
entropy

Article

Threshold Computation for Spatially Coupled Turbo-Like
Codes on the AWGN Channel

Muhammad Umar Farooq 1,* , Alexandre Graell i Amat 2 and Michael Lentmaier 1

����������
�������

Citation: Farooq, M.U.; Graell i

Amat, A.; Lentmaier, M. Threshold

Computation for Spatially Coupled

Turbo-Like Codes on the AWGN

Channel. Entropy 2021, 23, 240.

https://doi.org/10.3390/e23020240

Academic Editors: Balazs Matuz and

Alexey Frolov

Received: 21 December 2020

Accepted: 12 February 2021

Published: 19 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical and Information Technology, Lund University, 22100 Lund, Sweden;
michael.lentmaier@eit.lth.se

2 Department of Electrical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden;
alexandre.graell@chalmers.se

* Correspondence: muhammad.umar_farooq@eit.lth.se

Abstract: In this paper, we perform a belief propagation (BP) decoding threshold analysis of
spatially coupled (SC) turbo-like codes (TCs) (SC-TCs) on the additive white Gaussian noise (AWGN)
channel. We review Monte-Carlo density evolution (MC-DE) and efficient prediction methods, which
determine the BP thresholds of SC-TCs over the AWGN channel. We demonstrate that instead of
performing time-consuming MC-DE computations, the BP threshold of SC-TCs over the AWGN
channel can be predicted very efficiently from their binary erasure channel (BEC) thresholds. From
threshold results, we conjecture that the similarity of MC-DE and predicted thresholds is related to
the threshold saturation capability as well as capacity-approaching maximum a posteriori (MAP)
performance of an SC-TC ensemble.

Keywords: spatially coupled codes; turbo codes; concatenated convolutional codes; density evolu-
tion; iterative decoding; coding thresholds; AWGN channel

1. Introduction

Turbo-like codes (TCs) [1]—such as parallel concatenated codes (PCCs) and serially
concatenated codes (SCCs)—and low-density parity-check (LDPC) codes [2] are widely
used in communication systems due to their excellent performance and low-complexity
decoding. In most cases, the design of these codes is based on the optimization of the
iterative belief propagation (BP) decoding threshold, which can be performed via density
evolution (DE).

The exact BP thresholds of LDPC codes over the binary erasure channel (BEC) can be
easily obtained recursively from a set of DE equations using a scalar representation of the
message densities, whereas for the AWGN channel they can be obtained via quantized
DE [3]. Alternatively, the BP threshold may be estimated by means of extrinsic infor-
mation transfer (EXIT) function analysis [4,5], where the densities of the messages are
approximated by a Gaussian distribution. For the AWGN channel and binary transmis-
sion, the Gaussian approximation yields thresholds close to those obtained via DE, while
simplifying the computation. The BP thresholds of the major TC ensembles—PCCs, SCCs,
braided convolutional codes (BCCs), and hybrid concatenated codes (HCCs)—over the
BEC were computed by Moloudi et al. in [6,7] by using the decoder transfer functions of
the component codes that map the input and output erasure probabilities of the message
sequences. Unfortunately, the decoder transfer functions are not available for the AWGN
channel, which hinders the derivation of the exact DE equations. In [8], a Monte Carlo
(MC)-based DE (MC-DE) was proposed for the threshold analysis of BCCs over the AWGN
channel. The MC-DE, however, is computationally demanding compared to the simple DE
for TCs over the BEC. Moreover, MC-DE for TCs, which entails running BCJR decoding
of the component codes, is significantly harder than the quantized DE or the EXIT chart
technique for LDPC codes.
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Spatial coupling [9] allows us to construct particularly powerful codes. Thanks to
the threshold saturation phenomenon, the BP decoding threshold of a spatially coupled
ensemble can achieve the maximum a posteriori (MAP) decoding threshold of the underly-
ing uncoupled ensemble. Remarkably, spatially coupled LDPC codes universally achieve
capacity over the class of binary-input memoryless symmetric channels [10]. The concept
of spatial coupling was extended to turbo-like codes in [6].

Quantized DE for SC-LDPC codes is time consuming, due to the large number of
edge types in the corresponding graph. The complexity of MC-DE of spatially coupled
(SC) TCs (SC-TCs) is even higher, and hence the computation of the thresholds becomes
challenging. Efficient methods that allow to accurately predict the BP thresholds are
therefore of practical interest. In [11], the BP thresholds of randomly-punctured LDPC
codes over the AWGN channel were efficiently predicted by using their corresponding
BEC thresholds. The same idea was later used in [8] to predict the thresholds of BCCs over
the AWGN channel using the BEC thresholds of BCCs [6]. The resulting thresholds for
SC-BCCs, which have a regular graph representation, are close to those obtained using
MC-DE, which can be attributed to the universality of this ensemble.

