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Abstract: We address the problem of unsupervised anomaly detection for multivariate data. Tradi-
tional machine learning based anomaly detection algorithms rely on specific assumptions of normal
patterns and fail to model complex feature interactions and relations. Recently, existing deep learning
based methods are promising for extracting representations from complex features. These methods
train an auxiliary task, e.g., reconstruction and prediction, on normal samples. They further assume
that anomalies fail to perform well on the auxiliary task since they are never trained during the
model optimization. However, the assumption does not always hold in practice. Deep models may
also perform the auxiliary task well on anomalous samples, leading to the failure detection of anoma-
lies. To effectively detect anomalies for multivariate data, this paper introduces a teacher-student
distillation based framework Distillated Teacher-Student Network Ensemble (DTSNE). The paradigm of
the teacher-student distillation is able to deal with high-dimensional complex features. In addition,
an ensemble of student networks provides a better capability to avoid generalizing the auxiliary
task performance on anomalous samples. To validate the effectiveness of our model, we conduct
extensive experiments on real-world datasets. Experimental results show superior performance of
DTSNE over competing methods. Analysis and discussion towards the behavior of our model are
also provided in the experiment section.

Keywords: anomaly detection; knowledge distillation; ensemble learning; deep learning; cross
entropy; information entropy

1. Introduction

Anomaly detection (a.k.a. outlier detection) [1,2] is referred to as detecting data points
that significantly deviate from normal behaviors. Identifying anomalies for multivariate
data always provides valuable information in various domains. For instance, anomalies in
credit card transactions could imply online a fraud [3], while an unusual computer network
traffic recording could signify unauthorized access [4]. Due to the great empirical value,
efficient and accurate anomaly detection algorithms are desired.

Compared with normalities, anomalies are associated with unknownness, irregularity,
and rarity [2]. Unknownness indicates that anomaly events can not be observed until they
actually happen. Furthermore, irregularity means that the class structure of anomalies
is highly heterogeneous. Last but not least, anomalies are rare in terms of collected
data, leading to the problem of class imbalance. Due to the difficulty of collecting a
large-scale labeled anomaly dataset, fully supervised methods are impractical in real-
world scenarios. Unsupervised anomaly detection does not require labeled training data.
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However, they rely on assumptions on the distribution of data points. For example, several
distance- and density-based approaches, e.g., Local Outlier Factor (LOF) [5], KNN (k-
nearest neighbor) [6], and Isolation Forest (iForest) [7], assume that normalities reside in
the high density area, whereas anomalies are far from the normal cluster. Probabilistic
methods assume that normalities follow a specific distribution, e.g., ABOD (Angle-Based
Outlier Detection) [8] and COPOD (Copula-Based Outlier Detection) [9]. Those methods
fail to handle complex features because of high-dimensional features and sophisticated
nonlinear relations.

Recently, a number of works have been introduced to improve anomaly detection
by deep neural networks [2]. Deep learning [10] has had remarkable success in mod-
eling intricate dependencies on a variety of domains. Instead of building assumptions
of normality distribution, deep anomaly detection models the normal patterns by train-
ing networks via a surrogate task, such as reconstruction [11,12], prediction [13-15], and
classification [16,17]. The underlying structure of normalities is captured through train-
ing a model on normal samples. It is intuitive that anomalies are expected to perform
the surrogate task badly since they violate normal patterns learned by the model. How-
ever, existing deep anomaly detection methods are problematic for multivariate data. For
instance, reconstruction-based methods are still ineffective since autoencoders tend to
produce blurred reconstructions. Advanced generative models, e.g., generative adversar-
ial nets [18], are promising to generate reliable reconstructions, whereas they suffer the
difficulties of optimization. Prediction-based methods are predominantly designed for
temporal data such as time-series and videos. Classification-based methods formulate
the surrogate task as distinguishing the true type of a transformed image from different
augmentations such as rotation, flipping, and cropping [16]. However, the augmentations
require geometric structures contained in datasets, e.g., images and videos, which are
impractical for multivariate data. Thus, a dedicated surrogate task is desired.

In this paper, we present a novel framework to achieve efficient and accurate anomaly
detection. Novelties of this work are three fold. First, the framework of the teacher-student
distillation is dedicatedly designed for multivariate data, enabling the capability to model
complex feature interactions and relations. In addition, our proposed framework is general
and can be extended to apply to other domains such as image anomaly detection and video
anomaly detection. Second, the ensemble of student networks provides a capability to
avoid potential generalizing of the auxiliary task on anomalous samples. Third, multiple
anomaly scores are provided to detect anomalies from various aspects.

The paper is organized in the following order. Related works concerning state-of-
the-art anomaly detection methods are reviewed in Section 2. Section 3 describes the
overview of our proposed framework. In Section 4, a detailed description of the instantiated
model of the framework is developed. The experimental setup, experimental results, and
analysis are illustrated in Section 5. Finally, discussion and conclusions are presented in
Sections 6 and 7, respectively.

