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Abstract: Regression analysis using line equations has been broadly applied in studying the evo-
lutionary relationship between the response trait and its covariates. However, the characteristics
among closely related species in nature present abundant diversities where the nonlinear relation-
ship between traits have been frequently observed. By treating the evolution of quantitative traits
along a phylogenetic tree as a set of continuous stochastic variables, statistical models for describing
the dynamics of the optimum of the response trait and its covariates are built herein. Analytical
representations for the response trait variables, as well as their optima among a group of related
species, are derived. Due to the models’ lack of tractable likelihood, a procedure that implements the
Approximate Bayesian Computation (ABC) technique is applied for statistical inference. Simulation
results show that the new models perform well where the posterior means of the parameters are
close to the true parameters. Empirical analysis supports the new models when analyzing the trait
relationship among kangaroo species.

Keywords: adaptive trait evolution; approximate Bayesian computation; geometric Brownian motion;
geometric Ornstein–Uhlenbeck process; phylogenetic comparative analysis

1. Introduction

Species evolve across generations. For quantitative-trait evolution, scientists ap-
ply phylogenetic comparative methods (PCMs) to study the evolutionary relationship
of a group of related species where a phylogenetic tree is incorporated for describing
affinity among species [1–8]. Most current regression models in PCMs assume that the
response trait variable y is linear with its covariates xs where the estimated line equa-
tion (e.g., y = b0 + ∑n

i=1 bixi) is used to predict the response trait [8–10]. However, the
allometric relationship between body mass and other organisms is also often observed in
nonlinear form (i.e., y = kxa). Logarithm transformation (log y = log k + a log x) is usually
considered as a regular procedure prior to analysis [11]. From a statistical perspective,
log transformation on the data reduces skewness, decreasing the variability, conforming
data close to the normal distribution, and placing dependent variable and covariates in
a linear-like relationship [12–14]. From an evolutionary perspective, because most traits of
particular species fall within a certain range, interpreting trait changes using raw scales may
produce unreasonable results. Hence, convex transformation by the logarithm function
is often applied to convert the raw data of the interval type into the ratio type. This has
particular advantages, for example, a change in body mass of 0.2 kg might not be important
for a male red kangaroo with a weight from 55 to 90 kg, but probably matters substantially
for a wallaby with a weight of about 1.6 kg; a 1.36% change in body mass for both species
is interpretable under log-transformed data.

Nevertheless, even the log transformation helps to convert the trait relationship from
nonlinear into a moderate linear type, and there exists a nonlinear relationship among
some log-transformed data [15]. The trait relationship shown in Figure 1 provides two
examples in which nonlinear exponential regressions could provide a better fit with less
predicted errors than those obtained when using linear regression. The left panel in Figure 1

Entropy 2021, 23, 218. https://doi.org/10.3390/e23020218 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-5893-3645
https://doi.org/10.3390/e23020218
https://doi.org/10.3390/e23020218
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23020218
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/23/2/218?type=check_update&version=2


Entropy 2021, 23, 218 2 of 18

displays the bivariate relationship between the body mass (x) and the maintenance nitrogen
requirement (y) in the log scale of the marsupial species [16,17]. The exponential equation
y = 0.486+ 0.047 exp(0.490x) has a root mean square deviation with a value of 0.341, while
the linear regression model y = −1.389 + 0.482x has a root mean square deviation 0.344.

Figure 1. Scatter plots and the relationship of the bivariate trait dataset described by the least squares
regression lines or curves. (left) Relationship between maintenance nitrogen requirement and body
mass in marsupials [16,17]. Exponential curve y = 0.486 + 0.047 exp(0.490x) (RMSD = 0.341) and
line equation y = −1.389 + 0.482x (RMSD = 0.344) shown. (right) Relationship between bone
circumference and the body mass in kangaroos [18]. Exponential curve y = 1.051 + 0.003 exp(1.510x)
(RMSD = 0.092) and line y = −7.407 + 2.489x (RMSD = 0.112) shown.

The right panel in Figure 1 displays relationship between the thigh-bone (femoral)
circumference (x) and body mass (y) of the kangaroo species [18] is shown Figure 1. The
exponential equation y = 1.051 + 0.003 exp(1.510x) has a root mean square deviation
with a value of 0.092, while the linear regression model y = −7.407 + 2.489x has a root
mean square deviation of 0.112. Parameters β1, β2, β3 in the exponential curve y = β1 +
β2 exp(β3x) were estimated under a least-squares method performed using the following
step. Since β1 adds to the complexity of the model, an estimate of β1 is established by using
the half value of the minimum of the responses; then, traits are subtracted from this value,
which yields the model y− β1 = β2 exp(β3x). Parameters β2 and β3 are estimated through
the least-squares method for the model log(y− β1) = log(β2) + β3x.

In the marsupial and kangaroo datasets, exponential regression models yield to
smaller RMSD than those in linear regression models. Conceiving that the potential use
of exponential regression models to study phylogenetic-traits relationships, the empirical
datasets in Figure 1 call for novel phylogenetic comparative methods. In this framework, we
developed models for adaptive trait evolution where the optimum of the trait undergoes
stabilizing selection and has an exponential relationship with the predictor trait. Our
work is distinguished from the work in [19], which mainly makes use of multiple linear
regression. Our ultimate goal was to provide feasible models for scientists to analyze their
valuable data for research.

Prior to developing new models, the background of phylogenetic adaptive trait evo-
lution was introduced follows. Hansen et al. [20] developed a popular model (OUBM
model) for phylogenetic adaptive trait evolution where the response trait variable is as-
sumed following an Ornstein–Uhlenbeck (OU) process dynamic where the optimum of the
response trait is assumed with a linear relationship with Brownian motion (BM) covariates.
Later, various scientists made further efforts to expand the OUBM model of Hansen et
al. via considering an Ornstein–Uhlenbeck process covariates (OUOU model) [21,22],
a Cox–Ingersoll–Ross process for rate evolution [19], or extending the OUBM model to the
multivariate case [23–25].