In this paper, we perform a comprehensive threshold analysis of several classes of
uncoupled and coupled TCs—PCCs, SCCs, BCCs, and HCCs—over the AWGN channel, by
discussing several efficient methods for threshold computation. More concretely, we review
MC-DE with Gaussian approximation and MC-DE where the true densities are estimated
using histograms. We also discuss the prediction of the BP thresholds using the thresholds
of the corresponding ensembles over the BEC. Further, we discuss the efficient computation
of the BP thresholds of punctured TCs from those of the corresponding mother code. We
show that for spatially coupled TC ensembles with strong underlying uncoupled code, a
very accurate prediction of the BP threshold over the AWGN channel can be efficiently
obtained for a large range of coding rates from the BP threshold of the corresponding
mother code ensembles over the BEC. We conjecture that the accurate predictions can be
attributed to the universality of these code ensembles due to threshold saturation.

The rest of the paper is structured as follows. In Section 2, the construction of un-
coupled and coupled TC ensembles is described using uncoupled and coupled SCCs as
an example. A base matrix representation is introduced, which is then used to define the
remaining ensembles. In Section 3, MC-DE for the computation of the BP thresholds of TCs
is described in detail. In Section 4, we discuss threshold prediction methods for randomly
punctured TCs. In Section 5, we compare and discuss the thresholds computed via the
different methods for several classes of uncoupled and coupled TCs. Finally, Section 6
concludes this work.

2. Preliminaries

We consider the TC ensembles in [6,7] with and without coupling. In this section, we
describe these ensembles by discussing SCCs and SC-SCCs of coupling memory m = 1
and refer the reader to [6] and [7] for detailed description of other TCs. In order to
efficiently describe the coupling for each of the ensembles, we introduce a new base matrix
representation corresponding to the compact graph representation of the ensembles in [6].
Lastly, we briefly describe the sliding window decoder, which is used in this work to carry
out the threshold analysis.

2.1. Code Ensembles

The block diagram of a rate-1/4 SCC encoder is shown in Figure 1a. The encoder is
constructed from two recursive systematic convolutional encoders, referred to as outer
and inner encoders. The information sequence u is first encoded by the outer encoder CO,
resulting in the encoded sequence vO. The sequence (u, vO) is reordered by a permuter Π

and then encoded by the inner encoder CI, producing the parity sequence vI. The codeword
sequence v =

(
u, vO, vI) is obtained at the output of the SCC encoder after following these

encoding steps.
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The compact graph of the SCC ensemble is shown in Figure 1b. The sequences u, vO

and vI are represented by the black circles in the compact graph, which are referred to as
variable nodes, and the trellises corresponding to CO and CI are represented by squares,
referred to as constraint nodes. Each constraint node is labeled with the corresponding
trellis length. The sequences u and vO are connected to the outer constraint node TO.
Similarly, the sequence (u, vO), permuted through a permuter Π, and the sequence vI are
connected to the inner constraint node TI. The sequence (u, vO) in the compact graph is
obtained by a multiplexer, which is indicated by the rectangle. The permuter Π is shown
as a line that crosses the edge connecting the inner constraint node with the multiplexer.

Figure 1c shows the compact graph of the spatially coupled SCC (SC-SCC) ensemble
with coupling memory m = 1 at time t. Consider a collection of SCC compact graphs at
times t = 1, . . . , L, where L denotes the coupling length. Denote by st the sequence (ut, vO

t )
and by s̃t the reordered sequence, reordered by permutation Π1. The SC-SCC ensemble is
constructed by dividing the sequence s̃t into two sub-sequences, denoted as s̃t,k for k = 0, 1,
and spreading them over times t and t + 1. The sequence (s̃t,0, s̃t−1,1) at the input of TI

t is
permuted by permuter Π2 before producing the parity sequence vI

t. The information bits
at time t ≤ 0 are initialized to zero.

CO
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vIu vO

u

Π

(a)
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Figure 1. (a) Encoder block diagram of SCC, (b) Compact graph representation of SCC Encoder, (c) SC-SCC.

2.2. Representation of Spatially Coupled Turbo-Like Codes

We introduce a base-matrix representation corresponding to the compact graphs of
TC ensembles, similar to that of protograph LDPC codes. Starting with the SCC ensemble
in Figure 1, we define for each ensemble a connection matrix P, which is the bi-adjacency
matrix of the lifted compact graph. From P, the base matrices of the coupled and uncoupled
ensembles can be identified.

The outer constraint node TO of the SCC in Figure 1b is connected to vO and u, both
representing N bits, as indicated by the label of the constraint node. These connections
are represented in the first row of a connection matrix PSCC by the two N × N identity
matrices IN . The edges from vO and u are first merged and then connected to the inner
constraint node TI, after permutation by Π. This is represented by the matrix P2N = Π

of size 2N × 2N in the second row of PSCC. Similarly, the connections along the edge of
variable node vI—representing 2N bits—to TI is captured by the identity matrix I2N .
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PSCC =

[node u vO vI

TO IN IN 0
TI P2N I2N

]
. (1)

The connection matrix representation allows to describe the ensemble in terms of a
base matrix, analogous to the base matrix of a protograph-based LDPC code. In the base
matrix, the individual permutation matrices in the connection matrix are replaced by a 1
and the zero matrices by a 0, resulting in

B =

[
1 ◦ 1 0
◦ 1 ◦ 1

]
.