2. Related Work

There exists an abundance of works on unsupervised anomaly detection [2]. Tra-
ditional methods, such as LOF [5], SVDD (Support Vector Data Description) [19], and
iForest [7], are ineffective at dealing with high-dimensional feature space or complex
feature interactions. Although some works propose efficient techniques to deal with high-
dimensional categorical feature’s interactions, e.g., CatBoost [20] and XGBoost [21], they are
supervised methods and can not be directly applied on unsupervised anomaly detection.
Deep anomaly detection (reviewed in [2]) becomes a vivid research area that includes vari-
ous research topics such as utilizing prior knowledge [22,23] and representation learning
for normalities [24,25]. However, unsupervised anomaly detection is still challenging due
to the complexities of modeling nonlinear dependencies.
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To tackle complex datasets, recent literature shows the trend of detecting anomalies
via techniques including low-dimensional embedding, anomaly detector ensemble, and
self-supervised pretext tasks.

2.1. Anomaly Detection via Low Dimensional Embedding

Performing anomaly detection on high-dimensional space is challenging since abnor-
mal characteristics of anomalies are always invisible in an original space. A widely used
solution is to reduce the dimension of original features where anomalies become notice-
able in a reduced low-dimensional space. Traditional methods focusing on identifying
anomalies in a subset of original features or a constructed subspace. These approaches
can be categorized into two sub-categories, including subspace-based methods [26,27]
and feature-selection based methods [28-30]. However, discovering complex feature in-
teractions and couplings is still challenging for traditional algorithms. Recently, several
methods leverage the power of deep learning and representation learning. REPEN, an
instance of the framework RAMODO proposed in [24], combining with anomaly detection
and representation learning, learns customized low-dimensional embeddings of ultrahigh-
dimensional data for a random distance-based outlier detector. RDP [25] is a generic
representation learning method by predicting data distances in a random projection space.
By incorporating dedicated objectives, the low-dimensional representations obtained by
RDP can be further used to perform various downstream tasks such as anomaly detection
and clustering. Despite utilizing deep neural networks and representation learning, these
methods learn representations and detect anomalies separately, which lead to indirect
optimization and unstable performance.

2.2. Anomaly Detector Ensemble

Ensembling weak anomaly detectors into a strong anomaly detector is a powerful
technique to achieve accurate anomaly detection. Traditional methods such as Feature
Bagging [27], iForest [7], and LODA [31] try to combine outcomes from weak anomaly
detectors to produce an ensembled anomaly score. However, these methods based on
simple anomaly detectors and thus fail to model high-dimensional complex features.

2.3. Anomaly Detection with Self-Supervised Pretext Tasks

Recent self-supervised learning algorithms draw support from a pretext task to learn
semantic representations. Different from representation learning, several methods utilize
self-supervised pretext tasks to detect anomalies. GEOM [16] builds up a framework
of self-supervised learning for anomaly detection. Specifically, GEOM applies multiple
geometric transformations to an instance and trains a classifier to correctly predict the
transformation giving a transformed instance. E3-Outlier [17] follows the idea of GEOM,
adding up multiple anomaly scores. GOAD [32] substitutes the classification task in GEOM
with a one-class classification task. However, the geometric transformations used in these
methods require geometric structures contained in the dataset, which can not be directly
applied to multivariate datasets.

3. The Distillation-Based Anomaly Detection Framework
3.1. Problem Statement

We address the problem of fully unsupervised anomaly detection for multivariate
data. In detail, the framework consists of a triplet (M, T, i), where M, T, and H stand
for the model, the surrogate task, and the anomaly scoring function, respectively. By
training the model M via the surrogate task T unsupervised and building the anomaly
scoring function H upon T, the goal of anomaly detection is to assign anomaly scores to
test samples in a way that we have H(x;) > H(x;j), where x; is an anomaly and x; is a
normal object.

Additionally, whether a test sample x is an anomaly is judged by specifying an
anomaly threshold A:
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A(x):{l’ if H(x) > A O

0, Otherwise

where A(x) is the test result of x.

3.2. The Proposed Framework

To tackle the problem of unsupervised anomaly detection, we introduce a novel

framework including a teacher-student network and corresponding anomaly scores. In
particular, the teacher network learns low-dimensional embeddings on the whole feature
space, whereas only normal patterns are distillated from the teacher to student networks
through a regression loss. Anomalies are highlighted by anomaly scores since gaps between
the teacher network and student networks are expected to be large and uncertain. As
shown in Figure 1, the framework contains three major modules:

1.

Teacher network is a parametric function 7 (-) that maps original features to low-
dimensional vectors. We require the teacher network to have two properties. First, the
teacher network is able to preserve the distance information of original space. Namely,
two instances that are close in the original space are still close in the low-dimensional
space. Second, the teacher network is a smooth and injective function such that the
normality manifold is formed in the low-dimensional space, whereas anomalies are
laid outside of the manifold.

Student networks are a group of parametric functions {S®(:)},_;..x. They are
trained to mimic the outputs of the teacher network only on normal samples. All the
students are independently trained to improve robustness. Anomalies are detected when
the students fail to generalize the teacher mapping outside the normality manifold.
Anomaly scores. By investigating the gaps between the teacher network and the
student networks, we can define an anomaly score 7 (-) to identify anomalies. The
anomalous samples are expected to gain larger gaps since only knowledge of normal
patterns are distillated. In addition, the variance of students can be used as an
additional criterion to detect anomalies.
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Figure 1. Overview of our framework. The left-hand side illustrates the training procedure of the teacher network and

student networks. The right-hand side shows the anomaly detection procedure.
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To instantiate each component of the framework, we need to answer following questions:

*  Q1: How can design the structure and the training objective of the teacher network
be designed?

