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Abstract: In the past decade, big data has become increasingly prevalent in a large number of
applications. As a result, datasets suffering from noise and redundancy issues have necessitated the
use of feature selection across multiple domains. However, a common concern in feature selection is
that different approaches can give very different results when applied to similar datasets. Aggregating
the results of different selection methods helps to resolve this concern and control the diversity of
selected feature subsets. In this work, we implemented a general framework for the ensemble of
multiple feature selection methods. Based on diversified datasets generated from the original set of
observations, we aggregated the importance scores generated by multiple feature selection techniques
using two methods: the Within Aggregation Method (WAM), which refers to aggregating importance
scores within a single feature selection; and the Between Aggregation Method (BAM), which refers to
aggregating importance scores between multiple feature selection methods. We applied the proposed
framework on 13 real datasets with diverse performances and characteristics. The experimental
evaluation showed that WAM provides an effective tool for determining the best feature selection
method for a given dataset. WAM has also shown greater stability than BAM in terms of identifying
important features. The computational demands of the two methods appeared to be comparable. The
results of this work suggest that by applying both WAM and BAM, practitioners can gain a deeper
understanding of the feature selection process.

Keywords: ensemble learning; feature selection; mean aggregation; entropy; stability

1. Introduction

Over the years, feature selection has become a fundamental preprocessing tool in data
mining and machine learning. Otherwise known as attribute or variable selection, feature
selection refers to the process of reducing the number of input variables for predictive
modeling. The objective of feature selection is three-fold: improving the prediction perfor-
mance of the features, providing faster and more cost-effective features and gaining a better
understanding of the underlying process that generated the data. This objective is achieved
through the characterization and elimination of irrelevant and redundant features, leaving
only a subset of the most useful features to be used in further analysis. As such, features
represent the individual independent variables typically used as predictors within a model.
Throughout this paper, we use the terms variable and feature exchangeably.

There are generally three classes of feature selection methods based on how the
method interacts with the learning algorithm: filter, wrapper and embedded methods [1].
Filter methods evaluate the importance of features as a pre-processing operation to the
learning algorithm and select the best feature subsets through some information metrics
without direct input from the target variable. Filters are known to have high computational
efficiency compared to the wrapper and embedded methods. Alternatively, the wrapper
methods apply some search in the feature space and use the learning algorithm to evaluate
the importance of feature subsets. Thus, wrappers are deemed to be computationally
expensive and can be slow due to the need to apply the learning algorithm to each new
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feature subset. The embedded methods perform the feature selection internally to the
learning algorithm. In this approach, a predefined importance criterion is integrated into
the learning algorithm, and features which meet the set criteria are selected. Embedded
methods have less computational cost than wrappers but are more likely to suffer from
over-fitting.

One of the most common challenges encountered in feature selection is choosing
the most suitable method for a given problem. In general, there is no single feature se-
lection method that outperforms all others across most applications. The three different
classes of feature selection methods are frequently suitable under varying conditions. For
instance, the greedy randomized adaptive heuristic (GRASP) filter technique introduced
in [2] provides efficient results for problems with a large number of nominal features
or with simulated instances, when the bias introduced by the classification methods is
minimized. In this context, an overall understanding of various types of feature selection
algorithms is often needed before an appropriate method selection could be made. Of-
ten, such a choice is based on massive empirical evaluations of diverse feature selection
methods ([3,4]). Alternatively, meta-learning and ensemble methods are two widely used
approaches for determining the most appropriate feature selection algorithm for a problem
or circumventing it entirely.

Meta-learning predicts the most appropriate feature selection method for a given
dataset. In meta-learning, the feature selection task is treated as a supervised learning
problem in which the datasets are objects and the target function maps a dataset to the
feature selection method that shows the highest performance based on a certain crite-
rion. With the increase in feature selection techniques and introduction of new methods,
the implementation of meta-learning can provide a valuable way of weighing the most
suitable feature selection methods. However, like other learning techniques, in order to
make reliable recommendations, metalearning can be limited by its need for a suitable
metadatabase that is representative of the given problem domain [5]. An excellent review
of meta-learning algorithms can be found in [6].

Ensemble methods were originally developed to enhance classification performance [7].
Ensemble feature selection has two main components: diversification, to create varying
feature selection outputs; and aggregation, to combine the generated outputs. Diversi-
fication can be achieved by data resampling [8]. In data resampling, several randomly
generated subsamples are drawn from the original dataset, and then a feature selection
technique is applied on each generated subsample. The ensemble method combines the
results generated by each feature selection method [9]. Bootstrap sampling is commonly
used to generate the random subsamples [10–12]. When the amount of available data is
sufficient, in [13], the partitioning of the data into non-overlapping chunks was proposed.

Although a number of aggregation techniques have been proposed in the literature,
there is no clear rule to determine which one of them should be chosen for a specific
feature selection task. However, the simple approach of mean-based aggregation seem
to be efficient and compelling in most cases [14]. In [15], Kolde et al. (2012) proposed a
novel rank aggregation method based on order statistics and applied it to gene selection.
The approach detects genes (features) that are ranked consistently better than the expected
behavior of uncorrelated features and assigns a significance score to each gene. In [16],
Ditzler et al. (2014) developed a statistical testing framework in which a statistical test
is performed for the number of times that each feature has been selected to determine
whether it belongs to the relevant feature set or not.

