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Abstract: Image segmentation plays a central role in a broad range of applications, such as medical
image analysis, autonomous vehicles, video surveillance and augmented reality. Portrait segmenta-
tion, which is a subset of semantic image segmentation, is widely used as a preprocessing step in
multiple applications such as security systems, entertainment applications, video conferences, etc. A
substantial amount of deep learning-based portrait segmentation approaches have been developed,
since the performance and accuracy of semantic image segmentation have improved significantly
due to the recent introduction of deep learning technology. However, these approaches are limited to
a single portrait segmentation model. In this paper, we propose a novel approach using an ensemble
method by combining multiple heterogeneous deep-learning based portrait segmentation models to
improve the segmentation performance. The Two-Models ensemble and Three-Models ensemble,
using a simple soft voting method and weighted soft voting method, were experimented. Intersection
over Union (IoU) metric, IoU standard deviation and false prediction rate were used to evaluate
the performance. Cost efficiency was calculated to analyze the efficiency of segmentation. The
experiment results show that the proposed ensemble approach can perform with higher accuracy and
lower errors than single deep-learning-based portrait segmentation models. The results also show
that the ensemble of deep-learning models typically increases the use of memory and computing
power, although it also shows that the ensemble of deep-learning models can perform more efficiently
than a single model with higher accuracy using less memory and less computing power.

Keywords: portrait segmentation; deep learning; ensemble; simple soft voting; weighted soft voting;
stacking; efficiency

1. Introduction

Image segmentation has been one of the most challenging problems in image process-
ing and computer vision for the last three decades. It is different from image classification,
as an image classification algorithm has to classify the object which has a particular label,
but an ideal image segmentation algorithm has to segment even the unknown objects [1].
Good image segmentation is expected to have uniform and homogeneous segmented
regions, but achieving a desired segmented image is a challenging task [2]. Numerous
image segmentation algorithms have been developed and reported in the literature. The
traditional image segmentation algorithms are generally based on clustering technology,
and the Markov model is one of the most well-known approaches. In general, the tradi-
tional image segmentation algorithms based on digital image processing and mathematical
morphology are susceptible to noise, and require a lot of interaction between a human
and computer for accurate segmentation [3–13]. Amongst image segmentation algorithms,
Deep Learning (DL)-based image segmentation has created a new generation of image
segmentation models, and surpassed traditional image segmentation methods in many
aspects [14,15]. DL-based image segmentation aims to predict a category label for every
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image pixel, which is an important yet challenging task [16]. Ensemble methods can be
used for improving prediction performance, and the idea of ensemble method is to build an
effective model by integrating multiple models [17]. Model averaging is a general strategy
amongst many ensemble methods in machine learning, and its idea is to train several
different models separately, and then all the models vote on the output of each model. It
is known that neural networks provide a wide variety of solutions, and can benefit from
model averaging, even if all of the models are trained on the same dataset [18].

Integrating multiple models to enhance the prediction performance has been studied
and analyzed by several researchers in machine learning: Breiman explained a method
to improve the performance accuracy by combining several models [19]; Warfield et al.
presented an algorithm for combining and estimating the segmentation performance [20];
Rohlfing et al. introduced a new way to combine multiple segmentation and enhance per-
formance [21]; Hansen and Salamon suggested that an ensemble of similar functioning and
configured networks increased the predictive performance of the individual network [22];
Singh et al. specified that ensemble segmentation had resulted in better performance than
individual segmentation [23]; Yan Zou et al. introduced a rapid ensemble learning by
combining deep convolution networks and random forests to reduce learning time using
limited training data [24]; and Andrew Holliday et al. suggested a model compression
technique to speed up DL segmentation using an ensemble. The authors combined the
strengths of different architectures, while maintaining the real-time performance of segmen-
tation [25]. Ishan Nigam et al. proposed an ensemble knowledge transfer to improve aerial
segmentation. The authors trained multiple models by progressive fine-tuning and com-
bined the collections of models to improve performance [26]. D. Marmanis et al. suggested
an ensemble approach using Fully Convolution Network (FCN) models for the semantic
segmentation of aerial images. It has been shown in this work that ensembles of several
networks achieve excellent results [27]. Machine Learning contests are usually won by
methods using model averaging, for example the Netflix Grand Prize [28]. Y. W. Kim et al.
introduced an ensemble approach by combining three DL-based portrait segmentation
models, and showed significant improvement in the segmentation accuracy [29].