*  Q2: How can the student networks be trained such that they mimic behaviors of the
teacher only on normal samples?

*  Q3: How can an anomaly score be defined that can effectively identify anomalous objects?

These questions are answered in Sections 4.1-4.3, respectively. Thus, we present an
instantiated method of the framework called Distillated Teacher-Student Network Ensem-
ble (DTSNE).

4. Distillated Teacher-Student Network Ensemble
4.1. Teacher Network for Low-Dimensional Embedding

Let RL be the original feature space where L is the dimension of RL. Normal samples
lie in a subspace X C R, whereas anomalous samples lie in a complementary space
X' = RU\X outside of the normal space X. The teacher network 7g(-) : Rl — RM
that maps each instance in R to a low-dimensional space RM (M is the dimensional of
the low-dimensional space) is parameterized by weights 8. We implement the teacher
network by a multi-layer neural network with ReLU [33] activation functions. Assuming
that 7y (+) is a smooth injective mapping, low-dimensional representations z = Ty (x) of
normal instances x € X’ are expected to form a subspace Z C RM where anomalies also
lie in a complementary space 2’ = RM\ Z. As described in Section 3.2, we require that
the teacher network be able to map the normal instance to a normality manifold Z and
meanwhile map the anomalous outside Z. To achieve this, the most direct way is to gather
normal instances into a cluster and pull anomalous instances out when labels are available.
However, this approach is infeasible under an unsupervised setting. Thus, we propose a
self-supervised objective to discover the intrinsic regularities.

Pre-Training with Self-Supervised Pretext Tasks

Self-supervised methods learn semantic representations by applying a surrogate
task such as context prediction [34], solving jigsaw puzzles [35], distinguishing image
rotations [36], etc. In this paper, we present the learning objective as distinguishing instance
augmentations. Like [16], multiple transformations are applied on each instance. The
teacher network plus a classification layer is trained to predict the correct transformation
of a given instance. The procedure is illustrated in Figure 2. In detail, we assume that the
training dataset X only contains normal samples (the problem of anomaly contamination is
discussed in Section 4.3). We further use a group of affine transformations to transform
the dataset:

Wix+ by, ifk#0

2
Ix, ifk=0, @)

T(xk) = {
where Wy is the random weight matrix and by is the random affine vector. Specifically,
T(x; k) is an identity mapping when k = 0. Thus, the augmented dataset X7 is given by:

Xr = {T(x;k) : x €X,k=0---K}, 3)

where x is an instance of the training dataset X, and K is the number of transformations.

Conventional self-supervised learning always considers transformed instances be-
longing to the same semantic class. In contrast, we treat transformed instances as “pseudo-
anomalies”, i.e., they do not belong to the normality manifold X'. Lastly, we design the
training objective as distinguishing transformed instances. The probability that an instance
is correctly classified is given by:

P(y = Kk|T(x); fy(-), k) = Softmax(f, (T (x;k))), @)
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where Softmax(-) is the Softmax function, and f;(-) is a classification layer.
The final training objective of the teacher network is:

L=~ Y YlogP(y = kIT(x); fy (), k). ©)

xeX k

The pseudo-code of the teacher network pre-training is illustrated in Algorithm 1.

1 1
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Figure 2. Illustration of the teacher network pre-training. The pre-training means that we train the
teacher network using a predefined objective before the main procedure of training student networks.

By distinguishing transformed instances, the representations that the teacher network
produces are optimized to gather normal representations z € Z, whereas pull anomalous
representations z € Z’ automatically in an unsupervised manner. In addition, we found
that it also brings benefits to anomaly scoring. The details are discussed in Section 4.3:

Algorithm 1 Teacher Network Pre-training

INPUT: Teacher network 7y, training dataset X, the number of transformation K
OUTPUT: Pre-trained teacher network 7y

1: Initialize the teacher network 7y(-)

2: Initialize the dataset Xt

3: fori=0,1,---Kdo

4: Calculate the k-th transformed dataset Xy using Equation (2)

5 Add X to Xt

6: end for

7: Optimize the loss function described in Equation (5)

A simplified version of the teacher network is just using Random Initialization with-
out training. We show that Random Initialization is still capable of capturing internal
regularities in the experimental section. Dedicated comparison of the two pre-training
paradigms is conducted in Section 5.6. Kaiming Initialization [37] is used for the initializa-
tion strategy.

4.2. Distillated Students for Normality Learning

Now, we describe how to train student networks Slfbn) () n € {1,---,N}, where
N is the number of students) by utilizing the supervisory of the teacher network. All
students are implemented by the same structure, a multi-layer neural network, and trained
independently. The training objective contains two criterions. The first criterion is to
optimize the instance-wise distance directly:

Linst(%) =I| To(x) = S (2) |2 (6)
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The second criterion is the pairwise distance that encapsulates pairwise similarity information:

Lrair(x;,%)) =I| HTa(x1), To(x7)) — 1SS (x1), S () 2 - @)

For computation efficiency, the distance [(-, -) is measured by cosine similarity:

Loair (%, %) = Ta(x:) - To(x;) — Sy (x1) - S (%) 2 - ®)

The final objective of student network training is given as:

ﬁS = £Inst + ‘XﬁPair/ (9)

where « is a hyperparameter to adjust the weight of pairwise distance.

By only training on normal samples, the students manage to accurately regress the
features solely for normal samples. They yield large regression errors and predictive
uncertainties for anomalous samples.