The robustness or stability of the feature selection method is of paramount importance
to reducing dimensionality and improving the performance of the learning algorithm.
Stability measures the insensitivity of the feature selection method to variations in the
training set. In other words, unstable feature selection methods can produce varied
feature rankings when a single feature selection technique is applied to different training
samples generated from the same dataset. Instability can also occur when very different
feature selection techniques applied to the same dataset produce different feature rankings.
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The stability of feature selection has attracted a plethora of research in machine learning
and data mining communities over the last decade [8]. It has become crucial to supplement
the investigation of model performance with stability analysis in order to ensure the quality
of feature selection [17].

This paper introduces a general framework for a bootstrap ensemble in which feature
selection results are aggregated within and between multiple feature selection methods.
Multiple subsamples are generated from the original dataset by bootstrapping, and the
feature selection techniques are applied on each subsample. The aggregation is thus
two-fold; first, the single feature selection method is aggregated across subsamples, and
second, different feature selection methods are combined into a single set. The mean-based
aggregation rule is used where the generated importance scores are combined within
and between the feature selection methods. Because filter feature selection methods are
known for their computational efficiency, we chose four traditional filter techniques for our
experimental framework, although wrappers and embedded methods are also applicable.
Our experimental results with real data sets demonstrated that ensembling multiple feature
selection methods improves the performance of the learning algorithm, guides the selection
of the optimal feature subset and facilitates the identification of the most appropriate
feature selection method for a given dataset. Furthermore, comparisons of the two folds
of aggregation revealed that, on the whole, aggregating within a single feature selection
method outperforms aggregating between multiple feature selection methods.

The rest of this paper is organized as follows. In Section 2, we introduce the general
framework for the bootstrap aggregation within and between multiple feature selection
methods. In Section 3, we describe the robustness metrics used for the evaluation of
the feature selection stability. In Section 4, we present and analyze the results of our
experimental work. Finally, conclusions and some insights into future work are presented
in Section 5.

2. Bootstrap Aggregation Framework

Let us consider a dataset S ≡ (X, Y), with n observations and p features such that
n, p ∈ Z>0; that is, X = [xij]n×p ∈ Rn,p is the matrix of observations and Y is the target
variable (i.e., the rows are the observations and the columns are the variables). Moreover,
xij denotes observation i of the feature j. The goal of this work is to reduce the number
of features in the dataset X in order to predict the target variable Y. Now, let {V1, . . . , Vp}
denote the set of features (variables) in X. The dataset S is divided into a training dataset X,
and a testing dataset T. Here, X = Xdrne,p and T = Xn−drne,p with 0 < r < 1. For instance,
considering the Philippine dataset from Table 1, Philippine has n = 5832 observations
and p = 309 features. Moreover, {V1, . . . , V309} denote the set of features in the Philippine
dataset. Two-thirds of the Philippine dataset is taken for training whereas one-third is
used for testing. Then, the training data are denoted as X = X3888,309 and the testing data
are denoted as T = X1944,309. We use feature selection to reduce the 309 features in the
Philippine dataset, leading to the dataset only containing the most relevant features.

Let FS1, . . . , FSt denote the feature selection methods used, where t ∈ Z>0. In addition,
we assume that each feature selection method FSq ∈ {FS1, . . . , FSt} generates a feature
importance score `j ∈ R for every feature Vj ∈ {V1, . . . , Vp}. Although rank aggregation
could also be used for the feature selection process as an alternative to score aggregation,
aggregating the ranks from different feature selection algorithms might result in ties. For
instance, three feature selection algorithms might rank one feature as 2, 1 and 3 and another
feature as 2, 3 and 1. The average rank for both features would be 2. A merit of this
study is that it uses the importance scores to aggregate feature selection methods, as
the scores have a stronger scale than the rank and can better differentiate between the
features. Furthermore, averaging the actual importance scores is simple to implement
and perform. For the meaningful comparison of the scores derived from different feature
selection algorithms, a normalization technique has been implemented. In this section, we
discuss the use of bootstrap techniques in order to combine the feature importance scores
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within each FSq and between FSq for all q ∈ {1, . . . , t}. For the convenience of presentation
and interpretation, the following terminologies are used in the rest of the paper:

- The Within Aggregation Method (WAM) refers to aggregating importance scores
within a single feature selection method.

- The Between Aggregation Method (BAM) refers to aggregating importance scores
between different feature selection methods.

Due to the simplicity and the efficiency of the arithmetic mean [14], it is used in
this paper to aggregate the feature importance scores resulting from the different feature
selection methods. However, the proposed framework allows the application of other score
or rank aggregation rules, including the median, geometric mean and others.

Table 1. Description of datasets.

Dataset Name
and Source

No.
Observations No. Features No. Classes Dimensionality *

Jasmine 1 2984 (1492/1492) 145 2 0.048592
Spectrometer 2 531 (476/55) 103 2 0.193974

Image 2 2000 (1420/580) 140 2 0.07
Fri 2 1000 (564/436) 101 2 0.101

Scene 3 2407 (1976/431) 295 2 0.122559
Musk 4 6598 (5581/1017) 170 2 0.025765

Philippine 1 5832 (2916/2916) 309 2 0.052984
Ionosphere 4 351 (126/225) 34 2 0.096866
Optdigits 2 5620 (572/5048) 64 2 0.011388
Satellite 2 5100 (75/5025) 37 2 0.007255

Ada 1 4147 (1029/3118) 49 2 0.011816
Splice 2 3190 (1535/1655) 62 2 0.019436
HIVA 2 4229 (149/4080) 1617 2 0.382359

* Dimensionality is the ratio of features to number of observations. Superscripts indicate the data sources as
follows: 1 automl.chalearn.org, 2 www.openml.org, 3 mulan.sourceforge.net, 4 archive.ics.uci.edu.

