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Abstract: Entropy measures the uncertainty associated with a random variable. It has important 

applications in cybernetics, probability theory, astrophysics, life sciences and other fields. Recently, 

many authors focused on the estimation of entropy with different life distributions. However, the 

estimation of entropy for the generalized Bilal (GB) distribution has not yet been involved. In this 

paper, we consider the estimation of the entropy and the parameters with GB distribution based on 

adaptive Type-II progressive hybrid censored data. Maximum likelihood estimation of the entropy 

and the parameters are obtained using the Newton–Raphson iteration method. Bayesian estima-

tions under different loss functions are provided with the help of Lindley’s approximation. The 

approximate confidence interval and the Bayesian credible interval of the parameters and entropy 

are obtained by using the delta and Markov chain Monte Carlo (MCMC) methods, respectively. 

Monte Carlo simulation studies are carried out to observe the performances of the different point 

and interval estimations. Finally, a real data set has been analyzed for illustrative purposes. 

Keywords: entropy; generalized Bilal distribution; adaptive Type-II progressive hybrid censoring 

scheme; maximum likelihood estimation; Bayesian estimation; Lindley’s approximation; confi-

dence interval; Markov chain Monte Carlo method 

 

1. Introduction 

To analyze and evaluate the reliability of products, life tests are often carried out. 

For products with long lives and high reliability, a censoring scheme is often adopted 

during the test to save on time and costs. Two commonly used censoring schemes are 

Type-I and Type-II censoring, but these two censoring schemes do not have the flexibil-

ity of allowing the removal of units at points other than the terminal point of the ex-

periment. To allow for more flexibility in removing surviving units from the test, more 

general censoring approaches are required. The progressive Type-II censoring scheme is 

appealing and has attracted much attention in the literature. This topic can be found in 

[1]. One may also refer to [2] for a comprehensive review on progressive censoring. One 

drawback of the Type-II progressive censoring scheme is that the length of the experi-

ment may be quite long for long-life products. Therefore, Kundu and Joarder [3] pro-

posed a Type-II progressive hybrid censoring scheme where the experiment terminates 

at a pre-specified time. However, for the Type-II progressive hybrid censoring scheme, 

the drawback is that the effective sample size is a random variable, which may be very 

small or even zero. To strike a balance between the total testing time and the efficiency 

in statistical inference, Ng et al. [4] introduced an adaptive Type-II progressive hybrid 

censoring scheme (ATII-PHCS). This censoring scheme is described as follows. Suppose 
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that n  units are placed on test and 1 2, , , nX X X  denote the corresponding lifetimes 

from a distribution with the cumulative distribution function (CDF) ( )F x  and the 

probability density function (PDF) ( )f x . The number of observed failures m and time T 

are specified in advance and m n . At the first failure time 1: :mnX , 1R  units are ran-

domly removed from the remaining 1n  units. Similarly, at the second failure time 

2: :mnX , 2R  units from the remaining 
12n R   units are randomly removed, and so on. If 

the mth failure occurs before time T  (i.e., : ;m m nX T ), the test terminates at time 

: :m m nX  and all remaining mR  units are removed, where 1

1

m

m ii
R n m R




     and iR  is 

specified in advance ( 1, 2, ,i m  ). If the Jth failure occurs before time T  (i.e., 

: : 1: : J mn J mnX T X  where 1J m  ), then we will not withdraw any units from the test 

by setting 1 2 1 0J J mR R R      , and the test will continue until the failure unit 

number reaches the prefixed number m. At the time of the mth failure, all remaining mR  

units are removed and the test terminates, where 
1

J

m ii
R n m R


    . 

The main advantage of ATII-PHCS is that it speeds up the test when the test dura-

tion exceeds the predetermined time T  and ensures we get the effective number of 

failures m. It also illustrates how an experimenter can control the experiment. If one is 

interested in getting observations early, one will remove fewer units (or even none). For 

convenience, we let : : , 1,2,...,i i m nX X i m  . After the above test, we get one of the fol-

lowing observation data cases: 

Case I: 1 1 2 2( , ),( , ),...,( , )m mX R X R X R  if 
mX T , where 1

1




  

m

m ii
R n R m . 

Case II: 1 1 2 2 1 1( , ),( , ),...,( , ),( ,0),...,( ,0),( , ) J J J m m mX R X R X R X X X R  if 1X  J JX T  and 

J m , where 
1

   
J

m ii
R n m R . 

The ATII-PHCS has been studied in recent years. Mazen et al. [5] discussed the sta-

tistical analysis of the Weibull distribution under an adaptive Type-II progressive hybrid 

censoring scheme. Zhang et al. [6] investigated the maximum likelihood estimations 

(MLEs) of the unknown parameters and acceleration factors in the step-stress accelerated 

life test, based on the tampered failure rate model with ATII-PHC samples. Cui et al. [7] 

studied the point and interval estimates of the parameters from the Weibull distribution, 

based on adaptive Type-II progressive hybrid censored data in a constant-stress acceler-

ated life test. Ismail [8] proposed that the MLE of the Weibull distribution parameters 

and the acceleration factor were derived based on ATII-PHC schemes under a step-stress 

partially accelerated life test model. The statistical inference of the dependent competitive 

failure system under the constant-stress accelerated life test with ATII-PHC data was 

studied by Zhang et al. [9]. Under an adaptive Type-II progressive censoring scheme, Ye 

et al. [10] investigated the general statistical properties and then used the maximum 

likelihood technique to estimate the parameters of the extreme value distribution. Some 

other studies on the statistical inference of life models using ATII-PHCS were presented 

by Sobhi and Soliman [11] and Nassar et al. [12]. Xu and Gui [13] studied entropy esti-

mation for the two-parameter inverse Weibull distribution under adaptive type-II pro-

gressive hybrid censoring schemes. 

Entropy measures the uncertainty associated with a random variable. Let X be a 

random variable having a continuous CDF ( )F x  and PDF ( )f x . Then, the Shannon 

entropy is defined as 

( ) ( ) ln ( )H f f x f x dx



  . (1)

In recent years, several scholars have studied the entropy estimation of different life 

distributions. Kang et al. [14] investigated the entropy estimators of a double exponential 
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distribution based on multiply Type-II censored samples. Cho et al. [15] derived an es-

timation for the entropy function of a Rayleigh distribution based on doubly generalized 

Type-II hybrid censored samples. Baratpour et al. [16] developed the entropy of the up-

per record values and provided several upper and lower bounds for this entropy by us-

ing the hazard rate function. Cramer and Bagh [17] discussed the entropy of the Weibull 

distribution under progressive censoring. Cho et al. [18] obtained estimators for the en-

tropy function of the Weibull distribution based on a generalized Type-II hybrid cen-

sored sample. Yu et al. [19] studied statistical inference in the Shannon entropy of the 

inverse Weibull distribution under progressive first-failure censoring. 

In addition to the above-mentioned life distributions, the generalized Bilal (GB) 

distribution is also an important life distribution for analyzing lifetime data. The PDF and 

the CDF of the GB distribution, respectively, are given as 

1( ; , ) 6 exp( 2 )[1 exp( )], 0, 0, 0,f x x x x x                (2)

( ; , ) 1 exp( 2 )[3 2exp( )], 0, 0, 0,F x x x x               (3)

The Shannon entropy of the GB distribution is given by 

1 1
( ) ( , ) 2.5 ln 27/4 ln( ) (ln 9/8) 0, 0H f H       


        ( ) ( ) , ,  

where   denotes the Euler–Mascheroni constant and 0.5772  . 

The GB distribution was first introduced by Abd-Elrahman [20]. He investigated the 

properties of the probability density and failure rate function of this distribution. A 

comprehensive mathematical treatment of the GB distribution was provided, and the 

maximum likelihood estimations of unknown parameters were derived under the com-

plete sample. Abd-Elrahman [21] provided the MLEs and Bayesian estimations of the 

unknown parameters and the reliability function based on a Type-II censored sample. 

Since the failure rate function of GB distribution has an upside-down bathtub shape, and 

it can also be monotonically decreasing or monotonically increasing at some selected 

values of the shape parameters  , the GB model is very useful in survival analysis and 

reliability studies. 

To the best of our knowledge, there has been no published work on the estimation 

of the entropy and parameters of GB distribution under an ATII-PHCS. As such, these 

issues are considered in this paper. The main objective of this paper is to provide the es-

timation of the entropy and unknown parameters of GB distribution under an 

ATII-PHCS by using the frequency and Bayesian methods. 

The rest of this paper is organized as follows. In Section 2, the MLEs of the parame-

ters and entropy of GB distribution are obtained, and approximate confidence intervals 

are constructed using the ATII-PHC data. In Section 3, the Bayesian estimation of the 

parameters and entropy
 
under three different loss functions are provided using Lind-

ley’s approximation method. In addition, the Bayesian credible intervals of the parame-

ters and entropy are also obtained by using the Markov chain Monte Carlo (MCMC) 

method. In Section 4, Monte Carlo simulations are carried out to investigate the perfor-

mance of different point estimates and interval estimates. In Section 5, a real data set is 

analyzed for illustrative purposes. Some conclusions are presented in Section 6. 

2. Maximum Likelihood Estimation 

In this section, the MLE and approximate confidence intervals of the parameters and 

entropy of GB distribution will be discussed under the ATII-PHCS. Based on the data in 

Case I and Case II, the likelihood functions can be respectively written as 

1

: ( , | ) ( ; , )[1 ( ; , ))] ,i

m
R

I i i
i

Case I L x f x F x     


 
  (4)
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1

1 1

: ( , | ) ( ; , )) [1 ( ; , )] [1 ( ; , )] ,
J

ii i

m J
n m RR

II i i m
i i

C ase II L x f x F x F x        
 

 

   


 
(5)

where 
1 2( , , , )mx x x x


 . 

By combining ( , | ) and ( , | )   I IIL x L x
  , the likelihood functions can be written 

uniformly as 

*

*

1 1

1

1 1

( , | ) ( ; , )) [1 ( ; , )] [1 ( ; , )]

6 exp( 2 )[1 exp( )] [exp( 2 )(3 2exp( ))] [exp( 2 )(3 2exp( ))] ,

i

i

m D
R R

i i m
i i

m D
R R

i i i i i m m
i i

L x f x F x F x

x x x x x x x      

       

      

 



 

   

          

 

 



 
(6)

where *

1

D

ii
R n m R


     and, for Case I, *, 0 D m R , and for Case II, 

*

1
,


    

J

ii
D J R n m R .