The base matrix represents an ensemble of codes, defined by the set of possible permutation
matrices that can be used in the lifting procedure. In order to lift the base matrix B to a
particular connection matrix PSCC, each 1 is replaced by a permutation matrix and each 0
by an all-zero matrix. Note that the matrices have different sizes, which can be identified
from the connection matrix (1). The entries denoted by ◦ are placeholders that are required
because of the merging of two edges of width N into one edge of width 2N in the compact
graph. To make our notation consistent, in the lifting procedure we replace each ◦ in
the base matrix by an empty matrix with column dimension zero. There is a one-to-one
correspondence between the base matrix and the compact graph representation provided
that the lengths of the component encoder trellises are known.

A coupled ensemble can be obtained by partitioning B into submatrices Bi such that
B = ∑m

i=0 Bi [12]. For the ensemble in Figure 1c, we get

B0 =

[
1 ◦ 1 0
◦ 1

m+1 ◦ 1

]
, Bi>0 =

[
0 ◦ 0 0
◦ 1

m+1 ◦ 0

]
.

The fraction 1
m+1 in Bi indicates that 1

m+1 · 2N bits out of the 2N bits represented by the
variable nodes of the SC-SCC graph at time t are connected with the trellises at time t + i
in a randomized way.

Following the same procedure, the connection matrix of uncoupled BCCs and the
base matrices of SC-BCCs are obtained as

PBCC =

[node u vU vL

TU IN IN PU
N

TL PN PL
N IN

]
,

B0 =

[
1 1 0
1 0 1

]
, Bi>0 =

[
0 0 1

m
0 1

m 0

]
.

and for PCCs as

PPCC =

[node u vU vL

TU IN IN 0
TL PN 0 IN

]
,

B0 =

[ 1
m 1 0
1
m 0 1

]
, Bi>0 =

[ 1
m 0 0
1
m 0 0

]
.

The connection matrix of the uncoupled HCC ensemble is

PHCC =


node u vU vL vI

TU IN IN 0 0
TL PN 0 IN 0
TI 0 PI

2N I2N

.
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In [7], two spatially coupled ensembles of HCCs, referred to as Type-I SC-HCCs and
Type-II SC-HCCs, were introduced. For Type-I, the base matrices are

B0 =

1 1 ◦ 0 0
1 0 ◦ 1 0
0 ◦ 1

m+1 ◦ 1

, Bi>0 =

0 0 ◦ 0 0
0 0 ◦ 0 0
0 ◦ 1

m+1 ◦ 0

,

whereas for Type-II are obtained as

B0 =

 1
m+1 1 ◦ 0 0

1
m+1 0 ◦ 1 0

0 ◦ 1
m+1 ◦ 1

, Bi>0 =

 1
m+1 0 ◦ 0 0

1
m+1 0 ◦ 0 0

0 ◦ 1
m+1 ◦ 0

 .

Throughout this paper we consider convolutional encoders with four-state trellises in
all threshold computations and finite length simulations. In particular, rate-2/3 encoders
with generator matrix

G =

[
1 0 1/7
0 1 5/7

]
are used for BCCs and rate-1/2 encoders with generator matrix G = [1 5/7] are used for
all other ensembles.

2.3. Sliding Window Decoding

In this work, for the threshold analysis we assume SC-TCs of coupling length L = ∞
and coupling memory m = 1 under sliding window decoding with on-demand symbol
node updating schedule [9] of window size W. In this schedule, the constraint nodes within
the window are updated sequentially by receiving the most recent updated messages from
the neighboring nodes. Note that a larger window size is required for the computation
of the thresholds of coupled ensembles with larger m, as the window size needs to be
large enough so that the decoding wave is formed. All our threshold computations are
carried out by considering W = 20, which is observed to be enough for a reliable estimate
of the decoding thresholds for the considered ensembles with m = {1, 3}, yet allowing an
efficient computation. In our finite length simulations we use W = 8.

3. Threshold Computation via Monte Carlo Density Evolution

The BP thresholds can be computed by performing DE. For codes for which the
transfer functions of the component codes are not available, MC-DE can be used. In this
section, we describe two MC-DE methods and discuss their advantages and shortcomings.
The described MC-DE methods are computationally demanding. We hence also discuss
an efficient method that provides an approximation of the BP threshold, and compare the
thresholds obtained applying the three approaches for uncoupled SCCs.