4.3. Anomaly Scores for Anomaly Identification

In the evaluation phase, anomalous test samples are expected to receive larger gaps
between the teacher network and student networks. The anomaly score measures how
anomalous an instance is. In DTSNE, anomalies are identified by the anomaly score from
two perspectives: closeness and uncertainties. Giving a predefined criterion H.(x;n), the
closeness and the uncertainties are obtained by calculating the mean value and the variance
over each students, respectively:

H=E,{H«(x;n)} + pVar,{H.(x;n)}, (10)

where B is the weight of student variance.
To instantiate Equation (10), various dedicated anomaly scores H (x; 1) can be defined.
Specifically, a simple choice is the Mean Square Error (MSE):

Husse (%) = To(x) — Sy (x) [l (11)

In addition, advanced anomaly scores can be defined to utilize the information of
self-supervised pre-training.
* (lassification Probability
Since the teacher network is trained to distinguish different instance transformations,
students are expected to perform the classification task well on normal samples. One
can directly use the Softmax response as the anomaly score:

K
Hep(x;n) =Y Py =k|T(x); f;(-), k). (12)
k

This anomaly score measures the correctness of the student prediction giving each
transformation of the instance x.
¢  Cross Entropy

For each instance, we get K transformations in total. In addition, the k-th element of
the Softmax response indicates the probability that the correct transformation index is
k in terms of a transformed instance. Classification Probability (Equation (12)) only
uses the k-th element of the Softmax response for the k-th transformation. To utilize
information of all elements, we define the Cross Entropy based anomaly score:

Hcg(x;n) ZylogP vy =k|T(x); f(-), k). (13)

Here, the Cross Entropy measures the closeness of the Softmax response and the
ground truth distribution.
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e Information Entropy
Since student networks are trained to mimic the teacher network only on normal
samples, we claim that the Softmax response of an anomalous sample is more
chaotic than a normal sample’s. We can use Information Entropy to measure the
prediction confidence:

K
Hig(x;n) = =) log P(y = k|T(x); f;(-), k). (14)
k

In this paper, Mean Square Error and Information Entropy are used for anomaly
scoring. Thus, the final anomaly score is given:

Hrinal(x; 1) = Hwmse(x; 1) + yHig(x; 1), (15)

where 7 is the weight of Information Entropy score.

Dealing with Anomaly Contamination

In Section 4.1, we assume that all the samples in the training dataset X are normal, i.e.,
they are sampled from the normality manifold X. However, this assumption is not guaran-
teed under an unsupervised scenario. This problem is called Anomaly Contamination. To
alleviate this issue, we drop a portion of samples that have the highest anomaly scores per
iteration to iteratively improve the pureness of the training dataset. This technique is also
used in [25].

4.4. Summary

In summary, we propose the instantiation of our framework: DTSNE. The workflow
contains three steps:

e  Teacher network pre-training. First, the teacher network is first pre-trained with a
self-supervised objective (Equation (5)) to learn underlying regularities of the data.
In detail, we transform each instance using multiple random transformations and
train the teacher network (plus a linear classification layer) to distinguish them. This
objective helps the teacher network to produce better embeddings for downstream
anomaly detection.

e  Training of student networks. Second, the parameters of the teacher network are
frozen. The teacher network can be treated as a function that provides supervision for
students. Multiple student works are trained to mimic the outcomes of the teacher
using the objective of Equation (9) only on normal samples.

e Anomaly scoring. Lastly, anomalies are identified by calculating an anomaly score. It
evaluates the outcomes of students from a specific perspective, such as the difference
between the teacher. In addition, we also use the uncertainties among students since
they tend to produce contradictory outcomes for anomalous instances.

5. Experimental Results
5.1. Datasets

As shown in Table 1, the experiments are conducted on 10 publicly available datasets
from various domains, including network intrusion detection, fraud detection, medical disease
detection, etc. Two datasets contain real anomalies, including Lung and U2R, while other
datasets are transformed from extremely imbalanced datasets. Following [22,25,38,39], the
rare class in the imbalanced dataset is treated as semantically anomalies. Categorical
features are encoded into discrete values via one-hot encoding. Lastly, all features are
rescaled to the range [0, 1] using a min-max scaler to ensure the optimization efficiency.
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Table 1. Statistics of datasets.

Dataset # Instances Dimension Anomaly Ratio
AD 3279 1558 14.00%
AID362 4279 114 1.40%
Apascal 12,695 64 1.39%
Bank 41,188 62 11.26%
Chess 28,056 23 0.10%
CMC 1473 8 1.97%
Lung 145 3312 4.14%
R10 12,897 100 1.84%
Secom 1567 590 6.64%
U2R 60,821 34 0.37%

5.2. Competing Methods

We consider various anomaly detection methods for evaluation, including traditional

methods, e.g., LOF, outlier ensemble methods, e.g., iForest and LODA (Lightweight Online
Detector of Anomalies), and state-of-the-art deep learning methods, e.g., DAGMM (Deep
Autoencoding Gaussian Mixture Model) and RDP (Random Distance Prediction). The short
descriptions of those methods are summarized as follows:

iForest [7,40] is an outlier ensemble method that detects anomalies by selecting a
random feature and then splits instances by a randomly selected splitting point into
two subsets. The partitioning is applied recursively until a predefined termination
condition is satisfied. Since the recursive partitioning can be represented by a binary
tree structure, it is expected that anomalies have noticeably shorter paths started from
the root node.