 
The log-likelihood function is given by 

 

1

* *

1

ln ( , | ) ln(6 ) [( 1)ln 2 ln(1 exp( ))]  +

[ 2 ln(3 2exp( ))] 2 ln(3 2exp( )).

m

i i ii

D

i i i i m mi

l L x m x x x

R x R x R x R x

 

   

     

   





       

        







 (7)

By taking the first partial derivative of the log-likelihood function with regard to   

and   and equating them to zero, the following results can be obtained: 

1 1 * * 1
1 2 31 1

[ 3 + [ ( )] ] [ 3 +3 [ ( )] ] 3 3 [ ( )] 0
m D

i i i i i i m mi i

l m
x x y R x R x y R x R x y       

 
  

 


       


  ， 

(8)

1 1
1 21 1

* * 1
3

[ln 3 ln + ln [ ( )] ] [ 3 ln +3 ln [ ( )] ]

3 ln +3 ln [ ( )] 0

m D

i i i i i i i i i i ii i

m m m m

l m
x x x x x y R x x R x x y

R x x R x x y

   

 

     
 

  

 

 




     



 

 

，

 

(9)

where 1 2 3=( , ), ( ) 1 exp( ), ( ) 3 2exp( ), ( ) 3 2exp( ).i i my x y x y x                    

The MLEs of   and   can be obtained by solving Equations (7) and (8), but the 

above two equations do not yield an analytical solution. Thus, we use the Newton–

Raphson iteration method to obtain the MLEs of the parameters. For this purpose, we 

firstly calculate the second partial derivatives of the log-likelihood function with regard 

to   and  : 

2
2 2 2 2 * 2 2

1 2 32 2 1 1
[ exp( )][ ( )] 6 exp( )[ ( )] 6 exp( )[ ( )] ,

m D

i i i i i m mi i

l m
x x y R x x y R x x y          

 
  

 


       


   (10)

2
1 1

1 11

1 1
2 21

* * 1 1
3 3

[ 3 ln + ln ( ( ) [1 exp( )( ( )) ]

[ 3 ln +3 ln ( ( ) (1 2 exp( )( ( )) )]

3 3 ln [ ( )] [1 2 exp( )( ( )) )],

m

i i i i i ii

D

i i i i i i i ii

m m m m m

l
x x x x y x x y

R x x R x x y x x y

R x R x x y x x y

   

   

   

   
 

   

   

 



 



 


    

 

    

   



  
(11)

2
2 1 2 2 2 2

1 12 2 1

2 1 2 2 2 2
2 21

* 2 1 * 2 2 2
3

+ [ (ln ) [-3+( ( )) ] (ln ) exp( )( ( )) ]

+ [ 3 (ln ) (1 ( ( )) ) 6 (ln ) exp( )( ( )) ]

3 (ln ) (1 ( ( )) ) 6 (ln ) exp(

m

i i i i ii

D

i i i i i i ii

m m m m

l m
x x y x x x y

R x x y R x x x y

R x x y R x x

  

  

 

    
 

    

   

 



 






   



   

   




2

3)( ( )) .mx y  

 
(12)

Let 11 12

21 22

( , )
I I

I
I I

 
 

  
 

, where 
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2 2 2

11 22 12 212 2
, ,

l l l
I I I I

  

  
      

  
.  (13)

On the basis of the above calculation results, we can implement the Newton–

Raphson iteration method to obtain the MLEs of unknown parameters. The specific 

steps of this iteration method can be seen in Appendix B. After obtaining the MLE ̂  

and ̂  of the parameters   and  , using the invariant property of MLEs, the MLE of 

the entropy H( )f  for the generalized Bilal distribution is given by 

1 1ˆ ˆˆ ( ) 2.5 ln ln ln (ln 9/8 )
ˆ ˆ

H f    
 

     ( 27/ 4) - ( ) . (14)

Approximate Confidence Interval 

In this subsection, the approximate confidence intervals of the parameters  ,  and 

the Shannon entropy H( )f  are derived. Based on regularity conditions, the MLEs ˆ ˆ( , )  

are an approximately bivariate normal distribution 
1 ˆ ˆ(( , ), I ( ))N     , , where the covari-

ance matrix 
1I ( )  ,  is an estimation of 

1I ( )  ,  and 

1

11 12

21 22

1

ˆ ˆ( , )=( , )

ˆ ˆI ( )
I I

I I
   

 



  
 
 

, , 

11 22 12, ,I I I  and 
21I  are given by Equations (10)–(13), respectively. 

Thus, the approximate 100(1 )%  two-sided confidence intervals (CIs) for param-

eters ,   are given by 

   / 2 /2
ˆ ˆ ˆ ˆ( ) , ( ) ,z Var z Var       (15)

where 
/ 2z  is the upper / 2  percentile of the standard normal distribution and 

ˆ( )Var  , ˆ( )Var   are the main diagonal elements of the matrix
1 ˆ ˆI ( )  , . 

Next, we use the delta method to obtain the asymptotic confidence interval of the 

entropy H( )f . The delta method is a general approach to compute CIs for functions of 

MLEs. Under a progressive Type-II censored sample, the authors of [22] used the delta 

method to study the estimation of a new Weibull–Pareto distribution. The authors of [23] 

also used this method to investigate the estimation of the two-parameter bathtub lifetime 

model. 

Let T ( ) ( )
( , )
H f H f

M
 

 


 
, where 

2 2

( ) 1 ( ) 1 1 1 9
, ln (ln )

8

H f H f
 

     

 
     

 
. 

Then, the approximate estimates of ˆv ( ( ) )a r H f  is given by 

1
ˆ ˆ( , ) ( , )

ˆˆvar( ( )) [ I ( , ) ]TH f M M
   

 


 ,  

where ̂  and ̂  are the MLEs of   and  , respectively, and 1 ( , )I    denotes the 

inverse of the matrix 11 12

21 22

( , )
I I

I
I I

 
 

  
 

. The elements of the matrix ( , )I    are given 

by Equations (10)–(13), respectively. Thus, 
ˆ ( ) ( )

ˆˆvar( ( ))

H f H f

H f


 is asymptotically distributed as 

(0,1)N . The asymptotic 100(1 )%  CI for the entropy H( )f  is given by 

 / 2
ˆ ˆˆ( ) var( ( ))H f Z H f  

where /2z  is the upper /2  percentile of the standard normal distribution. 
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3. Bayesian Estimation 

In this section, we discuss the Bayesian point estimation of the parameters and en-

tropy H( )f  for generalized Bilal distribution using Lindley’s approximation method 

under symmetric as well as asymmetric loss functions. Furthermore, the Bayesian CI of 

the parameters and entropy are also derived by using the Markov chain Monte Carlo 

method. 

3.1. Loss Functions and Posterior Distribution 

Choosing the loss function is an important part in the Bayesian inference. The 

commonly used symmetric loss function is the squared error loss (SEL) function, which is 

defined as 

2
1

ˆ ˆ(U, )=( ) .L U U U   (4)

Two popular asymmetric loss functions are the Linex loss (LL) and general entropy 

loss (EL) functions, which are respectively given by 

2
ˆ ˆ ˆ(U, )=exp( ( )) ( ) 1, 0,L U h U U h U U h       (5)

3

ˆ ˆ
ˆ(U, ) ln 1, 0.

q

U U
L U q q

U U

   
         
   

 (6)

Here, ( , )U U    is any function of   and  , and Û  is an estimate of U . The 

constant h  and q  represent the weight of errors on different decisions. Under the 

above loss functions, the Bayesian estimate of function U  can be calculated by 

ˆ ( | )SU E U x


. (7)

1ˆ ln[ (exp( ) | )] 0 .LU E hU x h
h

   


，  (20)

1/ˆ [ ( | )] , 0.q q
EU E U x q  


 (8)

To derive the Bayesian estimates of the function ( , )U   , we consider prior distri-

butions of the unknown parameters   and   as independent Gamma distributions 

( , )Ga a b  and ( , )Ga c d , respectively. Therefore, the joint prior distribution of   and 

  becomes 

1 1

( , ) exp( ) exp( ), ( , , , , , 0).
( ) ( )

a a c cb d
b d a b c d

a c

 
      

 

   
   

Based on the likelihood function ( , | ) 


L x  and the joint prior distribution of   

and  , the joint posterior density of parameters   and   can be written as 

0 0

( , ) ( , | )
( | )

( , ) ( , | )

L x
x

L x d d

    
  

      
 



 




,  

1 1
1 2 3

( , ) ( , | )

exp( ) exp( ) ( , ) ( , ) ( , ),a c

L x

b d A A A

    

          



  



 (9)

where 

1
1

1

( , ) 6 exp( 2 )[1 exp( )],      



   
m

i i i
i

A x x x  
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2
1

( , ) [exp( 2 )(3 2exp( ))]    


    i

D
R

i i
i

A x x , 
 

*

3 ( , ) [exp( 2 )(3 2 exp( ))]        R
m mA x x . 

Therefore, the Bayesian estimate of ( , )U    under the SEL, LL and GEL functions 

are respectively given by 

0 0

0 0

( , ) ( , ) ( , | )
ˆ ( , ) ,

( , ) ( , | )
S

U L x d d
U

L x d d

        
 

      

 

 

 

 





 

(23)

0 0

0 0

exp( ( , )) ( , ) ( , | )1ˆ ( , ) ln ,
( , ) ( , | )

L

hU L x d d
U

h L x d d

        
 

      

 

 

 
  
 
  

 

 



  (10)

1

0 0

0 0

( ( , )) ( , ) ( , | )
ˆ ( , ) .

( , ) ( , | )

qq

E

U L x d d
U

L x d d

        
 

      

 


 

 
 
 
  

 

 




 (25)

3.2. Lindley’s Approximation 

From Equations (23)–(25), it is observed that all of these estimates of the ( , )U    

are in the form of the ratio of two integrals which cannot be reduced to a closed form. 