3.1. Monte-Carlo Density Evolution

MC-DE comprises three key steps [8], which are performed a number of iterations:

1. Variable node update: A variable node generates a sequence of extrinsic log-likelihood
ratios (LLRs) by properly combining the sequence of Gaussian-distributed channel
LLRs and the sequences of extrinsic LLRs—generated according an appropriate dis-
tribution—received from the neighboring constraint nodes. In particular, the output
LLRs are obtained as the sum of the channel LLR and the LLRs from neighboring
constraint nodes.

2. Constraint node update: A constraint node performs BCJR decoding on the sequences
of extrinsic LLRs—used as a-priori information—received from the neighboring
variable nodes. The BCJR decoder generates sequences of extrinsic LLRs that are
passed to the corresponding neighboring variable nodes.
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3. Density estimation and re-sampling: A sequence of channel LLRs, Lch, and the
sequences of extrinsic LLRs, Lext (one for each code sequence), are created from the
corresponding probability densities f (Lch) and f (Lext). These sequences are used in
the next MC-DE iteration.

MC-DE tracks the evolution of f (Lext) through the iterative decoding process.

3.2. Monte-Carlo Density Evolution with Gaussian Approximation

In MC-DE with Gaussian approximation (MC-DE-GA), the densities f (Lext) are ap-
proximated by a Gaussian distribution, which can be characterized by its mean mG and
standard deviation σ. Since the extrinsic LLRs are symmetric and consistent, the Gaussian
distribution is completely characterized by the single parameter σ, which is related to the
mean mG as

mG =
σ2

2
. (2)

The standard deviation σ is computed from the mutual information IE between an
extrinsic LLR sequence Lext and the corresponding binary code sequence [4,5],

σ = C−1
G (IE). (3)

Here CG(σ) denotes the AWGN channel capacity for a given channel parameter σ, which
can be computed efficiently using the following series expansion ([13] Chapter 4):

CG(σ) = 1 + 1
ln 2

((
2

σ2 − 1
)

Q
(

1
σ

)
−
√

2
πσ2 e−

1
2σ2 + ∑∞

i=1
(−1)i

i(i+1) e
2i(i+1)

σ2 Q
(

1+2i
σ

))
(4)

with Q(x) = 1√
2π

∫ ∞
x e−

y2
2 dy. The mutual information IE is computed from [5]

IE ≈ 1− 1
N′

N′

∑
n=1

log2(1 + e−Lext,n), (5)

where Lext,n, n = 1, . . . , N′, are the elements of Lext.
Note that MC-DE-GA is equivalent to an EXIT function analysis. While a threshold

computation via the Gaussian assumption becomes highly efficient for LDPC codes, MC-
DE-GA has only a minor computational advantage for TCs. Furthermore, for several
ensembles, in particular multi-edge type ensembles such as BCCs, SCCs, HCCs, and SC-
TCs, the true distributions of the messages may significantly deviate from a Gaussian
distribution, leading to inexact decoding thresholds.

3.3. MC-DE with Histogram

A more accurate BP threshold can be obtained by estimating the true densities, which
can be performed by means of histograms. We refer to this method as MC-DE-H, which
we describe in detail in the following. For ease of notation, let L be the random variable
corresponding to an extrinsic LLR. From the consistency property of the LLRs, we have
that fL(l) = el · fL(−l) [5]. The consistency and symmetry properties of L allow us to
determine fL(l) from the distribution of |L| from [13]

fL(l) = I{l≥0}
1

1 + e−l f|L|(l) + I{l≤0}
el

1 + el f|L|(−l). (6)

Taking advantage of this symmetry drastically improves the speed of converge of this
method.

Without loss of generality, we consider the transmission of the all-zero codeword and
approximate the density fL(l) in (6) with a histogram of M bins and obtain an approx-
imated probability mass function P̂(l) (For the threshold calculations within this paper
we use a fixed number of M = 2001 bins, divided uniformly between −Lmax and +Lmax,



Entropy 2021, 23, 240 7 of 17

where Lmax = maxn |Ln| denotes the maximum magnitude among the elements Ln of the
measured sequence. An odd value of M is recommended to represent erasures accurately.
The length of the sequence is chosen adaptively to achieve a desired accuracy). The bit
error rate (BER) can be computed from P̂(l) as

BER ≈ ∑
{l<0}

P̂(l). (7)

We denote by f̂L(l) the approximation of fL(l). A sequence of extrinsic LLRs dis-
tributed according to f̂L(l) can be obtained from P̂(l) by using the probability integral
transform. The probability integral transform method states that for a uniformly distributed
random variable U ∈ [0, 1], and a strictly increasing cumulative distribution function F̂L(l),
we have U = F̂L(l) ≈ P̂(L ≤ l). Samples are generated from F̂L(l) by applying the
inversion F̂−1

L (U).

3.4. Erasure Channel Prediction

Since MC-DE is time consuming, we are interested in exploring some faster alter-
natives to predict the BP thresholds of TCs over the AWGN channel. In [3], the erasure
channel prediction (ECP) method was proposed to efficiently predict BP thresholds of
codes over the AWGN channel from their corresponding BEC thresholds ε∗. For a given
code, the AWGN channel BP threshold σ∗ can be obtained from the corresponding ε∗ as

σ∗ ≈ C−1
G (CE(ε

∗)) = C−1
G (1− ε∗). (8)

where CE(ε
∗) = 1− ε∗ is the capacity of the BEC.

