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Abstract: The Sigma-Pi structure investigated in this work consists of the sum of products of an
increasing number of identically distributed random variables. It appears in stochastic processes
with random coefficients and also in models of growth of entities such as business firms and cities.
We study the Sigma-Pi structure with Bernoulli random variables and find that its probability
distribution is always bounded from below by a power-law function regardless of whether the
random variables are mutually independent or duplicated. In particular, we investigate the case in
which the asymptotic probability distribution has always upper and lower power-law bounds with
the same tail-index, which depends on the parameters of the distribution of the random variables.
We illustrate the Sigma-Pi structure in the context of a simple growth model with successively born
entities growing according to a stochastic proportional growth law, taking both Bernoulli, confirming
the theoretical results, and half-normal random variables, for which the numerical results can be
rationalized using insights from the Bernoulli case. We analyze the interdependence among entities
represented by the product terms within the Sigma-Pi structure, the possible presence of memory
in growth factors, and the contribution of each product term to the whole Sigma-Pi structure. We
highlight the influence of the degree of interdependence among entities in the number of terms that
effectively contribute to the total sum of sizes, reaching the limiting case of a single term dominating
extreme values of the Sigma-Pi structure when all entities grow independently.

Keywords: probability theory; power-law; stochastic processes; random multiplicative process;
growth model

1. Introduction

In [1], we introduced the Sigma-Pi structure with identically distributed random
variables as

Xn = c0 +
n

∑
j=1

cj

j

∏
k=1

ξ(ωjk), (1)

where n ≥ 1, cj represents real coefficients and ξ(ωjk) are identically distributed random
variables, with possible deterministic values of labels ωjk in {1, 2, ..., 1

2 n(n + 1)} so that
variables with distinct labels are mutually independent and the ones with equal label
represent repeated variables, having the same value with probability 1. Naturally, such
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Sigma-Pi structure—whose name was given in reference to the mathematical symbols of
sum and product that appear in its definition—is itself a random variable and its conver-
gence depends on the specification of the distribution of variables ξ and the coefficients cj.
For n→ ∞, we omit the index n and identify it just by X.

A first inspiration for proposing the Sigma-Pi structure is the (univariate) stochastic
recurrence equation:

s(t) = ξ(t)s(t− 1) + ζ(t), (2)

where ξ(t) and ζ(t) are random variables, whose solution has the following Sigma-Pi
structure (take for simplicity s(0) = ζ(t) = c, ∀t, and c real constant):

s(t) = c +
t

∑
j=1

c
j

∏
k=1

ξ(t− j + k); (3)

observe that here ωjk = t− j + k and we have ωjk = ωj′k′ for k− j = k′ − j′.
Equation (2) has been extensively studied (see in [2]) and one of its most interesting fea-

tures, under general conditions, is the heavy-tailed—in fact, power-law-tailed—probability
distribution for s(t) even for light-tailed variables ξ(t) and ζ(t), a result proven by Kesten
and Goldie [3,4]. Aside the pure mathematical interest, this equation appears in stochastic
processes with random coefficients [5–8], particularly in the ARCH/GARCH processes
((Generalized) Autoregressive Conditional Heteroskedasticity) for the modeling of market
price dynamics [9–12].

Being referred as random multiplicative process or Kesten process [13–15], Equation (2)
and its variations also appear in the modeling of growth of entities, either biological
populations or in social context, e.g., companies and cities sizes [16–20]. The presence
of the Kesten process in such growth models is explained by two basic ingredients: the
Gibrat’s law of proportional growth—the growth of an entity is proportional to its current
size but with stochastic growth rates independent of it [21]—and a surviving mechanism
to prevent the collapse to zero [14]. One of the simplest surviving mechanism is the
introduction of an additive term to the basic Gibrat’s law, which results in Equation (2).

Equation (3), derived from the Kesten process, is only a specific case of the general
Sigma-Pi structure, where random variables ξ of same label are repeated in different
product terms (for example, variable ξ(t) occurs in all product terms). From the definition
of the Sigma-Pi structure in Equation (1), numerous other configurations are possible.
Mikosch et al. studied the total independence case, with each random variable ξ of a
given label occurring only once, meaning all involved random variables are independent,
and proved that it also has a power-law-tailed probability distribution [22]. In [1], we
also considered a mixture between the total independence and the Kesten case; based on
numerical simulations and heuristic arguments, we conjectured that the Sigma-Pi structure
presents power-law-tailed probability distribution of same tail-index for any case provided
there is no repeated variable within a single product term. Those observations suggest
that the power-law tail is a general feature of the Sigma-Pi structure, with the Kesten
process being a particular instance. The study of such structure can then contribute to our
understanding of the emergence of power-law-tailed probability distributions, in a similar
way that the central limit theorem explains the normal distribution arising from the sum of
random variables.