In general, the generalized model for phylogenetic adaptive trait evolution assumes
that trait variable yt solves stochastic differential equation (SDE) in Equation (1):
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dyt = α
y
t (θ

y
t − yt)dt + σ

y
t dWy

t , (1)

where parameter α
y
t is the force that pulled the trait back to its optimum θ

y
t , parameter σ

y
t

is called the evolutionary rate for the trait variable yt, and Wy
t is a Wiener process with

independent Gaussian increment, with mean 0 and variance t. Let α
y
t = αy and σ

y
t = σy

be constants. By multiplying the integrating factor exp(αyt) and then integrating on both
sides of Equation (1), yt can be expressed explicitly, as shown in Equation (2)

yt = exp(−αyt)y0 +
∫ t

0
αy exp(−(αyt− αys))θy

s ds + σy

∫ t

0
exp(−(αyt− αys))dWy

s , (2)

where exp(−αyt)y0 is a deterministic term with initial condition y0 at t = 0, and term
σy
∫ t

0 exp(−(αyt− αys))dWy
s is a stochastic integral with respect to Wy

s , and is, again, a Gaus-
sian variable with mean 0 and variance σ2

y (1− exp(−2αyt))/(2αy) (obtained by applying
Itô isometry [26]) and

A = exp(−αyt)
∫ t

0
αy exp(αys)θy

s ds (3)

is an integral with respect to time.
Optimal θ

y
t , has a functional relationship with the covariate xt represented in

Equation (4)
θ

y
t = f (β, xt), (4)

where β is the vector of regression parameters.
In Equation (4), when optimum θ

y
t and covariate trait variable xt are in a linear re-

lationship (i.e., θ
y
t = β0 + ∑

p
i=1 βixi,t where xi,t, i = 1, · · · p are identical independently

distributed continuous stochastic random variables), the dynamics of θ
y
t can be character-

ized through identifying the dynamics of the linear combination of identical independent
distributed covariates xi,t, i = 1, 2, · · · , p. For Gaussian process covariates xts, optimal θ

y
t

follows a Brownian motion if covariates xts follows Brownian motion (i.e., dxi,t = σxi dWxi
t ),

called the OUBM model [20]. On the other hand, θ
y
t is an OU process if xi,ts are OU

processes (i.e., dxi,t = αxi (θxi − xi,t)dt + σxi dWxi
t ), called the OUOU model [21].

In this work, we assumed that an exponential relationship existed between trait opti-
mum θ

y
t and its covariate xt. The development of the new models is described as follows.

When assuming an exponential relationship between the optimum θ
y
t and a Brownian

motion covariate xt, the optimum θ
y
t follows a well known geometric Brownian motion [27].

By assuming an exponential relationship between optimum θ
y
t and its Ornstein–Uhlenbeck

process-type covariate xt, the optimum θ
y
t follows a geometric Ornstein–Uhlenbeck pro-

cess [28].
We assumed that the covariate trait variable xt evolved under Gaussian processes (e.g.,

Brownian motion or Ornstein–Uhlenbeck process); hence, the analytic expression of A in
Equation (3) depends on the expression between θ

y
t and its covariate xt. Both evolutionary

rate (σy
t ) and force α

y
t in Equation (1) are assumed to be positive constants throughout this

work (i.e., α
y
t = αy > 0, σ

y
t = σy > 0). Hence, we focused on developing of models by

implementing the curved relationship between optimum θ
y
t and its covariate xt. The new

model is named OUGBM (see Section 2.1.1) when trait yt represented in Equation (2) admits
a generalized OU process dynamic, and its optimum θ

y
t has an exponential relationship

with Brownian motion covariates xt. The new model is named OUGOU (see Section 2.1.2)
if yt admits a generalized OU process, and θ

y
t has an exponential relationship with OU

process covariates xt. We also implemented the OUBM (see Section 2.2.1) and OUOU (see
Section 2.2.2) models for comparison with the new models. Since species are evolutionarily
related, the models were developed with the assumption that evolutionary dependency
among a group of species is along a given root phylogenetic tree (see Section 2.3). Due
to those new models’ lack of model likelihood, we propose the use of the approximate
Bayesian computation procedure for model inference (see Section 2.4).
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2. Materials and Methods
2.1. Optimal Exponential Regression

Consider an exponential relationship between the optimum and its covariate as follows

θ
y
t = f (β, xt) = β1 + β2 exp(β3xt). (5)

The relationship in Equation (5) is commonly applied in growth/decay studies with
β1 representing the value of maximal growth (if β3 < 0) or minimal decay (if β3 > 0). By
using Equation (5), two models (OUGBM and OUGOU) were developed, as reported in
Sections 2.1.1 and 2.1.2, respectively.

2.1.1. OUGBM Model

Let xt be a Brownian motion random variable that solves the SDE dxt = σxdWx
t

(i.e., µt = 0 and σt = σx in the SDE dxt = µtdt + σtdWx
t . Suppose the optimum of the

response trait θ
y
t has an exponential relationship with xt, as shown in Equation (5). The

first step is to express θ
y
t in terms of model parameters σx in xt. By taking a derivative

in Equation (5) with respect to t, one has dθ
y
t = β2d exp(β3xt). Let f (t, x) = exp(β3x)

with partial derivative ft = 0, fx = β3 exp(β3x) and fxx = β2
3 exp(β3x). By applying Itô’s

lemma [26] d f = ( ft + µt fx + σ2
t fxx/2)dt + σt fxdWt, one has

d exp(β3xt) =
(

σ2
x β2

3 exp(β3xt)/2
)

dt + (σxβ3 exp(β3xt))dWt,

which is known as the SDE for a geometric Brownian motion random variable f (xt) with
constant of percentage drift parameter µ = σ2

x β2
3/2 and a constant of percentage volatility

parameter σ = σxβ3. The analytical solution is

f (xt) = f (x0) exp
((

µ− σ2/2
)
+ σxWt

)
.