Semantic image segmentation plays a central role in a broad range of applications
such as medical image analysis, autonomous vehicles, video surveillance and Augmented
Reality (AR) [14,30]. Portrait segmentation, which is a subset of semantic image segmen-
tation, is generally used to segment a human’s upper body in an image, but may not be
limited to the upper body. The use of portrait segmentation technology is becoming more
and more popular due to the popularity of “selfies” (self-portrait photographs). Portrait
segmentation is widely used as a pre-processing step in multiple applications such as secu-
rity system, entertainment application, video conference, AR, etc. In portrait segmentation,
the precise segmentation of the human body is crucial but challenging [31]. A substantial
amount of DL-based portrait segmentation approaches have been developed since the
performance and accuracy of semantic image segmentation have improved significantly
due to the recently introduced DL technology [32–41]. However, studies related to these
approaches are focused on a single portrait segmentation model.

In this paper, we propose a novel approach using ensemble method by combining
multiple heterogeneous DL-based portrait segmentation models, and the experiment
results show that the proposed approach can produce improved performance over single
DL-based portrait segmentation models. The major contributions of this research are as
follows:

(1) A novel approach of combining multiple heterogeneous DL-based portrait segmenta-
tion models was introduced. According to the best of our knowledge, there are no
reported works on portrait segmentation using an ensemble of multiple heteroge-
neous DL models.

(2) The efficiency rate of memory and computing power was measured to evaluate the
efficiency of portrait segmentation models. We attempted to measure cost efficiency
of five state-of-the-art DL-based portrait segmentation models, and proposed an
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ensemble approach. As per the best of our information and relevant survey, we
have not found any reported works measuring cost efficiency for DL-based portrait
segmentation models.

(3) Intersection over Union (IoU), IoU standard deviation, False Negative Rate (FNR),
False Discovery Rate (FDR), FNR + FDR and |FNR-FDR| were used to measure
the accuracy, variance and bias error of segmentation results. We have used IoU
standard deviation to measure the variance error of experimented models, FNR + FDR
to measure the bias error and |FNR-FDR| to measure the balance of bias error.
These metrics are a new approach to evaluate the performance of DL-based portrait
segmentation models.

In addition to these major contributions, the minor contributions of our research work
are presented below:

(4) Six state-of-the-art DL-based portrait segmentation models were experimented on
and compared.

(5) The Simple Soft Voting method and Weighted Soft Voting method were used to make
an ensemble of individual portrait segmentation models.

(6) A simple and efficient way to combine the output results of individual portrait
segmentation models was introduced.

(7) A quantitative experiment was used to evaluate the performance of portrait segmen-
tation models.

Section 2 gives a brief introduction about the portrait segmentation and soft voting
method. Section 3 explains portrait segmentation models used in the experiment, the
concept of an ensemble, approach to combine portrait segmentation models, evaluation
metrics and experiment environment. Section 4 presents the results of the experiment,
followed by the brief discussion of the results in Section 5. The summary of experiment
and contribution of this work are covered in Section 6.