Here, we explore the Sigma-Pi structure defined in Equation (1) with Bernoulli random
variables. The investigation of the simple Bernoulli random variables in the next section
allows us to obtain exact results for the general Sigma-Pi structure, a particular one being
that, for any configuration of random variables, it has a distribution bounded from below
by a power-law function. Focusing on the case with no repeated variable within a single
product term, we further show that the asymptotic probability distribution of the Sigma-
Pi structure always lies between two power-laws of same tail-index. In Section 3, we
place the Sigma-Pi structure in the context of a prototypical model for growth of entities
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which we proposed in [1]; we illustrate the results obtained in the previous section by
examining entities possibly growing interdependently and present an elementary example
of temporal dependence. Despite the simplicity of the Bernoulli random variable, its
study provides useful insights for other distributions, such as for half-normally distributed
random variables that we analyze in Section 4 also in the growth model context and derive
numerical results analogous to the Bernoulli case. We summarize and make our final
comments in Section 5.

2. Sigma-Pi Structure with Bernoulli Random Variables
2.1. General Result

In this section, we study the Sigma-Pi structure with c0 = 0, cj = 1, ∀j > 0, and
ξ(ωjk) = θη(ωjk), η ∼ Bernoulli(p), i.e., η = 1 with probability p and η = 0 with
probability 1− p. We then can write Equation (1) as

Xn =
n

∑
j=1

θ jYj, (4)

where Yj = ∏
j
k=1 η(ωjk), consequently having Yj ∼ Bernoulli(pγ(j)), not necessarily mutu-

ally independent due to the possible repetition of random variables η, with
γ(j) ∈ {1, 2, ..., j} being the number of distinct/independent random variables η in the
product term Yj.

There are two kinds of dependence due to the repetition of variables η (identified by
labels ωjk):

(a) within-dependence: repeated variables η within a single product term Yj, i.e.,
ωjk = ωjk′ , k 6= k′. For example, in Y3 = η(1)η(1)η(2) the variable η(1) appears
twice (ω31 = ω32 = 1). In the extreme case in which all product terms have all
variables η distinct, we say that the Sigma-Pi structure has within-independence;

(b) between-dependence: repeated variables η in different product terms Yj and Yj′ ,
i.e., ωjk = ωj′k′ , j 6= j′. For example, Y2 = η(1)η(2) and Y3 = η(2)η(3)η(4) share
the variable η(2) (ω22 = ω31 = 2). In the extreme case in which any pair of
product terms have all variables η distinct, we say that the Sigma-Pi structure has
between-independence.

We show here that, for any kind of within- and between-dependence, the complemen-
tary cumulative probability distribution P(Xn ≥ x) is bounded from below by a power-law
function. Imposing the condition θ j > ∑

j−1
k=1 θk, ∀j =⇒ θ > 2 or θ ≥ 2, if j finite (see

Appendix A for case θ > 1), we have that the probability that Xn is greater than or equal to
θ j is the complementary probability that Xn is less than θ j, which happens when all terms
θkYk that could be greater than or equal to θ j are zero, that is,

P(Xn ≥ x = θ j) = 1− P

(
n⋂

k=j

(Yk = 0)

)

= 1− P(Yj = 0)
n

∏
k=j+1

P

(
Yk = 0

∣∣∣∣∣ k−1⋂
l=j

(Yl = 0)

)
,

(5)

We indicate by (η) the irreducible set of variables η generating the product terms
Yj,Yj+1, ..., Yk−1, i.e., the set of all variables η with distinct labels in the considered product
terms. The event

⋂k−1
l=j (Yl = 0) (which can be thought of as a “macrostate”, in the lan-

guage of Statistical Physics) is equivalent to the union of all possible values of (η) that
satisfy the condition of the event (“microstates” corresponding to the “macrostate”). We
denote the set of all such (η) by {(η)}. For example, the irreducible set of variables η
generating the product terms Y2 and Y3, with Y2 = η(1)η(2) and Y3 = η(2)η(2)η(3), is
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(η) = (η(1), η(2), η(3)); if the “macrostate” is (Y2 = 0) ∩ (Y3 = 0), the set of all “mi-
crostates” is {(η)} = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 0, 1)}. Then, the terms in the
product in Equation (5) can be written as

P

(
Yk = 0

∣∣∣∣∣ k−1⋂
l=j

(Yl = 0)

)
= P

(
Yk = 0

∣∣∣∣∣ ⋃
{(η)}

(η)

)

=

P
(⋃

{(η)}((Yk = 0) ∩ (η))

)
P
(⋃

{(η)}(η)

) .

(6)

As events in {(η)} are disjoint, so are events ((Yk = 0) ∩ (η)), (η) ∈ {(η)}, and the
numerator of Equation (6) reads as

P

( ⋃
{(η)}

((Yk = 0) ∩ (η))

)
= ∑
{(η)}

P(Yk = 0 | (η))P((η)). (7)

Observing each term in the sum in Equation (7), we have the bounds P(Yk = 0) ≤
P(Yk = 0 | (η)) ≤ 1. They corresponds to two extreme cases: (lower) Yk does not share
any variable η with any Yl , j ≤ l ≤ k− 1, and (upper) Yk shares l variables η with some Yl ,
j ≤ l ≤ k− 1. Thus, the terms in the product in Equation (5) also have the bounds

P(Yk = 0) ≤ P

(
Yk = 0

∣∣∣∣∣ k−1⋂
l=j

(Yl = 0)

)
≤ 1. (8)

Using Equation (8) in Equation (5) and reminding that Yj ∼ Bernoulli(pγ(j)), we arrive
at

pγ(j) ≤ P(Xn ≥ x = θ j) ≤ 1−
n

∏
k=j

(1− pγ(k)). (9)