Therefore, we use Lindley’s approximation method to obtain the Bayesian estimates. If 

we let 1 2=( , )   , then the posterior expectation of a function 1 2U( , )   can be approxi-

mated as in [18]: 

1 2 30 12 03 21 21 12 12 21 1 12 2 21
ˆ ˆˆ ( , ) 0.5( B ) ,U U A z B z z C z C p A p A        

 (26)

where 1 2
ˆ ˆU( , )   is the MLE of 1 2U( , )   and 

2 2 2

1 1
, ( ) , 3 ( 2 ),ij ij ij i ii j ij ii ij i ii ij j ii jj iji j

A u B u u C u u        
 

        

2

1 2

j
1 2

1 2

, , , ln ( , ), ,

( , )
, , 0,1,2,3, 3,

i i ij ij i ii j ji

i i i j

i

ij i j

p U U
p u u p A u u

l
z i j i j

    
   

 

 



  
     
   


   

 

 

where l  denotes the log-likelihood function and ( , )ij i j  denotes the ( , )-i j th element of 

the matrix 
2 1

1 2[ / ]i jl      . All terms are estimated by MLEs of the parameters 1  and 

2 . 

Based on the above equations, we have 

3
3 2 1

30 1 13 3 1

3 2 1
2 21

* 3 2 1
3 3

2
+ { exp( ) ( )) [1 2( ( )) exp( )]}

{6 exp( )( ( )) [1 4exp( )( ( )) ]}

6 exp( )( ( )) [1 4exp( )( ( )) ].

m

i i ii

D

i i i ii

m m m

l m
z x x y y x

R x x y x y

R x x y x y

  

  

  

   
 

   

   

 



 



 


    


   

   





(

 
(27)
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3
3 1 2 2 3 2

03 1 13 3 1

1 3 1
1 21

2 2 3 2
2

2
+ { (ln ) ( 3 ( ( )) (ln ) exp( ) ( ))

[3 2 exp( )( ( )) ]} {[ 3 (ln ) [1 ( ( )) ]

+6 (ln ) exp( ) ( )) ( 3 4

m

i i i i ii

D

i i i i i ii

i i i i i

l m
z x x y x x x y

x x x y R x x y

R x x x y x x

  

   

  

    
 

     

    

 



 






     


       

   





) (

( 1
2

* 3 1 * 2 2 3 2 1
3 3 3

( ( )) exp( ))}

3 (ln ) [ 1 ( ( )) ] 6 (ln ) exp( )( ( )) [ 3 4 ( ( )) exp( )].

i i

m m m m m m m m

y x

R x x y R x x x y x x y x

 

     

 

        



  

 

        

 
(11)

3
2 2 1

21 1 12 1

2 2 1
2 21

* 2 2
3 3

[ ln exp( )( ( )) exp( ) ( ))

[6 ln exp( )( ( )) [2 4 exp( ) ( )) ]

6 ln exp( )( ( )) ][2 4 ( (

m

i i i i i ii

D

i i i i i i ii

m m m m m

l
z x x x y x x x y

R x x x y x x x y

R x x x y x x y

    

    

   

     
 

     

   

 



 






    
 

    

   





) [ 2- - 2 ( ]

(

1)) exp( )].mx
  

 
(12)

3
2 2 1

12 12 1

2 2 2 1 2 2 1
1 1 21

2 2 2
2

= [ 3 (ln ) (ln ) ( ( ))

(ln ) exp( ) ( )) [ 3 ( )) exp( )]] { 3 (ln ) +3 (ln ) ( ( ))

6 (ln ) exp( )( ( )) [ 3

m

i i i ii

D

i i i i i i i i i i i ii

i i i i

l
z x x x x y

x x x y x y x x R x x R x x y

R x x x y

 

      

 


 

       

   





  






  
 

       

   



(

1
2

* 2 * 2 1
3

* 2 2 2 1
3 3

exp( ) 4( ( )) exp( )]

3 (ln ) +3 (ln ) ( ( )) }

6 (ln ) exp( )( ( )) [ 3 exp( ) 4( ( )) exp( )].

i i i i

m m m m

m m m m m m m

x x y x x

R x x R x x y

R x x x y x x y x x

   

 

     

   



       





 

  



      
 

(30)

1 2

1 1
, ,

a c
p b p d

 

 
     

02 20 11
11 22 12 212 2 2

20 02 11 20 02 11 20 02 11

, , ,
z z z

z z z z z z z z z
        

  
 

2 2 2

20 11 022 2
, , ,

l l l
z z z

  

  
  

  
 

where 20 11 02, ,z z z  are given by Equations (10)–(12), respectively. 

Based on Lindley’s approximation, we can derive the Bayesian estimation of the two 

parameters,   and  , and the entropy under different loss functions. 

3.2.1. Squared Error Loss Function 

When U( , )=    or  , the Bayesian estimations of the parameters   and   

under the SEL function are given by, respectively,  

2 2
11 30 21 22 03 11 12 21 11 22 21 12 11 1 12 2

ˆ ˆ 0.5[ 3 ( 2 ) ]S z z z z p p                   , 
  

2 2
11 12 30 22 03 22 21 12 11 22 21 21 21 1 22 2

ˆ ˆ 0.5[ 3 ( 2 ) ]S z z z z p p                   ,   

where ̂  and ̂  are the MLEs of the parameters   and  , respectively. 

Similarly, the Bayesian estimation of the entropy can be derived. We notice that 

1 2 2

11 22 12 212 2 3 2

1 1
U( , ) ( , ) 2.5 ln ln ln (ln 9/8)

1 1 1
, (ln ln(9 / 8) ),

1 1 2 1
, (ln ln(9 / 8) ), .

H

u u

u u u u

       
 

 
  

 
    

       

      

      

( 27/ 4) ( ) ,

 

Thus, the Bayesian estimation of the entropy H( )f  under the SEL function is given 

by 
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11 11 12 12 22 22 30 1 11 2 12 11 03 2 22 1 12 22

2 2
21 1 11 12 2 11 22 12 12 2 22 21 1 11 22 21

1 1 11 2 21 2 2 22 1 12

ˆ ˆH ( )=H( ) 0.5[u +2u + z (u +u ) +z (u +u )

+z (3u +u ( +2 ))+z (3u +u ( +2 ))]

(u u )+ (u u ),

S f f u

p p

        

         

   

 

  
 (31)

where Ĥ( )f  represents the maximum likelihood estimate of H( )f . 

3.2.2. Linex Loss Function 

Based on Lindley’s approximation, the Bayesian estimations of two parameters,   

and  , and the entropy under the LL function can, respectively, be given by 

11

2
11 11 1 30 1 21 22 03 1 11 12 21

2
11 22 1 21 1 12 1 11 1 1 12 2

1ˆ ˆln{exp( ) 0.5[u +u z +u z +3u z

( +2u )u z ] u u }

L h
h

p p

       

    

   

  
 

2 2
22 22 2 11 12 30 2 22 03 11 22 12 2 21

2 22 21 21 2 12 1 2 22 2

1ˆ ˆln{exp( ) 0.5[u +u z +u z +( +2 )u z

3u ] u u }

L h
h

z p p

        

   

   

  
 

11 11 12 12 22 22 30 1 11 2 12 11 03 2 22 1 21 22

2 2
21 1 11 12 2 11 22 12 12 2 22 21 1 11 22 21

1 1 11 2 21 2 2 22 1 12

1ˆ ˆ( ) ln{exp[ ( )] 0.5[u +2u + +z (u +u ) +z (u +u )

+z (3u +u ( +2 ))+z (3u +u ( +2 ))]

(u u )+ (u u )}.

LH f hH f u
h

p p

        

         

   

   

  

 
(32)

Here, ̂  and ̂  are the MLEs of the parameters   and  , and Ĥ( )f  repre-

sents the MLE of H( )f . The detailed derivation of these Bayesian estimates is shown in 

Appendix C. 

3.2.3. General Entropy Loss Function 

Using Lindley’s approximation method, the Bayesian estimations of two parame-

ters,   and  , and the entropy under the GEL function can, respectively, be given by 

11

2 2 1/
11 11 1 30 1 21 22 03 1 11 12 21 11 22 1 21 1 12 1 11 1 1 12 2

ˆ ˆ{ 0.5[u +u z +u z +3u z ( +2u )u z ] u u }q q
E p p                   

2 2 1/
22 22 2 11 12 30 2 22 03 11 22 12 2 21 2 22 21 21 2 21 1 2 22 2

ˆ ˆ{ 0.5[u +u z +u z +( +2 )u z 3u ] u u }q q
L z p p                   

11 11 12 12 22 22 30 1 11 2 12 11 03 2 22 1 12 22

2 2
21 1 11 12 2 11 22 12 12 2 22 21 1 11 22 21

1/
1 1 11 2 21 2 2 22 1 12

ˆ ˆ( ) {[ ( )] 0.5[(u +2u + )+z (u +u ) +z (u +u )

+z (3u +u ( +2 ))+z (3u +u ( +2 ))]

(u u )+ (u u )} .

q
E

q

H f H f u

p p

        

         

   





 

  

 (33)

Here, ̂  and ̂  are the MLEs of the parameters   and  , and Ĥ( )f  represents 

the MLE of H( )f . The detailed derivation of these Bayesian estimates is shown in Ap-

pendix D. 

3.3. Bayesian Credible Interval 

In the previous subsection, we used the Lindley’s approximation method to obtain 

the Bayesian point estimation of the parameters and entropy. However, this approxima-

tion method cannot determine the Bayesian CIs. Thus, the MCMC method is applied to 

obtain the Bayesian CI for the parameters and entropy. The MCMC method is a useful 

technique for estimating complex Bayesian models. The Gibbs sampling and Metropolis–

Hastings algorithm are the two most frequently applied MCMC methods which are used 

in reliability analysis, statistical physics and machine learning, among other applications. 
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Due to their practicality, they have gained some attention among researchers, and inter-

esting results have been obtained. For example, Gilks and Wild [24] proposed adaptive 

rejection sampling to handle non-conjugacy in applications of Gibbs sampling. Koch [25] 

studied the Gibbs sampler by means of the sampling–importance resampling algorithm. 

