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Abstract: Representation and abstraction are two of the fundamental concepts of computer science.
Together they enable “high-level” programming: without abstraction programming would be tied
to machine code; without a machine representation, it would be a pure mathematical exercise.
Representation begins with an abstract structure and seeks to find a more concrete one. Abstraction
does the reverse: it starts with concrete structures and abstracts away. While formal accounts of
representation are easy to find, abstraction is a different matter. In this paper, we provide an analysis
of data abstraction based upon some contemporary work in the philosophy of mathematics. The paper
contains a mathematical account of how Frege’s approach to abstraction may be interpreted, modified,
extended and imported into type theory. We argue that representation and abstraction, while
mathematical siblings, are philosophically quite different. A case of special interest concerns the
abstract/physical interface which houses both the physical representation of abstract structures and
the abstraction of physical systems.
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1. Introduction

This paper is intended to be a contribution to the “philosophy of computer science” [1].
This is a new discipline and uncovering its core philosophical concerns is still in process [2].
However, it appears to raise subject specific ontological, methodological and epistemologi-
cal questions. What kinds of things are programs? Are they abstract or concrete? There
are conceptual questions that arise in connection with the multiple languages of the disci-
pline. What is a “good” language design? What is the function of semantic theory; does
it raise parallel issues to those of the philosophy of language? There are methodological
and epistemological questions pertaining to the construction of “correct” programs and
software. What is the nature of program correctness? Is it a mathematical or empirical
affair—or both? Can we guarantee correctness?

The nature of computational abstraction invokes several of these traditional philo-
sophical categories, and is a common theme in the informal arena of computational dis-
cussion [3]. It is said to be one of the mechanisms behind the design of programming
and specification languages: it is the mechanism that supports the move to “high-level”
from machine oriented languages. It is also at the centre of program and software speci-
fication and design in the guise of “ data abstraction” [4–7], and it is this area where we
focus attention.

Finding a representation for a given specification is the essence of programming:
some goal is specified, and the programming task is to locate a suite of programs that
satisfy it. At first gloss, specifications employ abstract concepts that involve little or no
process information: specifications say “what has to be done” without saying “how to do
it”. Presumably, the latter is the job of actual programs. But this is an over simplification.
In practice, “programming” and “specification” are relative terms. In particular, one level
of programs can serve as the specification of more concrete ones. For example, Pascal [8] or
Miranda [9] may be employed as the specification medium for programs that are eventually
implemented in some form of machine code. In these cases, what is the specification and
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what is the program is a matter of intention: what is taken to provide the correctness condi-
tions for what [10]. What is generally true is that the vehicles of specification, the concepts
employed, are at a more “abstract level” than those of the representation or program. More-
over, these different levels of abstraction are enshrined in different notions of data type
that are built into contemporary programming and specification languages [4,8,11–16]. For
instance, Haskell [14] employs recursive data types whereas Fortran [11] uses arrays and
iteration. Some data types are “abstractions” of more “concrete” ones in the sense that some
information is neglected, hidden or ignored in order to arrive at a more abstract structure.
But what is it to neglect, hide or ignore information? What precisely is “computational
abstraction”? Is there an exact mechanism for such? Addressing these questions is a crucial
part of the present task.

In Sections 2–5, we introduce our formulation of abstract types, and provide some
working examples to illustrate representation and abstraction. Sections 6 and 7 introduce
“Fregean abstraction” in a type-theoretic setting, and Section 8 brings representation into the
picture. Sections 9–12 consider levels of abstraction, abstraction over families and physical
abstraction. Sections 13–15 discuss the mathematical and philosophical differences between
abstraction and representation, and the last section reflects a little on the appropriate
foundational framework.

1.1. Methodology

As we said at the outset, the present paper is a contribution to this general area.
This work is theoretical and foundational: there are philosophical and mathematical aspects
to the research. But there is no empirical component; there are no experimental results.

1.2. Previous Work

While there is a good amount of contemporary philosophical work aimed at providing
a philosophical foundations for abstraction in mathematics [17–21], there is no substantial
parallel study aimed at abstraction in computer science. The present paper attempts to
fill this gap by applying the insights of this philosophical work aimed at mathematics to
computer science. This work has its origins in [2] where the present approach is sketched.

1.3. Results

We provide a conceptual and mathematical analysis of “data abstraction” and “repre-
sentation” and their relationship. In particular, we provide a type-theoretic approach to
Fregean abstraction: abstraction generates new abstract types. We demonstrate that abstrac-
tion and representation are related to each other as “congruence” and “homomorphism”.
However, there is a philosophical twist in that our treatment of abstraction is not based
on the normal construction of “Quotient Types”, but on a method of abstraction that has
its origins in Frege [22], and underpins contemporary abstractionism in the philosophy of
mathematics [17,23,24]. One particular instance of the abstraction/representation pairing
sits on the abstract/physical interface, and its analysis provides some insight into physical
abstraction/representation, and how this impacts upon any related notion of computation.

2. Abstract Data Types

Representation and abstraction come together in the notion of an “abstract data
type” [4,7,25], the original formulation of which emphasizes the idea that it is the operations
of the type that play the characterizing role.

An abstract data type defines a class of abstract objects which is completely
characterized by the operations available on those objects. This means that an
abstract data type can be defined by defining the characterizing operations for
that type. [7]

According to this, an abstract type is somehow constituted by its collection of operations.
There are various interpretations of this [6], but a minimal one has it that an abstract type
has the following form. (There is a distinction between “state-based” and “functional”
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abstract types. We shall concentrate on the latter—which will be sufficient to illustrate the
broad idea of abstraction. See [26] for an account of abstraction in state based systems.)

A =< A, Ω >

Here, A is the carrier type and Ω is the set of functions that operate on A. (One can
think of these as set-theoretic structures where A is a set and the functions are set theoretic
functions. We shall later discuss this assumption in more detail).

But what does it mean to say that a type is completely characterized by “defining”
its characterizing functions? There are two kinds of definitions that seem appropriate.
An “explicit” definition of a function would be one that defines it in terms of something
else, presumably in terms of functions from some other type. For example, we might
specify the type of queues by their representation as sequences. So that the queue oper-
ations are defined in terms of sequence operations. Subsequently, the properties of the
definiendum are fixed by the properties of the definiens. This interpretation is adopted in
some approaches to specification [5]. Alternatively, definitions are taken to be “implicit”
where an abstract type is fixed by the relationships between these functions expressed
mathematically: an “implicit” definition involves an axiomatic account that lays out the
formal relationships between the functions of the type. We shall adopt this approach.

However, similar conceptual points arise for both styles. In particular, under both
regimes abstract types define abstract objects. This rules out any account where the func-
tions are characterized by some form of physical implementation in which the objects are
physical and the operations mechanical operations on these objects. This would not charac-
terize an abstract type. So, to be clear, the characterization we employ follows a traditional
philosophical distinction: abstract types are mathematical objects and non-abstract ones
refer to physical structures. But be aware that we shall use the terms “abstract” and “con-
crete” as relative terms. In particular, “concrete types” maybe be mathematical. In contrast,
the term “physical type” is taken only to refer to a physical structures. (Eventually within
computer science, as opposed to mathematics, all abstract types must be given physical
representation. This is in keeping with what we have argued elsewhere: computer science
is centrally concerned with the construction of technical artifacts [2]. So abstract types must
eventually morph into physical ones.)

To make our general notion more applicable, a few extensions and qualifications are
necessary. Our structures may take the following form.

A[T] =< A[T], Ω >

This introduces a type that is “polymorphic” in T, where the latter is a parameter of the
abstract type, i.e., it introduces a whole collection of types parameterized in T. Moreover,
the functions of the abstract type are implicitly polymorphic, i.e., they maybe predicatively
applied to any T. Additionally, these structures are subject to some axiomatic constraints.

We shall also require relations as well as functions in our structures. Here we represent
them as Boolean valued functions (T ⇒ Bool), where T is a type and the type of Boolean
values is taken to be the following structure.