Considering all possible within-dependence cases (reflected in the function γ), the
minimum value for the lower bound in Equation (9) occurs for within-independence:
γ(j) = j, and the maximum value for the upper bound occurs for total within-dependence:
γ(k) = 1. Then,

pj ≤ P(Xn ≥ x = θ j) ≤ 1− (1− p)n−j+1. (10)

Defining α = − log p
log θ such that pj = x−α for x = θ j and letting n → ∞ (changing

notation Xn to X):

x−α ≤ P(X ≥ x = θ j) ≤ 1. (11)

For other values of x, we use the property of the complementary cumulative probabil-
ity:

P(X ≥ x = θ j) ≥ P(X ≥ x; θ j ≤ x ≤ θ j+1) ≥ P(X ≥ x = θ j+1), (12)

so that if P(X ≥ x = θ j) = rx−α, then rθ−αx−α ≤ P(X ≥ x) ≤ rθαx−α (see graphical
derivation in Figure 1: values x = θ j and the corresponding probabilities P(X ≥ x = θ j)
define regions where the probabilities for other values of x must occur).
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Figure 1. Representation in logarithmic scales of a complementary cumulative distribution having
the law P(X ≥ x = θ j) = rx−α, from a given j (black symbols). Values for θ j ≤ x ≤ θ j+1 can only
occur in the red shaded areas, which define the bounds rθ−αx−α ≤ P(X ≥ x) ≤ rθαx−α (gray lines).

Therefore, for any within- and between-dependence, we obtain (observing that
θ−α = p, for α = − log p

log θ )

P(X ≥ x) ≥ px−α, (13)

that is, the Sigma-Pi structure with Bernoulli random variables has a distribution bounded
from below by a power-law regardless of the type of within- and between-dependence.
Observe that such bound is also valid for Xn, but the support of the distribution is bounded
when n is finite.

2.2. Within-Independence

We can improve the bounds for P(X ≥ x) if we specify the within-dependence. We
select the within-independence, γ(j) = j, ∀j, and consider the two following between-
dependence cases:

(i) between-independence: ωjk 6= ωj′k′ , j 6= j′ =⇒ Yj ∼ Bernoulli(pj), mutually
independent.

P(ind)
[ind] (Xn ≥ x = θ j) = 1−

n

∏
k=j

(1− pk)

= 1− (pj; p)n−j+1,

(14)

where the superscript (.) indicates the nature of the between-dependence, the
subscript [.] indicates the nature of the within-dependence, and (a; p)n = ∏n−1

k=0 (1−
apk) is the q-Pochhammer symbol [23]. For n→ ∞, using the expansion (a; p)∞ =

∑∞
k=0

(−1)k pk(k−1)/2

(p;p)k
ak, we have

P(ind)
[ind] (X ≥ x = θ j) ∼ 1

1− p
x−α. (15)

Then, for large x, using Equation (12):

p
1− p

x−α ≤ P(ind)
[ind] (X ≥ x) ≤ 1

p(1− p)
x−α. (16)

(ii) Kesten between-dependence: ωjk = ω(j−1)k, ∀j > 1, k =⇒ Yj = Yj−1η(ωjj),
∀j > 1.
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Possible values of X are X = ∑
j
k=1 θk, with P(kes)

[ind] (X ≥ x = ∑
j
k=1 θk) = P(kes)

[ind] (X ≥
x = θ j) = pj. Then,

P(kes)
[ind] (X ≥ x = θ j) = x−α, (17)

and (using Equation (12))

px−α ≤ P(kes)
[ind] (X ≥ x) ≤ 1

p
x−α. (18)

Note that for Kesten between-dependence there are restrictions on possible within-
dependence: γ(1) = 1; γ(j) = γ(j− 1) + δ(j), δ(j) ∈ {0, 1}, ∀j > 1. For within-
independence (δ(j) = 1, ∀j > 1), it reproduces the solution of the Kesten process.

Now observe that, for within-dependence compatible with Kesten between-dependence,
in particular within-independence, the two between-dependence cases above correspond
to the bounds of Equation (8): (i) P(ind)(Yk = 0|⋂k−1

l=j (Yl = 0)) = P(Yk = 0), because Yk

and Yl , j ≤ l ≤ k− 1, are independent, and (ii) P(kes)(Yk = 0|⋂k−1
l=j (Yl = 0)) = 1, because

Yk contains all variables η in Yl , j ≤ l ≤ k− 1. Therefore,

P(kes)(X ≥ x = θ j) ≤ P(X ≥ x = θ j) ≤ P(ind)(X ≥ x = θ j). (19)

From bounds in Equations (16) and (18), for within-independence and large x:

px−α ≤ P[ind](X ≥ x) ≤ 1
p(1− p)

x−α, (20)

i.e., given within-independence, probabilities P[ind](X ≥ x) for large x always lie between

power-laws with the same tail-index α = − log p
log θ , regardless of the between-dependence

(note that α follows Kesten’s relation 〈|ξ|α〉 = 1 [2–4]). A similar result in the context of the
Kesten process is known for Kesten between-dependence and random variables whose
logarithms have arithmetic distributions (conditioned to non-zero values) [24], which
is the case of Bernoulli random variables; here, we demonstrate that it is valid for any
between-dependence case, although restricted to the Bernoulli case.