LOF [5] is a density-based anomaly detection algorithm that detects anomalies by
measuring the local deviation of a given instance w.r.t. its neighbors. The local
deviation of an instance is given by the local density, which is calculated by the ratio of
the KNN distance of the object to its k-nearest neighbors” KNN distances. Under the
assumption that anomalies lie in the low-density area, the local density of an anomaly
is expected to be substantially lower than normal objects.

LODA [31] is a lightweight ensemble system for anomaly detection. LODA groups
weak anomaly detectors into a strong anomaly detector, which is robust to missing
variables and identifying causes of anomalies.

DAGMM [41] is composed of two modules, a deep autoencoder and a Gaussian
Mixture Model (GMM). Instead of training the two components sequentially, DAGMM
jointly optimizes the parameters of the two modules in an end-to-end fashion. This
training strategy balances autoencoding reconstruction and density estimation of
latent representations well, achieving a better capability of stable optimization and
thus further reducing reconstruction errors.

RDP [25] first trains a feature learner to predict data distances in a randomly pro-
jected space. The training process is flexible to incorporate auxiliary loss functions
dedicatedly designed for downstream tasks such as anomaly detection and cluster-
ing. The representation learner is optimized to discover the intrinsic regularities of
class structures that are implicitly embedded in the randomly projected space. Lastly,
anomalies can be identified by calculating the distance between the representation
learner and the random projection.

5.3. Implementation Details

This section provides the detailed information of our implementation. Since the evalu-

ation focuses on multivariate data, multi-layer perceptrons (MLP) are used. Specifically,
both the teacher network and the student network consist of two perceptron layers and a
LeakyReLU activation function. In pre-training, the transformation matrices are sampled
from Gaussian distribution. To perform classification, an additional classification layer is
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used, which is composed of a simple perceptron layer. In the training phase, the parameters
of the teacher network are frozen. We use the SGD (Stochastic Gradient Descent) optimizer
with momentum and L2 penalty. The learning rate, the momentum factor, and the L2
penalty factor are set as 0.1, 0.9, and 0.001, respectively. We apply gradient clipping to
avoid overfitting, with a coefficient of 0.1. If self-supervised pre-training is enabled, we
pre-train the teacher network using 100 epochs across all datasets. Furthermore, the student
networks also trained using 100 epochs for each dataset.

5.4. Evaluation Metrics

Following related works [22-25], we focus on evaluating the score function H instead
of the test result A (see Equation (1)). To achieve this, we use the area under the Receiver
Operating Characteristic (ROC) curve, denoted as AUROC, and the mean Average Precision
(mAP) as the performance metrics. In addition, all experiments are conducted at a virtual
container with 32 GB dedicated memory, four Xeon CPU cores and four Geforce GTX
2080 GPU.

5.5. Parameter Settings

We choose the two factor a (the weight of pairwise distance, in Equation (9)) and
B (the weight of student variance, in Equation (10)) empirically. Through quantitative
experiments, we found the influence of « and f is very marginal when they are relatively
small (see Section 5.7). To avoid over-parameterization, the two parameters are both
set as 1 for simplification. Due to the two parameters: the number of students and
the number of transformations significantly influence the computational efficiency, we
empirically set them as 8 and 32, respectively. The portion of samples to be dropped is set
as 5%. We perform eight dropping iterations for the Apascal dataset and four iterations
for other datasets. Other parameter settings such as batch size, embedding dimension,
and 7 are selected based on the dataset. Table 2 introduces the settings of them for each
dataset respectively.

Table 2. Parameter settings of different datasets. - is the factor of the additional anomaly score (see
Equation (15)).

Dataset Batch Size Embedding 0%
AD 128 128 0.0001
AID362 256 32 0.01
Apascal 256 32 0.00001
Bank 256 50 0.01
Chess 1024 16 0.01
CMC 32 4 0.01
Lung 128 128 0.01
R10 128 32 0.01
Secom 32 64 0.0001
U2R 1024 16 0.001

5.6. Performance on Real-World Datasets

Experiment settings. This section compares the performance of DTSNE versus com-
peting methods on real-world datasets. Each data set is first randomly split into two subsets,
with 70% instances as the training set and the other 30% instances as the evaluation set. To
ensure a reliable evaluation, 10 trials are independently performed with different random
seeds. The performance is measured by AUROC and mAP scores. The implementations of
iForest and LOF are taken from scikit-learn, a widely used machine learning library. All
parameters of the two methods are set as default values. We implement LODA by APIs
offered by PyOD [42], a comprehensive and scalable Python toolkit for anomaly detection.
The parameters keep the default values from PyOD. DAGMM and RDP are implemented
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by PyTorch [43]. All the implementations of DAGMM and RDP and parameter settings are
adopted from the code released with the original papers.