Plugging f (xt) = exp(βtxt) into Equation (5) and then simplifying the equation yields
to an explicit representation for the optimum as follows.

θ
y
t = β1 + β2 exp(β3(x0 + σxWx

t )). (6)

To draw a sample for trait yt considering the expression of yt in Equation (2), it suffices

to recognize the dynamics of A in Equation (3), where A =
∫ t

0 αy exp(−αy(t− s))θy
s ds.

This can be performed by replacing θ
y
t with β1 + β2 exp(β3(x0 + σxWx

t )) in Equation (6),
which yields to

A = β1(1− exp(−αyt)) + β2αy exp(−αyt + β3x0)
∫ t

0
exp(αys + β3σxWx

s )ds,

where
∫ t

0 exp(αys + β3σxWx
s )ds := St is a definite integral with respect to time, and the

integrand exp(αys + β3σxWx
s ) is a geometric Brownian motion variable [29–31].

Currently there is no analytical expression for St. The authors in [31,32] extensively
studied the problem and provided a numerical solution through the Laplace transform.
In particular, when t approaches to ∞, and the reciprocal of St has a limit distribution of
gamma type with shape parameter (2αy)/(β2

3σ2
x) and scale parameter(β2

3σ2
x)/2 for αy > 0

at t → ∞ (see Prop. 4.4.4 in [30]). In our modeling framework, since t represented
evolutionary time and was of finite value (i.e., 0 < t < 1 after scaling tree in the models),
samples of St were drawn from the definite integral of a geometric Brownian motion
variable exp(αyt + β3σxWx

t ) with respect to time on time domain [0, t] using Simpson’s
rule [33]. Hence, given t, αy, σx, σy, samples of trait variables yt, xt and θ

y
t were accordingly

drawn with the aid of R package pracma [34] to compute the stochastic integral.
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2.1.2. OUGOU Model

Let xt be the Ornstein–Uhlenbeck process variable that solves the SDE.

dxt = αx(θx − xt)dt + σxdWx
t . (7)

Given the exponential relationship between θ
y
t and xt as θ

y
t = β1 + β2 exp(β3xt), by

taking differentials with respect to t on both sides yields to dθ
y
t = β2d exp(β3xt). Let

zt = exp(β3xt), again by Itô’s lemma and use Equation (7), one has

dzt = αxβ3

(
θx − xt + (σ2

x β3)/(2αx)
)

exp(β3xt)dt + σxβ3 exp(β3xt)dWx
t ,

which implies that zt is a geometric Ornstein–Uhlenbeck process [28]. zt can be expressed as

log zt = log z0 exp(−αxβ3t)+ θx(1− exp(αxβ3t))+ β3σx exp(−αxβ3t)
∫ t

0
exp(αxβ3s)dWx

s .

Hence, θ
y
t = β1 + β2 exp(β3xt) can be expressed as

θ
y
t = β1 + β2 exp

(
β3x0 exp(−αxβ3t) + θx(1− exp(−αxβ3t)) + σxβ3 exp(−αxβ3t)

∫ t

0
exp(αxβ3s)dWx

s

)
. (8)

To draw a sample for trait yt, considering the expression of yt in Equation (2), it suffices

to recognize the dynamics of A in Equation (3) where A =
∫ t

0 αy exp(−αy(t− s))θy
s ds.

By using Equation (8) for θ
y
t , one has

A = β1(1− exp(−αyt)) + β2αy exp(−αyt)At

where

At =
∫ t

0
exp

(
−αys + θx + exp(−αxβ3s)

(
β3x0 − 1 + σxβ3

∫ s

0
exp(αxβ3u)dWx

u

))
ds

is a definite integral of geometric OU process with respect to time. Currently, there is
no analytical expression for At, so we used R package pracma [34] to draw samples of At
where the definite integral was computed over a finite grid by Simpson’s rule. On each
grid sample of

∫ s
0 exp(αxβ3u)dWx

u were generated by a normal variable with mean 0 and
variance (exp(2αxβ3s)− 1)/(2αxβ3).

Sections 2.1.1 and 2.1.2 provide the fundamental framework for phylogenetic expo-

nential optimal regression for adaptive trait evolution. Once A in Equation (3) was
fully recognized, samples of trait variable yt could be drawn accordingly by using the yt
expressed in Equation (2). Trajectories for optimal response θ

y
t and the covariate xt for the

OUGBM and OUGOU models are shown in Figure 2.
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Figure 2. Trajectory simulation for the OUGBM and the OUGOU models. Each plot contains three realizations generated
from the corresponding model. Trajectories of optimum θ

y
t were generated by evaluating the exponential relationship

θ
y
t = 0.5 + 0.3 exp(−0.1xt) from the realization of covariate xt.

2.2. Optimal Linear Regression

Optimal θ
y
t of response trait yt and its covariate xt has a linear relationship, as follows:

θ
y
t = β1 + β2xt. (9)

Two optimal linear regression models, OUBM [20] using a BM covariate, and OUOU
[21] using an OU process covariate were developed in the literature. We included both
models in this study for comparison with the optimal exponential regression model.

2.2.1. OUBM Model

When the dynamic of optimum θ
y
t was assumed with a linear relationship with the

BM covariate xt = σxWx
t , then

θ
y
t = β1 + β2σxWx

t . (10)

To draw a sample for trait yt, considering the expression of yt in Equation (2), it

suffices to recognize the dynamics of A in Equation (3). A =
∫ t

0 αy exp(−αy(t− s))θy
s ds

is computed by replacing θ
y
t with the right-hand side of Equation (10). Hence,

A = β1(1− exp(−αyt)) + β2σx exp(−αyt)
(

Wx
t −

∫ t

0
exp(αys)dWx

s

)
which is a normal variable with mean β1(1− exp(αyt)) and variance β2

2σ2
x(t exp(−2αyt)−

2(exp(−αyt)− exp(−2αyt))/αy + (1− exp(−2αyt))/(2αy).