Bool =< Bool, ∆ >

Here Bool is the enumerated type {true, f alse} and cond is the only function in ∆ with
the following functionality.

cond : Bool ⊗ T ⊗ T ⇒ T

where A⊗ B represents the Cartesian product of two types and A⇒ B the type of functions
from A to B. Note that Cartesian products are taken to bind more strongly than function
spaces, e.g., Bool ⊗ T ⊗ T ⇒ T stands for (Bool ⊗ T ⊗ T)⇒ T.
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The function cond is taken to satisfy the following equality conditions.

cond(true, t, t′) =Bool t cond( f alse, t, t′) =Bool t′.

In order to state the axioms, such as these for cond, we assume that every type T comes
equipped with an “external” notion of equality =T . For example, =Bool is the “external”
equality for the Boolean type. Here we shall often abbreviate b =Bool true as just, b i.e.,
when used as a logical assertion. Where it is clear which types are involved we shall drop
the subscript on equality.

These equalities are not part of the “programming language” but part of its semantic
theory [27,28] . You cannot employ them in the text of function definitions, i.e., programs.
Note that cond is polymorphic in that it applies to arbitrary types T. In particular it applies
to Bool itself. So, all the standard logical connectives, ∧,∨,→,¬ may be defined (or
“programmed”) in terms of the conditional, e.g.,

→ (b, b′) .
= cond(b, b′, true).

More often than not, we shall employ infix notation and write b→ b′, etc.
In addition, we assume that each type T comes equipped with an “internal” Boolean

function of equality that is part of the “ functional programming language”.

eqT : (T ⊗ T)⇒ Bool.

That is, we may write function definitions using it. In particular, for complex type
constructors, internal equality is usually definable in terms of the internal equality for its
components. For example, for Cartesian products, we define it point-wise.

eqA⊗B((x, y), (u, v)) .
= eqA(x, u) ∧ eqB(y, v).

For the types of this paper these two notions of equality will be provably co-extensional.
However, both notions are necessary. Semantic judgments about the language are made
with the external notion, whereas programs in the language employ the internal one.

This provides the basic notion of “abstract type”. There are some central examples
that will be used to illustrate and make the various issues concrete.

3. Some Data Types

Lists form a paradigm example of an abstract type. The polymorphic version takes
the following form.

L[T] =< L[T], {nil, cons, rec, head, tail} >
For instance, we might form lists of numbers L[N] or lists of Boolean values L[Bool] etc.

Formally, the first and last pairs of operations have the following functionalities.

nil : L[T]

cons : T ⊗ L[T]⇒ L[T]

head : L[T]⇒ T

tail : L[T]⇒ L[T]

The functions nil and cons are the constructors of the type; they dictate the form of
the elements. There is an unsaid assumption that the type of lists, over a given type, is
the smallest type that contains the empty list nil and is closed under the cons operator.
Implicitly, this justifies the use of induction as a means of reasoning about these types.
The exact form of induction will depend upon the logical system employed. For example,
a formulation in first-order logic would support first-order induction, and this is sufficient
for the present application. However, a full development of the underlying theoretical
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framework is a topic for another occasion, but see the section on foundations for some
further elaboration of what this might look like.

The interaction of these constructors with the destructors, head and tail, is governed
by the following axioms.

head(cons(t, l)) = t tail(cons(t, l)) = l

The axioms are silent on what happens outside these constraints. The final operator of
the type, the function rec, is a (polymorphic) recursion operator over lists.

rec : L[T]⊗ A⇒ C

where A and C are arbitrary types. Given g : A⇒ C and f : T⊗ A⊗ C ⇒ C, the recursion
operator is taken to satisfy the following recursion equations, where the type A is an
optional parameter, i.e., there may not be one.

rec(nil, a) = g(a)

rec(cons(t, l), a) = f (t, a, rec(l, a))

The function rec enables the definition of new functions, i.e., programming with lists
in the functional style is largely driven by the definition of recursive functions.

Our second abstract type is a polymorphic version of queues. While queues and lists
have the same structural signature,

Q[T] =< Q[T], {emp, enqueue, rec, f ront, dequeue} >,

lists operate a “last-in” and “first-out” regime: queues reverse matters and employ a “last-in”
and “last-out” one. More explicitly, the functions of the structure have the following types.

emp : Q[T]

enqueue : Q[T]⊗ T ⇒ Q[T]

rec : Q[T]⊗ A⇒ C

dequeue : Q[T]⇒ Q[T]

f ront : Q[T]⇒ T

They are are taken to satisfy the following equality axioms. These are a little more
messy than those for lists. Notice in particular that dequeue has to recursively unpack the
structure of the queue to reach the front.

f ront(enqueue(emp, t)) = t dequeue(enqueue(emp, t)) = emp

f ront(enqueue(q, t)) = f ront(q) where q 6= emp

dequeue(enqueue(q, t)) = enqueue(dequeue(q), t) where q 6= emp

Despite these differences, we can employ recursion on queues in a parallel fashion
to that for lists. Given g : A⇒ C and f : T ⊗ A⊗ C ⇒ C, recursion over queues satisfies
the following.

rec(emp, a) = g(a)

rec(enqueue(q, t), a) = f (t, a, rec(q, a))

We shall also employ restricted abstract types L[T]− and Q[T]−where ∆L = {nil, cons, rec}
and ∆Q = {emp, enqueue, rec}. All the “programming” in the next section only employs these
restricted structures.
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4. Some Infrastructure

We require some infrastructure to facilitate the formulation of data abstraction, and
this is obtained by programming within these structures. (The reader unfamiliar with
functional programming might consult [14,15] for a relevant introduction.) Most of the
functions or “programs” contained here employ the above form of recursive definition.
Indeed, for pedagogical reasons, we shall often not explicitly conform to the exact syntax
for recursive definitions but use a more familiar and natural recursive style. We illustrate
matters with lists, but everything works just as well for queues.

Figure 1 provides a recursive definition of the append operation that glues two
lists together.
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A few more functions are required for the theoretical development. Membership in
lists is defined in Figure 3.

mem(nil, x) .
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Figure 3. mem : L[T]⊗ T ⇒ Bool.

Here mem is defined as a recursive function where the generating function is defined
as f (l, a, x, c) .

= cond(eqT(a, x), true, c). We shall employ more familiar notation and write
a ∈ l for mem(l, a). By definition, the empty list behaves as expected: i.e., as a Boolean
valued term x ∈ nil equals false.

Given a Boolean valued function g : L[T]⇒ Bool, we may define (Figure 4) “quantifi-
cation” over lists.

∀x ∈ nil.g[x] .
= true

∀x ∈ con(a, l).g[x] .
= g[a] ∧ ∀x ∈ l.g[x].

Figure 4. Quantification Over Lists.
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u ≡ v .
= (∀x ∈ u.x ∈ v)↔ (∀x ∈ v.x ∈ u)

Figure 5. ≡: L[T]⊗ L[T]⇒ Bool.

Finally, we shall say that function g : L[T]⊗ A⇒ L[T] is Extensional if

∀u : L[T].∀v : L[T].u ≡ v→ ∀x : T.g(u, x) ≡ g(v, x).

We shall use this shortly. All of the above are also definable for queues.
Our objective is to employ these types as a basis for abstracting more abstract ones. In

particular, we aim to abstract the following “more abstract” type.

5. Finite Sets

The abstract type of finite sets underpins the style of specification common to logical
specification languages such as Z [44] , B [2] and VDM [27]. Indeed, there is also at least
one programming language with finite sets as its central data type [45]. Our objective is to
abstract the abstract type of finite sets from lists/queues. For pedagogical reasons, we first
put in place this target of abstraction. It has the following signature.

S[T] =< S[T], {φ,⊕, rec} >
Here S[T] consists of “finite sets” whose elements are selected from T. The type is

defined axiomatically as follows. We employ the standard constant for the empty set, and
the function ⊕ adds a single element to a set. It satisfies two axiomatic constraints that
demand that we ignore duplicates and the order of the elements.

(Dup) ⊕ (t, s) = ⊕(t,⊕(t, s))

(Ord) ⊕ (t,⊕(t′, s)) = ⊕(t′,⊕(t, s))

As we shall see shortly, these guarantee extensionality for sets. This paves the way for
the formulation of recursion over finite sets. This follows the pattern of recursion for lists.
However, it has to be restricted: rec must be a function and, given the above constraints on
set equality, for this to hold, we require rec to satisfy the following.