2. Background
2.1. Portrait Segmentation

In general, segmentation subdivides an image into its constituent regions or objects.
The application problem defines the level to which the subdivision is supposed to be
carried out, i.e., the segmentation should stop once the object of interest is segmented.
The segmentation accuracy determines the success or failure of the application problem.
Acknowledging the importance of segmentation applications in the real world specifies
the necessity for obtaining highly precise and accurate segmented images. Portrait seg-
mentation in general can be referred as a process of segmenting a person in an image from
its background. There are many applications using a portrait segmentation technology.
Some popular camera apps can change the background of a selfie photo automatically
with one-click. A portrait segmentation is used for online video conferencing, as well
as entertainment. Many organizations are using online video conferencing solutions, as
many people are working from home since the COVID-19 pandemic. Portrait segmentation
technology is used to hide the user’s background for privacy, security and aesthetic reasons,
while users are attending the online video conferencing. In addition to these, the portrait
segmentation technology can be used for content-based image retrieval. For example,
a segmented human body in photos can be stored in a database. When a user enters a
query to find all photos with similar people, the human body of the entered photo can be
segmented and passed to the database to find similar people in the database.

Recently, a substantial amount of DL-based portrait segmentation networks was de-
veloped in the literature. Song-Hai Zhang et al. proposed a novel semantic segmentation
network called PortraitNet, which was specifically designed for real-time portrait seg-
mentation on mobile devices with limited computational power, and their experimental
results demonstrate both high accuracy and efficiency [33]. Hyojin Park et al. introduced
SINet, which executes well on mobile devices with 100.6 frames per second, and has a
high accuracy of 95.29% [34]. FCN was proposed by Jonathan Long et al., and adapts
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the contemporary classification networks into fully convolutional networks and trans-
fers their learned representations by fine-tuning to the segmentation task, achieving a
state-of-the-art performance [35]. Mark Sandler et al. proposed a new mobile architecture,
MobileNetV2, which improves the performance of mobile models on multiple tasks and
benchmarks [36]. Its main contribution is a novel layer module. Andrew Howard et al.
presents the next generation of MobileNets called MobileNetV3 in their work, based on a
combination of complementary search techniques as well as novel architecture design [37].
Jimei Yang et al. introduced a DL algorithm for Contour Detection with a Fully Convolu-
tional Encoder-Decoder Network (CEDN) [38]. This Fully Convolutional Encoder-Decoder
was developed, inspired from a fully convolutional network and unpooling layers from
deconvolutional network, and it focuses on detecting higher level object contours. Authors
compared it with traditional methods and observed that proposed DL-based contour de-
tections outperformed traditional methods and other DL-based approaches. Xianzhi et al.
proposed a boundary-sensitive network for portrait segmentation, and authors showed
the DL-based portrait segmentation outperformed the graph cut method [31]. Hyojin
Park et al. introduced a new extremely lightweight portrait segmentation model named
ExtremeC3Net, which even with far fewer parameters, produced competitive segmentation
accuracy with PortraitNet [39]. DeepLabV3 Network was introduced by Liang-Chieh
Chen et al., which significantly improves over their previous DeepLab versions without
DenseCRF post-processing, and attains comparable performance with other state-of-art
models [40]. Xi Chen et al. proposed the Boundary-Aware network (BANet), which is a
lightweight network architecture that focuses on extracting detailed information in the
boundary area to produce a high-quality segmented image in less time [41].

A segmentation model learns a desired task from the given inputs to produce the
expected output. In this paper, we combine the outputs of DL-based image segmentation
models. These models use the Convolution Neural Network (CNN) DL algorithm. CNN
has led to the development of state-of-the-art segmentation models, among which six
portrait segmentation models are used in this paper. The FCN model owes its name to
its architecture; this model uses a novel method to obtain a better upsampled feature
map. The MobileNetV2 model has used a unique architecture to improve the performance
on small devices. The other portrait segmentation models used in this paper have their
architectures built based on the Encoder-Decoder architecture. The pooling layer in encoder
module produces low-resolution feature map containing high-level information, and the
decoder module aims to produce high-resolution segmentation output from the high-
level information received from the encoder. Figure 1 shows the simple structure of the
Encoder-Decoder model in general, for portrait segmentation.
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2.2. Soft Voting Ensemble