2.2.2. OUOU Model

Let θ
y
t = β1 + β2xt where xt = θx + exp(−αxt)(x0− θx + σx

∫ t
0 exp(αxs)dWx

s ) is a ran-
dom OU process variable. By replacing xt in terms of t, αx, σx, Wx

t to Equation (9), one has
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θ
y
t = β1 + β2θx + β2 exp(−αxt)

(
x0 − θx + σx

∫ t

0
exp(αxs)dWx

s

)
. (11)

To draw a sample for trait variable yt, considering the expression of yt in Equation (2),

it suffices to recognize the dynamics of A in Equation (3), where A =
∫ t

0 αy exp(−αy(t−
s))θy

s ds. By expressing θ
y
t in Equation (11),

A = 1 + 2 + 3

where

1 =
∫ t

0
αy exp(−αy(t− s))(β1 + β2θx)ds = (β1 + β2θx)(1− exp(−αyt)),

2 = αyβ2(x0 − θx)
∫ t

0
exp(−αyt + (αy − αx)s)ds = −αyβ2(x0 − θx)(exp(−αyt)− exp(−αxt))/(αy − αx),

and

3 = αyσxβ2

∫ t

0
exp(−αyt + (αy − αx)s)

∫ s

0
exp(αxu)dWx

u ds

= αyσxβ2 exp(−αyt)/(αy − αx)

(
exp(−αxt)

∫ t

0
exp(αxs)dWx

s − exp(−αyt)
∫ t

0
exp(αys)dWx

s

)
which is a normal variable with mean 0 and variance α2

yσ2
x β2

2((1− exp(−2αxt))/(2αx) +

(1− exp(−2αyt))/(2αy))/(αy − αx)2.

2.3. Optimal Adaptive-Trait Evolution along Phylogenetic Tree

A phylogenetic tree provides evidence of the summary of evolutionary history of
living species [35]. For a mutation occurring in an individual identified on a lineage of the
tree where the mutation changed the phenotype of the organism such as kangaroos, that
mutation may change the moving style from bipedal walking to bipedal hopping. Such a
mutation may need many generations to be achieved. However, the trait may be difficult
to predict when a lineage is fixed for a derived trait; descendants would inherit the trait
until a subsequent evolution change occurs. For a clade that contains marsupials such as
kangaroos, wallabies, koalas, and possums, their differences are the results of changes after
their common ancestor begins to diversify. Here, a phylogenetic tree provides information
to organize this biological diversity where internal nodes depict a common ancestry and
contain the formation of the degree of relatedness that is relative to the entire evolutionary
history. As adopting tree thinking that living species share a common ancestor is broadly
accepted in evolutionary biology, the tree provides evidence in how to conceptualize the
broad sweep of biological diversity.

For trait evolution, a group of currently observed species has beautifully expressed
affinity by the evolutionary tree. From the mathematical side, changes in trait value among
a group of species along a phylogenetic tree can be realized by the relevant stochastic
process. One realization of yt using a BM predictor in the OUBM and OUGBM models,
and one realization of trajectories yt for the OU process-based predictor in the OUOU and
OUGOU models using a 3-species phylogenetic tree are shown in Figure 3. Box plots of
100 simulated optimal-trait and response trait samples under the tree in Figure 3 using the
tree traversal algorithm can be accessed in Figure S1 in the online Supplemental Material,
displaying the spread of traits across models.
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Figure 3. Simulation of optimal trajectories along the tree using Gaussian process covariates.
(top) Tree of 3 taxa is simulated from coalescent process using R package’s ape function rcoal [36].
Original tree has branch of length 250 from root node D to tip C, 120 from node D to node E,
and 130 from E to B and from E to A. Edge length is increased by multiplying a constant, and
trajectories are simulated at each unit under relevant processes. Trajectories of predictor xt assume
Brownian motion with rate σx = 0.5 first simulated along the tree with x0 = 0 at root ρ. For the
covariate xt under an Ornstein–Uhlenbeck process dynamics with parameters αx = 0.625, optimum
θx = 0.25, and rate σx = 0.5. Trait is first simulated along the tree with starting point x0 = 0 at
the root ρ. Optimum θ

y
t as a function of xt is computed under each model using the regression

parameters (β1, β2, β3) = (1.8, 0.6,−0.2). For linear model θ
y
t = 1.8 + 0.6xt, and for exponential

model θ
y
t = 1.8 + 0.6 exp(−0.2xt).

2.4. Approximate Bayesian Computation

Due to the exponential relationship between θ
y
t and its covariate xt, the stochastic

variable yt shown in Equation (2) includes a definite integral of stochastic variable θ
y
t with

respect to time t. The distribution for the definite integral of the geometric OU process
with respect to time is currently not known. Hence, the OUGOU model lack of closed-

form likelihood as stochastic variable A in Equation (3) embedded in yt is intractable.
Approximate Bayesian computation (ABC) was used for statistical inference herein. The
ABC procedure is a likelihood free based method used for model inference. To start an
ABC algorithm, data are first simulated from the model using parameters drawn from
prior distributions. Then, a set of the summary statistics for samples and raw data are
calculated. For the ABC rejection method, a distance function d(·) and a threshold δ are
used to determine posterior samples by comparing summary statistics of observed data
and simulated data [37].

