as follows:

pdm
i (q) = pr(dm

i ≤ scope(q)), 1 ≤ q ≤ nbin (6)

Similarly, at the embedding dimension m + 1,

pdm+1
i (q) = pr

(
dm+1

i ≤ scope(q)
)

, 1 ≤ q ≤ nbin (7)

The cumulative probability matrix is as follows:

pdm =

 pdm
1 (1) · · · pdm

1 (nbin)
...

. . .
...

pdm
N−m(1) · · · pdm

N−m(nbin)

 (8)

pdm+1 =

 pdm+1
1 (1) · · · pdm+1

1 (nbin)
...

. . .
...

pdm+1
N−m(1) · · · pdm+1

N−m(nbin)

 (9)

For SampEn, the tolerance parameter r (usually 0.1 to 0.25 times the standard deviation
of the data) was used as the threshold.

pdm
i = pr(dm

i ≤ r), 1 ≤ i ≤ N −m (10)

pdm+1
i = pr

(
dm+1

i ≤ r
)

, 1 ≤ i ≤ N −m (11)

The probability vectors were obtained as follows:

pdm =
[
pdm

1 , . . . , pdm
N−m

]
(12)

pdm+1 =
[

pdm+1
1 , . . . , pdm+1

N−m

]
(13)

Step 4: The values of NPSampEn and SampEn were calculated. We obtained the
probability matrices for NPSampEn and the probability vectors for SampEn from step 3.

For NPSampEn, the vector Φm containing the column-average of probability was
obtained.

Φm(q) =
1

N −m

N−m

∑
i=1

pdm
i (q) (14)
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Φm+1(q) =
1

N −m

N−m

∑
i=1

pdm+1
i (q) (15)

The NPSampEn value was finally calculated

NPSampEn =
1

nbin

nbin

∑
q=1

ln
Φm(q)

Φm+1(q)
(16)

For SampEn, the mean of probability vector Φm was calculated.

Φm =
1

N −m

N−m

∑
i=1

pdm
i (17)

Φm+1 =
1

N −m

N−m

∑
i=1

pdm+1
i (18)

The SampEn value was finally calculated

SampEn = ln
Φm

Φm+1 (19)

2.4. Validation

To evaluate the performance of a single index, statistical one-way ANOVA, followed
by post-hoc analysis with the least significant difference (LSD) test was used to analyze the
statistical significance between the normal, mild-moderate OSA, and severe OSA groups.
p < 0.05 was considered statistically significant, and decreasing p values represented
a tendency toward statistical significance. The data are expressed as the mean ± SD.
Furthermore, support vector machine (SVM) in scikit-learn support of NuSVC class in
Python 3 was used for classification, and the accuracy, sensitivity, and specificity were
obtained using 2-fold cross validation [32]. Moreover, the receiver operating characteristic
(ROC) curve and area under the ROC curve (AUC) of each index were computed using
MATLAB. Finally, the Pearson coefficient of the association of SampEn and NPSampEn
with AHI was computed using SPSS. These tests were performed using SPSS version
22.0.0.0 (SPSS Inc., Chicago, IL, USA) and MATLAB R2019a, Python 3.

3. Results
3.1. Comparisons between the Simulation of Two Entropies

To compare the performance between NPSampEn and SampEn, three simulated
signals MIX (p) were constructed. Monotonicity, consistency, and continuity are three
important factors that reflect the performance of entropies in complexity analysis [33].
Figure 3 indicates that entropies change with the length of signals. As shown in Figure 3d,
the NPSampEn values increased with an increase in the complexity of the simulated signals,
and decreased with the increase in the lengths of the simulated signals. There was no cross
between the NPSampEn values for the three simulated signals. As illustrated in Figure 3e,
there were crosses among the SampEn values between MIX (0.3) and MIX (0.5) when N
was small (nearly 50), and there were fluctuations in the SampEn of MIX (0.3) and MIX
(0.5) when N was small (N < 100). This result indicates that the value of SampEn was
significantly affected by the length of the signal when the complexity of the signal was
high. In Figure 3f, the increasing r value resulted in a tendency toward a lower SampEn
value and represented high system regularity. The SampEn value of MIX (p) theoretically
increased with the p value of the MIX (p) signal. However, the SampEn value of MIX (0.3)
was sometimes higher than MIX (0.5). These results indicate that an improper r value can
lead to the opposite conclusion.