2.3. Max-Pi Structure

The above results for Sigma-Pi can be extended to related structures. An example is
the Max-Pi structure:

Xmax
n = max

{
c0, max

1≤j≤n

[
cj

j

∏
k=1

ξ(ωjk)

]}
. (21)

For Bernoulli random variables, with the same settings we used for the Sigma-Pi
structure, it reads

Xmax
n = max

1≤j≤n
(θ jYj), (22)

with possible values Xmax
n = θ j. For θ > 2, we have that P(Xmax

n ≥ x = θ j) = P(Xn ≥ x =
θ j) and previous results hold. The Max-Pi structure has potential applications in the theory
of records [25].

3. Growth Model with Bernoulli Random Variables
3.1. Growth-or-Death Model

We now revisit the growth model proposed in [1] based on a simplification of growth
mechanisms considered in [26–28], in the special case of successive births of new entities.
It consists of a set of entities of sizes sj evolving according to Gibrat’s law and one entity
born with initial size cj at each time step. Each entity size sj, j ≥ 1, at time t is given by
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sj(t) =


0; t < j− 1,
cj; t = j− 1,
ξ(ωjt)sj(t− 1); t ≥ j.

(23)

The solution for t ≥ j:

sj(t) = cj

t

∏
k=j

ξ(ωjk). (24)

The sum X(t) of sizes of all existing entities at time t, excluding the new-born entity
(which only corresponds to a constant term), has a Sigma-Pi structure:

X(t) =
t

∑
j=1

sj(t)

=
t

∑
j=1

cj

j

∏
k=1

ξ(ωjk)

(25)

(note the index transformations: j→ t− j+ 1 and k→ t− k+ 1). The sum of sizes of entities
is the time-evolving quantity of interest for which we seek the stationary distribution, and
it has different meaning depending on the investigated system, representing, for example,
“the total capitalization of a country, when entities are firms, or the total biomass of an
ecosystem for biological populations” [1].

By taking Bernouli random variables ξ(ωjk) = θη(ωjk), η ∼ Bernoulli(p), we generate
the Growth-or-Death model: entities either grow by a factor θ or die. Furthermore, by
choosing cj = 1, ∀j, we impose that new entities are born with unit size. Dependence
among entities can be specified using the associated between-dependence of the Sigma-Pi
structure. For the two extreme cases of between-dependence, we have the interpreta-
tions: (i) between-independence: each entity grows or dies independently of others, and
(ii) Kesten between-dependence: factors affecting growth or death are shared by all entities
so that existing entities grow or die all together.

Figures 2 and 3 show the complementary cumulative distributions numerically con-
structed from time sampling of the growth process for between-independence and Kesten
between-dependence, respectively, considering within-independence and different values
of parameters θ and p. The distributions are in agreement with the theoretical results in
previous section, within the bounds in Equations (16) and (18) and obeying the predicted
tail-indices α = − log p

log θ . Note that the symbols in the figures refer to the possible values of

X; in the case of Kesten between-dependence, X = ∑
j
k=1 θk, j ≥ 1.
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Figure 2. Numerical construction of the complementary cumulative distribution P(ind)
[ind] (X ≥ x)

of the Sigma-Pi X(t), t large, from the growth model with Bernoulli random variables for within-
and between-independence with (a) θ = 2, p = 0.25; (b) θ = 2, p = 0.5; (c) θ = 2, p = 0.707;
(d) θ = 3, p = 0.111; (e) θ = 3, p = 0.333; (f) θ = 3, p = 0.577; (g) θ = 4, p = 0.0625; (h) θ = 4,
p = 0.25; and (i) θ = 4, p = 0.5. Gray lines show bounds for the distribution given by Equation (16):

p
1−p x−α ≤ P(ind)

[ind] (X ≥ x) ≤ 1
p(1−p) x−α, with α = 2 in the left column, α = 1 in the middle column

and α = 0.5 in the right column.
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Figure 3. Numerical construction of the complementary cumulative distribution P(kes)
[ind] (X ≥ x)

of the Sigma-Pi X(t), t large, from the growth model with Bernoulli random variables for within-
independence and Kesten between-dependence with (a) θ = 2, p = 0.25; (b) θ = 2, p = 0.5; (c) θ = 2,
p = 0.707; (d) θ = 3, p = 0.111; (e) θ = 3, p = 0.333; (f) θ = 3, p = 0.577; (g) θ = 4, p = 0.0625;
(h) θ = 4, p = 0.25; and (i) θ = 4, p = 0.5. Gray lines show bounds for the distribution given by

Equation (18): px−α ≤ P(kes)
[ind] (X ≥ x) ≤ 1

p x−α, with α = 2 in the left column, α = 1 in the middle
column and α = 0.5 in the right column.

3.2. Mixed between-Dependence

In order to investigate examples of intermediary between-dependence cases, we take
direct mixtures of between-independence and Kesten between-dependence. For this, we
randomly assign each newborn entity to one of two groups: the independence group, in
which members grow or die independently, or the Kesten dependence group, in which
existing members grow or die all together. In practice, we use another Bernoulli random
variable with parameter q to decide the membership of each entity, fixing q = 1 for pure
between-independence and q = 0 for pure Kesten between-dependence and referring to
the mixed cases as q-between-dependence.