In contrast to ordinary learning approaches, which try to construct one learner from
training data, ensemble methods try to construct a set of learners and combine them.
Generally, an ensemble is constructed in two steps, i.e., generating the base learners and
then combining them. To get good ensemble, it is generally believed that the base learners
should be as accurate and diverse as possible. There are many ensemble learning algo-
rithms. Averaging and Voting are the most popular and fundamental ensemble methods for
numeric and nominal outputs [42]. Considering classification as an example, the working
of voting can be explained as, supposing a set of T individual classifiers {h1, . . . , hT} are
given where h indicates the classifiers. The task is to combine set of classifiers to predict the
class label from a set of l possible class labels {c1, . . . , cl}, where c is the class label. There
are many types of voting, such as Majority voting, Plurality voting, Weighted voting, Soft
voting, etc. Soft voting is used for individual classifiers which produce class probability
outputs. In this method, the individual classifier hi outputs a l-dimensional vector (h1(x),
. . . , hl(x))T for instance of x, where hj(x) ∈ [0, 1] i.e., hj(x) which is the output of classifier
hi for the class label cj, can be regarded as an estimate of the posterior probability. Soft
voting is further classified into Simple Soft Voting and Weighted Soft Voting. In simple soft
voting the individual classifiers are treated equally, and it generates the combined output
by simply averaging all the individual outputs. The final output for class cj is given in
Equation (1) below [42]:

H j(x) =
1
T

T

∑
i=1

hj
i(x) (1)

In weighted soft voting, the individual outputs are combined with different weights.
The weighted soft voting method takes any of the following three forms:

• A class-specific weight is assigned to each classifier, and the combined output for class
cj is given in Equation (2) below

H j(x) =
T

∑
i=1

wih
j
i(x) (2)

where wi is the weight assigned to the classifier hi.

• A class-specific weight is assigned to each classifier per class, and the combined output
for class cj is given in Equation (3) below

H j(x) =
T

∑
i=1

wj
i h

j
i(x) (3)

where wj
i is the weight assigned to the classifier hi for the class cj.

• A weight is applied to each example of each class for each classifier, and the combined
output of cj is given in Equation (4) below

H j(x) =
T

∑
i=1

m

∑
k=1

wj
ikhj

i(x) (4)

where wj
ik is the weight of the instance xk of the class cj for the classifier hi.

Equation (4) is not often used in real practice, since it may involve a large number of
weight coefficients. The weights wi’s are usually assumed to be constrained, as given in
Equation (5) below:

wi ≥ 0 and
T

∑
i=1

wi = 1 (5)
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In this paper, simple soft voting using Equation (1) and weighted soft voting using
Equation (2) are used to make an ensemble of the individual portrait segmentation models,
as they are simple and efficient approaches to obtain effective results.

3. Materials and Methods
3.1. Experimented Portrait Segmentation Models

In this paper, we used PortraitNet (PN), SINet (SN), FCN, MobileNetV2 (MNV2),
MobileNetV3 (MNV3) and the CEDN for our experiment. Table 1 shows the model names,
the dataset used for training the model, the input image resolution of the model and the
dataset used for testing the model.

Table 1. Training and testing dataset of models.

Model Training Dataset Resolution Testing Dataset

CEDN [38] AISegment 224 × 224 EG1800 + CDI
FCN [35] PASCAL VOC 2011 500 × 500 EG1800 + CDI

MobileNetV2 [36] Custom 128 × 128 EG1800 + CDI
MobileNetV3 [37] Custom 224 × 224 EG1800 + CDI
PortraitNet [33] EG1800 224 × 224 EG1800 + CDI

SINet [34] EG1800 224 × 224 EG1800 + CDI

The AISegment dataset [43], which is publicly available for portrait segmentation
training and testing, was used to train the CEDN model. The Custom dataset consists
of 18,698 portrait images which are publicly available on websites, and was used by the
MobileNetV2 and MobileNetV3 pre-trained models. The EG1800 dataset [44] consists of
1447 publicly available images for training and 289 images for validation. In this paper,
270 images from the validation set of EG1800 dataset and 298 validation portrait image
datasets collected from publicly available websites (we call it the “CDI” dataset) were used
for the experiment.