3.5. Discussion

In Table 1 we give the BP thresholds of the uncoupled SCCs computed via MC-DE-GA,
MC-DE-H, and ECP, for several code rates. We observe that both MC-DE-GA and MC-DE-H
yield similar thresholds. However, we remark that the computational complexity of MC-
DE-GA and MC-DE-H is similar, as it is primarily dominated by that of the BCJR decoder.
Hence, one may resort to MC-DE-H, which does not rely on a Gaussian assumption and
gives a more accurate estimation of the threshold provided that the quantization resolution
is chosen sufficiently high. The thresholds predicted by the ECP method differ noticeably
from those predicted by the MC-DE methods.

Table 1. BP thresholds of uncoupled serially concatenated codes (SCCs) obtained by Monte-Carlo
density evolution with Gaussian approximation (MC-DE-GA), Monte-Carlo density evolution with
histogram (MC-DE-H), and erasure channel prediction (ECP).

Thresholds Rate
Eb/N0 (dB) 1/4 1/3 1/2 2/3

MC-DE-GA 0.11 0.50 1.46 2.95
MC-DE-H 0.12 0.51 1.50 3.05
ECP 0.37 0.76 1.74 3.25

4. Efficient AWGN Channel Threshold Predictions of Randomly Punctured TCs

Following the ideas in [11], efficient methods for predicting the thresholds of randomly
punctured BCCs were investigated in [8], namely the θE prediction, the θG prediction, and
the mixed prediction (MP) method. In this section, we re-visit these methods by analyzing
the MC-DE-H and predicted thresholds of the SCC ensemble as an example.
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4.1. θE-Predictions

Consider a code ensemble of rate R(α) obtained by randomly puncturing a mother
code of rate R = R/(1− α), where 0 ≤ α < 1 is the puncturing fraction, i.e., the fraction of
bits that are punctured. For the BEC, the BP threshold of the punctured code ensemble,
ε∗(α), can be obtained as

ε∗(α) = 1− θER(α) , (9)

where
θE =

1− ε∗

R
, (10)

with ε∗ being the BP threshold of the mother code.
The BP threshold σ∗(α) of a randomly punctured ensemble over the AWGN channel

can be predicted from the BEC threshold of the corresponding mother code by combining
(9) with the ECP in (8) to

hG(σ
∗(α)) ≈ hE(ε

∗(α)) = ε∗(α) = 1− θER(α). (11)

Here, hG(σ) = 1− CG(σ) and hE(ε) = 1− CE(ε) = ε denote the conditional entropy of the
AWGN channel and the BEC, respectively. We refer to this method as θE-prediction.

The θE-predictions and the MC-DE-H thresholds of SCCs and SC-SCCs with m = 1
and different code rates are shown in Table 2, where ε and εSC denote the BEC thresholds
of SCCs and SC-SCCs with m = 1, respectively. It is observed that with coupling, the
thresholds computed using the θE-prediction are similar to those obtained via MC-DE-H,
i.e., the θE-prediction yields accurate thresholds. For SCCs, however, the thresholds differ
noticeably. We remark that punctured bits can be equivalently seen as erasures. Hence,
the behavior of the ensembles over the AWGN channel becomes closer to their behavior
over the BEC for increasing puncturing fraction. This explains that the relative difference
between the θE-prediction and MC-DE-H thresholds is larger for lower rates. We conjecture
that the accurateness of the θE-prediction for the SC-SCC ensemble is due to the universality
of this ensemble. Indeed, it was shown in [6] that for large-enough coupling memory,
SC-SCCs approach capacity.

Table 2. Erasure-, θE predicted- and MC-DE-H thresholds of SCC ensembles.

SCC SC-SCC
Rate ε θE (Eb/N0) MC-DE-H εSC θE (Eb/N0) MC-DE-H

1/4 0.6896 0.37 0.12 0.7379 −0.54 −0.59
1/3 0.5861 0.76 0.51 0.6505 −0.22 −0.29
1/2 0.3792 1.74 1.50 0.4758 0.51 0.43
2/3 0.1723 3.25 3.05 0.3011 1.48 1.39
3/4 0.0688 4.70 - 0.2137 2.13 2.05

4.2. θG-Predictions

The gap between the MC-DE-H threshold and the θE-prediction for low rates can be
reduced by using the θG-prediction [8]. This prediction method uses the AWGN channel
threshold of the mother code to determine the BP threshold of the punctured code. Using
the θG-prediction, the AWGN channel threshold hG(σ

∗) is obtained as

hG(σ
∗(α)) ≈ 1− θGR(α), (12)

where

θG =
1− hG(σ

∗)

R
. (13)
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The θG-predictions for SCCs are shown in Table 3. For low rates, the θG-predictions
are close to the MC-DE-H thresholds. However, the θG-prediction fails to accurately predict
the thresholds for higher rates, and a gap to the MC-DE-H thresholds is observed.