2.1. Feature Selection Based on WAM

Let us consider a training dataset X and a feature selection method FS. Let X1, X2,
. . . ,Xm be bootstrapped samples from X, where m ∈ Z>0. Then, we apply FS on each
Xs, s = 1, . . . , m, which in turn generates feature scores {`s1, . . . , `sp} that correspond to
the set of features {V1, . . . , Vp}. Therefore, a score matrix L = [`sj] ∈ Rm×p is generated
after applying the feature selection method FS on each bootstrap sample. In L, column j
represents the FS importance scores for variable Vj over the m bootstrap sample datasets.
The final aggregated score for the feature Vj is defined to be the mean of column j in L.

We use the notation ¯̀.j =
∑m

s=1 `sj

m
to denote the aggregated scores of Vj. Then, a rank

vector r = (r1, . . . , rp), rj ∈ {1, 2, . . . , p} is assigned to the feature set {V1, . . . , Vp} based
on the aggregated scores { ¯̀.1, . . . , ¯`.p}. The feature set is then sorted from the most to
the least important based on the rank vector r. Now, based on a threshold parameter,
0 < k ≤ 1, we keep only the most important 100k% of the feature set (determined by the
rank vector r). The WAM approach can be used to compare the performance of different
feature selection techniques based on various supervised learning methods for a given
dataset. The flowchart in Figure 1 explains the WAM. The following gives the associated
computational Algorithm 1.

automl.chalearn.org
www.openml.org
mulan.sourceforge.net
archive.ics.uci.edu
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Algorithm 1 WAM Algorithm:

Given a training dataset X with p features, a testing dataset T, a feature selection method
FS, a threshold parameter k, and a learning algorithm M.

(i) For s = 1, . . . , m, generate bootstrap samples, X1, . . . ,Xm of the training dataset X.
(ii) Based on FS, get the features score matrix L.
(iii) Get the aggregated score set { ¯̀ .1, . . . , ¯̀ .p}.
(iv) For the aggregated score set { ¯̀ .1, . . . , ¯̀ .p}, get the corresponding rank vector

r = (r1, . . . , rp).
(v) Based on the rank vector r, keep only the top 100k% of the variable set {V1, . . . , Vp}.
(vi) Based on the selected feature set in (v), use the testing dataset T and a cross-

validation technique to train and test the model M.

Figure 1. Framework for the Within Aggregation Method (WAM).

2.2. Feature Selection Based on BAM

Let us consider a training dataset X and feature selection methods {FS1, . . . , FSt}. Let
X1,X2, . . . ,Xm be bootstrapped samples from X, where m ∈ Z>0. Then, we apply FSq, q =

1, . . . , t on each Xs, s = 1, . . . , m, which in turn generates feature scores {`s1, . . . , `sp}(q)

that correspond to the set of features {V1, . . . , Vp}. Therefore, a score matrix L(q) = [`
(q)
sj ] ∈

Rm×p is generated after applying the feature selection method FSq on each bootstrap
sample. In L(q), column j represents the FSq scores for variable Vj over the m bootstrap
sample datasets. Then, each column in the score matrix L(q) is normalized using min–max
normalization; that is,

~L(q) = [~̀
(q)
sj ], where~̀ (q)

sj =
`
(q)
sj −min

s
`
(q)
sj

max
s

`
(q)
sj −min

s
`
(q)
sj

After the normalization, we use the arithmetic mean to combine the normalized

aggregated scores across FSq, q = 1, . . . t into one score matrix ~̄L =

t
∑

q=1
~L(q)

t
. That is,

column j in the score matrix ~̄L represents the average column j between all considered
feature selection methods FS1, . . . , FSt. Then, the final aggregated scores, { ¯~ .1̀, . . . , ¯~ .p}̀, for

the feature set {V1, . . . , Vp} are the arithmetic mean of columns 1, . . . , p in ~̄L. The rank
vector r = (r1, . . . , rp), rj ∈ {1, 2, . . . , p} is assigned to the feature set {V1, . . . , Vp} based
on the final aggregated scores. The feature set is then sorted from the most to the least
important based on the rank vector r. The top 100k% features are thus retained for further
analysis. The flowchart in Figure 2 explains the BAM. The following gives the associated
computational Algorithm 2.
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Algorithm 2 BAM Algorithm:

Given a training dataset X with p features, a testing dataset T, feature selection methods
{FS1, . . . , FSt}, a threshold parameter k, and a learning algorithm M.

(i) For i = 1, . . . , m, generate bootstrap samples, X1, . . . ,Xm of the training dataset X.
(ii) For each feature selection method FSq ∈ {FS1, . . . , FSt}, get features score matrix

L(q).
(iii) Normalize the score matrices in (ii) as ~L(q), q = 1, . . . , t.
(iv) Use the arithmetic mean scores to combine the matrices in (iii) into one score

matrix ~̄L.
(v) Use the score matrix in (iv) to compute the aggregated scores { ¯~ .1̀, . . . , ¯~ .p}̀.
(vi) Based on the aggregated scores in (v), compute the corresponding rank vector

r = (r1, . . . , rp).
(vii) Based on the rank vector r, keep the top 100k% of the variable set {V1, . . . , Vp}.
(viii) Based on the selected feature set in (vii), use the testing dataset T and a cross-

validation technique to train and test the model M.

Figure 2. Framework for the Between Aggregation Method (BAM).