Entropy 2021, 23, 267 7 of 14

Entropy 2020, 22, x FOR PEER REVIEW 7 of 14 

 

 
Figure 3. Fifty points simulated for the MIX (0), MIX (0.3), and MIX (0.5) signals (a–c). N corresponds to the data length, 
N increases from 50 to 200 by intervals of 2. The changes in NPSampEn (d), and SampEn (e) (r = 0.25). The change in 
SampEn (f) with an increase in r from 0.1 to 1 by 0.02 (N = 100) and the corresponding changes in the complexity of MIX 
(0), MIX (0.3), MIX (0.5). 

3.2. HRV Analysis among the Three Groups 
The recordings were divided into normal (N), mild-moderate OSA (MOSA), and se-

vere OSA (SOSA) group. The mean ± SD values of the entropies and frequency domain 
indices are shown in Table 1. As shown in Table 1, in the frequency domain indices, there 
was no statistically significant difference in the LF or HF between any two of the three 
groups. The LF/HF was significantly different between the N and MOSA groups (p < 0.05) 
and N and SOSA groups (p < 0.001). Thus, the LF/HF can distinguish OSA patients and 
healthy persons, but cannot distinguish mild-moderate OSA patients and severe OSA pa-
tients. In the nonlinear indices, there were statistically significant differences in the N and 
SOSA groups and MOSA and SOSA groups. No significant differences were observed for 
SampEn between the N and MOSA groups, while NPSampEn was significantly different 
between the N and MOSA groups (p < 0.01). Figure 4 indicates that with the aggravation 
of pathogenetic conditions (from the N to MOSA to SOSA groups), the SampEn and 
NPSampEn values decreased, and the LF/HF value in the frequency domain increased. 
From a physiological point of view, the more severe the pathogenetic condition, the more 
complex HRV is, and the more active the sympathetic nerve is. 

As shown in Figure 5, the NPSampEn values of all RRs for three recordings from the 
three groups were rearranged into three matrices in order. Each number in the NPSampEn 
matrix represents the NPSampEn value computed from the RRs time series from a given 
recording. For example, the first row of the NPSampEn matrix includes the first to the 
18th NPSampEn values, the second row includes the 19th to the 36th NPSampEn values, 
and so on. These matrices were made into graphs using MATLAB (R2019a, Mathworks, 
Natick, MA, USA) MATLAB. The color of each rectangle reflects the NPSampEn value of 
one minute. The normal group is represented by warm colors, while the severe OSA group 
is represented by cool colors. Therefore, based on three typical cases, the color became 
cooler with the severity of OSA. In short, NPSampEn is believed to be a more appropriate 
index for OSA detection and quantization. 

  

Figure 3. Fifty points simulated for the MIX (0), MIX (0.3), and MIX (0.5) signals (a–c). N corresponds to the data length, N
increases from 50 to 200 by intervals of 2. The changes in NPSampEn (d), and SampEn (e) (r = 0.25). The change in SampEn
(f) with an increase in r from 0.1 to 1 by 0.02 (N = 100) and the corresponding changes in the complexity of MIX (0), MIX
(0.3), MIX (0.5).

3.2. HRV Analysis among the Three Groups

The recordings were divided into normal (N), mild-moderate OSA (MOSA), and
severe OSA (SOSA) group. The mean ± SD values of the entropies and frequency domain
indices are shown in Table 1. As shown in Table 1, in the frequency domain indices, there
was no statistically significant difference in the LF or HF between any two of the three
groups. The LF/HF was significantly different between the N and MOSA groups (p < 0.05)
and N and SOSA groups (p < 0.001). Thus, the LF/HF can distinguish OSA patients and
healthy persons, but cannot distinguish mild-moderate OSA patients and severe OSA
patients. In the nonlinear indices, there were statistically significant differences in the N
and SOSA groups and MOSA and SOSA groups. No significant differences were observed
for SampEn between the N and MOSA groups, while NPSampEn was significantly different
between the N and MOSA groups (p < 0.01). Figure 4 indicates that with the aggravation
of pathogenetic conditions (from the N to MOSA to SOSA groups), the SampEn and
NPSampEn values decreased, and the LF/HF value in the frequency domain increased.
From a physiological point of view, the more severe the pathogenetic condition, the more
complex HRV is, and the more active the sympathetic nerve is.