Table 3. Comparison of θG and θE predicted thresholds of SCCs.

Thresholds Rate
Eb/N0 (dB) 1/4 1/3 1/2 2/3 3/4

θE Predicted 0.37 0.76 1.74 3.25 4.70
θG Predicted 0.12 0.50 1.40 2.72 3.82

MC-DE-H 0.12 0.51 1.50 3.05 -

4.3. Mixed Predictions

A mixed prediction (MP) method is proposed in [8] to overcome the discrepancies
observed in the θE and the θG predictions. The idea of the MP stems in [11], where the
AWGN channel thresholds of randomly punctured LDPC codes were observed to lie on
a straight line in the entropy perspective. The MP method uses both θE and hG(σ

∗) in
accurately predicting the thresholds of randomly punctured LDPC codes at all rates. For
randomly punctured TCs, as shown for randomly punctured SCCs in Figure 2a, we can
observe that the AWGN channel thresholds tend to follow a straight line as well. From
θE and hG(σ

∗), the predicted thresholds of the punctured TCs via the MP method [8] are
obtained by using

hG(σBP(α)) ≈ hG(σ
∗)− θMP(R(α)− R), (14)

where θMP is

θMP =
θE + hG(σ

∗)− 1
1− R

. (15)

The MP thresholds are shown as a dashed line in Figure 2a. It is observed that the
SCC MP thresholds deviate slightly from the MC-DE-H thresholds at medium rates, unlike
the more accurate MP thresholds for the LDPC codes in [11]. In fact, even for LDPC
codes it is still an open problem to prove the conjecture that AWGN channel thresholds
follow a straight line with random puncturing. For TC ensembles with more complicated
component codes this is even harder to prove and may be wrong. On the other hand,
the deviations we observe are small enough to use the MP thresholds as an efficient
approximation.

The MC-DE-H and predicted thresholds of the uncoupled and coupled SCCs over the
AWGN channel are shown in Figure 2b, where the MP method is observed to be a more
suitable representative of the MC-DE-H thresholds for all the considered rates.
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Figure 2. AWGN channel thresholds of uncoupled and coupled SCCs. (a) SCC Entropy vs. Capacity.
(b) SCC and m = 1 SC-SCC Eb/N0 vs. Capacity.

5. Threshold Comparison for Different TC Ensembles

Table 4 presents the MC-DE-H and θE predicted thresholds of the coupled TCs. Unlike
uncoupled TCs, the predictions are observed to be relatively close to the MC-DE-H thresh-
olds. For this reason, we do not list the θG- or MP thresholds of SC-TCs in the table. For
the uncoupled ensembles, however, the MP method provides better predicted thresholds
than the θE method. We further observe that, in general, the θG predictions are closer
to the Shannon capacity than the θE predictions. The exception to this are PCCs, where
θE predictions are closer to the Shannon capacity than the θG predictions, and the gap
increases with coupling, as shown in Figure 3.
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Table 4. θE predicted and MC-DE-H thresholds of coupled turbo-like codes (TCs).

Ensemble m Thresholds Rate
Eb/N0 (dB) 1/5 1/4 1/3 1/2 2/3 3/4

Shannon Capacity −0.9637 −0.7942 −0.4952 0.1872 1.0597 1.6262

SC-SCC 1 θE Predicted - −0.54 −0.22 0.51 1.48 2.13
SC-SCC 1 MC-DE-H - −0.59 −0.29 0.43 1.39 2.05

SC-SCC 3 θE Predicted - −0.75 −0.45 0.24 1.12 1.70
SC-SCC 3 MC-DE-H - −0.70 −0.41 0.27 1.15 1.73

SC-PCC 1 θE Predicted - - -0.30 0.42 1.35 1.98
SC-PCC 1 MC-DE-H - - −0.04 0.60 1.47 2.07

SC-HCC-II type-II 1 θE Predicted −0.45 - 0.08 0.87 1.97 2.75
SC-HCC-II type-II 1 MC-DE-H −0.60 - −0.08 0.72 1.82 2.62

SC-HCC-II type-II 3 θE Predicted −0.93 - −0.46 0.23 1.11 1.68
SC-HCC-II type-II 3 MC-DE-H −0.95 - −0.49 0.19 1.06 1.63

SC-BCC 1 θE Predicted - - −0.39 0.31 1.21 1.81
SC-BCC 1 MC-DE-H −0.39 0.30 1.19 1.78