Analysis. The teacher-student distillation based framework enables DTSNE to achieve
superior performance over competing methods. Tables 3 and 4 report the AUROC scores
and mAP scores, respectively (highest score highlighted in bold). In terms of AUROC
scores, DTSNE achieves substantially better average performance than iForest (130.4%),
LOF (77.2%), LODA (34.6%), DAGMM (30.4%), and RDP (7.2%); The improvements of our
proposed method w.r.t. mAP scores is much more significant than iForest (561.7%), LOF
(466.1%), LODA (111.8%), DAGMM (86.3%), and RDP (10.5%). These results show that our
method can effectively deal with complex multivariate data. In detail, DTSNE outperforms
LOF on all datasets w.r.t. both AUROC and mAP. This proves that simple density-based
methods are ineffective in tackling complex feature interactions and relations. In addition,
our proposed method also outperforms the two outlier-ensemble based methods, iForest
and LODA, on all datasets. Compared with simply stacking weak anomaly detectors,
our method utilizes multiple student networks and identifies anomalies from both the
outcomes of student networks and disagreements among students. Lastly, DTSNE beats
competing deep anomaly detection methods DAGMM and RDP as well. As for DAGMM,
our method achieves better AUROC scores over all datasets and better mAP scores on
almost all datasets except Secom. It has been proven that reconstruction-based anomaly
detection is ineffective at dealing with multivariate data though deep neural networks
that are used. In terms of RDP, DTSNE obtains better performance on almost all datasets.
Instead of only investigating the gaps between the teacher and students, our method
incorporates customized anomaly scores to leverage additional information contained in
the outcomes of students. Except for that, the ensemble of student networks also contributes
the improvements over RDP.

Significance test. To investigate the significance of our proposed method, we perform
a Friedman test [44] w.r.t. AUROC and mAP scores, respectively. A Friedman test is
a non-parametric equivalent ANOVA (Analysis of variance) for multiple datasets. We
further visualize the significance result in Figure 3. Two non-overlapping segments indicate
“statistically difference” between the two algorithms. The test results suggest a significant
difference between our method and baselines except RDP because a small overlap is
observed. However, RDP is a state-of-the-art algorithm and the performance is already
very high. We can still infer that DTSNE is much better than RDP since our method
outperforms it on almost all datasets and the overlapping is extremely small.

DTSNE

RDP

DAGMM

LODA

LOF —_—

iForest —_—

e @ DTSNE . ——
—_— 1 RDP —_—

—_— 1 DAGMM —_—

—_— B LODA —_——
LOF | e e
iForest —_—

5 o 1 2 3 1 5 G
mAP Rank

3 1
AUROC Rank

Figure 3. Graphical presentation of the Friedman significance test w.r.t. AUROC and mAP scores.
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Table 3. AUROC scores of DTSNE and baselines on 10 datasets. The best performance for each dataset is boldfaced.

Dataset iForest LOF LODA DAGMM RDP DTSNE
AD 0.3959 +-0.0366  0.5343 +-0.0118  0.5280 4-0.0996  0.5033 4= 0.0289  0.8164 = 0.0001  0.8090 & 0.0175
AID362 0.4246 +0.0303  0.4896 +0.0415  0.5491 +£0.1023  0.5079 =0.0194  0.5952 +0.0208 0.6804 =+ 0.0285
Apascal 0.5059 +0.0264  0.5079 +0.0175 0.5714 +£0.1813  0.5438 =0.0973  0.8010 £0.0031  0.8367 £ 0.0303
Bank 0.3846 +-0.0079  0.5190 4-0.0024  0.5114 4-0.0446  0.5595 4 0.0216  0.7503 =+ 0.0003  0.7408 =+ 0.0054
Chess 0.4902 +0.0466  0.3829 +0.0738  0.5145+0.1618  0.4984 0.0003  0.4824 +0.1216  0.7443 £ 0.1576
CMC 0.4456 +0.0651  0.5097 +0.0314  0.5300 +£0.1070  0.5151 £0.0173  0.4279 £0.0876  0.5304 =+ 0.0986
Lung 0.1843 +-0.1575  0.4556 - 0.1408  0.8552 +0.1116  0.6869 £=0.1202  0.9210 £ 0.0007  0.9332 =+ 0.0921
R10 0.0550 4= 0.0061  0.0651 +0.0090  0.4961 +0.2039  0.7874 £0.0361  0.9845 £ 0.0024 0.9855 =+ 0.0016
Secom 0.4542 +0.0349  0.4728 +0.0271  0.5259 +0.0627  0.5203 =0.0203  0.5590 £ 0.0016  0.5596 + 0.0656
U2R 0.0481 +-0.0010 0.4692 4-0.0177  0.7201 +-0.2493  0.8650 &= 0.0667  0.9484 £ 0.0010  0.9881 == 0.0027
Average 0.3388 +-0.0413  0.4406 +0.0373  0.5802 +0.1324  0.5987 =0.0428  0.7286 £0.0239  0.7808 £ 0.0500

Table 4. mAP scores of DTSNE and baselines on 10 datasets. The best performance for each dataset is boldfaced.