3. Stability Analysis

In order to measure the stability of feature rankings for each feature selection method
in {FS1, . . . , FSt}, we implement the similarity-based approach proposed in [18]. This
approach depends on the representation language of the produced feature rankings. Con-
sidering a training dataset X and a feature selection method FS, let X1,X2, . . . ,Xm be
bootstrapped samples from X. Then, we apply FS on each Xs, s = 1, . . . , m. This, in
turn, produces any of the following three representations with respect to the feature set
{V1, . . . , Vp} and the sample dataset Xs:

• An importance scores vector `s = {`s1, . . . , `sp}, `sj ∈ R.
• A rank vector rs = {rs1, . . . , rsp}, rsj ∈ {1, 2, . . . , p}.
• A subset of features represented by an index vector ws = {ws1, . . . , wsp}, wsj ∈ {1, 0},

where 1 indicates feature presence and 0 indicates feature absence.

Naturally, it is possible to transform any feature importance scores vector ` into a
rank vector r by sorting the importance scores. On the other hand, a rank vector r may be
converted into an index vector w by selecting the top 100k% features. The most common
way to quantify the stability of a feature selection method is by simply taking the average
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of similarity comparisons between every pair of feature rankings derived from the different
bootstrap samples as follows:

Stability =
2

m(m− 1)

m−1

∑
s=1

m

∑
v=s+1

Φ( fs, fv) (1)

where Φ( fs, fv) is the similarity measure between a pair of feature rankings from any two
training samples Xs,Xv (1 6 s, v 6 m). Note that the feature rankings ( fs, fv) can be
represented as a pair of importance scores vectors, rank vectors or index vectors. Moreover,
the multiple 2

m(m−1) stems from the fact that there are m(m−1)
2 possible pairs of feature

rankings between the total m samples.
Several similarity measures have been introduced in the literature [8]. In this paper,

we use some popular measures of similarity for each of the representations described above.
Accordingly, we will use feature selection to produce importance score vectors {`1, . . . `m}
that will be converted into rank vectors {r1, . . . rm} and index vectors {w1, . . . wm}. We
implement the following:

i. Pearson’s correlation coefficient: In the case of similarity between two importance
score vectors (`s, `v) produced by one of the feature selection methods, the Pearson’s
correlation coefficient computes the similarity measure as

ΦPCC(`s, `v) =
∑

p
j=1(`sj − µs)(`vj − µv)√

∑
p
j=1(`sj − µs)2(`vj − µv)2

, (2)

where `s is the row s in the score matrix L; that is, the feature importance scores that
correspond to the set of features {V1, . . . , Vp}, obtained from Xs. Furthermore, µs is
the mean of the row vector `s. Here, ΦPCC(`s, `v) ∈ [−1, 1].

ii. Spearman’s rank correlation coefficient: With regard to the similarity between two
rank vectors (rs, rv) produced by one of the feature selection methods, Spearman’s
rank correlation coefficient measures the similarity between the two rank vectors as

ΦSRCC(rs, rv) = 1−
6 ∑

p
j=1(rsj − rvj)

2

p(p2 − 1)
, (3)

where rs is the rank vector that corresponds to the set of features {V1, . . . , Vp}, such
that rs is derived from `s. Here, ΦSRCC(rs, rv) ∈ [−1, 1].

iii. Canberra’s distance: Another measure used to quantify the similarity between two
rank vectors (rs, rv) is Canberra’s distance [19]. This metric represents the absolute
difference between two rank vectors as

ΦCD(rs, rv) =
p

∑
j=1

|rsj − rvj|
|rsj|+ |rvj|

. (4)

For easier interpretation, Canberra’s distance is normalized by dividing by p.
iv. Jaccard’s index: Jaccard’s index measures the similarity between two finite sets; it is

taken as the size of the intersection divided by the size of the union of the two sets.
Given the index vectors (ws, wv) used to represent the two sets, Jaccard’s index is
given by

ΦJ I(ws, wv) =
|ws ∩wv|
|ws ∪wv|

=
|ws ∩wv|

|ws|+ |wv| − |ws ∩wv|
, (5)

ΦJ I(ws, wv) ∈ [0, 1].

In addition to the stability scores based on similarity, one can compute the average
standard deviation of the feature importance scores across all bootstrap samples for every
feature selection method. By definition, the standard deviation measures the dispersion or
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instability of the feature selection scores under different training bootstraps. Similar to the
work in [20], we define the average standard deviation given a feature selection method
FS as

ASD =
1
p

p

∑
j=1

SD(cj), (6)

where cj represents column j in the standardized score matrix ~L. In other words, SD(cj) is
the standard deviation of the standardized FS importance scores for variable Vj over the m
bootstrap samples. Generally, a low average standard deviation would imply high stability,
whereas a high average standard deviation would suggest lower stability.

4. Experimental Evaluation
4.1. Experimental Datasets

Without the loss of generality of the applicability of the proposed framework, the
experimental evaluation in this study focuses on the binary classification conferred in the
datasets illustrated in Table 1. The target variable for each dataset encompasses two classes
(e.g., “males” and “females”). Here, the class refers to the group categorization of some
observations under the nominal target variable Y (i.e., the value of Y). The datasets contain
both numerical and nominal features with various dimensions and numbers of observa-
tions. Overall, the number of features across datasets ranges from 34 to 309, while the
number of observations ranges from 351 to 6598 observations. The features/observations
ratio ranges from as low as 0.007 to as high as 0.194. Furthermore, the binary class distribu-
tion spans from deeply imbalanced to perfectly balanced. On that account, these datasets
provide an interesting benchmark for investigating the performance of the proposed frame-
work and its characteristics.