(Duprec) rec(⊕(t,⊕(t, s)), a) = rec(⊕(t, s), a)

(Ordrec) rec(⊕(t,⊕(t′, s)), a) = rec(⊕(t′,⊕(t, s), a))

Consequently, the generating function f : T ⊗ A⊗ C ⇒ C must satisfy

(Dup f ) f (t, a, f (t, a, c)) = f (t, a, c)

(Ord f ) f (t, a, f (t′, a, c)) = f (t′, a, f (t, a, c))

Such functions we shall call legitimate generators for recursion. Dupf and Ordf guarantee
that recursion is functional. Conversely, if rec is a function that satisfies the recursion equations,
then the generating function f will be legitimate. Notice that the legitimacy constraint may
also be applied to lists i.e., we can restrict list recursion to legitimate generators.

In particular, the following functions are supported by such recursions.

mem : S[T]⊗ T ⇒ Bool

This is defined exactly as membership in lists. Again, we shall write a ∈ s for
mem(s, a).

We may define quantification with respect to sets in a parallel way to lists. But now
we may define internal equality (Figure 6).

Figure 5. ≡: L[T]⊗ L[T]⇒ Bool.
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Finally, we shall say that function g : L[T]⊗ A⇒ L[T] is Extensional if

∀u : L[T].∀v : L[T].u ≡ v→ ∀x : T.g(u, x) ≡ g(v, x).

We shall use this shortly. All of the above are also definable for queues.
Our objective is to employ these types as a basis for abstracting more abstract ones. In

particular, we aim to abstract the following “more abstract” type.
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Here S[T] consists of “finite sets” whose elements are selected from T. The type is

defined axiomatically as follows. We employ the standard constant for the empty set, and
the function ⊕ adds a single element to a set. It satisfies two axiomatic constraints that
demand that we ignore duplicates and the order of the elements.

(Dup) ⊕ (t, s) = ⊕(t,⊕(t, s))

(Ord) ⊕ (t,⊕(t′, s)) = ⊕(t′,⊕(t, s))
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Such functions we shall call legitimate generators for recursion. Dupf and Ordf guarantee
that recursion is functional. Conversely, if rec is a function that satisfies the recursion equations,
then the generating function f will be legitimate. Notice that the legitimacy constraint may
also be applied to lists, i.e., we can restrict list recursion to legitimate generators.

In particular, the following functions are supported by such recursions.

mem : S[T]⊗ T ⇒ Bool

This is defined exactly as membership in lists. Again, we shall write a ∈ s for
mem(s, a).

We may define quantification with respect to sets in a parallel way to lists. But now
we may define internal equality (Figure 6).
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eqS[T](s, s′) .
= (∀x ∈ s.x ∈ s′) ∧ (∀x ∈ s′.x ∈ s)

Figure 6. Equality.

Given this, we can use induction on sets, together with Dup and Ord, to show that
extensionality holds i.e.,

∀x : S[T].∀y : S[T].eqS[T](s, s′)→ s =S[T] s′

So, “sets” behave as expected. We are now in a position to develop our approach to
data abstraction.

6. Frege on Abstraction

The word “abstraction” is used throughout computer science with varying degrees
of explicitness and precision. Actually, it is doubtful that there is just one computational
usage. We concentrate on “data abstraction” [16,27], and here the Fregean perspective
seems to provide the beginnings of some conceptual clarification, as well as the basis for
some mathematical precision.

The traditional analysis of abstraction has its roots in Locke [37,38]. He has it that
abstraction is a mental process in which new abstract ideas are formed by reflecting upon
several objects or ideas, and omitting the features that distinguish them.

The same Colour being observed to day in Chalk or Snow, which the Mind
yesterday received from Milk, it considers that Appearance alone, makes it
representative of all of that kind; and having given it the name Whiteness, it by
that sound signifies the same quality wheresoever to be imagin’d or met with;
and thus Universals, whether Ideas or Terms, are made. [37]

Seemingly, general terms stand for abstract ideas that are created by separating these ideas
from the spatial and temporal qualities of particular things. For instance, one is given a
range of white things of varying shape and sizes, and one ignores the respects in which
they differ. In this way we come to idea of “whiteness”.

Influential as it has been, it does not provide a clear basis for any precise mathematical
account. Fortunately, contemporary work in the foundations of mathematics [19,22,24],
based upon Frege’s remarks on mathematical abstraction [23], has laid the groundwork for
such an account.

The judgment ’Line a is parallel to line b’, in symbols: a || b, can be taken as an
identity. If we do this, we obtain the concept of direction, and say: ’The direction
of line a is equal to the direction of line b’. Thus we replace the symbol || by
the more generic symbol =, through removing what is specific in the content of
the former and dividing it between a and b. We carve up the content in a way
different from the original way, and this yields us a new concept. [23]

Frege observes that many of the singular terms that appear to refer to abstract entities are
formed by means of functional expressions. For example, the following would appear to
pick out new abstract objects, namely directions and collections.

• The direction of a line.
• The collection of elements in a list.

While it is true that many singular terms formed by means of functional expressions
denote ordinary concrete objects: e.g., ‘the present pope’, ‘the source of corona 19’, the
functional terms that pick out abstract entities are distinctive in the sense that associated
with such a functional expression there is an “equation” of the following form.

1. The direction of a line A =The direction of line B if and only if A is parallel to B.
2. The collection of elements in list l = the collection of elements in list k

Figure 6. Equality.
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Given this, we can use induction on sets, together with Dup and Ord, to show that
extensionality holds, i.e.,

∀x : S[T].∀y : S[T].eqS[T](s, s′)→ s =S[T] s′

So, “sets” behave as expected. We are now in a position to develop our approach to
data abstraction.

6. Frege on Abstraction

The word “abstraction” is used throughout computer science with varying degrees
of explicitness and precision. Actually, it is doubtful that there is just one computational
usage. We concentrate on “data abstraction” [4,5], and here the Fregean perspective seems
to provide the beginnings of some conceptual clarification, as well as the basis for some
mathematical precision.

The traditional analysis of abstraction has its roots in Locke [21,32]. He has it that
abstraction is a mental process in which new abstract ideas are formed by reflecting upon
several objects or ideas, and omitting the features that distinguish them.

The same Colour being observed to day in Chalk or Snow, which the Mind
yesterday received from Milk, it considers that Appearance alone, makes it
representative of all of that kind; and having given it the name Whiteness, it by
that sound signifies the same quality wheresoever to be imagin’d or met with;
and thus Universals, whether Ideas or Terms, are made. [32]

Seemingly, general terms stand for abstract ideas that are created by separating these ideas
from the spatial and temporal qualities of particular things. For instance, one is given a
range of white things of varying shape and sizes, and one ignores the respects in which
they differ. In this way we come to idea of “whiteness”.

Influential as it has been, it does not provide a clear basis for any precise mathematical
account. Fortunately, contemporary work in the foundations of mathematics [17,19,23],
based upon Frege’s remarks on mathematical abstraction [22], has laid the groundwork for
such an account.

The judgment ’Line a is parallel to line b’, in symbols: a || b, can be taken as an
identity. If we do this, we obtain the concept of direction, and say: ’The direction
of line a is equal to the direction of line b’. Thus we replace the symbol || by
the more generic symbol =, through removing what is specific in the content of
the former and dividing it between a and b. We carve up the content in a way
different from the original way, and this yields us a new concept. [22]

Frege observes that many of the singular terms that appear to refer to abstract entities are
formed by means of functional expressions. For example, the following would appear to
pick out new abstract objects, namely directions and collections.

• The direction of a line.
• The collection of elements in a list.

While it is true that many singular terms formed by means of functional expressions
denote ordinary concrete objects: e.g., ‘the present pope’, ‘the source of corona 19’, the
functional terms that pick out abstract entities are distinctive in the sense that associated
with such a functional expression there is an “equation” of the following form.

1. The direction of a line A =The direction of line B if and only if A is parallel to B.
2. The collection of elements in list l = the collection of elements in list k

Inspired by these examples, an abstraction principle may be formulated as a bi-
conditional of the following form:

∀x : K.∀y : K.h(x) = h(y)↔ R(x, y),
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where h is a term forming operator, R is an equivalence relation, and K is the “kind” of
objects over which we are quantifying and abstracting. Such principles of abstraction are
intended to be mechanisms for the abstraction of new “kinds of things”. Given a kind of
thing K, abstraction introduces a new kind of thing H such that:

∀z : H.∃x : K.h(x) = z.