To determine posterior samples, we adopted the 12 summary statistics from [19], and
used the mean, median, standard deviation, skewness, kurtosis, and the phylogenetic tree
based statistics: the contrast mean, the contrast standard deviation, the contrast skewness,
the contrast kurtosis [1], and two phylogenetics-related statistics: (i) the Bloomberg’s
K statistic (measures the relatedness of species in a clade when compared to randomly
selected species from the same tree T ) [38] and (ii) the Pagel’s λ statistic (measures the
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strength of trait heritability from the ancestor) [39]. For K = obs
(

MSE0
MSE

)
/exp

(
MSE0
MSE

)
where MSE0 is the mean square root of the observed tip data measured from phylogenetic
correct mean and MSE is the mean squared error of the observed data calculated using the
variance covariance matrix derived from the candidate tree. For trait vector Y following a
Brownian motion model (i.e., Y ∼ MVN(µ1n, σ2C)), one has

MSE0 = (Y − µ̂1n)
t(Y − µ̂1n)/(n− 1) and MSE = (Z− µ̂1n)

t(Z− µ̂1n)/(n− 1),

where µ̂ = 1tC−1Y/1tC−11 is the phylogenetic corrected mean, and Z = PY is the trans-
formed Y vector obtained from the generalized least-square procedure. Matrix P satisfies
equation DV D = I, where V = σ2C is the variance covariance matrix and I is the identity
matrix. Relatively small MSE0 occurs when there is little covariance within the tip data that
is explained by the candidate tree, and it leads to a smaller value of the ratio of MSE0/MSE
(weaker phylogenetic signal). Conversely, while if the candidate tree precisely demon-
strate the variance-covariance pattern observed in the data, then there is a small MSE,
which results in large value of MSE0/MSE (stronger phylogenetic signal) [38]. Pagel’s
λ statistic parameter λ is calculated by optimizing the likelihood function of the model,
assuming that observed trait vector Y = (y1, · · · , yn)t follows multivariate normal distribu-
tion Y ∼ MVN(µ1n, σ2(λC + (1− λ)I) where 1n = (1, · · · , 1) is vector of 1s, and I is an
identity matrix, C is phylogentic affinity matrix transformed from the given phylogenetic
tree [40]. Since both the MLE for mean µ and variance σ2 can be written as a function of λ,

µ̂ =
1n[λC + (1− λ)I]−1Y
1t

n[λC + (1− λ)I]−11n
and σ̂2 =

(Y − µ̂1n)t[λC + (1− λ)I]−1(Y − µ̂1n)

n
,

λ can be estimated by optimizing the likelihood function over its domain λ ∈ [0, 1]. Those
statistics resulted in a great interest in evolutionary-biology research [19,41,42]. Euclidean
distance measure d = d(S(Y , X), S(Y ′, X ′)) = ||S(Y , X)− S(Y ′, X ′)||2 corresponds to those
statistics S, where S(Y , X) and S(Y ′, X ′) are computed from observed and simulated-trait
data, respectively. The procedure for parameter estimation under the ABC rejection method
is shown in Algorithm 1.

Algorithm 1 Approximate Bayesian computation for the models of adaptive trait evolution.

Require: Trait datasets: response Y = (y1, y2, · · · , yn)t, covariate X = (x1, x2, · · · , xn)t;

tree T , a threshold δ, and modelMj, starting parameter value Θ0j and priors πj(·) for

Θj, j = 1, 2, · · · , m.

Ensure: Posterior samples Θi, i = 1, 2, · · · , mLδ.

1: Calculate the summary statistics S0 = S(Y , X).

2: for i = 1, 2, · · · , L do

3: for j = 1, 2, · · · , m do

4: Draw samples Θij from prior πj under modelMj.

5: Simulate trait set Yij, Xij under modelMj and its parameters Θij.

6: Evaluate summary statistics Sij = S(Yij, Xij).

7: Compute distance dij between S0 and Sij.

8: end for

9: end for

10: Order the distance {dij}L,m
i,j=1 from the small least to the largest {dk, k = 1, 2, · · · , Lm}.

11: return Posterior samples Θi : i = 1, 2, . . . , mLδ.
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2.5. Interpretation of Change of Optimum by Its Covariate

As traits are logarithm-transformed prior to analysis, the change in response traits
is measured on a ratio scale under two types of regression methods: (i) optimal linear
regression or (ii) optimal exponential regression. Below, we briefly describe the change in
optimum by its covariate.

(i) In optimal linear regression: First, given θy1 = β1 + β2x1 and θy2 = β1 + β2x2, the
two equations in log scale are written as log(θy1) = β1 + β2 log(x1) and log(θy2) = β1 +
β2 log(x2). The difference between the two equations is log(θy2)− log(θy1) = β2(log(x2)−
log(x1)) which implies that log(θy2 /θy1) = β2 log(x2/x1). Hence, θy2 /θy1 = (x2/x1)

β2

depends on values of β2, x1 and x2. Let x1 = 1, x2 = 1.1x1 and β2 = 0.5, then θy2 /θy1 =
(1.1x1/x1)

0.5 = (1.1)0.5 = 1.0488, which means that a 10% increase in the covariate x results
in 4.88% increase in the optimum of response θy.

(ii) In optimal exponential regression: First, given θy1 = β1 + β2 exp(β3x1) and
θy2 = β1 + β2 exp(β3x2), the two equations in log scale are written as log(θy1) = β1 +
β2 exp(β3 log(x1)) and log(θy2) = β1 + β2 exp(β3 log(x2)). The difference between the

two equations is log(θy2)− log(θy1) = β2xβ3
2 − β2xβ3

1 , which implies that log(θy2 /θy1) =

β2(xβ3
2 − xβ3

1 ). Hence, θy2 /θy1 = exp(β2(xβ3
2 − xβ3

1 )) depends on covariate x1, x2. Let
β2 = 0.5, β3 = 1 and x2 = 1.1x1, then θy2 /θy1 = exp(0.5(1.1x1 − x1)). Set x1 = 1, then
θy2 /θy1 = exp(0.5((1.1)− 1)) = 1.0513. So, a 10% increase in covariate x would result in a
5.13% increase in optimal response θ

y
t .