Figure 4 depicts the complementary cumulative distributions from time sampling
of the growth process taking within-independence and q-between-dependence. To check
the transition from pure Kesten between-dependence (q = 0) to between-independence
(q = 1), we choose the values q = 0.1, 0.25, 0.5, 0.75, and 0.9. Naturally, the exact values
of probabilities differ for each value of parameter q (see zoom-in panel (b)) but bounds in
Equation (20) are respected, including the same tail-index α = − log p

log θ for all cases.
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We point that, as the group assignment is stochastic for 0 < q < 1 and we perform
time sampling, the obtained results are not from a pure Sigma-Pi structure but from an
ensemble of q-between-dependence structures with weights privileging the ones having
fraction q of independent entities. Nevertheless, the distribution from this model with two
dependence groups respects the bounds established in the previous section because each
member of this ensemble also obeys them.

Figure 4. Numerical construction of the complementary cumulative distribution P(q)
[ind](X ≥ x) of

the Sigma-Pi X(t), t large, from the growth model with Bernoulli random variables for within-
independence and q-between-dependence with θ = 2, p = 0.5 and q = 0 (red: Kesten between-
dependence), q = 0.1 (orange), q = 0.25 (yellow), q = 0.5 (green), q = 0.75 (violet), q = 0.9 (blue),
and q = 1 (black: between-independence). Gray lines show bounds for the distribution given by

Equation (20): px−α ≤ P(q)
[ind](X ≥ x) ≤ 1

p(1−p) x−α, with α = 1. (b) is a zoomed portion of (a).

3.3. Within-Dependence as Temporal Dependence

Making the correspondence between the considered growth model and the mathe-
matical Sigma-Pi structure, the dependence among entities is associated with the between-
dependence, as discussed above. Now, the other kind of dependence, the within-dependence,
is related to the temporal dependence (memory) of the random variable η (∼ growth factor).
Exemplifying this connection, we study an instance of the class of κ-within-dependence,
in which the values of all new variables η generated in a given time step are repeated in
the next κ steps, respecting the constraints on the repetition of variables of the selected
between-dependence. Case κ = 0 corresponds to the within-independence examined
previously. We focus here on the case κ = 1, which can produce the following functions γ:

γa(j) =

{
j
2 ; j even,
j+1

2 ; j odd;
(26)

γb(j) =

{
j
2 + 1; j even,
j+1

2 ; j odd
(27)

Both functions obey the restrictions for Kesten between-dependence: γ(1) = 1;
γ(j) = γ(j− 1) + δ(j), ∀j > 1. Therefore, we can use Equation (19) to determine bounds
for the distribution P[κ=1](X ≥ x). We have that the maximum value of P(ind)

[κ=1](X ≥ x = θ j)

occurs for γa(j) and the minimum value of P(kes)
[κ=1](X ≥ x = θ j) occurs for γb(j). Thus,

P(kes)
[γb(j)](X ≥ x = θ j) ≤ P[κ=1](X ≥ x = θ j) ≤ P(ind)

[γa(j)](X ≥ x = θ j), (28)

resulting in (for large x)

p2x−α/2 ≤ P[κ=1](X ≥ x) ≤ 1
p

1 + p
1− p

x−α/2. (29)
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Values of P[κ=1](X ≥ x), x large, are also bounded by two power-laws with the same

tail-index, but with tail-index α
κ+1 = α

2 , α = − log p
log θ . We can intuitively understand this

result by comparing this 1-within-dependence case to the within-independence Sigma-Pi
structure with random variables ξ = (θη′)2 = θ2η, η′, η ∼ Bernoulli(p). Such Sigma-Pi
resembles the solution of the 1-within-dependence growth process and also produces
asymptotic power-law bounds with tail-index α′ = − log p

log θ2 = − 1
2

log p
log θ .

Figure 5 illustrates the complementary cumulative distributions for 1-within-
independence and q-between-dependence using the same parameters as Figure 4. For all
q-between-dependence cases, the tail-index of the bounds follows the predicted value in
Equation (29), being equal to half of the value for the within-independence case.

Figure 5. Numerical construction of the complementary cumulative distribution P(q)
[κ=1](X ≥ x) of

the Sigma-Pi X(t), t large, from the growth model with Bernoulli random variables for κ-within-
dependence, κ = 1, and q-between-dependence with θ = 2, p = 0.5 and q = 0 (red: Kesten
between-dependence), q = 0.1 (orange), q = 0.25 (yellow), q = 0.5 (green), q = 0.75 (violet), q = 0.9
(blue), and q = 1 (black: between-independence). Gray lines show bounds for the distribution given

by Equation (29): p2x−α/2 ≤ P(q)
[κ=1](X ≥ x) ≤ 1

p
1+p
1−p x−α/2, with α = 1. Panel (b) is a zoomed portion

of panel (a).

Temporal correlations in the Kesten process were studied in [29,30] by taking Gaussian
random variables with exponentially decreasing autocorrelation function. The main finding
was that the tail-index of the power-law-tailed distribution is inversely proportional to the
correlation time, which is aligned with our results. Although this type of correlation does
not fit in our definition for Sigma-Pi structure—each random variable is either independent
or equal to another—the same intuition of re-normalizing the multiplicative random factors
applies.