This insists that h is a surjective term forming operator from K to H. So, given the
kind of thing that are lines, the abstraction principle introduces the kind of thing that
are directions.

Our goal is to use this insight to provide a mathematical foundation for data abstrac-
tion where kinds are replaced by abstract data types.

7. Abstracting Abstract Types

When applied to data types we require a little more than the above general account
of abstraction. More exactly, when dealing with data types we need to explicitly take into
account not just the objects but also the functions of the type. Our objective with the new
abstract type is to maintain the signature of the concrete type but with a “re-carving” of
the content.

The following concept is a modification of the standard notion to cover functions that
take and return values (e.g., Bool) outside the type under scrutiny.

Definition 1. Let A =< A, Ω > be any abstract type then R : A⊗ A ⇒ Bool, an equivalence
relation on A, is a Congruence Relation if every f : Ω,

1. If f : B⊗A⊗D ⇒ A, then ∀x : B.∀u, u′ : A.∀y : D.R(u, u′)→ R( f (x, u, y), f (x, u′, y)).
2. If f : B ⊗ A ⊗ D ⇒ C, then ∀x : B.∀u, u′ : A.∀y : D.R(u, u′) → f (x, u, y) =C

f (x, u′, y).

With this in place we may formulate our notion of data abstraction. Assume that we
are given a “concrete” data type

C =< C, Λ >,

together with a congruence relation R on C. Then, the following Principle of Abstraction
is taken to introduce a new type C/R whose elements have the form h(c) for c : C, and
whose internal equality conditions are given by the following principle of abstraction.

(abst) ∀x : C.∀y : C.eqC/R(h(x), h(y)) = R(x, y).

In other words, we are postulating a new type via its internal equality. Here the relation
R is a defined Boolean function of the concrete structure. The new type is introduced
whose equality relation is stipulated axiomatically to agree with R. Finally, the function h
is stipulated to be surjective, i.e.,

∀z : C/R.∃x : C.h(x) = z.

This is to guarantee that there are no elements in the abstracted type except those that
are abstracted.

Given that R is a congruence, we may lift the functions from the concrete type to the
abstract one. For example, where for g : Λ with functionality g : Cn ⇒ C, we “lift” the
function to ĝ : (C/R)n ⇒ C/R defined as follows.

ĝ(h(x1), . . . , h(xn))
.
= h(ĝ(x1, . . . , xn))

This yields a new abstract type.

C/R =< C/R, Λ/R >



Entropy 2021, 23, 213 10 of 25

where Λ/R is the type of all such ĝ.
We illustrate the idea by abstracting finite sets from lists. We shall deal with the case

of queues, and how matters are related, later.

Example 1. We first provide the “axis of abstraction”. This is provided by the notion of “extensional
equivalence” for lists. The following principle of abstraction generates a new type L[T]/ ≡ (written
as S[T]).

∀u : L[T].∀v : L[T].eqS[T](set(u), set(v)) = u ≡ v

This provides the actual carrier of the type. But now we have to define the various operations
following the pattern of the general case.

φ
.
= set(nil)

a⊕ set(l) .
= set(cons(a, l))

rec(set(z), a) .
= set(rec(z, a))

where both set and list recursion are restricted. Each of these new operators is extensional, i.e.,
congruent relative to extensional equality.

We have thus extracted a structure that satisfies the axioms for sets: the conditions
Dup and Ord follow since equality is extensional equivalence. To complete the process of
abstraction we can “kick away” the dependence on lists and axiomatize finite sets directly
in terms of Dup and Ord.

We might be tempted to interpret these “Fregean abstract types” as quotient types:
the new type A/R would then be identified as the set of equivalence classes of A induced
by the congruence relation R. This would be the standard mathematical approach. But this
interpretation is not the Fregean one. It does not have the same ontological force. Fregean
abstractions are not new sets: principles of abstraction in the Fregean mold introduce
new sui-generis notions that are not part of the existing background ontology. Fregean
abstraction principles are taken to provide a mechanism for the creation of new abstract
structures. Indeed, abstraction in this guise provides an explanation of how new abstract
structures might come about.

8. Representation

On the face of it, representation is the opposite of abstraction. Here one begins with
an abstract type and seeks to represent it in a more concrete one [4,5]. More precisely, given
an abstract type

A =< A, Ω >,

the objective is to locate a more concrete one,

C =< C, Λ > .

This is taken to “represent” the abstract one just in case there exits a function,

F : C ⇒ A,

the “Representation Function”, from C into A that reflects the structural connections
between them.

Definition 2. Let C =< C, Λ > and A =< A, Ω > be abstract types, then F : C ⇒ A, an is a
Homomorphism if every fA : Λ

1. If fC : B⊗ C⊗ D ⇒ C, then ∀x : B.∀u : C.∀y : D.(F( fC(x, u, y)) =A fA(x, F(u), y)).
2. If fC : B⊗ C⊗ D ⇒ E, then ∀x : B.∀u : C.∀y : D. fA(x, F(u), y) =E fC(x, u, y).
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One further demand is that homomorphisms that are taken to be representational
mappings are surjective, i.e., all abstract entities must have a concrete representation. So, a
representation function must be a surjective homomorphism from the structure C onto the
structure A.

Example 2. In the representation of sets as lists we are required to locate a representing homomorphism:

set : L[T]⇒ S[T].

And this is straightforward: we follow the structure of lists.

set(nil) .
= φ

set(cons(t, l)) .
= t⊕ set(l)

This is surjective: to prove it we employ the set-induction. So everything in S[T] has the form
set(x) for some x : L[T]. Let

f : L[T]⊗ A⇒ C

be extensional. Then we may extend this to a function

f̂ : S[T]⊗ A⇒ C

by
f̂ (set(x), a) .

= f (x, a)

We can prove for restricted recursion for lists, this time by list-induction, that for all z : L[T],

set(rec(z, a)) = rec(set(z), a),

where on the right hand side f̂ is employed in the definition of rec. So, as expected, set extends to
the recursion operator.

There is another notion of representation that refers to the relation between a physical
system and the external physical world. This is a case of the physical system “modelling”
the physical world. Our notion of representation exists between a physical system and
an abstract one. However, the word “implementation” is often used for both notions
of representation.

9. Programming and Computation

What is a “program” and what is a “computation” differ at different levels of abstrac-
tion. Sets are more abstract than lists and this impacts upon the style of programming, and
what computations are supported. Programming with sets must respect extensionality. An
example of this is the append program for lists. This gives rise to the union program for
sets (Figure 7).
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union(φ, s) .
= s

union(⊕(t, s′), s) .
= cons(t, append(s′, s))

Figure 7. union : S[T]⊗ S[T]⇒ S[T].

The function append is a representation of union where the two are related under the
set function extended to set recursion. Conversely, given append we may abstract or lift the
function to obtain the union operation on sets. And this is possible because append is an

Figure 7. union : S[T]⊗ S[T]⇒ S[T].

The function append is a representation of union where the two are related under the
set function extended to set recursion. Conversely, given append we may abstract or lift
the function to obtain the union operation on sets. This is possible because append is an
instance of restricted recursion. So, computations generated by these two functions mirror
each other. From the representational perspective, sets fix the specifiable computations on
lists; with abstraction only certain list computations give rise to set theoretic ones.
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However, although the following, Figure 8, is programmable with lists, it is not with
sets: it is not a restricted recursion.
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instance of restricted recursion. So, computations generated by these two functions mirror
each other. From the representational perspective, sets fix the specifiable computations on
lists; with abstraction only certain list computations give rise to set theoretic ones.

However, although the following, Figure 8, is programmable with lists, it is not with
sets: it is not a restricted recursion.

reverse(nil) .
= nil

reverse(cons(t, l)) .
= append(reverse(l), cons(t, nil))

Figure 8. Reversing a List.

So, there are computations with lists that cannot be carried out with sets, and these
involve non-extensional functions. If we move down one level to the representation of lists
in store in the form of linked lists, there will be computations on linked lists (e.g., those
involving pointers to locations) that have no analogues with the abstract notion of list:
not all physical computations will have abstract analogues. Different levels of abstraction
support different notions of computation. Any computation programmable at a more
abstract level is representable lower down but not visa-versa. And this brings us nicely to
the following.