As shown in Figure 5, the NPSampEn values of all RRs for three recordings from the
three groups were rearranged into three matrices in order. Each number in the NPSampEn
matrix represents the NPSampEn value computed from the RRs time series from a given
recording. For example, the first row of the NPSampEn matrix includes the first to the
18th NPSampEn values, the second row includes the 19th to the 36th NPSampEn values,
and so on. These matrices were made into graphs using MATLAB (R2019a, Mathworks,
Natick, MA, USA) MATLAB. The color of each rectangle reflects the NPSampEn value of
one minute. The normal group is represented by warm colors, while the severe OSA group
is represented by cool colors. Therefore, based on three typical cases, the color became
cooler with the severity of OSA. In short, NPSampEn is believed to be a more appropriate
index for OSA detection and quantization.
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Table 1. Entropy/frequency domain indices for the normal, mild-moderate, and severe obstructive sleep apnea
(OSA) groups.

Indices
N

(Mean ± SD)
MOSA

(Mean ± SD)
SOSA

(Mean ± SD)
p Value

N & MOSA N & SOSA MOSA & SOSA

Entropy SampEn 0.587 ± 0.058 0.564 ± 0.094 0.443 ± 0.097 0.426 0 *** 0 ***
NPSampEn 0.270 ± 0.014 0.243 ± 0.039 0.199 ± 0.029 0.006 ** 0 *** 0 ***

Frequency
domain

LF 0.0060 ±
0.0075

0.0010 ±
0.0007 0.022 ± 0.054 0.687 0.150 0.088

HF 0.0050 ±
0.0078

0.00047 ±
0.00042

0.0074 ±
0.022 0.404 0.608 0.184

LF/HF 2.049 ± 0.717 3.785 ± 2.000 4.975 ± 2.437 0.012 * 0 *** 0.067

*, **, *** represent p < 0.05, p < 0.01, and p < 0.001, respectively
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OSA (SOSA) group.

3.3. Relevance and Obstructive Sleep Apnea (OSA) Screening

Figure 6 indicates the correlation between AHI and NPSampEn and the correlation
between AHI and SampEn. When it is significantly different (p < 0.05), the greater the
absolute Pearson correlation (R) and the stronger the correlation. Negative R represents a
negative correlation. The correlation between AHI and NPSampEn was strong (|r| = 0.756,
p < 0.001), while the correlation between AHI and SampEn was weak (|r| = 0.600, p < 0.001).
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Figure 6. The relevance of NPSampEn (a) and SampEn (b) with apnea-hypopnea index (AHI). r: Pearson’s correlation
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Samples used during the OSA recording screening were obtained by calculating the
mean of the segments for each recording. Fisher’s discriminant function (SPSS) was used to
classify each sample as normal or apneic. The accuracy (ACC), sensitivity (SEN), specificity
(SPE), and area under the receiver operating characteristic curve (AUC) values of SampEn,
NPSampEn, and LF/HF were computed and are displayed in Table 2. The ACC was
defined as the percentage of correctly classified samples. The SEN was defined as the
percentage of correctly classified OSA samples. The SPE was defined as the percentage
of correctly classified healthy samples. The AUC reflected the recall ratio of the indices.
As shown in Table 2, for 60 samples, NPSampEn achieved the highest ACC (83.3%), SEN
(77.5%), and SPE (95%) among these indices, which were higher than those of SampEn
and LF/HF. Moreover, Figure 7 shows the receiver operating characteristic (ROC) curve
and area under the ROC curve (AUC) of SampEn, NPSampEn, and LF/HF. The closer the
curve is to the upper left corner, the larger the area under the curve, and the higher the
recall ratio of the index. As shown in Figure 7, NPSampEn achieved the highest AUC value
(0.795), and SampEn and LF/HF yielded lower AUC values (0.581 and 0.628, respectively).
Therefore, NPSampEn had the highest recall ratio.