4.2. Experimental Design

In this experiment, we compared the performance of the two aggregation methods:
WAM and BAM. The experimental environment was Windows 10, 64-bit, 16 GB RAM,
Intel(R) Xeon E-2124 (3.30 GHz). For the implementation of the proposed framework
(Section 2), we selected four filter selection methods: Information Gain (IG), Symmetrical
Uncertainty (SU), Minimum Redundancy Maximum Relevance (MRMR) and the Chi-
squared method (CS). For the Chi-squared method, numeric features were discretized
based on a fixed-width binning. Each dataset was divided into training and testing
datasets, where two-thirds of the dataset was used to obtain the feature rankings and one
third was used for testing. For the training phase, m = 1000 bootstrap samples were used.
These bootstraps were utilized to obtain final rank vectors using the aggregation of feature
importance scores within each feature selection method (WAM algorithm) and between
the different feature selection methods (BAM algorithm). For the testing stage, 10 different
k thresholds were used, resulting in subsets containing the top {10%, 20%, . . . , 100%} of
the total features. Here, k = 100% refers to the baseline model where all features were
used and none of the feature selection methods were implemented. We should note here
that other values of k can be chosen. The existing literature in this regard provides some
guidelines on how to choose k for some specific scenarios. For example, we refer interested
readers to [21–25]. However, it is difficult to generalize directives on the basis of specific
cases, and in practice, several values of k were chosen and the classification accuracy using
cross-validations or independent test data was used to evaluate the quality of the chosen
subsets [26,27]

In the experiment, a five-fold cross-validation procedure was implemented in the
testing phase. Accordingly, we divided the testing set into five stratified samples. Thus, the
five folds were selected such that the distribution of the target variable Y was approximately
equal in each of the folds. For instance, given a testing data with 500 observations such that
the distribution of the binary target variable was 7:3, each fold in the stratified five-fold
cross-validation would be expected to have 70 observations in one class and 30 in the other.
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Accordingly, stratification was used to ensure that each class was equally represented
among the different folds. For every iteration, one of these five stratified samples was used
as a testing set, while the remaining four samples were used to train the model. On each
iteration, the testing sample was used to evaluate the performance of the selected feature
subsets based on the following classification algorithms:

• Logistic regression: A statistical model used to model the probability of the occur-
rence of a class or an event using a logistic (sigmoid) function. It is a widely used
classification algorithm in machine learning. The objective of logistic regression is
to analyze the relationship between the categorical dependent variable and a set
of independent variables (features) in order to predict the probability of the target
variable. The maximum likelihood estimation method is usually used to estimate the
logistic regression coefficients.

• Naive Bayes: A probabilistic classifier based on the Bayes theorem [28]. It assumes
that the occurrence of each input feature is independent from other features. It can be
used for both binary and multiclass classification problems. Due to its simplicity, it is
a fast machine learning algorithm which can be used with large datasets.

• Random Forest: An ensemble model of decision trees in which every tree is trained
on a random subsample to provide class prediction. The subsamples are drawn with
replacements from the training dataset. The results from all the decision trees are
then averaged to yield the model prediction [29]. Random Forest is useful to prevent
over-fitting, but it can be complex to implement.

• Support Vector Machine (SVM): A supervised learning algorithm in which each
observation is plotted as a point in p-dimensional space (with p being the number of
features). SVM aims to identify the optimal hyperplane which segregates the data
into separate classes. The selected hyperplanes thus maximize the distance between
data points of different classes [30].

The entire experimental framework was performed using the open-source statistical
programming language R. Note that features of near-zero variance were removed prior
to the analysis. After the final feature subsets were selected and utilized in building each
classifier across the five-folds, we evaluated the performance of the classifiers through the
estimation of the area under the receiver operator curve (ROC) [31], hereafter referred to as
the AUC. The AUC is a popular metric used to evaluate a model’s ability to distinguish
between classes.

4.3. Discussion of the Results

Figures A1–A13 in the Appendix A shows the resulting AUC values after applying
the WAM and the BAM to each dataset. The results of WAM are depicted by the curves
corresponding to the individual feature selection methods: IG, SU, MRMR and CS. On
the other hand, the results of BAM are represented by the single BAM curve in each plot.
The AUC values, averaged over the five-folds in the cross-validation, are plotted against
the 10 different k100% thresholds (ranging between 10–100% of features used) in order to
reveal the classification performance for different feature subsets in the testing stage. The
running times for WAM and BAM, respectively, are also shown in Figures (A1–A13). The
average running time for WAM was 2563 seconds and that for BAM was 2579 seconds.
Overall, BAM was marginally slower than WAM across all datasets because of the fact
that BAM involves an additional aggregation step between the different feature selection
methods. It should be emphasized that the computational costs of the proposed framework
are mostly dependent on the feature selection methods used and the dataset composition.
In the following two subsections, we analyze and compare the performance of the WAM
and BAM algorithms in terms of their classification accuracy and their identification of
optimal feature subsets (Section 4.3.1). In Section 4.3.2, we analyze and compare the
stability behavior of the two algorithms. Furthermore, the association between stability
and accuracy is discussed.



Entropy 2021, 23, 200 10 of 21

4.3.1. Classification Performance

In most datasets, we note that the ensembling of bootstrap samples and aggregation
of feature importance scores within and between feature selection methods improved
the baseline (k = 100% features are used) classification performance. In particular, the
effectiveness of WAM was noticeable under the Naive Bayes classifier, where the AUC
for most aggregated feature selection methods showed a steeper increase than in other
classifiers across the six datasets. For instance, the Naive Bayes accuracy increased from
around 0.79 baseline AUC to nearly 0.86 in the Scene dataset (Figure A5) and from the
baseline of 0.60 AUC to nearly 0.70 in the Fri dataset (Figure A4). Following the removal of
the least significant features, a similar increase in the performance of the logistic regression
model could be observed in the Jasmine and Philippine datasets (Figures A1 and A7). At
baseline performance, it seems that the Random Forest algorithm performed better than
the other classifiers, with SVM achieving the lowest AUC scores in the majority of cases.
Although the aggregated feature selection methods present some highly changing patterns
depending on the number of features retained, the general trend showed an increase in
accuracy scores. Moreover, the variability in the AUC scores between the different feature
selection methods tended to be more pronounced in the high-dimensional datasets (e.g.,
Philippine, Jasmine, Scene, HIVA) in comparison to the low-dimensional datasets (e.g.,
Satellite, Ada, Splice).