10. Levels of Abstraction

The computer science literature contains a great many informal discussions of the
phrase, “level of abstraction” including its wider philosophical application [21]. There is
also a pioneering formal analysis on the identity of computational artifacts [5]. However,
there are few if any, conceptually motivated formal accounts of such levels within the
literature on data abstraction. Our objective is to provide one based upon the above
concept of “Fregean abstraction”.

Any approach to abstraction in the Fregean mold faces the threat of paradox [22,25]. The
neo-Fregeans Hale and Wright [24] respond by severely restricting the class of acceptable
abstraction principles. Their approach is “static” in the sense that they hold the domain of the
overall theory fixed. The alternative approach is “dynamic” [34] in the sense that abstraction
with respect to a given domain may result in a new domain: i.e., we do not work in some
fixed formal system but allow systems to grow by abstraction, and by abstractions built upon
previous abstractions. This is the present approach. (Formally, we expect the addition of new
abstract types to be conservative but we need a more precise formal framework to state and
prove this).

We illustrate matters with the move from list to sets that hides various possible levels
of abstraction. Consider the principles Dup and Ord. These two principles are associated
with two intermediate levels of abstraction: one jettisons order and the other eliminates
duplicates. Consider the second. The following Boolean valued function, Figure 9, insists
that two lists u and v are permutations of each other.

perm(nil, nil) .
= true

perm(cons(x, u), nil) .
= f alse

perm(nil, cons(x, u)) .
= f alse

perm(cons(x, u), cons(y, v))
.
=

(eqT(x, y) ∧ perm(u, v)) ∨ (member(x, v) ∧member(y, u) ∧ perm(delete(y, u), delete(x, v)))

Figure 9. perm : L[T]⊗ L[T]⇒ Bool.

Figure 8. Reversing a List.

So, there are computations with lists that cannot be carried out with sets, and these
involve non-extensional functions. If we move down one level to the representation of lists
in store in the form of linked lists, there will be computations on linked lists (e.g., those
involving pointers to locations) that have no analogues with the abstract notion of list:
not all physical computations will have abstract analogues. Different levels of abstraction
support different notions of computation. Any computation programmable at a more
abstract level is representable lower down but not visa-versa. This brings us nicely to the
following section.

10. Levels of Abstraction

The computer science literature contains a great many informal discussions of the
phrase, “level of abstraction” including its wider philosophical application [33]. There is
also a pioneering formal analysis on the identity of computational artifacts [34]. However,
there are few if any, conceptually motivated formal accounts of such levels within the
literature on data abstraction. Our objective is to provide one based upon the above
concept of “Fregean abstraction”.

Any approach to abstraction in the Fregean mold faces the threat of paradox [19,20].
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prove this.)

We illustrate matters with the move from list to sets that hides various possible levels
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with two intermediate levels of abstraction: one jettisons order and the other eliminates
duplicates. Consider the second. The following Boolean valued function, Figure 9, insists
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with two intermediate levels of abstraction: one jettisons order and the other eliminates
duplicates. Consider the second. The following Boolean valued function, Figure 9, insists
that two lists u and v are permutations of each other.

perm(nil, nil) .
= true

perm(cons(x, u), nil) .
= f alse

perm(nil, cons(x, u)) .
= f alse

perm(cons(x, u), cons(y, v))
.
=

(eqT(x, y) ∧ perm(u, v)) ∨ (member(x, v) ∧member(y, u) ∧ perm(delete(y, u), delete(x, v)))

Figure 9. perm : L[T]⊗ L[T]⇒ Bool.Figure 9. perm : L[T]⊗ L[T]⇒ Bool.

Here delete(y, u) deletes y from u. This facilitates the following principle of abstraction:
two lists are equivalent if they are permutations of each other. Let u, v : L[T] then

∀u : L[T].∀v : L[T].(eqB[T](bag(u), bag(v)) = perm(u, v)).



Entropy 2021, 23, 213 13 of 25

As indicated by the name, this introduces Bags as a new abstract type which we
symbolize as follows.

B[T] =< B[T], empty, plus, rec >

Bags are permutation independent (Ord). Recursion is now restricted to generating
functions that are order-independent, i.e., satisfy Ord f .

Conversely, given both types, L[T] and B[T], the representation function is then given
as follows.

bag : L[T]⇒ B[T].

This follows the same pattern as the representation function for sets.

bag(empty) .
= φ

bag(cons(t, l)) .
= plus(t, bag(l))

rec(bag(z), a) .
= bag(rec(z, a))

This type, which in terms “levels of abstraction”, is intermediate between lists and sets.
Alternatively, beginning with lists, we can abstract by removing duplicates. To this

end we define a function, Figure 10, that eliminates duplicates.
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Here recursion is restricted to generating functions that satisfy (Dup f ).
These two abstractions can be applied not just to lists but to the result of each other:

they maybe composed in any order. Either way the result of the composition is a type
whose elements satisfy both Ord and Dup. i.e., this gets us to S[T] by two possible routes.

We can put matters as follows.

Definition 3. Let C =< C, Λ > and A =< A, Ω > be abstract types. Then A is at Least as
Abstract than C if there is a surjective homomorphism from C to A. It is Strictly Less Abstract if
in addition there is no homomorphism in the opposite direction.

For example, we have surjective homomorphism operating between the following abstract
types—and none in the other directions.

L[T]− ⇒ B[T]⇒ S[T]

Figure 10. duplicate : L[T]⇒ L[T].

We are then able to set up an equivalence between lists.

l � k .
= duplicate(l) = duplicate(k)

Finally, we abstract on this relation.

∀u : L[T].∀v : L[T].(eqN[T](nd(u), nd(v)) = u � v)

This introduces a new type—lists without duplicates.

N[T] =< N[T], none, ndcons, rec >

Here recursion is restricted to generating functions that satisfy (Dup f ).
These two abstractions can be applied not just to lists but to the result of each other:

they maybe composed in any order. Either way, the result of the composition is a type
whose elements satisfy both Ord and Dup, i.e., this gets us to S[T] by two possible routes.

We can put matters as follows.

Definition 3. Let C =< C, Λ > and A =< A, Ω > be abstract types. Then A is at Least as
Abstract than C if there is a surjective homomorphism from C to A. It is Strictly Less Abstract if
in addition there is no homomorphism in the opposite direction.

For example, we have surjective homomorphism operating between the following abstract
types—and none in the other directions.

L[T]− ⇒ B[T]⇒ S[T]

Abstraction is a layered dynamic process, and the above examples, demonstrate, in a precise
way, how different levels can be formulated and combined under composition to yield even more
abstract notions.
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11. Abstraction over Families

There are many possible representations of finite set theory: lists, queues, bags, arrays,
and sequences all provide such. Moreover, each of these possible representations can
be used as the source of abstraction. Indeed, the various mechanisms of abstraction are
somehow an encoding of what all these representations have in common. Additionally,
what they all have in common is that they are “containers” whose central property is to
hold elements.

More generally, how do we abstract a type from a family of abstract types that
share some “common” features? To address this we require the notion of a family of
abstract types.

Definition 4. An I-Indexed Family of Abstract Typesis a family

F =< Ai, ∆i >i:I

where each type has the same functional signature. A simple example employs our existing types.

Example 3. Consider the abstract types L[T]−, B[T] and Q[T]− where ∆L = {nil, cons, rec},
∆Q = {emp, enqueue, rec}, ∆B = {empty, plus, rec}. These provide the constituents of a simple
indexed family

C =< Ci, ∆i >i:I

with three components indexed by the enumerated type I = {L, B, Q} and where CB = B[T],
CQ = Q[T]− and CL = L[T]−.

To abstract over such a family we need to be able to articulate what they have in common, and
this is achieved by isolating the appropriate notion of congruence for such families. For this it is
technically convenient to represent them as single structure over which congruence relations can be
formulated in the standard way. Consequently, we form the disjoint union of the types in the family.