SC-BCC 3 θE Predicted - - −0.45 0.24 1.12 1.70
SC-BCC 3 MC-DE-H −0.43 0.25 1.13 1.70
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Figure 3. Thresholds of PCCs over the AWGN channel. (a) Eb/N0 vs. Rate of PCC. (b) Eb/N0 vs.
Rate of m = 1 SC-PCC.
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From the thresholds of different TC ensembles, we also observe that the similarity
of the MC-DE-H and the predicted thresholds depends on an ensemble’s strength. For
stronger TCs, the similarity between the predicted and the MC-DE-H thresholds is clearly
observed, as shown for m = {1, 3} SC-SCCs in Figure 4a, m = {1, 3} SC-BCCs in Figure 5,
and m = 3 SC-HCCs-II type-II in Figure 4b. We further observe that the predicted and the
MC-DE-H thresholds are not alike (1) for PCCs in Figure 3, as these have BP thresholds
close to the MAP thresholds but relatively poor MAP thresholds (2) for other uncoupled
TCs in general and SC-HCCs-II type-I in Figure 4b, as these have strong MAP but poor BP
thresholds and (3) for the SC-HCCs-II type-II with m = 1 in Figure 4b, which have a good
MAP threshold but require a larger coupling memory.

−1 0 1 2 3 4 5 6 7 8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Eb/N0

C
ap

ac
it

y
(R

at
e) MC-DE-H

Mixed Prediction
θE Predicted
θG Predicted
Shannon Capacity

(a)

−1 0 1 2 3 4 5 6 7 8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Eb/N0

C
ap

ac
it

y
(R

at
e)

MC-DE-H
Mixed Prediction
θE Predicted
θG Predicted
Shannon Capacity

Type-I m = 1

Type-II m = 1

Type-II m = 3

Type-I m = 3

(b)

Figure 4. Thresholds of SC-SCCs and SC-HCCs over the AWGN channel. (a) Eb/N0 vs Rate of
SC-SCCs with m = 1 and m = 3. (b) Eb/N0 vs Rate of type 1 and type 2 SC-HCCs-II with m = 1 and
m = 3.
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Figure 5. Thresholds of BCCs over the AWGN channel. (a) Eb/N0 vs. Rate of BCCs and SC-BCCs
with m = 1. (b) Eb/N0 vs. Rate of SC-BCCs with m = 3.

SC-HCCs-II offer an interesting insight regarding the similarity of predicted and
MC-DE-H thresholds of an ensemble. HCCs-II have the strongest MAP thresholds on
the BEC among all considered TC ensembles, and we expect the threshold predictions to
show strong similarity with spatial coupling. From the thresholds of the SC-HCCs-II in
Figure 4b, however, we observe that this strong similarity is only visible for the SC-HCC-II
type-II ensemble with m = 3. The SC-HCC-II type-I ensemble, which uses a different type
of coupling than the type-II, shows a weaker BP performance and lower similarity than
the type-II, even at a larger coupling memory m = 3. This suggests that in addition to a
strong MAP threshold, the capability of an ensemble to exhibit very similar predicted and
MC-DE-H thresholds is also linked to its ability of achieving threshold saturation [14]. For
those SC-TCs that demonstrate threshold saturation, we have additionally computed the
binary symmetric channel (BSC) thresholds and compare the entropy of the thresholds for
the BSC, BEC and AWGN channel in Table 5. A similar entropy h at the thresholds of the
selected SC-TCs over all three channels confirms our conjecture that a strong similarity
between predicted and MC-DE-H thresholds of an ensemble is associated with its capability
of achieving threshold saturation.
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Table 5. Entropy h of TCs over the binary erasure channel (BEC), binary symmetric channel (BSC)
and additive white Gaussian noise (AWGN) channel.

Ensemble Rate hBEC εBSC hBSC hAWGN

SC-BCC m = 3 1/3 0.6644 0.1718 0.6618 0.6630

SC-SCC m = 3 1/4 0.7483 0.2114 0.7442 0.7456
SC-SCC m = 3 1/3 0.6644 0.1708 0.6595 0.6616

SC-HCCII type-II m = 3 1/5 0.7990 0.2427 0.7995 0.7996
SC-HCCII type-II m = 3 1/3 0.6650 0.1738 0.6663 0.6664

In order to provide an overview over the different ensembles, the MC-DE-H and MP
thresholds of uncoupled and coupled TCs with m = 1 are plotted in Figure 6. For coupled
TCs with m = 1, BCCs perform best among the considered ensembles, whereas PCCs are
the first among the uncoupled ensembles. Interestingly, SC-PCCs approach SC-HCCs at
lower rates and SC-SCCs at larger rates. Note that the performance of SC-HCCs-II-TII
can be improved by increasing the coupling memory and it is observed that they then
outperform SC-BCCs with m = {1, 3}.
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Figure 6. Comparison of TC ensembles in terms of the AWGN channel Thresholds. (a) Eb/N0 vs.
Rate of uncoupled TCs. (b) Eb/N0 vs. Rate of SC-TCs with m = 1.
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The threshold observations are further validated by performing some finite length
BER performance simulations for SC-HCC-II type-II codes with m = 3, and SC-SCC and SC-
BCC codes with m = 1 for equal rate R = 1/3 and equal decoding latency. The SC-HCC-II
type-II code with m = 3 is chosen because the m = 1 ensemble has a poor BP performance
on both the BEC and the AWGN channel compared to SC-BCCs and SC-SCCs with m = 1.
We use sliding window decoding with a window size W = 8, coupling length L = 100,
and 20 decoding iterations at each window position. The input block length is N = 16,384
for all ensembles, resulting in an overall structural decoding latency of 3 N W = 393,216
code symbols. The BER performance results are shown in Figure 7. It is observed that the
SC-HCC-II type-II code with m = 3 has the best performance followed by the SC-BCC code
and SC-SCC code with m = 1 respectively. The simulations are observed to be consistent
with the BP thresholds. However, the gain of the HCC ensemble in terms of the threshold
is larger is than in terms of the simulated waterfall performance. This partially can be
prescribed to the limited window size.
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Figure 7. Finite block length performance of rate 1/3 ensembles with equal latency.