3. Results
3.1. Simulation
3.1.1. Parameter Estimation

To validate the new models, their performance was assessed through extensive simu-
lations. Prior parameter distributions were assumed to be independent. Some appropriate
priors were selected because of the models’ lack of tractable likelihood without a conju-
gate prior. A balanced tree of 16, 32, 64 and 128 with a height of 1, and Grafen branch
length simulated by R: ape was used for the simulation. To obtain reliable estimates, 2000
(=500 × 4) posterior samples were obtained from four runs, in each run, 50,000 samples
were generated, and a tolerance rate (δ = 0.01) was used to obtain 500 posterior samples.
Two sets of true parameters and priors were used for simulation. For the first set, all priors
used uniform distribution. For the second set, priors were set to a specific distribution by
intuitive beliefs about the true values of the parameters [43,44]. For the nonuniform prior,
θx was assumed to be normal, as it was reasonable to assumed that the optimum remained
at the peaks. An example of using the normal prior comes from a study of coral polyp
evolution [19], where a suitable prior for the adaptive optimum θx of polyp thickness used
the normal distribution of polyp thickness across all corals. The exponential prior was used
for force parameters αx and αy, and the inverse gamma was used for the rate parameters
σx and σy. The setup of hyperparameters for priors is listed in Table 1.
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Table 1. Simulation setup for true parameter values and prior distributions. U , uniform distribution;
E , exponential distribution; IG inverse gamma distribution; and N , normal distribution. In inverse
gamma distribution, sh = shape and sc = scale.

Par True 1 Prior 1 True 2 Prior 2

αy 0.50 U (0, 1) 0.20 E (rate = 5)
αx 0.125 U (0, 0.25) 0.125 E (rate = 8)
θx 0.00 U (−5, 5) 1.00 N (mean = 1, sd = 1)
σx 2.50 U (0, 5) 0.5 IG (sh = 2,sc = 0.5)
σy 1.00 U (0, 2) 0.5 IG (sh = 2, sc = 0.5)
β1 0.00 U (−1, 1) 0.00 U (−5, 5)
β2 1.00 U (0, 2) −2.00 U (−7, 3)
β3 −0.50 U (−1, 0) −0.5 U (2,−3)

Root state ρ = (ρy, ρx, ρθ) was set to a trivial value of 0 for all models. For each taxon
size, one trait was simulated under each model from the simulation.

The results for uniform priors from this simulation of model parameters are shown
in Table 2. The results for the second set using informative priors from this simulation of
model parameters are shown in Tables S2 and S3 in the online Supplemental Material.

Table 2. Simulation results of validating models through model parameter estimation using uniform prior. Four different
taxon sizes of 16, 32, 64, and 128 were used for the four models (OUGBM, OUGOU, OUBM and OUOU). Means and 95%
credible intervals using 2000 posterior samples from 4 individual runs on each model are reported for each model parameter
on each column.

Model Taxa αy αx θx σx σy

True Value 0.5 0.125 0 2.5 1

OUGBM 16 0.52 (0.06, 0.96) 2.16 (0.26, 4.59) 0.89 (0.16, 1.83)
32 0.53 (0.08, 0.95) 1.83 (0.25, 4.3) 0.95 (0.2, 1.82)
64 0.54 (0.09, 0.95) 1.66 (0.2, 4.1) 0.93 (0.2, 1.78)
128 0.52 (0.08, 0.95) 1.65 (0.21, 4.07) 0.91 (0.2, 1.78)

OUGOU 16 0.44 (0.04, 0.95) 0.12 (0.01, 0.24) −1.14 (−4.49, 2.81) 2.25 (0.65, 4.28) 1.16 (0.38, 1.88)
32 0.47 (0.04, 0.95) 0.12 (0.01, 0.24) −1.22 (−4.59, 2.75) 2.52 (0.82, 4.56) 0.99 (0.19, 1.83)
64 0.48 (0.04, 0.95) 0.12 (0.01, 0.24) −1.16 (−4.58, 2.93) 2.61 (0.87, 4.59) 0.95 (0.18, 1.81)
128 0.49 (0.04, 0.95) 0.12 (0.01, 0.24) −1.16 (−4.58, 2.88) 2.57 (0.79, 4.57) 0.9 (0.16, 1.78)

OUBM 16 0.5 (0.05, 0.95) 2.14 (0.59, 4.22) 1.13 (0.11, 1.92)
32 0.56 (0.07, 0.96) 2.05 (0.55, 4.21) 1.05 (0.1, 1.92)
64 0.52 (0.06, 0.96) 1.95 (0.48, 4.12) 1.07 (0.11, 1.92)
128 0.54 (0.06, 0.96) 1.92 (0.51, 4.05) 1.06 (0.11, 1.91)

OUOU 16 0.53 (0.05, 0.95) 0.12 (0.01, 0.24) 0.63 (−4.15, 4.49) 2.13 (0.64, 4.11) 1.08 (0.12, 1.92)
32 0.55 (0.05, 0.95) 0.12 (0.01, 0.24) 0.94 (−4.15, 4.56) 1.9 (0.42, 4) 1.06 (0.13, 1.9)
64 0.53 (0.05, 0.94) 0.12 (0.01, 0.24) 0.79 (−4.18, 4.54) 1.85 (0.42, 3.96) 1.06 (0.12, 1.91)
128 0.55 (0.05, 0.95) 0.12 (0.01, 0.24) 0.79 (−4.26, 4.54) 1.81 (0.44, 3.92) 1.05 (0.11, 1.9)

Overall, parameters could be estimated reasonably well with acceptable accuracy. The
posterior mean of each parameter was close to the true parameter value under uniform
priors. Results for the uniform priors from this simulation of regression parameters are
shown in Table 3. On each taxon, most models showed reasonable mean estimates for β1
(true 0), β2 (true 1), β3 (true −0.5). Results guaranteed that Algorithm 1 provided a reliable
procedure for estimating parameters.
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Table 3. Simulation results of validating models through regression parameter estimation using
uniform prior. Four different taxon sizes of 16, 32, 64, and 128 were used for four models (OUGBM,
OUGOU, OUBM and OUOU). Means and 95% credible intervals using 2000 posterior samples from
4 individual runs on each model were reported for each regression parameter on each column.