Definition 5. The Disjoint Union of the family F =< Ai, ∆i >i:I is the structure

A = (A, ∆)

where
(i) a : A↔ ∃i : I.∃z : Ai.a = (i, z)
(ii) f : ∆↔ ∃i : I.∃g : ∆i.∀x1 : Ai . . . . . . ∀xn : Ai. f ((i, x1), . . . , (i, xn)) = g(x1, . . . , xn)

Example 4. The disjoint union of the family of abstract types

C =< Ci, ∆i >i:I

is the abstract type, “container”.
C[T] .

= (C[T], ∆)

Explicitly, ∆ = {nil, cons, rec} where, according to the definition, these are defined as follows.
We illustrate with cons.

cons(t, (L, l)) .
= cons(t, l)

cons(t, (B, b)) .
= plus(t, b)

cons(t, (Q, q)) .
= enqueue(t, q)

While these form a family with just three members, there are other possible “container” types
such as Sequences and Arrays, and this analysis can be extended in a straightforward way.

Let F =< Ai, ∆i >i:I be any indexed family. The representations of a structure B given in
terms of individual members of the family, i.e.,

hi : Ai ⇒ B
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maybe turned into a representation of B in terms of the disjoint union in the obvious way.

h(i, a) .
= hi(a)

So, in particular, we get a representation of C[T] into S[T].

We are now in a position to define abstraction over such families.

Definition 6. Abstraction over Families. Let

A = (A, ∆)

be a disjoint union of the family F =< Ai, ∆i >i:I and let R : A⊗ A ⇒ Bool be a congruence
relation over A. Abstraction introduces a new type

A/R =< A/R, ∆/R >

with equality given by the following abstraction principle.

∀u : A.∀v : A.eqA/R([i, a], [j, b]) = R((i, a), (j, b))

where the new terms take the form [i, a]. Given R is a congruence we may lift the functions of the
individual types to A as standard, i.e., ∆/R is the set

{ f̂ . f : ∆}

where
f̂ ([(i, a1)], .., [(i, am)])

.
= [ f ((i, a1), ....., (i, am))].

Example 5. As an example we demonstrate how to abstract sets from containers. Using recursion
on the structures we are able to define a congruence relation over C[T]. We illustrate with that part
of the relation that links lists and bags (Figure 11).
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E((L, nil), (B, empty)) .
= true

E((L, nil), (B, add(t, b))) .
= f alse

E((L, cons(t, l)), (B, empty)) .
= f alse

E((L, cons(t, l)), (B, add(t, b))) .
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E((L, cons(t, l)), (B, add(t′, b))) .
= mem(t, b)∧mem(t′, l)∧E((L, delete(l, t′)), (B, delete(b, t)))

Figure 11. Extensional Equivalence.

The definitions of the other pairs follow suite: together they define extensional equivalence
between the types.

How is this related to abstraction relative to a single structure? The congruence
relation R : A⊗ A⇒ Bool has restrictions to pairs of types in the family.

Rij : Ai ⊗ Aj ⇒ Bool

Rij(a, b) .
= R((i, a), (j, b))

Figure 11. Extensional Equivalence.

The definitions of the other pairs follow suite: together they define extensional equivalence
between the types.

How is this related to abstraction relative to a single structure? The congruence
relation R : A⊗ A⇒ Bool has restrictions to pairs of types in the family.

Rij : Ai ⊗ Aj ⇒ Bool

Rij(a, b) .
= R((i, a), (j, b))

In particular, consider the special case Ri
.
= Rii, and the corresponding restricted ab-

straction:
∀u : Ai.∀v : Ai.eqAi/Ri

([i, a], [i, b]) = Ri(a, b).
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Here the congruence is restricted to the elements of a single abstract type. This yields
a new abstract type:

Ai/Ri =< Ai/Ri, ∆i/Ri > .

Example 6. In the case of our running example, the abstracted type is isomorphic (') to what is
obtained from abstraction over a single relation i.e.,

(C[T]/E) ' (L[T]−/ ≡) ' (B[T]/ ≡) ' (Q[T]−/ ≡)' S[T]

So, abstracting on a family of containers results in the same type (up to isomorphism) as
abstracting from a single member.

In fact, generally, such single abstractions are isomorphic to the family abstraction.

Theorem 1. For each i : I,A/R ' Ai/Ri.

This justifies the use of our original form of abstraction where a new type is abstracted
from an individual type.

12. Abstract and Physical

We have used the term “abstract” in an ambiguous way. Firstly, we have used the
term in a relative sense as a member of an abstract/concrete pair, i.e., one member of a pair
is more “abstract” than another. But there is also the absolute sense of the term in which a
type is mathematical. So far all types have in this sense been “absolutely” abstract. And
this applies to all those we have referred to as “concrete”. Of course, in computer science,
at some point in the levels of representation/abstraction, the notion of being “concrete”
will give way to the “physical” [36], where a physical type refers to physical things, and
as such it is not determined by mathematical means but by the physical properties of its
objects and operations. In other words, a physical type

P =< P, Π >,

has physical objects and operations. A simple example concerns digital circuits. Such
circuits are not mathematical objects but physical devices. Instances include binary adders,
and and or gates, etc. Complex circuits result from composing simpler ones.

While there are significant differences that emanate from the different natures of
abstract and physical devices, the representational/abstraction distinction is still applicable.
What then becomes of the processes of representation and abstraction?

Given an abstract type
A =< A, Ω >

and a physical one
P =< P, Π >,

P will be taken to be a representation of A just in case there is a surjective mapping, a
correspondence, from the physical device to the abstract one that preserves the structure.
This mirrors the demands of the so called simple mapping account of computation [37]
where each pair of functions in the concrete and abstract types are subject to the constraints
of that account. This is reflected in the homomorphic nature of the mapping.

Physical representation may be understood in terms of the concepts of technical arti-
facts [38–41]. Technical artefacts are physical objects. However, they cannot be definitively
characterized by enumerating their physical properties since this has no place for their func-
tional features. Likewise, they cannot they be completely characterized by an intentional
conceptualization: their functionality must be realized in an adequate physical structure.
Any adequate conceptualization must take into account both aspects and involve both
functional and structural features. See [2,38–43] for further discussion of this perspective.
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Applied to the present setting, the abstract type can be taken as the “functional description
of the artifact” and informs us “what the thing is for”. The physical type is characterized by
a physical description of its objects and operations and acts as the “structural description”
of the artifact.

Unfortunately, we inherit all the philosophical concerns of the simple mapping account
of the nature of physical computation [44]. In particular, the homomorphism constraint is
taken to be too easy to satisfy: almost anything that can be put into correspondence with
the abstract type counts as a representation. Moreover, these triviality results apply also to
the abstract/concrete relation (that is defined in terms of homomorphism), namely, that
every concrete data type is a representation of every abstract one.

However, there is more going on here than mere extensional agreement that is wit-
nessed by the homomorphism. In particular, this is not the only relationship between
physical and abstract devices. Abstracting the abstract device from concrete instances
requires the uncovering of a congruence relation. Given a collection of physical devices

P

and a congruence relation R on P, we can abstract to obtain an abstract type

P/R.

This yields an abstract device whose mathematical properties are inherited from the
structural properties of the various physical devices, i.e., those that survive the congruence.
At this point what is a physical property is abstracted as a mathematical one. This is line
with the Wittgenstein perspective that mathematical theorems are ‘hardened’ empirical
regularities, upon which the former are supervenient. A mathematical ‘proposition’ func-
tions as if it were an empirical proposition “hardened into a rule” [45]. Such abstractions
provide one mechanism for transforming empirical propositions to mathematical ones.
Once more, we illustrate with digital circuits. We say that two physical circuits P and Q are
“equivalent”, if they have the same input/output. They may differ in terms of their size
and the other physical properties possessed by electronic circuits. When we abstract on
this relation we obtain a data type of “abstract circuits”.

The representation/abstraction duality is still present in the physical set-up. In the
representational case, the use of the concepts of technical artifacts to conceptualize matters
seems appropriate. Not so in the case of abstraction. Abstracting from a collection of
physical devices yields an abstract characterization of them. Logically, this creates a new
concept; it is not artifact specification [10] but the creation of an abstract notion.

We shall return to the abstract/physical case when we have made some more general
observations about the differences between representation and abstraction. However, the
general point is clear. There is more to the relationship between the physical and abstract
devices than their extensional agreement: there is also an intentional aspect that manifest
itself as one of either representation or abstraction. This takes some of the sting out of the
“pancomputationalism [37]” claim.