3.4. Contribution of Entities to the Total Sum

The picture suggested by the theoretical and numerical results above is that changing
the within-dependence can alter the tail-index of the distribution power-law bounds,
noticing that this type of dependence dictates the individual distribution of the product
terms Yj being summed. However, for a fixed within-dependence, it seems that the tail-
index remains the same for any between dependence (proved for within-dependence in
Section 2).

In spite of having the same asymptotic power-law behavior, expressed in the un-
changed tail-index, we know from [1] that “the nature of the construction of the events
populating the tail differs” for each type of between-dependence due to the interaction
between product terms/growing entities. We characterize this difference by using the
Herfindhal index, commonly applied in finance as a measure of market concentration [31].
The Herfindhal index is also known, in statistical physics, as the participation ratio, and
it is in particular used to quantify the heterogeneity of configurations in spin glasses and
other ill-condensed matter systems [32]. In our growth model context, it is defined as the
weighted average of the contribution of each entity to the total sum of sizes:
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H(t) =
t

∑
j=1

( sj(t)
X(t)

)2

=
∑t

j=1(θ
jYj)

2

(∑t
j=1 θ jYj)2

.

(30)

The interesting quantity is the inverse of the Herfindahl index H−1, which provides a
measure of the number of entities actually important in the total sum. In particular, if
X(t) = θ j, then H−1 = 1, i.e., only one entity contributes to the total sum; not possible
for the considered Bernoulli case, but if sj(t) =

X(t)
t , ∀j, then H−1 has its maximum value

H−1 = t, meaning a “democratic” contribution of all entities.
We plot in Figure 6 the inverse of the Herfindahl index H−1 as a function of the total

sum of sizes X obtained by time sampling the Growth-or-Death model, t large, for within-
independence and q-between-dependence. We inspect the transition from pure Kesten
between-dependence (q = 0) to between-independence (q = 1), taking the intermediary
values q = 0.25, 0.5, and 0.75. For Kesten between-dependence, values of H−1 correspond
to the possible values X = ∑

j
k=1 θk and converge to a constant different of 1 for large X

(in this case, H−1 ∼ 3, for θ = 2). For intermediary cases, other values of X are now
accessible, which reflects in a larger set of possible values of H−1, but with the Kesten
between-dependence case being an upper bound for them. As parameter q increases,
meaning an increase in the fraction of independent entities, values of H−1 close to the
bound H−1 = 3 decrease in the region of large X until the limiting between-independence
case where H−1 = 1 for large X, i.e., just one entity contributes significantly to the total
sum X. Because large values of X correspond to the tail of the probability distribution, the
asymptotic power-law behavior in the between-independence case is due to a single entity
(of course not the same entity for all large X) while for the Kesten between-dependence
case there are three entities—the three oldest living ones—significantly contributing to the
total sum and thus to the tail behavior.

For the extreme between-dependence cases, we can make sense of those results by
analyzing the possible values of H(X) and the associated discrete probability distribution.
Because there is no ambiguity in the value of X when θ ≥ 2, for each X there is a unique
H = H(X) and then the probability P(H(X); X) of the H(X) associated with a specific X
is equal to the probability P(X) of this X. Considering within-independence, we have

(i) between-independence: possible values of X are X = θ j +∑k∈Aj
θk, Aj ⊂ {1, 2, ..., j−

1}, and the corresponding probabilities are computed by setting Yk = 1 if θk is
used to compose X and Yk = 0 if otherwise (see Equation (4)):

P(ind)
[ind]

(
X = θ j + ∑

k∈Aj

θk

)
= P(Yj = 1)

[
∏

k∈Aj

P(Yk = 1)

][
∏

k∈AC
j

P(Yk = 0)

]

×
[

t

∏
k=j+1

P(Yk = 0)

]

= (p; p)t
pj

1− pj ∏
k∈Aj

pk

1− pk .

(31)

When θ = 1 this corresponds to a Poisson-binomial distribution [33,34], and it
is the probability distribution of the number of existing entities at time t in this
independence case.
The particular values X = θ j give H(X = θ j) = 1. For large X, Herfindhal index
H(X) = 1 (or H(X) ≈ 1) has a small probability but larger than other values:
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Figure 6. Numerical construction of the relationship between the inverse Herfindahl index H−1

defined from Equation (30) and values of the Sigma-Pi X(t), t large, from the growth model with
Bernoulli random variables for within-independence and q-between-dependence with θ = 2, p = 0.5
and (a) q = 0 (Kesten between-dependence), (b) q = 0.25, (c) q = 0.5, (d) q = 0.75, (e) q = 1
(between-independence), and (f) all previous q. Horizontal gray lines correspond to H−1 = 1.

P(ind)
[ind]

(
X = θ j + ∑

k∈Aj

θk

)
= P(ind)

[ind] (X = θ j) ∏
k∈Aj

pk

1− pk , (32)

so that, given the occurrence of a large X, the probability of H(X) = 1 is larger
than the probability of H(X) 6= 1.