Dataset iForest LOF LODA DAGMM RDP DTSNE
AD 0.1196 +0.0117  0.1448 +-0.0115  0.2124 +0.0628  0.1480 £ 0.0258  0.5088 = 0.0014  0.5598 =+ 0.0385
AID362 0.01454+0.0020  0.0130 4= 0.0023  0.0224 £0.0088  0.0204 £ 0.0093  0.0237 £ 0.0041  0.0287 £ 0.0044
Apascal 0.0129 4 0.0017  0.0140 4 0.0011  0.0245 4 0.0237  0.057540.0215  0.0419 4= 0.0001  0.0599 + 0.0094
Bank 0.0953 +0.0012  0.1170 +0.0015  0.1231 +0.0209  0.3326 =0.0152  0.3314 £ 0.0007  0.3642 =+ 0.0152
Chess 0.0010 4 0.0004  0.0009 4 0.0002  0.0012 £0.0004  0.0009 £ 0.0002  0.0013 £0.0005 0.0088 £ 0.0152
CMC 0.0170 4 0.0058  0.0230 4 0.0055  0.0256 4+ 0.0117  0.0381 4-0.0123  0.0246 4= 0.0056  0.0413 =+ 0.0238
Lung 0.0450 +-0.0231  0.0631 4-0.0244  0.4346 +-0.2587  0.2487 +-0.1092  0.7178 = 0.0057 0.5838 & 0.2572
R10 0.01724+0.0019  0.0166 +0.0017  0.1806 = 0.1392  0.2992 £0.0384  0.5311 £0.0459 0.5684 £ 0.0511
Secom 0.0677 +0.0058  0.0645 4 0.0106  0.0851 4= 0.0258  0.1999 £ 0.0082 0.0834 4= 0.0001  0.0932 4 0.0184
U2R 0.0037 +-0.0003  0.003540.0003  0.12124+0.0993  0.0535+0.0103  0.0951 £+ 0.0029  0.2982 =+ 0.1006
Average 0.0394 +0.0054  0.0460 £ 0.0059 0.1231 4+ 0.065 0.1399 +0.0251  0.2359 4+ 0.0067  0.2606 + 0.0534

5.7. Sensitivity Test w.r.t. Hyper-Parameters

Experiment settings. This section conducts the sensitivity test w.r.t. three perspectives:
the representation dimension, the parameter «, and the anomaly score. To empirically
investigate the influence of them, we conduct quantitative experiments w.r.t. different
settings on all datasets. The candidate values of the representation dimension are 4, 8, 16,
32, 64, 128, and 256, while the settings of « include 0.1, 0.2, 0.5, 1, 2, 5, and 10.

Impact of representation dimensions. Figure 4 reports the AUROC scores and mAP
scores of DTSNE w.r.t. different representation dimensions, respectively. The experimental
results demonstrate the stability of our proposed method on different parameter settings
across datasets. In terms of AUROC scores, the experimental results suggest that extremely
large representation dimensions can not provide better performance. This illustrates that
mapping original features into a high-dimensional representation space is not helpful for
anomaly detection since anomalous patterns tend to be invisible in a higher-dimensional
space. The experimental results also show extremely small representation dimensions
can not provide sufficient information for the teacher network to learn a semantically
rich representation. In terms of mAP scores, four datasets (AID362, Chess, CMC, and
Secom) show flat trends in Figure 4. This suggest a good performance can be achieved
with fairly small representation dimensions on the four datasets. Other datasets achieve
best performance at a “elbow ” point. The settings of representation dimensions can be
empirically selected as the “elbow” points to guarantee an accurate anomaly detection.

Impact of «. Figure 5 illustrates the influence of x. The performance of DTSNE is
relatively stable w.r.t. different « values. When « is extremely large, a rapid drop can be
investigated for AD and R10 in terms of mAP scores. This phenomenon suggests to us
to choose a relatively small value for a. To avoid over-parameterization, we set a as 1 for
all datasets.
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Impact of anomaly scores. Figures 6 and 7 show the AUROC scores and mAP scores
in terms of different anomaly scores separately. The experimental results suggest that none
of the anomaly scores suppress others. Although Information Entropy and Classification
Probability obtain improvement only in some cases, it never harms the performance.
Cross Entropy performs worse on dataset AID362, Bank, and Lung, but it also achieves
improvements on dataset Apascal, CMC, and Secom. To summarize, the choice of anomaly
scores heavily relies on characteristics of datasets. In this paper, we use Information
Entropy as the additional anomaly score since it performs stably on all datasets.
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Figure 4. AUROC and mAP scores of DTSNE w.r.t. representation dimensions.
I""\~ 0.6] ;= AD
! ., "~ —— AID362
0.5 \ — Apascal
S N ' \ . —=— Bank
"’._.\'\ 04 —+— Chess
: = CMC
5 = 031 gee—me—,
ra = \ —— Lung
— 0.2l * —— RI10
‘\ -
—_— Secom
0-LF i ’ ’ —— U2R
P ~—t . o=y
v T 0.0F ‘
0 2 4 6 8 10 0 2 4 6 8 10
« @

Figure 5. AUROC and mAP scores of DTSNE w.r.t. different « settings.

5.8. Ablation Study

Experiment settings. In this section, we examine the effectiveness of the key compo-
nent of DTSNE, self-supervised pre-training, by comparing the performance of random
initialization and self-supervised pre-training. The variant is called DTSNE,,ndom, Where
the self-supervised pre-training is disabled. The teacher network of DTSNE,,dom is ran-
domly initialized without training. The network structure and training settings of DTSNE
and its variants are totally the same.