13. Mathematical Duality

We earlier alluded to the relationship between “abstraction” and “representation”.
In particular, we stated that the two are related via two standard mathematical notions
(“congruence” and “homomorphism”). This provides us with a way of conceptualizing
the connections between representation and abstraction, and ensures us that we have a
complementary pair of notions.

The abstraction process itself begins with a congruence relation and implictly de-
fines a homomorphism via the principle of abstraction. The converse is also true: every
homomorphism gives rise to a congruence. The following is routine to check.
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Theorem 2. Given types A =< A, ΩA > and B =< B, ΩB > with the same signature, and a
surjective homomorhism, F : A⇒ B we can construct a congruence relation by

R(x, y) .
= (F(x) = F(y))

Then A/R =< A/R, Ω/R > is isomorphic to B.

So formally, A is an abstraction of C if and only if C is a representation of A. This is the
standard mathematical relationship between homomorphisms and equivalence/congruence
relations. Moreover, there are parallel mathematical obligations. In the representation
scenario we have to show that the specified mapping is a surjective homomorphism; in the
abstraction case we have to show that the defined relation is a congruence. They are mathe-
matical siblings: if one is true so is the other. However, as we remarked before, Fregean
abstractions do not result in quotient types but introduce new concepts and structures that
are sui-generis.

But even given the mathematical confluence between the two, there is much more to
the relationship between concrete and abstract structures than this mathematical one. We
shall get to this shortly but first we need to explore the process of abstraction a little more.

14. Fully Abstract Structures

Are there abstract types that are, in some sense, as abstract as possible. One moti-
vation for this is pragmatic: a desideratum for specification and design is to isolate and
hide as many implementation details as possible. Another is located in a more austere
interpretation of the notion of abstract data type. Being fixed by the functions of the type
could be taken as a demand that the elements of the type are “indiscernible” with respect
to the functions of the type, i.e., they fix the notion of equality for the type. To proceed we
require following notion.

Definition 7. A type B =< B, Ω> is a Fully Abstract Structure of a class C of types, of the
same signature, if for any A in C there exists a surjective homomorphism from A onto B.

Example 7. Consider the class {L[T]−, B[T], S[T]}. S[T] is the most abstract.

Given this “Galois” style connection between our notions of congruence and homomor-
phism, we can also characterize fully abstract structures in terms of congruence relations.

Theorem 3. A structure B is a fully abstract type of the class C iff for any A in the class there
exists a congruence R on A such that A/R is isomorphic to B.

Proof. Assume that B is fully abstract for the class C. Assume that A is a member of C.
Then there is a homomorphism H from A into B. Define the derived congruence as before:

a ≡ b .
= H(a) = H(b).

We know from a previous theorem that, A/R is isomorphic to B. Conversely, assume A
is in the class and there exists a congruence R on A such that A/R is isomorphic to B. Let G
be this isomorphism. Abstraction itself provides a surjective homomorphism F from A onto
A/R. The composition G ◦ F yields the required homomorphism from A onto B.

But how do we construct such fully abstract types in a uniform way? This brings the
second motivation into the picture. In the next definition we assume that equality (=A) for
the structure A =< A, Ω > is not an element of Ω.

Definition 8. Let A =< A, Ω > be any type. Then for each O : Ω we define

a ≈O a′ .
= I(a, a′) ∧O(a, a′)
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where
I(a, a′) .

= ∀z : A.O(a, z)↔ O(a′, z)

O(a, a′) .
= ∀z : A.O(z, a)↔ O(z, a′)

The first insists that they are indistinguishable as inputs, and the second they are so as outputs.
So, a ≈O a′ insists that a and a′ are indistinguishable relative to the operation O. The Natural
Congruence for A, ≈A, is then defined as:

a ≈A a′ .
= ∀O : Ω.a ≈O a′,

which demands that a and a′ are indistinguishable relative to the whole structure.

For following we have only to observe that any congruence will by definition imply
the natural one.

Theorem 4. Let A =< A, Ω > be any type. Then
(1) ≈A is a congruence relation on A
(2) If R is any congruence on A, then R(a, b)→ a ≈A b

We may now construct the corresponding abstract type.

Definition 9. Let A be any state-based structure. Then

A/ ≈A

is the Natural Abstraction of A.

In what sense is the natural abstraction fully abstract?

Theorem 5. Let A =< A, Ω > be any type. Let CA be the class of types that are obtained by
abstraction via congruence relations on A. Then

(1) The natural abstraction of A is a fully abstract structure of CA.
(2) Every fully abstract type of the class CA is isomorphic to its natural abstraction.

Proof. The required homomorphism maps the elements of the given congruence to those
of the natural abstraction. For the second part, let A be fully abstract. Then there exits
some congruence R on A/ ≈ such that A is isomorphic to (A/ ≈A)/R. By Theorem 2,
(A/ ≈A)/R must be isomorphic to A/ ≈.

Every fully abstract structure is obtained from a natural abstraction, and natural
abstractions are those that insist that equality if fixed by the operations. So, fully abstract
types become a candidate for a more austere characterization of the notion of abstract
data type.

15. Semantics

While representation and abstraction are mathematically equivalent, in the sense
that the notions of “homomorphism” and “congruence relation” are mathematical duals,
the activities of representation and abstraction are intentionally quite different. They
have different goals and starting points; what governs what is different; what is correct
is different.

Buried in these remarks are two substantial philosophical differences.
One of these concerns their semantic impact. Consider the representation case. The ab-

stract type provides a semantic interpretation for the concrete one in that it provides the
correctness conditions for the concrete one: the operations of the concrete type must be
in harmony with those of the abstract one. This is fleshed out by the demand that the
representation function is a homomorphism. This is a minimalist requirement for the role
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of semantics: it must supply the conditions of correctness for the use of expressions in the
language [46].

In general, a semantic account of a language of any kind must tell us when
we are using an expression correctly, and when we are not. The fact that the
expression means something implies that there is a whole set of normative
truths about my behavior with that expression; namely, that my use of it is
correct in application to certain objects and not in application to others. ....
The normativity of meaning turns out to be, in other words, simply a new
name for the familiar fact that, regardless of whether one thinks of meaning
in truth-theoretic or assertion-theoretic terms, meaningful expressions possess
conditions of correct use. Kripke’s insight was to realize that this observation
may be converted into a condition of adequacy on theories of the determination
of meaning: any proposed candidate for the property in virtue of which an
expression has meaning, must be such as to ground the ’normativity’ of meaning-
it ought to be possible to read off from any alleged meaning constituting property
of a word, what is the correct use of that word. [46]

A semantic account must provide us with an account of what constitutes correct use.
Specifically, operations of the concrete type must be correct relative to the corresponding
operations of the abstract one. In this sense the representation has a semantic function.

Abstraction principles also have semantic significance: the semantic interpretation
of the functional expressions on the left hand side would appear to be given by the
congruence relations on the right hand side, i.e., the latter are semantically prior to the
functional expression on the left. For example, in order to understand the term ‘direction’
is to know that ‘the direction of a’ and ‘the direction of b’ refer to the same entity if and only if
the lines a and b are parallel. In other words, an understanding of the concept of a direction
presupposes an understanding of the concept of parallelism, but not vice-versa. This is
the perspective of semantic abstractionism [17,23]. Roughly, this insists that our capacity
to have singular thoughts about objects of a certain type is fixed by the truth-conditions
of identity judgments about objects of that type. In the case of data types, there is a
semantic role played by the concrete type together with the defined congruence relation
that supplies equality for the new type. The relation is a defined relation of the concrete
type: it is expressed in the language of the concrete type, the semantics of which is given.
The operations of the abstracted type are then given in terms of the more concrete ones. In
this sense, the abstract structure is semantically dependent upon the concrete one. Another
perspective on this is provided in [35] who documents three underlying principles for any
semantic theory that tie together semantics with abstraction. With its roots in Frege, the
semantics of a language relies on there being a notion of reference for the terms of the
language. This notion is fixed by the objects in the semantic domains. And these are fixed
by the equality conditions supplied by abstraction.