3.2. Ensemble of Portrait Segmentation Models

In machine learning, ensemble models are developed by combining the prediction of
multiple individual models to improve the overall predictions. The ensemble model can
be created either by combining multiple modelling algorithms or using different training
datasets. The main purpose of ensemble method is to reduce the generalization error
in the machine learning algorithms. In this paper, we propose the ensemble approach
of n portrait segmentation models to enhance the accuracy performance of the single
models, where n indicates the number of single models combined at a time. Figure 2
shows the structure of ensemble approach of n portrait segmentation models. Consider
a set of T number of portrait segmentation models i.e., {L1, L2, L3, . . . , LT}, where Li are
individual portrait segmentation models (First-Level learners). The input images from
the EG1800 + CDI datasets are fed to the individual models, and the segmented output
masks are obtained and stored. These individual segmented output masks are combined
to enhance final outputs. For the ensemble of the outputs of individual models, the simple
soft voting method and weighted soft voting method are used in this research. The idea of
the ensemble is to learn from the outputs of individual models, and collectively produce a
better segmented result.

In this paper, weighted soft voting method is used as a Meta-Classifier of stacking
ensemble. Stacking is the process of training individual classifiers called First-Level learners
and combiners called Second-Level learners, or Meta-Learners that combine them [19,45,46].
The basic idea of stacking ensembles is to train First-Level learners using the original
dataset, and the classification results generated by these learners will be used as a new
training dataset for Second-Level learner. Here, the labels of the original dataset are still
used as the labels of the new training dataset. Figure 3 shows the diagram of stacking
ensemble, where D, the original dataset {(x1, y1), (x2, y2, . . . , (xm, ym)}, L1, . . . , LT are
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First-Level learners, and L is the Second-Level learner, where T is the number of learners
and m is the number of datasets. Although heterogeneous learning algorithms are often
used as First-Level learners, it is also possible to use homogeneous learning algorithms. In
this paper, segmentation models of Table 1 are used as First-Level learners and weighted
soft voting is used for Second-Level learners. First level learners L1, . . . , LT are executed
using individual segmentation models. The segmentation results from these First-Level
learners are collected, and the collected new dataset and original ground truth are fed to the
Second-Level learner to train optimal weight values for weighted soft voting. For simple
soft voting, weight values are not trained as the results of First-Level learners are treated
equally. The Second-Level learner learns weight values for ensemble from the results of
First-Level learners (D1, D2, . . . , DT).
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3.3. Concept of Combining Segmented Outputs

In this paper, simple soft voting and weighted soft voting as a Meta-Classifier in
a stacking ensemble were used to combine the segmented output masks of individual
models. In the simple soft voting method using Equation (1), the weights of outputs of
individual models are treated equally. In weighted soft voting using Equation (2), the
weights of outputs of individual models are not equal, and are trained from the result
of First-Level classifiers in the stacking ensemble to find a respective weight ratio. The
segmented output mask generated from individual models have a binary value, i.e., 1 or
0. This binary value was converted into probability value by applying the Gaussian Blur
function. Gaussian Blur is commonly used in image processing to smoothen and reduce
the noise in the image. Gaussian Blur uses a non-uniform low pass filter that preserves
the low spatial frequency, and reduces the noise and negligible details in the image. It
belongs to linear smoothing filters class with weights according to the shape of a Gaussian
function [47]. The 2-Dimensional Gaussian filter is defined in Equation (6) below [48]

G(x, y) =
1

2πσ2 e
−(x2+y2)