Model Taxa β1 β2 β3

True Value 0 1 −0.5

OUGBM 16 −0.08 (−0.91, 0.84) 1.01 (0.14, 1.89) −0.46 (−0.94, −0.05)
32 −0.02 (−0.9, 0.87) 0.95 (0.12, 1.87) −0.47 (−0.95, −0.05)
64 −0.02 (−0.91, 0.89) 0.96 (0.14, 1.86) −0.48 (−0.95, −0.05)
128 0.01 (−0.9, 0.9) 0.97 (0.14, 1.86) −0.48 (−0.95, −0.04)

OUGOU 16 −0.01 (−0.92, 0.88) 0.88 (0.06, 1.89) −0.47 (−0.92, −0.05)
32 −0.03 (−0.92, 0.88) 0.89 (0.07, 1.89) −0.48 (−0.94, −0.05)
64 −0.05 (−0.92, 0.88) 0.88 (0.07, 1.89) −0.48 (−0.93, −0.05)
128 −0.05 (−0.92, 0.88) 0.91 (0.07, 1.89) −0.49 (−0.94, −0.05)

OUBM 16 −0.03 (−0.88, 0.89) 0.8 (0.11, 1.81)
32 0.01 (−0.89, 0.9) 0.78 (0.09, 1.82)
64 −0.01 (−0.9, 0.89) 0.79 (0.09, 1.83)
128 −0.02 (−0.9, 0.89) 0.8 (0.09, 1.83)

OUOU 16 −0.11 (−0.9, 0.88) 0.86 (0.11, 1.81)
32 −0.11 (−0.9, 0.88) 0.81 (0.09, 1.83)
64 −0.1 (−0.89, 0.88) 0.85 (0.1, 1.85)
128 −0.09 (−0.89, 0.88) 0.82 (0.1, 1.84)

3.1.2. Cross-Validation

Cross-validation is used to investigate how many taxa are needed and whether the
correct model can be chosen from a candidate set. Leave-one-out cross-validation was
performed under ABC using the R: abc package [37]. The balanced trees of taxon sizes 64,
128, 256, and 512 taxa were simulated using R: ape package, while 10,000 birth–death trees
of taxon sizes 50, 100, 200, and 500 with birth rate 2, death rate 0.5, the time since origin 2,
and probability of 0.5 for each tip were included in the final tree and simulated using the R:
TreeSim package [45]. One trait datum was simulated along a given tree using parameters
with values set up in Table 1 using uniform distribution. To assess if ABC could distinguish
between the models, the 12 summary statistics were calculated in each model. For each
model, the size of the cross-validation samples was set to 100.

Results of the confusion matrix are reported with birth-death tree cases by bar plots in
Figure 4. In the lower right panel (taxon size 500) in Figure 4, the bar plots in the OUGOU
categories shows that for ABC model choice will identify the OUOU model 1 time, the
OUGOU model 93 times, the OUGBM model 1 time, the OUBM model 5 times, which
yielded to the misclassification proportion for the OUGOU model of (1 − 93/100) × 100%
= 7%; in the upper left panel (taxon size 50), the rightmost bar plots in the OUOU categories
shows that the ABC model identified the OUOU model (purple) 90 times, the OUGOU
model (blue) 4 times, the OUGBM model (orange) 1 time and the OUBM model (pink) 3
times among the 100 samples, which yielded to the misclassification proportion for the
OUOU model of (1 − 90/100) × 100% = 10%.
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Figure 4. Cross-validation of models using birth-death tree. Bar plots show results of confusion
matrices from cross-validation analysis under Approximate Bayesian Computatin (ABC) multinomial
logistic-regression method for models of adaptive trait evolution. Four taxon sizes of 50, 100, 200,
and 500 of birth-death trees were considered. The actual model is shown in the horizontal label for
each bar plot on each panel, and the frequency of correctly identifying the models is represented by
the height of the bar plots.

From this analysis, models are distinguishable at each taxon size. When taxa increase,
ABC can more frequently identify the correct models. There are other factors, such as the
choices of parameters and number of models in the candidates set, which may impact the
power of correctly identifying the correct models. Here, we used constant factors. Results
of the confusion matrix for each model reported with the balanced tree cases were similar
to those of the case with the birth-death tree cases, and can be accessed in Figure S2 in the
online Supplemental Material.

3.2. Empirical Analysis

Kangaroos are bipedal, and using their femoral midshaft circumference is especially
suitable for predicting body mass. We used the trait datasets in [18] and applied our
models by treating femoral bone circumference as the covariate to explore its impact on the
optimum of body mass. The phylogeny of kangaroos is shown in Figure 5 and trait values
corresponding to the species can be accessed in Table S3 in the Supplemental Material.
Prior to log transformation, data were scaled by the feature-scaling method [46], while the
curved relationship remains unchanged under this scaling. Our ABC algorithm worked
properly for the dataset where traits were simulated within a reasonable range.
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Figure 5. Phylogenetic tree of 20 giant kangaroo species in [18]. Image at the root of the tree is
a reconstruction of Sthenurus stirlingi [47], an extinct giant kangaroo in walking pose.

Posterior means for the parameters of each model is shown in Table 4.

Table 4. Posterior means of parameters for kangaroo dataset.

Model Parameter

αx αy σx σy θx β1 β2 β3

EXP 0.5987 0.2946 0.4251
OUGBM 0.0016 1.3420 0.7888 0.6848 0.2985 0.4281
OUGOU 0.0014 0.0015 0.8034 0.5480 −1.2113 0.5208 0.3258 0.4293

LS 0.2078 0.5125
OUBM 0.0015 1.4413 0.7392 0.1504 0.4996
OUOU 0.0014 0.0014 0.9952 0.6931 −0.5732 0.2392 0.5713

For the kangaroo dataset, all models reported relatively small estimates of force
parameters αx and αy, which indicated that relative weak force was detected to pull the
trait back to its optimum during evolution. For rate parameter, σx, the OU*OU models
reported a smaller value than that of OU*BM models, while σy for the response trait in all
model was between 0.5 and 0.8. For optimum parameter for the covariate trait, θx, both
exponential model (OUGOU) and linear model reported negative values. For regression
parameters, linear models (OUBM and OUOU) reported a positive regression slope β2
which was consistent with [18], where positive correlation among traits was reported.
Regression parameters βi, i = 1, 2, 3 reported relatively closed values across the same
class of models. Overall, our results predicted that bone circumference has a positive
effect on the optimum body mass, which is consistent with the result in [18] when using
phylogenetic independent contrast as the response trait.