While both representation and abstraction have a semantic component, the correct-
ness conditions are reversed. For representation, it is the abstract type that provides the
correctness conditions for the concrete one. For abstraction, it is the concrete type that
furnishes the semantic interpretation for the abstract one.

16. Ontology

The most obvious difference between representation and abstraction concerns their
underlying ontological assumptions. In the representational case, the construction of
a homomorphism from the concrete to the abstract presupposes that both data types
already exist. In contrast, in the abstraction scenario, the abstract structure is ontologically
dependent upon the more concrete one: it is created from it by abstraction. Abstraction
principles are taken to introduce new terms referring to sui-generis objects, and thereby
provide a mechanism for the creation of new abstract types. In our example, finite sets are
introduced via abstraction from finite lists. However, in the case of representation, no new
objects with their types are introduced. We are given both structures ahead of time.
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This ontological difference between representation and abstraction can be further
illustrated by considering the the way these notions are employed in set theory [47] . We
illustrate with the most fundamental of all data types, the natural numbers. Consider what
might be taken as the abstract type of natural numbers.

N =< N, 0, succ, rec >

where rec represents a scheme of numerical recursion. There are various representations of
this structure in set theory. For example, the Von-Neumann representation of the natural
numbers takes the following form.

rep : V ⇒ N

where
rep(φ) .

= 0 rep({n, {n}}) .
= succ(rep(n))

and where V is the following structure.

V =< V, φ, succ, rec > .

φ is the empty set and succ(n) .
= {n, {n}} etc. The Zermelo representation is only

slightly different. Here succ(n) .
= {n}. Indeed, in principle, any of the other possible

systems of set theoretic numerals may be used to represent the natural numbers, and they all
generate true arithmetical statements. But there is a significant underlying assumption here,
namely that there is an independent notion of “natural number” that is being represented:
representations must be representations of something. This representational scenario is
at the heart of the foundations of mathematics based upon set theory. Its function is to
demonstrate that all of mathematics can be “represented” in set theory.

The abstractionist approach is entirely different. First notice that representations are
not intended to be definitions, and there are good reasons for not so taking them. There
is an immediate concern: which one do we chose? Do we select the Von-Neumann or
Zermelo numerals—or one of the other myriad of possibilities? Each of them attributes a
different collection of set-theoretic, non-arithmetic, properties to numbers. For example,
Zermelo and Von-Neumann differ on whether n is a member of n + 1. While different
choices attribute different sets of set-theoretic properties, from a numerical perspective,
there appears to be no good reason why one account is superior to another. On the
other hand, both accounts cannot both be “correct” since they contradict each other, e.g.,
over membership. This predicament is often called Benacerraf’s identification problem [48].
According to it, numbers cannot be defined as sets. Moreover, such identifications do
not respect mathematical practice: we do not treat numbers as sets. Even in standard
expositions of set theory, where one begins with the Von-Neumann account, this is quickly
discarded, and only the arithmetical properties of the numbers employed. The non-
arithmetical properties are never used in the development of mathematics inside set theory.

All this is a criticism only of the definitional perspective. From the representational
one, multiple representations are not surprising, indeed they are to be welcomed since the
aim of specification is to jettison or hide many of the incidental properties that give rise
to such multiplicity. Generally, for abstract types, we would expect the representations to
have additional properties and operations that go beyond the abstract version.

Dedekind [49] earlier claimed that set theoretic formalizations are not faithful as
definitions, and links it to the need for some kind of abstraction.

The real numbers should not be identified with the corresponding cuts because
those cuts have “wrong properties”; namely, as sets they contain elements, some-
thing that seems “foreign” to the real numbers themselves. Similarly, the natural
numbers should not be ascribed set-theoretic or other “foreign” properties; they
too should be conceived of “purely arithmetically”. If one wishes to pursue
your approach I should advise not to take the class itself (the system of mutually
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similar systems) as the number (Anzahl, cardinal number), but rather something
new (corresponding to this class), something the mind creates.

Dedekind is alluding to the creation of new things, and here abstraction comes to the
fore. One interpretation of this is that numbers are to be abstracted: we need to abstract
away from all the idiosyncratic properties of the various set-theoretic definitions, and
just leave the numerical structure. To see how, consider an indexed family of possible
numerical structures.

Num =< Numi, ∆i >

where ∆i = {0i, succi, reci}. These might include the Von-Neumann and Zermelo structures.
All such set theoretic numeral systems are structurally isomorphic. Employing this as a
congruence over the dependent sum of Num we obtain a structure:

N/ '

which is isomorphic to each of the representational systems. In particular, the Von-
Neumman system satisfies the following.

V ' (V/ ')

However, the elements of (V/ ') are not sets but sui-generis objects whose totality
of properties are numerical, and precisely those common to all numeral representations.
In this way we abstract away from the details of individual numeral systems to obtain
the new abstract structure of the natural numbers. (See [50] who employs this technique
to develop a Fregean approach to Structuralism [51]. From this perspective abstract data
types are “structures” and the data items themselves are “positions” in the structure [50].)
Abstraction brings new sui-generis notions into existence. Not so with the representation.

17. Foundations

While we have employed a set-theoretic framework for our exposition, the use of set
theory as the appropriate medium for the formalization of computational notions is not
unproblematic. The arguments of [48] would appear to apply equally to other discrete
notions: presumably, lists and finite sets are subject to the same analysis as numbers. Lists
have an informal interpretation in which they have no additional set-theoretic properties
but only those that pertain to list processing and manipulation. In our intuitive everyday
notion of a list, lists themselves are not sets. Even within the set-theoretic regime, applying
abstraction to any set-theoretic representation of a data type results in new primitive
notions: the present theory of finite sets reflects a vastly different notion of “set” to that
given by the Zermelo–Fraenkel axioms.

However, it is not just the data items themselves that raise issues. Feferman [52] intro-
duces two criteria for judging the success or otherwise of the formalization of an informal
mathematical notion. Let T be a formal theory of an informal body of mathematics M.

1. T is “adequate” for M, if every concept, argument, and result of M is represented by
a (basic or defined) concept, proof, and a theorem, respectively, of T.

2. T is “faithful” to M, if every basic concept of T corresponds to a basic concept of M
and every axiom and rule of T corresponds to or is implicit in the assumptions and
reasoning followed in M (i.e., T does not go beyond M conceptually or in principle).

The Zermelo–Fraekel set theory does not provide a faithful formalization of the
computer science notion of type. The primary purpose of the latter is a way of classifying
the objects of the language: it acts as barrier to semantic nonsense. Furthermore, for
practical reasons, type membership must be a decidable judgment: we require a type-
checker to be part of the implementation of the language. While set theory is an adequate
formalization of the computational notion of type, it is not faithful: it goes beyond the
reasoning associated with the role of types.
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This argues for a more radical approach in which the computational notion of type is
taken as the fundamental one. Indeed, this is implicit in our informal development which
took place against the backdrop of functional programming [14,15]. To formalize matters
we require a mathematical framework in which both the syntactic and semantics aspects
of functional languages can be formalized. While different functional languages, with
different basic types and different type constructors, would give rise to different theories of
types, Constructive type theory [53] provides a possible framework. But there are others.
Feferman’s theories of operations and types [52], the theory of constructions [54,55], Typed
predicate logic [9,36,56] and Turner’s theories of operations and types [57], might all be
employed. Finally, Type theory and category theory are close relations. This would also be
a possible framework for abstraction—some might think the natural one.

18. Conclusions

Abstraction and representation are two of the fundamental notions of contemporary
computer science. While they are mathematically dual notions they are philosophically
quite different.

While they both have semantic import, they differ in terms of what provides the
semantic interpretation of what. For abstraction, the source type provides the semantic
foundations for the abstracted one by supplying its equality conditions. For representa-
tion, the abstract type supplies the correctness conditions for the source type acting as
a representation.

Ontologically, they differ in that representation assumes that both structures are in place,
whereas abstraction brings new structures into being. Abstraction generates new types, repre-
sentation enables their use in computation by supplying a more concrete representation.

These differences apply equally well to the case where one of the data types is physical.
This demonstrates that the relationship between the physical and abstract types goes
beyond extensional agreement: it brings an intentional aspect that is materialized by the
intentions to locate a representation for one type in another or abstract a new type from an
existing one—or a family of such.
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