Likewise, it can be observed that BAM also improved the baseline accuracy of the
classification models, especially under logistic regression. For instance, BAM improved
the logistic regression AUC scores from around 0.83 at baseline to over 0.86 in Jasmine
(Figure A1) and from around 0.55 at baseline to nearly 0.67 in Fri (Figure A4).

A general observation from the figures is that the aggregated feature selection methods
under the WAM outperformed the BAM. In particular, for most of the datasets, there was
at least one feature selection method aggregated under WAM that produced better AUC
values than BAM. For instance, it is clear that the aggregated Chi-squared (CS) method
outperformed BAM in the Philippine and Scene datasets (Figures A7 and A5, respectively).
In other datasets such as Fri (Figure A4) or Ionosphere (Figure A8), the aggregated IG and
SU tended to produce the highest AUC scores across the classifiers. The performance of
BAM appeared to be comparable to that of the aggregated feature selection methods in the
datasets Image, Satellite, and Spectrometer. BAM was among the best-performing methods
with respect to AUC in these datasets. The figures show that, in general, the aggregated IG
and CS demonstrate the greatest correlation with BAM curves.

For the selection of the optimal k100% threshold based on AUC values, the WAM and
BAM produced nearly consistent results. In the Philippine, Jasmine and Musk datasets,
there was a noticeable pattern in which the classification AUC dropped sharply around the
30% mark, indicating that removing more than 70% of the features results in the reduced
accuracy of the trained model. Nevertheless, the exact feature reduction percentage is
dependent on the dataset used. In the Scene dataset, most of the classifiers agreed on
retaining around 50% of the top features. In the Splice and Optidigits datasets, the optimal
k100% was 70%, while in the Spectrometer and HIVA datasets, this was almost 80% of
the features.

It should be mentioned that the experimental results in this paper affirmed the fact
that the performance of a given feature selection method is data-dependent. Overall, none
of the feature selection methods produced the best AUC values across all datasets. For
example, the aggregated MRMR showed the worst performance across multiple classifiers
in the Scene, Spectrometer and Philippine datasets, whereas in the Optdigits dataset
(Figure A9), it showed improved performance when most features were removed. A
similar pattern was seen for the aggregated Chi-squared feature selection method, which
showed the best performance in a number of datasets (e.g., Image, Scene, Philippine) and
worse performance in others (e.g., Fri, Ionosphere). The BAM curve was seen to be the
middle-best performing technique. This is of course because the BAM scores are simply the
aggregated averages over the individual feature selection methods. In most cases, however,
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there was an obvious overlap in the AUC scores between the different feature selection
techniques resulting from the fact that dominant features were able to maintain similar
rankings under different feature selection algorithms.

In summary, the analysis of the AUC results reveals that WAM can be used as a
powerful tool to help practitioners to identify the most suitable feature selection method
for a given data set. It can also guide the selection of the optimal level of feature reduction
while achieving the maximum level of learning accuracy.

4.3.2. Stability Analysis Results

Table 2 presents the results of the stability analysis of the four aggregated filters
using WAM and BAM. Stability scores derived from the pairwise Pearson’s correlation
coefficient are calculated using the importance scores in the matrix L = [`sj] ∈ Rm×p

resulting from applying the feature selection method FS on every bootstrap sample. The
calculated Pearson’s correlation coefficients are then averaged over all possible pairs.
On the other hand, the averaged pairwise Spearman’s rank correlation coefficients and
Canberra’s distance are calculated from the rank matrix R = [rsj] ∈ Rm×p, which is
obtained by sorting the features from most to least important based on their importance
scores L = [`sj] ∈ Rm×p. The Jaccard’s index is computed from the top 25% ranked
feature subsets (represented by index vectors). Finally, the average standard deviation
(ASD) is computed using the importance scores, after normalization, averaged over the
1000 bootstraps.

The bolded scores in Table 2 represent the best stability value for each dataset. In the
Jaccard’s index, Spearman’s, and Pearson’s correlation coefficient, this refers to the highest
stability score, whereas for Canberra’s distance and ASD, it represents the lowest stability
score. Unsurprisingly, none of the feature selection methods demonstrated the best stability
behavior consistently across the 13 datasets. In other words, the stability of the aggregated
feature selection methods was data-dependent. As such, even though all the stability
measures agreed on a “winning” feature selection method in some datasets, it is not
surprising that these methods varied throughout. For example, IG was the most stable
method across all stability measures in the Ada and Philippine datasets, but Symmetrical
Uncertainty was the most stable in Ionosphere and MRMR in the Spectrometer and HIVA
datasets. Thus, none of the aggregated feature selection methods can be declared the most
stable in every measure.