Martino et al. [26] established a new approach, namely by recycling the Gibbs sampler to 

improve the efficiency without adding any extra computational cost. Panahi and Moradi 

[27] developed a hybrid strategy, combining the Metropolis–Hastings [28, 29] algorithm 

with the Gibbs sampler to generate samples from the respective posterior, arising from 

the inverted, exponentiated Rayleigh distribution. In this paper, we adopt the method 

proposed in [27] to generate samples from the respective posterior arising from the GB 

distribution. From Equations (6) and (22), the joint posterior of the parameters ,   can 

be written as 

,

*

1

1

1 1

1 1

( | ) ( , ) ( , | ) [ ( )] exp[ ( )] [1 exp( )]

1
(3 2exp( )) (3 2exp( )) exp( )

[ ( )]
i

m
m a m a

i
i

D m
R R m c

i m im a
i i

x L x V V x

x x d x
V



  

            

   


  



  


 

    

     



 

 

 (13)

 

Here, *

1 1
( ) ( 2 2 2 ).

m D

i i i mi i
V b x R x R x  

 
      

Therefore, we have 

1 2( | ) ( | , ) ( | , ),x x x        
  

,  (14)

where
 

1
1( | , ) [ ( )] exp[ ( )]m a m ax V V         


 (36)

*

1
*

2 1 1

1

1 1 1

( | , ) exp( )exp[ 2 2 2 )]
[ ( )]

[1 exp( )] (3 2exp( )) (3 2exp( )) .i

m c
m D

i i i mm a i i

m D m
R R

i i m i
i i i

x d x R x R x
V

x x x x

  

   


    



  

 

  



  

    

      

 

  


(

 (37)

It is observed that
 
the posterior density 1( | , )x  


 of  , given  , is the PDF of 

the Gamma distribution *

1 1
( , 2 2 2 )

m D

i i i mi i
Gamma m a b x R x R x  

 
     . However, the

 

posterior density 2 ( | , )x  


 of  , given  , cannot be reduced analytically to a known 

distribution. Therefore, we use the Metropolis–Hastings method with normal proposal 

distribution to generate random numbers from Equation (37). We use the next algorithm 

(Algorithm 1), proposed in [27], to generate random numbers from Equation (34) and 

construct the Bayesian credible interval of  ,   and the entropy H( )f . 

Algorithm 1 The MCMC method 

Step 1: Choose the initial value (0) (0), ) ( . 

Step 2: At stage i and for the given m, n and ATII-PH censored data, generate ( )i from 

the following: 
*

1 1
( , 2 2 2 )

m D

i i i mi i
Gamma m a b x R x R x  

 
     .  

Step 3: Generate ( )i  from ( 1) ( )
2 ( | , )i i x   

 using the following steps. 

Step 3-1: Generate   from ( 1)( , var( ))iN   .
 

Step 3-2: Generate the   from the uniform distribution U(0, 1). 

Step 3-3: Set 
( )

( 1)

,

,

i

i

if r

if r

 


 



 

 
 


, where 

( )
2

( 1) ( )
2

( | , )
= min 1,

( | , )

i

i i

x
r

x

  

  




 
 
 



 . 

Step 4: Set = 1i i  . 
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Step 5: By repeating Steps 2–4 N times, we get 1 1 2 2( , ),( , ), ,( , )N N      . Furthermore, 

we compute 1 2, , , NH H H , where , 1,2, ,i i iH H i N   ( , )  and ( , )H    is the 

Shannon entropy of the GB distribution. 

Rearrange 1 2( , , , ),N    1 2( , , , )N    and
 1 2( , , , )NH H H  into 

(1) (2) ( )( , , , ),N    (1) (2) ( )( , , , )N    and (1) (2) ( )( , , )NH H H , where 

(1) (2) ( )( ),N      (1) (2) ( )( )N      and (1) (2) ( )( )NH H H   . 

Then, the 100( %1- )  Bayesian credible interval of the two parameters ,   and 

the entropy are given by ( / 2) ( (1 /2))( , )N N    , ( /2) ( (1 /2))( , )N N     and ( /2) ( (1 / 2))( , )N NH H  . 

4. Simulation Study 

In this section, a Monte Carlo simulation study is carried out to observe the perfor-

mance of different estimators of the entropy, in terms of the MSEs for different values of 

n, m, T and censoring schemes. In addition, the average 95% asymptotic confidence in-

tervals (ACIs), Bayesian credible intervals (BCIs) of ,   and the entropy, as well as the 

average interval length (IL), are computed, and the performances are also compared. We 

consider the following three different progressive censoring schemes (CSs): 

 CS I: , 0,m iR n m R i m    ; 

 CS II: 1 , 0, 1iR n m R i    ; 

 CS III: /2 , 0, ,
2

m i

m
R n m R for i     if m  is even or

( +1)/2

1
, 0, ,

2
m i

m
R n m R for i


   

 
if m  is odd. 

Based on the following algorithm proposed by Balakrishnan and Sandhu [30] (Al-

gorithm 2), we can generate an adaptive Type-II progressive hybrid censored sample 

from the GB distribution. 

Algorithm 2. Generating a adaptive Type-II progressive hybrid censored sample from 

the GB distribution. 

Step1: Generate m  independent observations 1 2, ,..., mZ Z Z , where iZ  follows the uni-

form distribution (0,1)U , 1, 2,...,i m . 

Step 2: For the known censoring scheme 1 2( , ,..., )mR R R , let 

1 11/( ... ) , 1, 2,...,m m m ii R R R

i iZ i m        . 

Step 3: By setting 1 11 ...i m m m iU       , then 1 2, ,..., mU U U  is a Type-II progressive cen-

sored sample from the uniform distribution (0,1)U . 

Step 4: Using the inverse transformation 1
: : ( )i m n iX F U , 1, 2, ,i m  , we obtain a 

Type-II progressive censored sample from the GB distribution; that is, 

1: : 2: : : :, ,...,m n m n mm nX X X , where 1( )F    denotes the GB distribution’s inverse cumulative 

functional expression with the parameter ( , )  . The following theorem1 gives the 

uniqueness of the solution for the equation 1
: : ( )i m n iX F U , 1, 2, ,i m  . 

Step 5: If there exists a real number J  satisfying J:m:n J+1:m:nX T X  , then we set index 

J  and record 1: : 2: : 1: :, ,...,m n m n J m nX X X  . 

Step 6: Generate the first 1m J   order statistics 2: : 3: : : :, ,...,J m n J m n m m nX X X   from the 

truncated distribution 1( ; , ) / [1 ( ; , )]Jf x F x     with a sample size 
1

1
J

ii
n J R


   . 

Theorem 1. The equation 1
: : ( )i m n iX F U  has a unique solution, 1, 2, ,i m  . 
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Proof. See Appendix A 

In the simulation study, we took the values of the parameters of the GB distribution 

as =1, =2  . In this case, H( )f =0.2448. The hyperparameter values of the prior distri-

bution were taken as 1, 3 2, 3a b c d   ， . For the Linex loss function and general en-

tropy loss function, we set 1.0, 1.0h    and 1.0, 1.0q   , respectively. In the Newton 

iterative algorithm and MCMC sampling algorithm, we chose the initial values of   

and   as 0 0= = （ ） （ ）0. 9， 1. 9;  the value of   was taken as 610 . For different sam-

ple sizes n and different effective samples m and time T, we used 3000 simulated samples 

in each case. The average values and mean square errors (MSEs) of the MLEs and 

Bayesian estimations (BEs) for ,   and the entropy were calculated. These results are 

reported in Tables 1–6. 

Table 1. The average maximum likelihood estimations (MLEs) and mean square errors (MSEs) of 

,   and the entropy ( 1 , = 2  , H ( )f = 0.2448). 

(n, m) SC 

T = 0.6 T = 1.5 

̂
 

MSE
 

̂
 

MSE 

Ĥ  
MSE 

̂
 

MSE 

̂
 

MSE 

Ĥ  
MSE 

(40, 15) 
I 1.1850 

0.1224 

2.2096 

0.1428 

0.1903 

0.0979 

1.1875 

0.1213 

2.2848 

0.1521 

0.1950 

0.0963 

 
II 1.0727 

0.0709 

2.1448 

0.1258 

0.2015 

0.0376 

1.0619 

0.0609 

2.1541 

0.1336 

0.2017 

0.0279 

 
III 1.1819 

0.1217 

2.2354 

0.1413 

0.1947 

0.0910 

1.1864 

0.1208 

2.2362 

0.1514 

0.1968 

0.0902 

(50, 15) 
I 1.1326 

0.1053 

2.1803 

0.1398 

0.2086 

0.0797 

1.0905 

0.0741 

2.1931 

0.1483 

0.1997 

0.0750 

 
II 1.0498 

0.0390 

2.1017 

0.1243 

0.2281 

0.0280 

1.0390 

0.0374 

2.1076 

0.1263 

0.2169 

0.0197 

 
III 1.1184 

0.1013 

2.1817 

0.1345 

0.2035 

0.0742 

1.0740 

0.0602 

2.1284 

0.1448 

0.2013 

0.0598 

(60, 30) 
I 1.1006 

0.0889 

2.1758 

0.1374 

0.2029 

0.0625 

1.0689 

0.0683 

2.1795 

0.1368 

0.2033 

0.0547 

 
II 1.0451 

0.0363 

2.0847 

0.1066 

0.2260 

0.0231 

1.0476 

0.0383 

2.0877 

0.1048 

0.2170 

0.0158 

 
III 1.0860 

0.0653 

2.1528 

0.1368 

0.2086 

0.0601 

1.0583 

0.0592 

2.1571 

0.1335 

0.2090 

0.0418 

(70, 30) 
I 1.0641 

0.0704 

2.1296 

0.1202 

0.2163 

0.0516 

1.0581 

0.0597 

2.1197 

0.1278 

0.2134 

0.0417 

 
II 1.0246 

0.0265 

2.0785 

0.0849 

0.2294 

0.0198 

1.0231 

0.0317 

2.0715 

0.0946 

0.2245 

0.0148 

 
III 1.0517 

0.0580 

2.1483 

0.1203 

0.2199 

0.0591 

1.0468 

0.0485 

2.1132 

0.1203 

0.2195 

0.0361 

Table 2. The average Bayesian estimations and MSEs of ,   and the entropy under the squared 

error loss functon ( 1 , = 2  ; 1 , = 2  , H ( )f  = 0.2448). 