We used Bayes factors(BF) to compare the models. The posterior probability P(M|D)
of a modelM given data D is given by Bayes’ theorem: Pr(M|D) = Pr(D|M)Pr(M)/
Pr(D). We adopted the method in [19] and computed the BF, defined as the ratio of the
posterior model probabilities of two different modelsMi andMj, parameterized by model
parameter vectors Θi and Θj. This is performed by using function postpr in the R package
abc [37], where posterior model probabilities are estimated using the rejection method.

The model comparison under the Bayes factor is shown in Table 5. For the kangaroo
data in [18], the best model was the OUGBM model, followed by the OUGOU, OUBM,
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and OUOU models. Their pairwise Bayes factors are shown in Table 5. The best model
(Rank = 1st) was the OUGBM model. This dataset provides relative equal support for
all the exponential OUG** models, a result which was slightly higher than the linear
OU** models with the Bayes factor 1.5000 for OUGBM model over OUBM, and 2.1132 for
OUGBM over OUOU model. This indicates that the evolution of the optimum θ

y
t was also

more appropriately described by the geometric BM process predictor than that described
by a linear predictor.

Table 5. Bayes factor table for kangaroo dataset. Posterior probability P(M|D) for each model
is shown in the first row; and models shown in second row. Bayes factor BFij for model Mi vs.
model Mj shown in ith row and jth column. Acceptance rate was set to 1% (δ = 0.01) for the
kangaroo dataset.

P(M|D) 0.3360 0.2810 0.2240 0.1590

Rank ModelM OUGBM OUGOU OUBM OUOU

1st OUGBM 1.0000 1.1957 1.5000 2.1132
2nd OUGOU 0.8363 1.0000 1.2545 1.7673
3rd OUBM 0.6667 0.7972 1.0000 1.4088
4th OUOU 0.4732 0.5658 0.7098 1.0000

Regression curves are shown in Figure 6. Overall, the exponential models (EXP,
OUGBM, and OUGOU) returned smaller RMSD values than those of the linear models (LS,
OUBM, and OUOU) suggesting the utility of the new models. To interpret the impact on
the optimal θy by its covariate x, we again used the two transformation methods described
in Section 2.5 and the posterior mean of parameters in Table 4.

Figure 6. Regression curves for kangaroo traits: femoral bone circumference vs. body mass. Linear
regression had an RMSD = 0.2748 under the LS method, RMSD = 0.2924 under the OUBM model,
and RMSD = 0.2788 under the OUOU model. Exponential regression had an RMSD = 0.2122 under
the exponential method, RMSD = 0.2228 under the OUGBM model, and RMSD = 0.1982 under the
OUGOU model.

For a 1% decrement of the covariate bone circumference across kangaroos, it was
expected that there would be a 0.13% decrement of the body mass θy under the EXP
model, 0.13% decrement under the OUGBM model, 0.14% decrement under the OUGOU
model, 0.51% decrement under the LS model, 0.50% decrement under the OUBM model
and 0.52% decrement under the OUOU model. For a 5% increment of the covariate bone
circumference across the kangaroos, it was expected that there would be a 0.62% increment
of the body mass θy under the EXP model, 0.63% increment under the OUGBM model,
0.69% decrement under the OUGOU model, 2.53% increment under the LS model, 2.47%
decrement under the OUBM model, and 2.56% increment under the OUOU model. Overall,
the exponential models predicted smaller optimum changes of the optima than the linear
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models did for this dataset. A list of optimum changes corresponding to the covariate
under those models can be seen in Table S4 in online Supplemental Material.

4. Discussion

Two phylogenetic optimal exponential regression models, OUGBM and OUGOU, for
adaptive trait evolution under stabilizing selection were developed. Simulations showed
that the new models were validated where posterior means of parameters were close to
their true parameter values. The utility of the new regression models in phylogenetic
comparative analysis is accessed by analyzing the kangaroo dataset, and results showed
that the new models could be appropriately used and are more competitive than the
linear models.

Parameter estimation for regression parameters in the ABC procedure depends on
several factors. While appropriate priors are required for simulating samples, the choice of
the hyperparameters is also important. In this study, uniform distribution with bounds
of regression estimates ±5 times their standard deviations was used. As results showed
the fit of the model, the choice of the parameters for ABC inference provides a reasonable
range to cover the true parameters.

The OU process is applied to model stabilizing selection, but is currently criticised
for simply being a trait-tracking movement process [48]. Our models assumed that the
optimum was tracked by its covariates in a nonlinear functional manner. While our ap-
proach provides options for analyzing trait data from the aspect of adaptive trait evolution,
it remains to be seen whether models can accurately estimate the adaptive optima from
the stabilizing selection, as described in the literature [48]. Undoubtedly, it would be very
interesting to investigate this open question for all OU process-based PCMs [8].

Phylogenetic comparative methods are very useful statistical methods to answer
evolutionary questions. Those methods, which were developed on the basis of the property
of stochastic process remains, require more improvement so that they are able to face the
challenges of an intrinsic evolutionary process, which merely a simple Brownian motion
model or an OU process model can solve [40,49]. Our models provide feasible options to
users in the community to account for nonlinearity in the relationship between the trait
optima undergoing stabilizing selection and predictor traits. The models and procedures
included in this study were implemented into the R package ouxy [50].

Supplementary Materials: The following are available at https://www.mdpi.com/1099-4300/23/2
/218/s1, Figure S1: Box plots of simulated trait values, Figure S2: Cross-validation of models using
balanced tree, Table S1: Simulation results of validating models through model parameter estimation
using informative priors, Table S2: Simulation results of validating models through regression
parameter estimation using informative priors, Table S3: Body mass and bone circumference for
Kangaroo species, Table S4: Percentage change of the optimal trait impacted by its covariate.
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