2σ (6)

where G is the Gaussian mask at the location with coordinates x and y, and σ is the
parameter which defines the standard deviation of the Gaussian. The value of σ is directly
proportional to the image smoothing effect. In this paper, Gaussian Blur is used to convert
the binary image mask into the probability distribution, which indicates how much the
pixel is close to the segmented human region. Figure 4 shows the effect of applying
Gaussian Blur to a binary image mask. The left metrics shows 9 × 9 pixels divided into two
values, 1 or 0. If the pixel value is 1, then it belongs to the segmented foreground region. If
the pixel value is 0, then it belongs to the background region. The right metrics shows that
the binary pixel values are converted into probability values after applying Gaussian Blur
using a 5 × 5 kernel. If the pixel value is closer to 1, then it has higher probability to belong
to the segmented foreground region. Converting the binary pixel value into the probability
value is also useful to calculate Equations (1) and (2).
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3.4. Performance Measurement

In this paper, the IoU metric was used for performance measurement. The IoU is a
metric used to measure the accuracy of a classifier. When A is a segmented image and B is
a ground truth image, then IoU is defined as the Equation (7) below

IoU =
A ∩ B
A ∪ B

(7)

where A ∩ B is intersection of A and B, and A ∪ B is the union of A and B. In this paper,
we used IoU standard deviation to measure the variance of prediction. FNR and FDR
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were calculated to validate the accuracy enhancement. FNR measures the false rate of the
segmentation area, which is smaller than the ground truth. FDR measures the false rate of
the segmentation area, which is larger than the ground truth. FNR and FDR are given as in
Equations (8) and (9) below

FNR =
FN

FN + TP
(8)

FDR =
FP

FP + TP
(9)

Where TP is True Positive, FP is False Positive and FN is False Negative values of the
segmented image. It is known that the ensemble of multiple classifiers can reduce the bias
error of classifiers. In this paper, we used FDR + FNR to measure the bias error, as the bias
error indicates the amount of difference between the prediction and true values.

To measure cost efficiency of models, the Memory Efficiency Ratio (MER) and Com-
puting Efficiency Ratio (CER) are used. In general, the efficiency ratio indicates the costs as
a percentage of gain (costs/gain). MER measures the memory efficiency of a model, which
indicates the required memory size to gain certain accuracy. When P is parameter size of a
model and IoU is accuracy metric of a model given by Equation (7), then MER is defined as
Equation (10) below:

MER =
P

IoU
(10)

CER measures the computing power efficiency of the model, which indicates the required
computing power to gain certain accuracy. When C is the Floating Point Operations
(FLOPs) of a model and IoU is accuracy metric of a model given by Equation (7), then CER
is defined as Equation (11) below:

CER =
C

IoU
(11)

3.5. Experiment Environment

In this paper, two groups of five state-of-the-art portrait segmentation models were
used for the experiment. One group is used to evaluate IoU value, IoU standard deviation
and false prediction rate, while another group is used to evaluate cost efficiency. For
the experiment, the Two-Models ensemble and Three-Models ensemble were used to
demonstrate the proposed ensemble approach. All possible two and three combinations
of five single models were experimented for accuracy and cost efficiency measurements.
The outputs of single models were combined using simple soft voting and weighted soft
voting as a Meta-Classifier in a stacking ensemble. Equation (1) for simple soft voting
and Equation (2) for weighted soft voting were used for the ensemble of single models.
The validation images of EG1800 and CDI dataset were fed to the single models, and then
the segmented output masks from these single models were combined using ensemble
methods. A total of 568 portrait images of the EG1800 + CDI dataset were used to evaluate
the accuracy and cost efficiency of individual portrait segmentation models and proposed
ensemble models. The experiment results of Two-Models and Three-Model ensemble were
compared with the result of single models and analysed. This experiment was conducted
on an Ubuntu 18.4.4 LTS operating system. All the training and testing was performed
using GeForce GTX 1080 GPU.