(n, m) SC 

T = 0.6 T = 1.5 

̂
 

MSE 

̂  
MSE 

Ĥ  
MSE 

̂
 

MSE 

̂
 

MSE 

Ĥ  
MSE 

(40, 15) 
I 0.8625 

0.0353 

1.8735 

0.1325 

0.3357 

0.0930 

0.8687 

0.0337 

1.8761 

0.1317 

0.3301 

0.0920 
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II 0.9480 

0.0235 

1.9583 

0.0954 

0.2630 

0.0342 

0.9546 

0.0255 

1.9531 

0.0938 

0.2616 

0.0217 

 
III 0.8795 

0.0340 

1.8041 

0.1314 

0.3264 

0.0948 

0.8837 

0.0310 

1.8996 

0.1299 

0.3034 

0.0902 

(50, 15) 
I 0.9325 

0.0297 

1.8917 

0.1185 

0.3189 

0.0796 

0.8973 

0.0289 

1.8345 

0.0975 

0.2732 

0.0741 

 
II 0.9645 

0.0218 

1.9907 

0.0827 

0.2580 

0.0260 

0.9694 

0.0223 

1.9763 

0.0812 

0.2303 

0.0198 

 
III 0.9475 

0.0253 

1.9013 

0.1072 

0.3016 

0.0546 

0.9824 

0.0234 

1.9314 

0.0972 

0.2661 

0.0486 

(60, 30) 
I 0.9274 

0.0224 

1.8445 

0.1151 

0.2357 

0.0575 

0.9457 

0.0263 

1.8781 

0.0919 

0.2674 

0.0508 

 
II 0.9671 

0.0202 

1.9932 

0.0728 

0.2398 

0.0235 

0.9688 

0.0207 

2.0176 

0.0741 

0.2235 

0.0179 

 
III 0.9185 

0.0211 

1.8525 

0.1072 

0.2301 

0.0534 

0.9316 

0.0227 

1.9427 

0.0954 

0.2652 

0.0504 

(70, 30) 
I 0.9742 

0.0198 

1.9360 

0.0775 

0.2538 

0.0404 

0.9515 

0.0213 

1.9504 

0.0892 

0.2553 

0.0401 

 
II 0.9895 

0.0174 

2.0413 

0.0613 

0.2506 

0.0195 

0.9804 

0.0186 

2.0378 

0.0537 

0.2260 

0.0105 

 
III 0.9787 

0.0182 

1.9746 

0.0761 

0.2512 

0.0397 

0.9713 

0.0194 

1.9714 

0.0683 

0.2537 

0.0346 

Table 3. The average Bayesian estimations and MSEs of ,   and the entropy under the Linex loss 

function ( 1, =2  , T = 0.6, H ( )f = 0.2448). 

(n, m) SC 

1h    1h   

̂
 

MSE 

̂
 

MSE 

Ĥ  
MSE 

̂
 

MSE 

̂
 

MSE 

Ĥ  
MSE 

(40, 15) 
I 0.8835 

0.0355 

1.8558 

0.1261 

0.3583 

0.0964 

0.8531 

0.0366 

1.8248 

0.1343 

0.2802 

0.0904 

 
II 0.9740 

0.0255 

1.9161 

0.0885 

0.2587 

0.0721 

0.9308 

0.0246 

1.9092 

0.1008 

0.2469 

0.0304 

 
III 0.9047 

0.0308 

1.8768 

0.1249 

0.3343 

0.0929 

0.8670 

0.0335 

1.8405 

0.1889 

0.2638 

0.0884 

(50, 15) 
I 0.9047 

0.0301 

1.9415 

0.1238 

0.3158 

0.0939 

0.8704 

0.0337 

1.9175 

0.1329 

0.2736 

0.0764 

 
II 0.9852 

0.0218 

2.0538 

0.0789 

0.2502 

0.0623 

0.9674 

0.0213 

1.9201 

0.0912 

0.2358 

0.0265 

 
III 0.9105 

0.0284 

1.9771 

0.0986 

0.3046 

0.0904 

0.8924 

0.0293 

1.9203 

0.1257 

0.2604 

0.0654 

(60, 30) 
I 0.9341 

0.0223 

1.9788 

0.1127 

0.2792 

0.0836 

0.9035 

0.0238 

1.9221 

0.1308 

0.2520 

0.0543 

 
II 0.9834 

0.0198 

2.0465 

0.0664 

0.3743 

0.0365 

0.9609 

0.0211 

1.9447 

0.0791 

0.2118 

0.0220 

 
III 0.9498 

0.0204 

1.9837 

0.0973 

0.3424 

0.0829 

0.9258 

0.0207 

1.9253 

0.1227 

0.2319 

0.0425 

(70, 30) 
I 0.9561 

0.0197 

1.9889 

0.0768 

0.2546 

0.0579 

0.9378 

0.0184 

1.9543 

0.0975 

0.2407 

0.0403 

 
II 0.9957 

0.0174 

2.0312 

0.0572 

0.2371 

0.0281 

0.9798 

0.0159 

2.0164 

0.0614 

0.2410 

0.0187 



Entropy 2021, 23, 206 14 of 24 
 

 

 
III 0.9687 

0.0185 

2.0024 

0.0746 

0.2265 

0.0536 

0.9451 

0.0120 

1.9623 

0.0784 

0.2409 

0.0354 

Table 4. The average Bayesian estimations and MSEs of ,   and the entropy under the Linex loss 

function ( 1, =2  , T = 1.5, H ( )f  = 0.2448). 

(n, m) SC 

1h    1h   

̂
 

MSE 

̂
 

MSE 

Ĥ  
MSE 

̂
 

MSE 

̂
 

MSE 

Ĥ  
MSE 

(40, 15) 
I 0.8896 

0.0330 

1.8328 

0.1359 

0.3492 

0.1025 

0.8510 

0.0375 

1.8127 

0.1396 

0.3381 

0.0947 

 
II 0.9638 

0.0248 

1.9177 

0.0863 

0.2743 

0.0365 

0.9272 

0.0265 

1.9167 

0.0982 

0.2657 

0.0301 

 
III 0.8922 

0.0321 

1.8691 

0.1306 

0.3424 

0.0948 

0.8631 

0.0334 

1.8430 

0.1328 

0.3343 

0.0803 

(50, 15) 
I 0.9024 

0.0234 

1.8678 

0.1094 

0.3217 

0.0921 

0.8823 

0.0315 

1.8874 

0.1173 

0.3216 

0.0810 

 
II 0.9713 

0.0221 

1.9401 

0.0731 

0.2601 

0.0262 

0.9418 

0.0217 

1.9824 

0.0884 

0.2632 

0.0223 

 
III 0.9135 

0.0231 

1.8792 

0.090 

0.3383 

0.0921 

0.8975 

0.0314 

1.8845 

0.1121 

0.3210 

0.0693 

(60, 30) 
I 0.9470 

0.0219 

1.8946 

0.0951 

0.3222 

0.0727 

0.9080 

0.0234 

1.9012 

0.1075 

0.3251 

0.0536 

 
II 0.9795 

0.0209 

1.9452 

0.0719 

0.2518 

0.0246 

0.9548 

0.0199 

1.9616 

0.0776 

0.2513 

0.0219 

 
III 0.9425 

0.0213 

1.8978 

0.0906 

0.3197 

0.0648 

0.9253 

0.0213 

1.9041 

0.1069 

0.3218 

0.0412 

(70, 30) 
I 0.9583 

0.0184 

1.9562 

0.0748 

0.3165 

0.0473 

0.9491 

0.0179 

1.9493 

0.0861 

0.3314 

0.0392 

 
II 0.9901 

0.0163 

2.0576 

0.0652 

0.2318 

0.0168 

0.9814 

0.0153 

2.0997 

0.0608 

0.2459 

0.0161 

 
III 0.9711 

0.0175 

1.9230 

0.0697 

0.3027 

0.0389 

0.9502 

0.0162 

1.9894 

0.0841 

0.3267 

0.0304 

Table 5. The average Bayesian estimations and MSEs of ,   and the entropy under the general 

entropy loss function ( 1, =2  , T = 0.6, H( )f  = 0.2448). 

(n, m) SC 

1q    1q   

̂  
MSE 

̂
 

MSE 

Ĥ
 

MSE 

̂  
MSE 

̂
 

MSE 

Ĥ
 

MSE 

(40, 15) 
I 0.8739 

0.0341 

1.8380 

0.1348 

0.3181 

0.0891 

0.8288 

0.0437 

1.8173 

0.1381 

0.3558 

0.1091 

 
II 0.9546 

0.0239 

1.9184 

0.0966 

0.2832 

0.0234 

0.9169 

0.0265 

1.9081 

0.1084 

0.2628 

0.0315 

 
III 0.8828 

0.0324 

1.8422 

0.1306 

0.3097 

0.0863 

0.8494 

0.0389 

1.8266 

0.1361 

0.3207 

0.1063 

(50, 15) 
I 0.9013 

0.0305 

1.8948 

0.1191 

0.3017 

0.0463 

0.8972 

0.0380 

1.8728 

0.1231 

0.3423 

0.0598 

 
II 0.9701 

0.0214 

1.9386 

0.0803 

0.2695 

0.0186 

0.9430 

0.0236 

1.9471 

0.0962 

0.2268 

0.0271 

 III 0.9251 1.8984 0.3023 0.8613 1.8498 0.3287 
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0.0263 0.1093 0.0486 0.0308 0.1176 0.0525 

(60, 30) 
I 0.9270 

0.0232 

1.9089 

0.0824 

0.2776 

0.0390 

0.8975 

0.0276 

1.8785 

0.1127 

0.3270 

0.0477 

 
II 0.9610 

0.0190 

2.0351 

0.0686 

0.2318 

0.0197 

0.9481 

0.0210 

2.0453 

0.0791 

0.2391 

0.0245 

 
III 0.9406 

0.0210 

1.9105 

0.0874 

0.2698 

0.0375 

0.9116 

0.0231 

1.8938 

0.1109 

0.3168 

0.0418 

(70, 30) 
I 0.9501 

0.0171 

1.9492 

0.0778 

0.2536 

0.0265 

0.9213 

0.0202 

1.9308 

0.0840 

0.2924 

0.0392 

 
II 0.9817 

0.0158 

2.0147 

0.0436 

0.2325 

0.0148 

0.9681 

0.0151 

2, 1489 

0.0526 

0.2410 

0.0272 

 
III 0.9546 

0.0174 

1.9602 

0.0738 

0.2513 

0.0168 

0.9467 

0.0173 

1.9436 

0.0724 

0.2902 

0.0312 

Table 6. The average Bayesian estimations and MSEs of ,   and the entropy under the general 

entropy loss function ( 1, =2  , T = 1.5, H( )f = 0.2448). 