(ii) Kesten between-dependence: possible values of X are X = ∑
j
k=1 θk and the corre-

sponding probabilities are

P(kes)
[ind]

(
X =

j

∑
k=1

θk

)
=

{
pj(1− p); j < t,
pj; j = t.

(33)

Because of the restricted values of X in this Kesten case, the possible values of
H(X) can be simply expressed as (see Equation (30))

H

(
X =

j

∑
k=1

θk

)
=

θ j + 1
θ j − 1

θ − 1
θ + 1

∼ θ − 1
θ + 1

.

(34)

If θ = 2, H−1 ∼ 3, as observed in Figure 6.

4. Growth Model with Half-Normal Random Variables

We conjecture that analogous results to the ones obtained for the Growth-or-Death
model (and the corresponding Sigma-Pi structure with Bernoulli random variables) hold for
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a wider class of random variables. We cite as an initial justification the already mentioned
works by Kesten and Goldie [3,4] and Mikosch et al. [22], which are related to the Sigma-Pi
structure with within-independence and the two extreme cases of between-dependence:
Kesten and independence, respectively. In those cases, the asymptotic power-law behavior
of the Sigma-Pi distribution is present when the random variables ξ are such that there
exists a positive number α satisfying 〈|ξ|α〉 = 1. Here, we provide additional evidence
by numerically studying the same growth model of the previous section but taking half-
normally distributed random variables, i.e., ξ = |ξ ′|, ξ ′ ∼ N(0, θ2).

A difference from the Bernoulli case is that for half-normal random variables there is
no death and the number of entities increases endlessly. To make numerical simulations
possible, we introduce a rule for death in the form of a threshold: entities with size
sj(t) < 10−10 are removed. We illustrate in Figure 7 the complementary cumulative
distribution time sampled from the growth model for within-independence and between-
independence and Kesten between-dependence. The tail-index is given by the Kesten’s
relation 〈|ξ|α〉 = 1, which for half-normal distribution can be expressed implicitly as θ
being a function of α [35]:

θ =

[
2

α
2 Γ( α+1

2 )√
π

]− 1
α

. (35)

We show results for θ = 1 (α = 2), θ = 1.253 (α = 1), and θ = 1.479 (α = 0.5). It
is interesting to observe that for α = 2, tail values for the Kesten between-dependence
are larger than for between-independence, i.e., the scale factor for the Kesten between-
dependence is larger, deviating from the Bernoulli case result in Equation (19). For α = 1
and α = 0.5, tail for between-independence larger than for Kesten between-dependence is
recovered.

Figure 7. Numerical construction of the complementary cumulative distributions P(ind)
[ind] (X ≥ x) and

P(kes)
[ind] (X ≥ x) of the Sigma-Pi X(t), t large, from the growth model with half-normal random variables

for within-independence and between-independence (black) and Kesten between-dependence (red)
with (a) θ = 1, (b) θ = 1.253, and (c) θ = 1.479. Gray lines show f (x) = x−α, with α = 2 in the left
graph, α = 1 in the middle graph and α = 0.5 in the left graph.

We proceed with the comparison and consider the q-between-dependence, consisting
of intermediary cases between independence (q = 1) and Kesten dependence (q = 0).
Figure 8 shows the complementary cumulative distribution for intermediary parameter
values q = 0.1, 0.25, 0.5, 0.75, and 0.9. Even with the commented inversion regarding
the tails of the between-independence and Kesten between-dependence, all intermediary
cases fall in between the extremes corresponding to between-independence and Kesten
between-dependence, so that they also present power-law tail with same tail-index (but the
scale factor varies from one extreme to another as q increases). These bounds associated
with independence and Kesten dependence may provide a path to prove that any within-
independence Sigma-Pi structures present power-law tails for a wider class of random
variables, as the power-law tails for the extremes cases are already well established.
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Figure 8. Numerical construction of the complementary cumulative distribution P(q)
[ind](X ≥ x) of

the Sigma-Pi X(t), t large, from the growth model with half-normal random variables for within-
independence and q-between-dependence with θ = 1 and q = 0 (red: Kesten between-dependence),
q = 0.1 (orange), q = 0.25 (yellow), q = 0.5 (green), q = 0.75 (violet), q = 0.9 (blue), and q = 1 (black:
between-independence). Gray line shows f (x) = x−α, with α = 2. Panel (b) is a zoomed portion of
panel (a).

For within-dependence, we again consider the κ-within-dependence, κ = 1, and show
the results in Figure 9 taking q-between-dependence. For all values of q, the tail-index
of the tails is half of the within-independence one, similar to the Bernoulli case and also
rationalized by the renormalization of the random variables. Compare the inversion of
scale factors for each q with Figure 8.

Figure 9. Numerical construction of the complementary cumulative distribution P(q)
[κ=1](X ≥ x)

of the Sigma-Pi X(t), t large, from the growth model with half-normal random variables for κ-
within-dependence, κ = 1, and q-between-dependence with θ = 1 and q = 0 (red: Kesten between-
dependence), q = 0.1 (orange), q = 0.25 (yellow), q = 0.5 (green), q = 0.75 (violet), q = 0.9 (blue),
and q = 1 (black: between-independence). Gray line shows f (x) = x−

α
2 , with α = 2. Panel (b) is a

zoomed portion of panel (a).