Taking these results into consideration, it was indisputable that NPSampEn improved
the OSA screening accuracy, and the classification results showed that NPSampEn is a
more reliable index for ruling out OSA compared with SampEn and LF/HF.

Table 2. Performance comparisons of different indices for obstructive sleep apnea (OSA) screening.

Indices TP TN FP FN ACC SEN SPE AUC

Nonlinear
indices

SampEn 29 12 8 11 68.3% 72.5% 60.0% 0.581
NPSampEn 31 19 1 9 83.3% 77.5% 95.0% 0.795

Frequency domain LF/HF 29 15 5 11 73.3% 72.5% 75% 0.628

NPSampEn: non-parametric sample entropy; LF/HF: ratio of low frequency power to high frequency power. TP: true positive. TN: true
negative; FP: false positive; FN: false negative; ACC: accuracy; SEN: sensitivity; SPE: specificity; AUC: area under the receiver operating
character curve.
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4. Discussion
4.1. Comparison and Summary

The purpose of the study was to identify a useful single index that has interpretability
and can improve the recognition performance of a classifier. Among the classic indices, the
LF/HF had great OSA detection performance (Table 2), which is consistent with the results
in other studies [12,13,26]. Moreover, NPSampEn yielded high screening performance and
enabled the quantification of OSA severity (Figure 4, Table 2). The simulation results also
proved that NPSampEn is more suitable than the other indices for short-term complexity
analysis (Figure 3). Therefore, NPSampEn is more suitable for the short-term assessment
of autonomic nerves and can eliminate the influence of individual differences and short-
term fluctuations.

There are some previous works using the same dataset to detect OSA, although the
number of features and lengths of RR segment were not completely consistent [16,26,34–36].
As can be seen in Table 3, some of the studies needing longer RR segments showed the
performance of their introduced methods [26,34,35]. Reference notes are usually created
every minute to indicate whether apnea occurred in that minute. The 1-min RR segments
had better real-time performance and are more suitable for OSA detection compared with
1000-second and 5-min RR segments [37,38]. In a previous study, Al-Angari et al. analyzed
the 1-min RR segment and calculated the SampEn index and frequency domain index of
each minute segment. The results showed that the HRV analysis of 1-min RR segments
was effective to detect OSA [16]. Some of the other studies also used 1-min RR segments to
detect OSA, but these were based on multi-feature and achieved lower accuracy than that of
our proposed method [16,36]. Our method not only guarantees the real-time performance,
but also achieved high accuracy.

4.2. Method Motivation Analysis

In previous studies, the LF/HF has been considered as a useful linear tool for OSA
screening; however, it is not suitable for analyzing nonlinear and nonstationary sys-
tems [14,15]. Entropy methods have been widely used to identify subtle changes and
complexities in HRV analysis. Classic nonlinear analysis methods including SampEn and
fuzzy entropy have some advantages, but there are some limitations. On one hand, refer-
ence annotations are usually made for every minute with 60–100 RR intervals to determine
the presence or absence of apnea during the corresponding minute [21]. Nevertheless,
SampEn and fuzzy entropy have limitations in short-term HRV analysis for two reasons.
The values of SampEn and fuzzy entropy are undefined when inappropriate parameters
are selected such as an inappropriate r parameter. In addition, the values of SampEn and
fuzzy entropy may not accurately reflect the complexity of the signal (Figure 3f). On the
other hand, the SampEn and fuzzy entropy values depend on the selection of the parameter
r, which is closely related to the standard deviation of the sequence. Nevertheless, the
standard deviation can only reflect the fluctuation of the sequence integrally; it cannot
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fully reflect the subtle fluctuations when quantizing the template distance. In addition, r
values that are too similar will lead to unnecessary redundancy in the values, and increase
the computational expense, while this problem occurs with fuzzy entropy due to distance
quantization. Therefore, NPSampEn was proposed for use in short-term data analysis.