(n, m) SC 

1q    1q   

̂
 

MSE 

̂
 

MSE 

Ĥ
 

MSE 

̂  
MSE 

̂
 

MSE 

Ĥ
 

MSE 

(40, 15) 
I 0.8770 

0.0335 

1.8569 

0.1332 

0.3564 

0.0903 

0.8224 

0.0455 

1.7924 

0.1331 

0.3598 

0.1075 

 
II 0.9560 

0.0218 

1.9221 

0.0914 

0.2729 

0.0198 

0.9112 

0.0257 

1.9038 

0.0913 

0.2786 

0.0294 

 
III 0.8836 

0.0315 

1.8297 

0.1217 

0.3519 

0.0841 

0.8453 

0.0348 

1.8374 

0.1224 

0.3547 

0.1024 

(50, 15) 
I 0.8947 

0.0298 

1.8979 

0.0981 

0.3028 

0.0372 

0.8631 

0.0362 

1.8308 

0.1134 

0.3143 

0.0483 

 
II 0.9685 

0.0206 

1.9793 

0.0801 

0.2610 

0.0164 

0.9377 

0.0216 

1.9467 

0.0910 

0.2656 

0.0283 

 
III 0.8984 

0.0278 

1.9078 

0.0931 

0.3012 

0.0416 

0.8702 

0.0302 

1.8547 

0.1086 

0.3125 

0.0502 

(60, 30) 
I 0.9244 

0.0221 

1.8446 

0.0772 

0.2731 

0.0283 

0.8930 

0.0267 

1.9208 

0.1041 

0.2812 

0.0421 

 
II 0.9767 

0.0188 

2.0526 

0.0614 

0.2554 

0.0164 

0.9440 

0.0202 

2.0658 

0.0718 

0.2627 

0.0238 

 
III 0.9387 

0.0198 

1.9541 

0.0824 

0.2709 

0.0346 

0.9125 

0.0210 

1.9435 

0.0983 

0.2801 

0.0431 

(70, 30) 
I 0.9531 

0.0167 

1.9578 

0.0738 

0.2501 

0.0247 

0.9230 

0.0188 

1.9447 

0.0814 

0.2523 

0.0370 

 
II 0.9814 

0.0140 

2.2263 

0.0394 

0.2309 

0.0135 

0.9675 

0.0140 

2.2680 

0.0338 

0.2352 

0.0247 

 
III 0.9624 

0.0163 

1.9795 

0.0745 

0.2486 

0.0216 

0.9457 

0.0164 

1.9539 

0.0718 

0.2501 

0.0306 

From Tables 1–6, the following observations can be made: 

1. For the fixed m and T values, the MSEs of the MLEs and Bayesian estimations of 

the two parameters and the entropy decreased when n increased. As such, we 

tended to get better estimation results with an increase in the test sample size; 

2. For the fixed n and m values, when T increased, the MSEs of the MLEs and 

Bayesian estimations of the two parameters and the entropy did not show any 
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specific trend. This could be due to the fact that the number of observed failures 

was preplanned, and no additional failures were observed when T increased; 

3. In most cases, the MSEs of the Bayesian estimations under a squared error loss 

function were smaller than those of the MLEs. There was no significant differ-

ence in the MSEs between the Linex loss and general entropy loss functions; 

4. For fixed values of n, m and T, Scheme II was smaller than Scheme I and Scheme 

III in terms of the MSE. 

To further demonstrate the conclusions, the MSEs are plotted when the sample size 

increases under different censoring schemes. The trends are shown in Figure 1 (values 

come from Tables 1–6). 

Furthermore, the average 95% ACIs and BCIs of ,   and the entropy, as well as the 

average lengths (ALs) and coverage probabilities of the confidence intervals, were com-

puted. These results are displayed in Tables A1–A4 (See Appendix E). 

From Tables A1–A4, the following can be observed: 

1. The coverage probability of the approximate confidence intervals and Bayes 

credible intervals became bigger when n increased while m and T remain fixed; 

2. For fixed values of n and m, when T increased, we did not observe any specific 

trend in the coverage probability of the approximate confidence intervals and 

Bayesian credible intervals; 

3. For fixed values of n and T, the average length of the approximate confidence 

intervals and Bayesian credible intervals were narrowed down when n 

increased; 

4. The average length of the Bayesian credible intervals was smaller than that of the 

asymptotic confidence intervals in most cases; 

5. For fixed values of n and m, when T increased, we did not observe any specific 

trend in the average length of the confidence intervals; 

6. For fixed values of n, m and T, Scheme II was smaller than Scheme I and Scheme 

III in terms of the average length of the credible interval; 

7. For fixed values of n, m and T, the coverage probability of the approximate 

confidence intervals and Bayesian credible intervals were bigger than Scheme I 

and Scheme III. 

 
(a) 

 
(b) 

M
S

E
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(c) 

 
(d) 

 
(e)  (f) 

Figure 1. MSEs of different entropy estimations. (a) MSEs of MLEs of entropy in the case of T = 0.6 and T = 1.5. (b) MSEs of 

Bayesian estimations of entropy under a squared error loss function in the case of T = 0.6 and T = 1.5. (c) MSEs of Bayesian 

estimations of entropy under a Linex loss function in the case of T = 0.6. (d) MSEs of Bayesian estimations of entropy 

under a Linex loss function in the case of T = 1.5. (e) MSEs of Bayesian estimations of entropy under a general entropy loss 

function in the case of T = 0.6. (f) MSEs of Bayesian estimations of entropy under a general entropy loss function in the 

case of T = 1.5. 

5. Real Data Analysis 

In this subsection, a real data set is considered to illustrate the use of the inference 

procedures discussed in this paper. This data set consisted of 30 successive values of 

March precipitation in Minneapolis–Saint Paul, which were reported by Hinkley [31]. 

The data set points are expressed in inches as follows: 0.32, 0.47, 0.52, 0.59, 0.77, 0.81, 

0.81, 0.9, 0.96, 1.18, 1.20, 1.20, 1.31, 1.35, 1.43, 1.51, 1.62, 1.74, 1.87, 1.89, 1.95, 2.05, 2.10, 

2.20, 2.48, 2.81, 3.0, 3.09, 3.37 and 4.75 in. 

This data was used by Barreto-Souza and Cribari-Neto [32] for fitting the general-

ized exponential-Poisson (GEP) distribution and by Abd-Elrahman [20] for fitting the 

Bilal and GB distributions. In the complete sample case, the MLEs of β and λ were 0.4168 

and 1.2486, respectively. In this case, we calculated the maximum likelihood estimate of 

the entropy as H( )f =1.2786. For the above data set, Abd-Elrahman [20] pointed out that 

the negative of the log likelihood, Kolmogorov–Smirnov (K–S) test statistics and its cor-

responding p value related to these MLEs were 38.1763, 0.0532 and 1.0, respectively. 

Based on the value of p, it is clear that the GB distribution was found to fit the data very 

well. Using the above data set, we generated an adaptive Type-II progressive hybrid 

censoring scheme with an effective failure number m (m = 20). 

When we took T = 4.0 and 1 2 5 6 7 15=1, =0,R R R R R R      

16 17 20=1,R R R    the obtained data in Case I were as follows: 

40 45 50 55 60 65 70

Sample size n
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Case I: 0.32, 0.52, 0.77, 0.81, 0.96, 1.18, 1.20, 1.31, 1.35, 1.43, 1.51, 1.62, 1.74, 1.87, 1.89, 

1.95, 2.10, 2.48, 2.81 and 3.37. 

When we took T = 2.0, 1 2 3 81, = = =0R R R R   ,  9 10 15 1,R R R    

16 17 19=0R R R    and 20 2R  , the obtained data in Case II were as follows: 

Case II: 0.32, 0.47, 0.52, 0.59, 0.77, 0.81, 0.9, 0.96, 1.18, 1.20, 1.35, 1.43, 1.74, 1.87, 1.95, 

2.10, 2.20, 2.48, 2.81 and 3.09. 

Based on the above data, the maximum likelihood estimation and Bayesian estima-

tion of the entropy and the two parameters could be calculated. For the Bayesian estima-

tion, since we had no prior information about the unknown parameters, we considered 

the noninformative gamma priors of the unknown parameters as a = b = c = d = 0. For the 

Linex loss and general entropy functions, we set 1.0, 1.0h  and 1.0, 1.0q   , respec-

tively. The MLEs and Bayesian estimations of the entropy and the two parameters were 

calculated by using the Newton–Raphson iteration and Lindley’s approximation meth-

od. These results are tabulated in Tables 7 and 8. In addition, the 95% asymptotic confi-

dence intervals (ACIs) and Bayesian credible intervals (BCs) of the two parameters and 

the entropy were calculated using the Newton–Raphson iteration, delta method and 

MCMC method. These results are displayed in Table 9. 

Table 7. MLEs and Bayesian estimations of the parameters and the entropy. 

MLEs Case I Case II 
BEs  

(Squared Loss) 
Case I Case II 

ˆ
M  0.3289 0.3948 ˆ

S  0.3428 0.4044 

ˆ
M  1.0408 1.3373 ˆ

S  0.9974 1.2410 

ˆ
MH  1.5890 1.3881 ˆ

SH  1.6230 1.4701 

Table 8. Bayesian estimations of the parameters and the entropy under two loss functions. 