In Table 6, we list the BEC and the AWGN channel thresholds of the TCs along with
the parameters θE, θG and θMP. By using these values together with the prediction methods
described in Section 4, it is possible to immediately reproduce all the continuous threshold
curves in Figures 2–6. The computation of MC-DE-H thresholds, which are shown as
blue dots in these figures, is very time consuming and provided only for validation of the
prediction methods. Consider the MP thresholds of rate 1/3 SCCs as an example to show
how to calculate the predicted thresholds using Table 6. First, we obtain the noise threshold
σ∗ = 1.3963 of rate R = 1/4 SCCs from its MC-DE-H threshold Eb/N0 (dB) = 0.1109.
Next, we apply the entropy at the noise threshold hG(1.3963) = 1− CG(1.3963) = 0.7035,
and θMP = 1.2601 from the Table 6 to (14) for R(α = 1/4) = 1/3. This gives us hG(σBP(α =
1/4)) = 0.5985. From the AWGN channel capacity CG(σ) = 1− 0.5985 = 0.4015, we obtain
σ = C−1

G (0.4015) = 1.1461. Lastly, by using that σ2 = 1/(2 · Eb/N0 · R(α)) we obtain the
MP for rate R = 1/3 SCCs in terms of Eb/N0 (dB) = 0.5761.
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Table 6. θ parameter of various prediction methods.

Ensemble Rate MC-DE-H ε Parameters
Eb/N0 (dB) θE θG θMP

PCC 1/3 0.02 0.6428 1.0716 1.0953 1.0597
SC-PCC, m = 1 1/3 −0.04 0.6553 1.0341 1.0839 1.0092

SCC 1/4 0.12 0.6896 1.2416 1.1880 1.2595
SC-SCC, m = 1 1/4 −0.59 0.7379 1.0484 1.0398 1.0513
SC-SCC, m = 3 1/4 −0.70 0.7483 1.0068 1.0182 1.0030

HCC 1/5 0.90 0.7044 1.4780 1.4339 1.4890
SC-HCCII-TII, m = 1 1/5 −0.60 0.7790 1.1050 1.0748 1.1125
SC-HCCII-TII, m = 3 1/5 −0.95 0.7990 1.0050 1.0027 1.0056

BCC 1/3 1.01 0.5541 1.3377 1.2943 1.3594
SC-BCC, m = 1 1/3 −0.39 0.6609 1.0173 1.0190 1.0165
SC-BCC, m = 3 1/3 −0.43 0.6644 1.0068 1.0117 1.0043

The prediction methods provide a convenient way of comparing the thresholds of
mother code ensembles with different rates. A randomly punctured code ensemble is
characterized by the parameter θ ≥ 1, where θ = 1 corresponds to a capacity achieving
ensemble [11]. An ensemble with a smaller θE and θG will outperform an ensemble with
larger θE and θG at all achievable rates.

6. Conclusions

In this paper, we have performed a BP decoding threshold analysis of SC-TCs on the
AWGN channel and demonstrated that the prediction methods presented in [8,11] can
be used to approximate the thresholds efficiently. The prediction methods approximate
the AWGN channel thresholds of the considered ensembles in a computationally efficient
manner by using their BEC thresholds. Conventionally, MC-DE or EXIT function analysis
are applied to analyze thresholds of TCs over the AWGN channel. Although these meth-
ods can provide a very accurate estimate of the BP thresholds, they are computationally
expensive, especially for spatially coupled ensembles. Our results show that the predicted
thresholds are very close to the MC-DE thresholds for strong spatially coupled ensembles
such as SC-SCCs, SC-BCCs and SC-HCCs-II. It is further conjectured that the similarity
between the predictions and MC-DE is associated with the strength of an ensemble and
its threshold saturation capability. For strong coupled ensembles, universality is observed
from the entropy of their thresholds over the BEC, AWGN channel and BSC. For uncoupled
ensembles with random puncturing, the predictions are improved with help of both the
AWGN channel and BEC threshold of the mother code ensembles.
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