4. Results

In this section, the experiment’s result and its analysis of single models, Two-Models
ensemble and Three-Models ensemble, are presented. IoU, IoU standard deviation, FNR
and FDR are used to measure the accuracy of single models and suggested ensemble
models.
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4.1. Result of Individual Portrait Segmentation Models

Table 2 shows the experiment results of five single models. The best performed results
are highlighted in bold. The MNV2 model shows 96.2082% of IoU, and is the highest
accuracy among the experimented single models. The FCN model shows the lowest
accuracy, with 95.2268% of IoU. The false prediction rate (FNR + FDR) shows a lower value,
when the model has a higher IoU value.

Table 2. Result of single portrait segmentation models.

Model IoU (%) IoU Std. (%) FNR (%) FDR (%) FNR + FDR (%)

MNV2 96.2082 3.9133 1.8405 2.0252 3.8657
PN 95.6992 3.7915 2.6215 1.7656 4.3871
SN 95.4326 4.4658 3.1167 1.5555 4.6722

CEDN 95.3317 5.724 2.9089 1.8587 4.7676
FCN 95.2268 5.6956 1.1538 3.6887 4.8425

Note: The best results are highlighted in bold.

4.2. Result of Two-Models Ensemble

In Tables 3 and 4, all possible combination of Two-Models ensemble and Three-
Models ensemble of five single models were experimented on using simple soft voting and
weighted soft voting as a Meta-Classifier in a stacking ensemble. The first column shows
the model combination; the other columns show IoU, IoU standard deviation and false
prediction rate (FNR + FDR). Table 3 shows the experiment result of Two-Models ensemble.
The best results of the experiment are highlighted in the table. In the experiment, the FCN
+ PN ensemble shows the highest IoU, and the lowest false prediction rate for both simple
soft voting and weighted soft voting. FCN + MNV2 ensemble also shows good results
similar to the FCN + PN ensemble. It is also observed that the weighted soft voting as a
Meta-Classifier in a stacking ensemble produces a higher IoU value than the simple soft
voting, i.e., the accuracy of ensemble models using the weighted soft voting is better than
simple soft voting in a same model combination.

Table 3. Result of Two-Models ensemble.

Two-Models
Simple Soft Voting Weighted Soft Voting

IoU (%) IoU Std. (%) FNR + FDR (%) IoU (%) IoU Std. (%) FNR + FDR (%)

CEDN + FCN 96.1564 4.2910 3.9039 96.1761 4.2368 3.8844
CEDN + MNV2 96.0816 4.5499 3.9821 96.5388 3.8342 3.5260

CEDN + PN 95.6933 4.4740 4.3710 96.0668 3.7005 4.0086
CEDN + SN 95.4314 5.0148 4.6411 95.8786 4.2163 4.2067

FCN + MNV2 96.5291 3.2504 3.5288 96.5343 3.2250 3.5234
FCN + PN 96.5817 3.2392 3.4697 96.6145 3.2251 3.4368
FCN + SN 96.1484 3.9143 3.9193 96.1824 3.8603 3.8850

MNV2 + PN 96.3509 3.7448 3.7013 96.3666 3.7380 3.6855
MNV2 + SN 96.0737 4.2989 3.9832 96.4589 3.7204 3.6055

PN + SN 95.6686 4.1997 4.4049 95.9469 3.7007 4.1324

Note: The best results are highlighted in bold.

4.3. Result of Three-Models Ensemble

Table 4 shows the result of Three-Models ensemble. The best results of the experiment
are highlighted in the table. The FCN + MNV2 + SN ensemble shows the highest IoU and
the lowest false prediction rate in both simple soft voting and weighted soft voting. Like
the result of Two-Models ensemble, it is observed that the weighted soft voting produces
higher accuracy than the simple soft voting.
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Table 4. Result of Three-Models ensemble.