BEs 

Linex 

Loss 

1h    1h  BEs 

Entropy 

Loss 

1q    1q   

Case I Case II Case I Case II Case I Case II Case I Case II 

ˆ
L  0.3406 0.4031 0.3330 0.3958 ˆ

E  0.3369 0.4025 0.3273 0.3852 

ˆ
L  1.2893 1.0217 1.2442 0.9898 ˆ

E  1.2618 1.0060 1.2173 0.9765 

ˆ
LH  1.4714 1.6681 1.4385 1.6276 ˆ

EH  1.4608 1.6340 1.4370 1.6249 

Table 9. The 95% asymptotic confidence intervals (ACIs) and Bayesian credible intervals (BCIs) 

with the corresponding interval lengths (ILs) of the two parameters and the entropy. 

Parameter 

ACIs 

IL Parameter 

BCIs 

IL 

Case I Case II Case I Case II 

  (0.2406, 0.5409) 

0.3003 

(0.1812, 0.4564) 

0.2752 
  (0.2760, 0.5625) 

0.2865 

(0.2210, 0.4923) 

0.2713 

  
(0.6899, 1.3918) 

0.7019 

(0.9884, 1.7863) 

0.7979 
  

(0.7021, 1.3566) 

0.6545 

(0.8776, 1.6743) 

0.7967 

H 
(1.2012, 1.9314) 

0.7302 

(1.0299, 1.7863) 

0.7164 
H 

(1.2487, 1.9707) 

0.7220 

(1.1266, 1.8671) 

0.7405 

From Tables 7–9, we can observe that the MLEs and Bayesian estimations of the 

parameters and the entropy were close to the estimations in the complete sample case. In 

most cases, the length of the Bayesian credible intervals was smaller than that of the 

asymptotic confidence intervals. 
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6. Conclusions 

In this paper, we considered the estimation of parameters and entropy for general-

ized Bilal distribution using adaptive Type-II progressive hybrid censored data. Using an 

iterative procedure and asymptotic normality theory, we developed the MLEs and ap-

proximate confidence intervals of the unknown parameters and the entropy. The Bayes-

ian estimates were derived by Lindley’s approximation under the square, Linex and 

general entropy loss functions. Since Lindley’s method failed to construct the intervals, 

we utilized Gibbs sampling together with the Metropolis–Hastings sampling procedure 

to construct the Bayesian credence intervals of the unknown parameters and the entropy. 

A Monte Carlo simulation was provided to show all the estimation results. The results 

illustrate that the proposed methods performed well. The applicability of the considered 

model in a real situation was illustrated, based on the data of March precipitation in 

Minneapolis–Saint Paul. It was observed that the considered model could be utilized to 

analyze this real data appropriately. 
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Appendix A Proof of Theorem 1 

We set exp( ),y x   then 0 1y  . The cumulative distribution function of GB 

distribution can be written as 

2 3( ; , )=1 3 2 ,0 1F x y y y       

By setting 
2 31 3 2 ,0< <1u y y u   , then we get 

2 33 2 1 0,y y u    0< <1.y  

Set 
2 3( ) 3 2 1,y y y u      take the first derivative of ( )y  with respect to y, and 

we have 2( )
6 6 0,

d y
y y

dy


    as 0 1.y   

Notice that ( )y  is a monotonically increasing function when 0 1.y   Thus, 

there is a unique solution to the equation 
2 33 2 1 0y y u     when 0 1.y   As such, 

we have proven that the equation 
1

: : ( )i m n iX F U  has a unique solution ( 1, 2, ,i m  ). 

Appendix B The Specific Steps of the Newton–Raphson Iteration Method 

Step 1: Give the initial values of =( , )   ; that is, 
(0) (0) 0=( , )  （ ）

. 

Step 2: In the kth iteration, calculate ( )=
, k

l l
 
 

 


  
 
   （k）

 and 
( ) ( )( , )k kI   , where

 

( )

11 12( ) ( )

21 22
=

( , ) k

k k
I I

I
I I  

 

 


 
  
  （k）

 is the observed information matrix of the parameters 

  and  , and , 1,2,3ijI i   are given by Equations (10)–(13). 
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Step 3: Update ( , )T   with 

       
( )

1 1 1 ( ) (

=

)( , ) ( , ) ( , ) , k

T

k k k kT T k k l l
I

 
 

     
 





    
   

   （k）

.  

Here, ( , )T   is the transpose of vector ( , )  , and 1 ( ) ( )( , )k kI    represents the 

inverse of the matrix ( ) ( )( , )k kI   . 

Step 4: Setting 1k k  , the MLEs of the parameters (denoted by ̂  and ̂ ) can 

be obtained by repeating Steps 2 and 3 until ( 1) ( 1) ( ) ( )( , ) ( , )k k T k k T        , where   

is a threshold value that is fixed in advance. 

Appendix C The Detailed Derivation of Bayesian Estimates of Two Parameters ( ,  ) 

and the Entropy under the LL Function 

In this case, we take U( , )=exp( )h   , and then 

2
1 11 12 21 22 2exp( ), exp( ), 0.u h h u h h u u u u           

Using Equation (26), the Bayesian estimation of parameter   is given by 

11

2 2
11 11 1 30 1 21 22 03 1 11 12 21 11 22 1 21 1 12 1 11 1 1 12 2

1ˆ ˆln{exp( ) 0.5[u +u z +u z +3u z ( +2u )u z ] u u }L h p p
h

                    

Similarly, the Bayesian estimation of parameter   is obtained by 

2 2
22 22 2 11 12 30 2 22 03 11 22 12 2 21 2 22 21 21 2 12 1 2 22 2

1ˆ ˆln{exp( ) 0.5[u +u z +u z +( +2 )u z 3u ] u u }L h z p p
h

                    

For the Bayesian estimation of the entropy, we have 

1

2 2

11 2 2 2

( , ) exp[ ( )], exp[ ( )],

1 1
[ (ln ln(9 / 8) )]exp[ ( )],

1
[ ]exp[ ( )],

h
U hH f u hH f

u h hH f

h
u h hH f

 


 
 

   

   

      


  

  

2 2
22 2 3 2

1 2 1 1
{ [ (ln ln(9 / 8) )] [ (ln ln(9 / 8) )] }exp[ ( )],u h h hH f   

   
             

12 21 2 3

1 1
[ (ln ln(9 / 8) )]exp[ ( )].
h

u u h h hH f 
 


        

The Bayesian estimation of the entropy under the LL function is given by 

11 11 12 12 22 22 30 1 11 2 12 11 03 2 22 1 21 22

2 2
21 1 11 12 2 11 22 12 12 2 22 21 1 11 22 21

1 1 11 2 21 2 2 22 1 12

1ˆ ˆ( ) ln{exp[ ( )] 0.5[u +2u + +z (u +u ) +z (u +u )

+z (3u +u ( +2 ))+z (3u +u ( +2 ))]

(u u )+ (u u )}

LH f hH f u
h

p p

        

         

   

   

    

Appendix D The Derivation of Bayesian Estimates of Two Parameters ( , )   and the 

Entropy under the GEL Function. 

In this case, we take ( , ) qU     and then 
1 2

1 11, ( 1) ,q qu q u q q         and

12 21 22 2 0.u u u u   
 

Using Equation (26), the Bayesian estimation of parameter   is given by 

11

2 2 1/
11 11 1 30 1 21 22 03 1 11 12 21 11 22 1 21 1 12 1 11 1 1 12 2

ˆ ˆ{ 0.5[u +u z +u z +3u z ( +2u )u z ] u u }q q
E p p                   
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Similarly, the Bayesian estimation of parameter  is obtained by 

2 2 1/
22 22 2 11 12 30 2 22 03 11 22 12 2 21 2 22 21 21 2 21 1 2 22 2

ˆ ˆ{ 0.5[u +u z +u z +( +2 )u z 3u ] u u }q q
L z p p                 

 

For the Bayesian estimation of the entropy under the general EL function, we take

( , ) [ ( )] ,qU H f   and then
 

1 1
1 2 2

[ ( )] , [ (ln ln(9 / 8) )][ ( )] ,q qq q q
u H f u H f 

  
       

 

1 2 1
2 112 2 2 2

1 2 2
22 2 3 2

12 21 2 3

( 1)
[ (ln ln(9 / 8) )][ ( )] , [ ( )] [ ( )] ,

2 1 1
[ (ln ln(9 / 8) )][ ( )] ( 1)[ (ln ln(9 / 8) )] [ ( )] ,

1 1
( 1)[ (ln ln(9 / 8) )][

q q q

q q

q q q q q
u H f u H f H f

q q
u H f q q H f

u u q q

 
     

   
  

 
 

     

   


     


        

      2 1

2
( )] [ ( )] .q qq

H f H f


   

 

Using Equation (26), the approximate Bayesian estimation of the entropy is given by 

11 11 12 12 22 22 30 1 11 2 12 11 03 2 22 1 12 22

2 2
21 1 11 12 2 11 22 12 12 2 22 21 1 11 22 21

1/
1 1 11 2 21 2 2 22 1 12

ˆ ˆ( ) {[ ( )] 0.5[(u +2u + )+z (u +u ) +z (u +u )

+z (3u +u ( +2 ))+z (3u +u ( +2 ))]

(u u )+ (u u )} .

q
E

q

H f H f u

p p

        

         

   





 

  

 

Appendix E 

Table A1. The average 95% approximate confidence intervals and average lengths and coverage 

probabilities of ,  and the entropy ( 1, =2,  H( )f = 0.2448, T = 0.6). 