Table 3. Comparison of the classification results between our proposed method and previous works on the Physionet
database.

Reference Method Features Length of RR
Segment Results

Pietrzak et al. [34] Standard deviation of successive
difference single feature 1000 s

ACC = 88.5%
SEN = 96.0%
SPE = 70.0%

Ravelo-García et al. [35] Permutation entropy multi-feature 5 min
ACC = 78.0%
SEN = 64.3%
SPE = 86.5%

Li et al. [26] Variance delay fuzzy
approximate entropy single feature 5 min

ACC = 90.0%
SEN = 87.5%
SPE = 95.0%

Al-Angari et al. [16] Sample entropy m = 1, 2, 3 multi-feature 1 min
ACC = 70.3%
SEN = 69.5%
SPE = 70.8%

Varon et al. [36] support vector machine multi-feature 1 min
ACC = 84.7%
SEN = 84.7%
SPE = 84.7%

Proposed method Nonparametric sample entropy single feature 1 min
ACC = 83.3%
SEN = 77.5%
SPE = 95.0%

The results showed that NPSampEn (83.3%) significantly improved the OSA screening
performance compared to SampEn (68.3%) and LF/HF (73.3%), and successfully quantified
the severity of OSA (p < 0.05). Instead of the constant r value, the r solution of NPSampEn
is defined based on the distances between the template vectors. The cumulative probability
of the template distance determined by the set of r values can more accurately and precisely
quantify the distribution of template distances in each region, and describe the signal
fluctuation more specifically. The advantages of NPSampEn include its sensitivity to subtle
fluctuations in signals, as the set of r values are defined by the unique template distance. As
they constitute a set of adaptive values, the set of r values depends more on the dynamics
of the signal and is less affected by the signal length. Therefore, NPSampEn is an adaptive
method that is suitable for short-term sequences and fully reflects the fluctuations of
sequences; furthermore, it can be used to overcome the influence of individual differences
and identify the subtle fluctuations in physiological signals.

4.3. Physiological Significance

OSA affects the balance of the autonomic nervous system (ANS), thus affecting
HRV [8]. In this study, increased LF/HF values were observed in OSA patients (Table 1,
Figure 4a). This result indicates that the sympathetic nerve is more active in OSA patients.
A number of mechanisms may be responsible for this finding. Relative hypoxemia may act
on central chemoreceptors to increase the sympathetic tone [12].

The regulation of the autonomic nerve to the heart rate is a nonlinear and nonstationary
process, and short-term sequence analysis has a considerable advantage in overcoming
nonstationary interference [39]. Therefore, NPSampEn, a short-term data analysis method,
is suitable for analyzing the complexity of nonstationary systems, which reflect disruptions
of the ANS.

The ANS disorder caused by OSA events is related to individual differences [40];
therefore, it is not appropriate to use the classical time-frequency domain indices for OSA
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screening and quantification. In the calculation of NPSampEn, the adaptive parameter r is
determined according to the physiological signals from different individuals, which can
effectively avoid the influence of individual differences to better estimate the regularity of
the physiological signals. Therefore, NPSampEn provides a new method for the analysis of
HRV in the ANS of OSA patients.

4.4. Limitations

There are some limitations in the present study. First, the approach could face the
problem in a more robust and reliable way and should be done on a larger set of recordings.
More databases should be used to validate the effect of the method in future study. Second,
it should define a training, validation, and testing framework in order to have comparable
performance measures with the literature in future study.

5. Conclusions

In this study, nonparametric sample entropy (NPSampEn) was proposed as a nonlinear
index to evaluate the heart rate variability and complexity of the autonomic nervous
system (ANS) in OSA patients. The results showed that the ANS changes were significantly
different between the normal and OSA groups. The results also showed that the complexity
of ANS decreased significantly as the severity of OSA increased. Therefore, the study
in this paper basically proves that NPSampEn is extremely suitable for OSA short-term
detection and performs well in autonomic nerve complexity analysis.
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