Analysis. The experimental results show the importance of applying self-supervised
pre-training for the teacher network. Table 5 shows the performance of DTSNE and its
variant. Specifically, DTSNE boosts up AUROC scores (20.5%) and mAP scores (96.4%),
respectively, than variants. As discussed in Section 4.1, the reason for such improvement
is that self-supervised pre-training enables our model to preserve intrinsic regularities
of the normal manifold, which makes anomalies more noticeable in the representation
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space simultaneously. The experimental results also show that the technique is widely
applicable on various datasets since they are collected from different domains with different
dimensions (ranging from tens to thousands). Moreover, it is also noticeable that the variant
DTSNE;andom Obtains favorable results on most of the datasets. This phenomenon suggests
that a random smooth function to some extent has the ability to reflect interactions from
the original space. More discussion can be found in [25].
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Figure 6. AUROC socres w.r.t. different anomaly scores.
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Figure 7. mAP socres w.r.t. different anomaly scores.

Table 5. AUROC scores and mAP scores of DTSNE variants.

Bank  Chess CMC Lung R10

Secom U2R

DTSNE,.ndom DTSNE
Dataset
AUROC mAP AUROC mAP

AD 0.6810 £ 0.0541 0.2513 4+ 0.0543 0.8090 £+ 0.0175 0.5598 4+ 0.0385
AID362 0.6544 4 0.0487 0.0243 4 0.0050 0.6804 £ 0.0285 0.0287 4 0.0044
Apascal 0.7772 4+ 0.0405 0.0350 4+ 0.0120 0.8367 £ 0.0303 0.0599 + 0.0094
Bank 0.7209 4+ 0.0036 0.3071 £+ 0.0209 0.7408 £+ 0.0054 0.3642 4+ 0.0152
Chess 0.6699 4 0.1438 0.0153 4+ 0.0368 0.7443 +0.1576 0.0088 4= 0.0152
CMC 0.4963 4+ 0.1305 0.0312 +0.0182 0.5304 £ 0.0986 0.0413 4+ 0.0238
Lung 0.8569 +0.1196 0.3796 4+ 0.2463 0.9332 £+ 0.0921 0.5838 4+ 0.2572
R10 0.0889 4+ 0.0216 0.0101 £ 0.0009 0.9855 £+ 0.0016 0.5684 4+ 0.0511
Secom 0.5502 4+ 0.0443 0.0871 +0.0199 0.5596 + 0.0656 0.0932 +0.0184
U2R 0.9836 4+ 0.0058 0.1858 4+ 0.0827 0.9881 + 0.0027 0.2982 4+ 0.1006




Entropy 2021, 23, 201

15 0of 18

6. Discussion

Anomaly Detection in Low-dimensional Embedding. Detecting anomalies in a re-
duced space is a widely used solution to tackle high-dimensional complex feature space.
In this paper, the reasons for learning low-dimensional representations are two fold: first,
in contrast to operating on original space, detecting anomalies on low-dimensional space.
Second, one can assume that normal data points are lying inside the normality manifold,
whereas anomalies are lying outside. By mapping data points into a lower dimensional
compact space, regularities are preserved while irregularities are highlighted.

Self-supervised Pre-training. Compared with using a random projection like [25],
we pre-train the teacher network with a self-supervised objective. Though a random pro-
jection implemented by a neural network has some good properties with such smoothness,
the ability to preserve the normal manifold can not be guaranteed without any regulariza-
tion, which may potentially map anomalies into an area close to the normal cluster. As
a result, the self-supervised pre-training is thus an essential component in DTSNE. We
believe the importance of using self-supervised pre-training is also true in other anomaly
detection algorithms.

Ensemble of Weak Anomaly Detectors. Conventional ensemble anomaly detection
aims at effectively aggregating detection results from weak anomaly detectors. Different
from that, our ensemble approach considers an additional perspective: uncertainties of
weak anomaly detectors (namely students). Diversities among students are guaranteed by
different initialization states. Since knowledge about anomalies is not accessible during the
training phase, the uncertainties among weak anomaly detectors is an important sign to
identify anomalous instances. This technique is readily applicable to other ensemble-based
anomaly detection algorithms.

7. Conclusions

In this paper, we proposed a teacher-student distillation based anomaly detection
framework and a corresponding instantiation DTSNE (Distillated Teacher-Student Network
Ensemble). Key components including self-supervised pre-training, teacher-student distilla-
tion, student ensemble, and multiple anomaly scores enable DTSNE to greatly outperform
state-of-the-art anomaly detection algorithms. The effectiveness of our method to detect
anomalies for multivariate data is justified by extensive experiments. DTSNE achieves
a substantially better average performance 7.2% and 10.5% than RDP (a state-of-the-art
anomaly detection method) in terms of AUROC scores and mAP scores, respectively. The
experimental results imply broader impacts of our techniques: self-supervised pre-training
and student ensemble.

8. Future Work

The proposed approach achieves promising performance for unsupervised anomaly
detection on various real-world datasets. The success suggests to us to explore future
works on refining the current framework. One of the drawbacks of our approach is that
the improvements of additional anomaly scores are not significant. The reason is that the
information provided by outcomes of students is not fully utilized. To make the best use of
information of the outcomes, we propose that the future work could look at developing a
criteria to measure the uncertainties of student networks instead of only using variance.
Similar works in recent literature, such as Bayesian Neural Networks [45] and Predictive
Uncertainty [46], can provide inspiration to achieve the goal.

Furthermore, the future work could be explored on incorporating partial available
labels. It is natural to occasionally obtain some annotations in real-world applications.
As recent literature [23,47] suggests, only partial labels can significantly improve the
performance of anomaly detection compared to a fully unsupervised scenario. Therefore,
future work needs to extend our framework to adopt the semi-supervised setting.
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