Finally, we characterize the number of contributing entities to the total sum using
the Herfindhal index. In Figure 10, we observe the transition from pure Kesten between-
dependence to between-independence. For half-normal random variables, there is the pos-
sibility of distinct values of H−1 for the same X and now the Kesten between-dependence
can have a diversity of value H−1 for large X, opposed to a single constant; but as in the
Bernoulli case, it still cannot take values H−1 = 1 or close to it for X large because of the
strong dependence between the entities (they share the same growth factors): if one entity
is large, its close temporal neighbors are also large. As q increases, value H−1 = 1 for large
X starts materializing in the numerical constructions while larger values H−1 for large X
become less probable to appear in the simulations as also do small values of X. The limit
is the between-independence, for which, following the Bernoulli case, the probability of
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H−1 = 1 given large X to be produced in the simulations is much larger than of H−1 6= 1,
that is, here as well only one entity contributes to a large sum.

Figure 10. Numerical construction of the relationship between the inverse Herfindahl index H−1

and values of the Sigma-Pi X(t), t large, from the growth model with half-normal random variables
for within-independence and q-between-dependence with θ = 1 and (a) q = 0 (Kesten between-
dependence), (b) q = 0.25, (c) q = 0.5, (d) q = 0.75, (e) q = 1 (between-independence), and (f) all
previous q. Horizontal gray lines correspond to H−1 = 1.

5. Final Remarks

The main part of this work was devoted to the study of the Sigma-Pi structure with
Bernoulli random variables. As a general theoretical result, we showed that, for any kind
of within- and between-dependence, the Sigma-Pi structure always presents a distribu-
tion bounded from below by a power-law function. As a particular result for within-
independence, we demonstrated that, for any between-dependence, the complementary
cumulative distribution of the corresponding Sigma-Pi is bounded by power-law functions
with the same tail-index given by the Kesten’s relation 〈|ξ|α〉 = 1, which confirms our
previous conjecture [1] for this particular case of Bernoulli random variables.

We then considered the Sigma-Pi structure as the solution of a simple growth model
in which entities are successively born and the quantity of interest is the sum of their sizes.
For Bernoulli random variables—Growth-or-Death model—we analyzed the interaction
between entities for the cases of between-independence, Kesten between-dependence,
and mixtures of both (q-between-dependence). Agreeing with theory, we found that the
mixed cases are always in between the independence and Kesten cases and thus bounded
by power-laws. When introducing temporal dependence of the growth factors through
within-dependence, the tail-index was modified but it remained the same for all q-between-
dependence cases, suggesting that, given a within-dependence, no between-dependence
is strong enough to alter the asymptotic power-law behavior of the distribution of a
Sigma-Pi structure. However, notwithstanding the same tail-index, the construction of the
distribution tail differs for each between-dependence case: for Kesten between-dependence,
which corresponds to the strongest interdependence among entities, the number of entities
effectively contributing to tail events is maximum, and for between-independence, in the
occasion of an extreme event, a single entity in the sum is overwhelmingly larger than all
the others and it alone is responsible for a given tail event.
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Taking Bernoulli random variables is one of the simplest cases but it provides hints
for more general situations. We restate our conjecture that most of the results concerning
the presence of a power-law tail and its connections with the types of dependence of
the constitutive random variables hold for a wider class of random variables. We used
half-normally distributed random variables to exemplify it. In particular, we observed
that the tails of the distributions for q-between-dependence are always bounded by the
independence and Kesten dependence cases, both already proven to have asymptotic
power-law behavior with the same tail-index.

We conclude by indicating a direct generalization of the Sigma-Pi structure, the Sigma-
Sigma-Pi structure:

Xnm = c0 +
n

∑
j=1

m

∑
k=1

cjk

j

∏
l=1

ξ(ωjkl). (36)

The Sigma-Sigma-Pi includes the Sigma-Pi but allows more than one product term
of the same order, i.e., with same number of multiplicative random factors. In the same
way that the univariate Kesten process has a solution following a Sigma-Pi structure,
the components of the solution of the multivariate Kesten process can be represented
as a Sigma-Sigma-Pi. In addition to multiplicative processes, it is also the solution of
a generalized version of the studied growth model, with the possibility of more than
one entity born at each time step. Results on the Sigma-Pi structure and its extensions,
either as mathematical objects on their own or for modeling time series and growth of
entities in diverse fields, can broaden our comprehension on the construction of particular
power-law-tailed distributions.
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Appendix A. Sigma-Pi with Bernoulli Random Variables (θ > 1)

Consider the Sigma-Pi structure in Equation (4) and the condition θ j > θ j−1, ∀j =⇒
θ > 1. For the particular values x = θ j, the probability P(Xn ≥ x) is greater or equal to the

case studied in the main text because now we can have some ∑
j′′

k=j′ θ
k > θ j, j′ < j′′ < j:

P(Xn ≥ x = θ j) ≥ 1− P(Yj = 0)
n

∏
k=j+1

P

(
Yk = 0

∣∣∣∣∣ k−1⋂
l=j

(Yl = 0)

)
. (A1)

Following bounds in Equation (8), we conclude that results in Equations (11) and (13)
are also valid when 1 < θ ≤ 2.
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