Contrasting the stability behavior of the BAM to that of the WAM, Table 2 shows that
at least one feature selection method of the four feature selection methods used generally
exhibited higher stability when aggregated using WAM than when aggregated using BAM.
With the exception of the Image dataset, the BAM stability scores were seen to be the
middle-most stable across every experimental stability measure. For the Image dataset, the
BAM stability outperformed the stability of all the aggregated feature selection methods.
It is noteworthy that BAM also achieved the best classification accuracy in the Image
dataset (see Figure A3). Similarly, the IG and Chi-squared methods, which demonstrated
the highest stability in the Fri and Scene datasets, also achieved the best classification
performance in these two datasets, respectively (see Figures A4 and A5). A similar pattern
can be seen with respect to the higher stability of MRMR in the Optdigits and HIVA
datasets. These observations suggest that there may exist a positive association between
the classification performance of a feature selection method and its stability behavior.
Intuitively, this presumed association depends on the stability metrics used and also on
the characteristics of the dataset and the learning algorithm—a topic that constitutes an
interesting line of further research.

In summary, although BAM demonstrates a comparable stability behavior to that for
each single feature selection method under WAM, it appears that, in 11 out of 12 datasets
used in this paper, the stability of at least one individual method outperformed BAM. Inter-
estingly, there appears to be a positive association between the classification performance
of a feature selection method and its stability behavior. A feature selection method that
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outperforms others in terms of classification accuracy may also outperform them in terms
of stability behavior.

Table 2. Stability analysis results across all datasets. MRMR: Minimum Redundancy Maximum Relevance.

Dataset Stability Measure Information
Gain

Symmetrical
Uncertainty MRMR Chi-Squared BAM

Jasmine

Average Pearson Correlation 0.299705 0.258270 0.902748 0.360289 0.335806
Average Spearman Rank Correlation 0.319009 0.378017 0.730414 0.231101 0.334655

Average Jaccard’s Index 0.254683 0.319411 0.308712 0.286586 0.252964
Average Canberra Distance 0.278113 0.269500 0.124180 0.337122 0.294955
Average Standard Deviation 0.744817 0.753504 0.149429 0.747054 0.765530

Spectrometer

Average Pearson Correlation 0.898348 0.942554 0.698045 0.916711 0.927582
Average Spearman Rank Correlation 0.831602 0.837903 0.765404 0.818745 0.833578

Average Jaccard’s Index 0.759908 0.917055 0.436905 0.851790 0.872271
Average Canberra Distance 0.153674 0.152607 0.171177 0.186988 0.182109
Average Standard Deviation 0.308687 0.223475 0.456242 0.281311 0.258388

Image

Average Pearson Correlation 0.768404 0.760257 0.461867 0.784970 0.793634
Average Spearman Rank Correlation 0.702970 0.690212 0.541442 0.716971 0.671209

Average Jaccard’s Index 0.534739 0.514374 0.275411 0.557456 0.560470
Average Canberra Distance 0.140367 0.142500 0.236440 0.242640 0.254949
Average Standard Deviation 0.437907 0.462153 0.643365 0.459268 0.434591

Fri

Average Pearson Correlation 0.969642 0.912108 0.955966 0.818795 0.948385
Average Spearman Rank Correlation 0.458619 0.459933 0.301028 0.327351 0.308725

Average Jaccard’s Index 0.600791 0.600791 0.263723 0.288660 0.280655
Average Canberra Distance 0.057812 0.057752 0.329030 0.328557 0.330035
Average Standard Deviation 0.146339 0.268018 0.201306 0.422568 0.218823

Scene

Average Pearson Correlation 0.898425 0.887953 0.652895 0.933014 0.908673
Average Spearman Rank Correlation 0.871633 0.863620 0.705409 0.904599 0.881263

Average Jaccard’s Index 0.725580 0.718157 0.429004 0.834032 0.761022
Average Canberra Distance 0.150622 0.156575 0.206240 0.169175 0.182344
Average Standard Deviation 0.309285 0.328335 0.501868 0.253048 0.296812

Musk

Average Pearson Correlation 0.953028 0.939819 0.983622 0.972910 0.971086
Average Spearman Rank Correlation 0.897172 0.920754 0.978164 0.958189 0.932817

Average Jaccard’s Index 0.254683 0.319411 0.308712 0.286586 0.252964
Average Canberra Distance 0.278113 0.269500 0.124180 0.337122 0.294955
Average Standard Deviation 0.198588 0.230549 0.106096 0.153881 0.164122

Philippine

Average Pearson Correlation 0.992381 0.987185 0.949337 0.974312 0.990140
Average Spearman Rank Correlation 0.948322 0.945942 0.876291 0.794429 0.826292

Average Jaccard’s Index 0.907578 0.895855 0.599476 0.882073 0.898057
Average Canberra Distance 0.036655 0.037883 0.123565 0.216403 0.199559
Average Standard Deviation 0.065557 0.093865 0.194033 0.133756 0.090117

Ionosphere

Average Pearson Correlation 0.398351 0.583203 0.803445 0.689003 0.678480
Average Spearman Rank Correlation 0.391580 0.583566 0.779300 0.634363 0.621247

Average Jaccard’s Index 0.322984 0.418490 0.588096 0.511871 0.514258
Average Canberra Distance 0.284348 0.254220 0.185660 0.245600 0.249635
Average Standard Deviation 0.731482 0.606503 0.397275 0.546923 0.549206

Optdigits

Average Pearson Correlation 0.974733 0.956047 0.946192 0.978112 0.976264
Average Spearman Rank Correlation 0.965357 0.959320 0.913443 0.968890 0.967125

Average Jaccard’s Index 0.776935 0.687190 0.621800 0.699440 0.740367
Average Canberra Distance 0.087271 0.094572 0.112731 0.077847 0.090535
Average Standard Deviation 0.150498 0.196308 0.188786 0.141531 0.146916