(n, m) SC 


 
AL 

CP 
  

AL 
CP 

H 

AL 
CP 

(40, 15) 
I (0.6598, 1.5736) 

0.9138 
0.9042 

(1.2220, 3.1773) 

1.9573 
0.9216 

(0.0293, 1.1866) 

1.1573 
0.9184 

 
II (0.6711, 1.4742) 

0.8031 
0.9253 

(1.4238, 2.8658) 

1.4420 
0.9361 

(0.0393, 0.7733) 

0.7340 
0.929 

 
III (0.6343, 1.5347) 

0.9004 
0.9130 

(1.2645, 3.1064) 

1.9319 
0.9281 

(0.0254, 1.1244) 

1.0990 
0.9174 

(50, 15) 
I (0.6421, 1.5458) 

0.9037 
0.9162 

(1.2837, 3.0913) 

1.8076 
0.9314 

(0.0203, 1.0469) 

1.0266 
0.9216 

 
II (0.7102, 1.3884) 

0.6782 
0.9394 

(1.4416, 2.7246) 

1.2830 
0.9406 

(0.0438, 0.6924) 

0.6486 
0.9392 

 
III (0.6914, 1.5147) 

0.8233 
0.9253 

(1.3021, 2.9705) 

1.6684 
0.9370 

(0.0264, 1.0759) 

1.0495 
0.9261 

(60, 30) 
I (0.6377, 1.5335) 

0.8958 
0.9374 

(1.3388, 3.0191) 

1.6803 
0.9487 

(0.0151, 0.9112) 

0.8959 
0.9393 

 
II (0.7093, 1.3769) 

0.6676 
0.9516 

(1.4807, 2.6886) 

1.2069 
0.9542 

(0.0536, 0.6667) 

0.6131 
0.9461 

 
III (0.6934, 1.4786) 

0.7852 
0.9405 

(1.3955, 2.9630) 

1.5675 
0.9506 

(0.0325, 0.8630) 

0.8305 
0.9428 

(70, 30) 
I (0.7329, 1.4293) 

0.6964 
0.9472 

(1.4068, 2.8432) 

1.34364 
0.9534 

(0.0298, 0.7943) 

0.7645 
0.9446 

 
II (0.7247, 1.2859) 

0.5602 
0.9651 

(1.5369, 2.5891) 

1.0522 
0.9680 

(0.0614, 0.5498) 

0.4884 
0.9632 

 
III (0.7392, 1.3486) 

0.6154 
0.9514 

(1.4476, 2.7845) 

1.3361 
0.9573 

(0.0498, 0.7185) 

0.6687 
0.9521 
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Table A2. The average 95% approximate confidence intervals and average lengths and coverage 

probabilities of ,  and the entropy ( 1, =2  , H( )f  = 0.2448, T = 1.5). 

(n, m) SC 


 
AL

 
CP

 

  
AL 

CP 
H 

AL 
CP 

(40, 15) 
I (0.5234, 1.8717) 

1.3483 
0.9231 

(1.2469, 3.2287) 

1.9818 
0.9274 

(0.0284, 1.1887) 

1.1603 
0.9267 

 
II (0.6662, 1.4576) 

0.7914 
0.9372 

(1.4322, 2.8760) 

1.4438 
0.9405 

(0.0436, 0.7887) 

0.7451 
0.9393 

 
III (0.5619, 1.8110) 

1.2491 
0.9252 

(1.2679, 3.2045) 

1.9364 
0.9364 

(0.0212, 1.1173) 

1.0961 
0.9340 

(50, 15) 
I (0.5601, 1.6810) 

1.1209 
0.9230 

(1.3076, 3.0214) 

1.7136 
0.9363 

(0.0245, 0.9304) 

0.9059 
0.9347 

 
II (0.7124, 1.3705) 

0.6581 
0.9418 

(1.4548, 2.7213) 

1.2665 
0.9462 

(0.0458, 0.6740) 

0.6282 
0.9515 

 
III (0.6103, 1.5868) 

0.9765 
0.9336 

(1.3320, 2.9769) 

1.6449 
0.9372 

(0.0259, 0.8461)  

0.8202 
0.9347 

(60, 30) 
I (0.6659, 1.5135) 

0.8476 
0.9418 

(1.3454, 3.0335) 

1.6881 
0.9521 

(0.0206, 1.0400) 

1.0194 
0.9464 

 
II (0.7051, 1.3680) 

0.6619 
0.9592 

(1.4812, 2.6942) 

1.2130 
0.9574 

(0.0456, 0.6604) 

0.6148 
0.9531 

 
III (0.6913, 1.4513) 

0.7600 
0.9431 

(1.3775, 2.8768) 

1.4983 
0.9520 

(0.0237, 0.9934) 

0.9697 
0.9506 

(70, 30) 
I (0.7381, 1.3951) 

0.6570 
0.9492 

(1.4501, 2.7820) 

1.3319 
0.9582 

(0.0321, 0.7553) 

0.7232 
0.9523 

 
II (0.7573, 1.2850) 

0.5277 
0.9704 

(1.5514, 2.5845) 

1.0331 
0.9726 

(0.0647, 0.5680) 

0.5033 
0.9741 

 
III (0.7554, 1.3492) 

0.5938 
0.9546 

(1.4967, 2.7071) 

1.2104 
0.9615 

(0.0410, 0.7147) 

0.6737 
0.9591 

Table A3. The average 95% Bayesian credible intervals and average lengths and coverage proba-

bilities of ,  and the entropy ( 1, =2,   H( )f  = 0.2448, T = 0.6). 

(n, m) SC 


 
AL 

CP 
  

AL 
CP 

H 

AL 
CP 

(40, 15) 
I (0.5521, 1.2841) 

0.7320 
0.9194 

(1.0215, 2.4593) 

1.4378 
0.9241 

(0.0213, 1.1750) 

1.1537 
0.9263 

 
II (0.6378, 1.3228) 

0.6850 
0.9433 

(1.2854, 2.5238) 

1.2384 
0.9472 

(0.0395, 0.7752) 

0.7357 
0.9380 

 
III (0.5670, 1.2953) 

0.7283 
0.9253 

(1.0579, 2.4762) 

1.4183 
0.9294 

(0.0224, 1.1192) 

1.0968 
0.9308 

(50, 15) 
I (0.5924, 1.2871) 

0.6947 
0.9312 

(1.1731, 2.5054) 

1.3323 
0.9397 

(0.0298, 0.9231) 

0.8933 
0.9386 

 
II (0.6897, 1.2921) 

0.6024 
0.9491 

(1.3580, 2.4935) 

1.1355 
0.9465 

(0.0548, 0.6751) 

0.6203 
0.9507 

 
III (0.6067, 1.2854) 

0.6787 
0.9342 

(1.2051, 2.4718) 

1.2667 
0.9354 

(0.0278, 0.8553) 

0.8275 
0.9326 

(60, 30) 
I (0.6450, 1.2925) 

0.6475 
0.9481 

(1.1389, 2.4565) 

1.3176 
0.9536 

(0.0397, 1.0509) 

1.0112 
0.9394 

 
II (0.6870, 1.2905) 

0.6035 
0.9614 

(1.3883, 2.4740) 

1.0857 
0.9656 

(0.0578, 0.6717) 

0.6139 
0.9562 

 III (0.6565, 1.2812) 0.9532 (1.1919, 2.4423) 0.9561 (0.0319, 0.8408) 0.9528 
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0.6247 1.2504 0.8029 

(70, 30) 
I (0.7062, 1.2494) 

0.5432 
0.9512 

(1.3068, 2.4374) 

1.1306 
0.9563 

(0.0324, 0.7516) 

0.7192 
0.9536 

 
II (0.7451, 1.2449) 

0.4998 
0.9711 

(1.4821, 2.4494) 

0.9673 
0.9744 

(0.0701, 0.5672) 

0.4971 
0.9783 

 
III (0.7162, 1.2359) 

0.5197 
0.9583 

(1.3597, 2.4443) 

1.0846 
0.9604 

(0.0440, 0.7067) 

0.6627 
0.9578 

Table A4. The average 95% Bayesian credible intervals and average lengths and coverage proba-

bilities of ,  and the entropy ( 1, =2  ， H( )f  = 0.2448, T = 1.5). 

(n, m) SC 


 
AL

 
CP

 

  
AL 

CP 
H 

AL 
CP 

(40, 15) 
I (0.5554, 1.2954) 

0.7400 
0.9218 

(1.0243, 2.4612) 

1.4369 
0.9354 

(0.0251, 1.1801) 

1.1550 
0.9258 

 
II (0.6417, 1.3339) 

0.6922 
0.9439 

(1.2824, 2.5169) 

1.2345 
0.9485 

(0.0372, 0.7728) 

0.7356 
0.9394 

 
III (0.5696, 1.3033) 

0.7337 
0.9275 

(1.0556, 2.4672) 

1.4116 
0.9318 

(0.0241, 1.1200) 

1.0959 
0.9337 

(50, 15) 
I (0.5954, 1.2947) 

0.6993 
0.9417 

(1.1722, 2.4804) 

1.3002 
0.9420 

(0.0224, 1.0231) 

1.0007 
0.9418 

 
II (0.68902, 1.2954) 

0.6062 
0.9506 

(1.3599, 2.5034) 

1.1435 
0.9525 

(0.0479, 0.6710) 

0.6239 
0.9526 

 
III (0.6045, 1.2801) 

0.6756 
0.9359 

(1.2337, 2.5094) 

1.2757 
0.9364 

(0.0324, 1.0047) 

0.9723 
0.9371 

(60, 30) 
I (0.6418, 1.2835) 

0.6417 
0.9494 

(1.1349, 2.4455) 

1.3106 
0.9548 

(0.0250, 0.9212) 

0.8960 
0.9417 

 
II (0.6896, 1.2970) 

0.6074 
0.9628 

(1.3987, 2.4911) 

1.0924 
0.9662 

(0.0479, 0.6608) 

0.6129 
0.9573 

 
III (0.6600, 1.2856) 

0.6256 
0.9556 

(1.1549, 2.4283) 

1.2734 
0.9571 

(0.0217, 0.8359) 

0.8142 
0.9538 

(70, 30) 
I (0.7061, 1.2472) 

0.5411 
0.9526 

(1.3179, 2.4521) 

1.1342 
0.9571 

(0.0363, 0.7509) 

0.7146 
0.9548 

 
II (0.7451, 1.2413) 

0.4962 
0.9725 

(1.4663, 2.4268) 

0.9605 
0.9757 

(0.0778, 0.5701) 

0.4923 
0.9793 

 
III (0.7154, 1.2267) 

0.5113 
0.9594 

(1.3542, 2.4118) 

1.0576 
0.9624 

(0.0604, 0.7108) 

0.6504 
0.9585 
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