Satellite

Average Pearson Correlation 0.962102 0.735536 0.735555 0.962324 0.932846
Average Spearman Rank Correlation 0.913703 0.737037 0.886279 0.941141 0.912465

Average Jaccard’s Index 0.889171 0.523733 0.579217 0.711644 0.540189
Average Canberra Distance 0.128159 0.206656 0.093391 0.117366 0.126052
Average Standard Deviation 0.189240 0.429693 0.289669 0.186215 0.235742

Ada

Average Pearson Correlation 0.998732 0.998655 0.997906 0.992348 0.998004
Average Spearman Rank Correlation 0.956392 0.952797 0.823995 0.955461 0.952162

Average Jaccard’s Index 0.919947 0.866222 0.607214 0.830739 0.863409
Average Canberra Distance 0.106299 0.108989 0.155215 0.122942 0.125797
Average Standard Deviation 0.028835 0.031522 0.029137 0.083938 0.042076

Splice

Average Pearson Correlation 0.992299 0.993156 0.990926 0.974606 0.989386
Average Spearman Rank Correlation 0.841882 0.842385 0.738889 0.843115 0.836391

Average Jaccard’s Index 0.761442 0.762814 0.597770 0.760529 0.742453
Average Canberra Distance 0.187747 0.187556 0.224846 0.187334 0.190992
Average Standard Deviation 0.070557 0.065447 0.081051 0.157357 0.096031

HIVA

Average Pearson Correlation 0.738293 0.764771 0.866538 0.746545 0.746723
Average Spearman Rank Correlation 0.603392 0.621829 0.804467 0.648684 0.639793

Average Jaccard’s Index 0.654280 0.583914 0.752230 0.618569 0.623986
Average Canberra Distance 0.277170 0.2369058 0.147782 0.260381 0.252760
Average Standard Deviation 0.457420 0.395126 0.318563 0.466903 0.456952
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5. Conclusions

Over the years, datasets have grown increasingly large in terms of their size and
dimensionality. As a result, feature selection has become a necessary reprocessing tool
in machine learning applications and the focus of a wide range of literature and research
across many domains. This study has explored the full potential of a bootstrap ensemble
approach for feature selection in which the ensemble aggregation is performed within and
between the multiple feature selection methods.

The extensive experimental analysis of 13 different datasets selected from different
domains has demonstrated that the Within Aggregation Method (WAM) is highly efficient
in guiding the selection of the most suitable feature selection method for a given problem.
As for reducing the dimensionality of the problem, our analysis showed that WAM and
the Between Aggregation Method (BAM) were comparable in determining the optimal
percentage reduction in the number of features. They are also comparable in terms of the
computational costs. It important to emphasize that optimizing the feature subsets and the
computational costs of the techniques depends largely on the dataset characteristics and
learning algorithm implemented.

In terms of stability, the WAM demonstrated better stability behavior than BAM in
most datasets (11 out of 12). Overall, the BAM stability scores fell in the middle range of the
computed values on each of the score-based and rank-based stability metrics, suggesting a
desirable stability behavior of the method.

The experimental analysis also showed that there exists a positive association between
the classification performance of a feature selection method and its stability behavior. In
other words, the feature selection method that outperforms others in terms of classification
accuracy may also outperform them in terms of stability behavior. This association can,
however, depend on the stability metric used, the learning algorithm and the characteristics
of the dataset. Due to the extent to which the feature selection results in terms of learning
accuracy and stability can depend on the data composition and learning algorithm, it is
essential that both BAM and WAM methods be implemented in order to achieve a better
understanding of and more useful insights into the underlying application domain.

The observed association between learning accuracy and stability indeed merits fur-
ther investigation in the future. Additionally, in future work , we will extend the application
of the framework to other types of feature selection methods, such as wrappers. Particular
interest will be given to the application using a mix of filter and wrapper feature selection
methods and establish a wider scope of comparisons to better evaluate the ensemble frame-
work. Furthermore, datasets with diverse performance and various learning algorithms
will be implemented. Another line of future research would be the application and anal-
ysis of additional aggregation methods, such as the median or geometric mean, and the
comparison of them against the mean aggregation used in this paper.
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Figure A1. Jasmine dataset classification results. Running time = 1838 s (Within Aggregation Method (WAM)); 1840 s
(Between Aggregation Method (BAM)).
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Figure A2. Spectrometer dataset classification results. Running time = 884 s (WAM); 889 s (BAM).
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Figure A3. Image dataset classification results. Running time = 1816 s (WAM); 1843 s (BAM).
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Figure A4. Fri classification results. Running time = 996 s (WAM); 1007 s (BAM).
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Figure A5. Scene dataset classification results. Running time = 4277 s (WAM); 4332 s (BAM).
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Figure A6. Musk dataset classification results. Running time = 4307 s (WAM); 4379 s (BAM).
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Figure A7. Philippine dataset classification results. Running time = 7595 s (WAM); 7601 s (BAM).
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Figure A8. Ionosphere dataset classification results. Running time = 377 s (WAM); 377 s (BAM).
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Figure A9. Optdigits dataset classification results. Running time = 1112 s (WAM); 1117 s (BAM).
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Figure A10. Satellite dataset classification results. Running time = 786 s (WAM); 799 s (BAM).
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Figure A11. Ada dataset classification results. Running time = 698 s (WAM); 698 s (BAM).
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Figure A12. Splice dataset classification results. Running time = 1009 s (WAM); 1019 s (BAM).
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Figure A13. HIVA dataset classification results. Running time = 7622 s (WAM); 7624 s (BAM).
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