Three-Models
Simple Soft Voting Weighted Soft Voting

IoU (%) IoU Std. (%) FNR + FDR (%) IoU (%) IoU Std. (%) FNR + FDR (%)

CEDN + FCN + MNV2 97.2154 2.9288 2.8215 97.2158 2.9403 2.8207
CEDN + FCN + PN 97.0443 3.1649 2.9962 97.1085 3.1375 2.9284
CEDN + FCN + SN 97.0900 2.9497 2.9502 97.1310 2.8957 2.9060

CEDN + MNV2 + PN 96.7472 3.2006 3.3030 96.7952 3.2640 3.2563
CEDN + MNV2 + SN 96.7973 3.1886 3.2523 96.8070 3.2077 3.2440

CEDN + PN + SN 96.4518 3.2560 3.6061 96.4617 3.3474 3.5954
FCN + MNV2 + PN 97.2357 2.7784 2.7979 97.2508 2.7654 2.7815
FCN + MNV2 + SN 97.3061 2.5434 2.7305 97.3132 2.5360 2.7224

FCN + PN + SN 96.9507 2.9330 3.0917 97.0841 2.8749 2.9526
MNV2 + PN + SN 96.7476 2.9922 3.3023 96.8395 2.9594 3.2090

Note: The best results are highlighted in bold.

4.4. IoU Comparison

From Tables 3 and 4, the average of IoU, the average of IoU standard deviation and the
average of the false prediction rate for individual models in both Two-Models ensemble and
Three-Models ensemble were calculated. To calculate the average value of a single model,
results are collected from Two-Models ensembles or Three-Models ensembles where the
single model occurs. For example, the IoU of MNV2 in Two-Models ensemble is the average
of IoU values taken from Two-Models ensembles where MNV2 occurs. Table 5 shows the
IoU comparison for a single model without ensemble, the Two-Models ensemble using
simple soft voting, the Two-Models ensemble using weighted soft voting, the Three-Models
ensemble using simple soft voting and the Three-Models ensemble using weighted soft
voting. It is observed that the MNV2 model, which has the highest IoU before ensemble,
shows the highest IoU in Two-Models ensemble using weighted soft voting. The FCN
model which has the lowest IoU before ensemble shows the highest IoU in the Two-Models
ensemble using simple soft voting, as well as in the Three-Models ensemble. It shows the
most improvement after ensemble, i.e., 95.2268% of IoU before ensemble is enhanced to
97.1839% after ensemble. The result shows that our approach to improve the accuracy
does not degrade the accuracy of models with higher IoU, and at the same time improves
the accuracy of models with lower IoU. Figure 5 is the graphical representation of IoU
comparison of individual models for no ensemble, the Two-Models ensemble and the
Three-Models ensemble. It is observed that the Three-Models ensemble shows the best
result compared to no ensemble and the Two-Models ensemble, while the Two-Models
ensemble shows a better result than no ensemble.

Table 5. Intersection over Union (IoU) value comparison.

Model
Without

Ensemble (%)
Two-Models Ensemble Three-Models Ensemble

Simple Soft Voting (%) Weighted Soft Voting (%) Simple Soft Voting (%) Weighted Soft Voting (%)

CEDN 95.3317 95.8407 96.1651 96.8910 96.9199
FCN 95.2268 96.3539 96.3768 97.1404 97.1839

MNV2 96.2082 96.2588 96.4747 97.0082 97.0369
PN 95.6992 96.0736 96.2487 96.8629 96.9233
SN 95.4326 95.8305 96.1167 96.8906 96.9394

Note: The best results are highlighted in bold.
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4.5. IoU Standard Deviation Comparison

Table 6 shows the comparison of IoU standard deviation. The IoU standard deviation is
a measure of the amount of variation of IoU values. A low IoU standard deviation indicates
that the IoU values tend to be close to the mean IoU. In Table 6, the experiment results
of IoU standard deviation for the single model without ensemble, Two-Models ensemble
using simple soft voting, Two-Models ensemble using weighted soft voting, Three-Models
ensemble using simple soft voting and Three-Models ensemble using weighted soft voting
are presented. The IoU standard deviation of the PN model, which is the lowest before
ensemble, i.e., 3.7915, is reduced to 3.0581. The FCN model, which is the second highest of
IoU standard deviation before ensemble, i.e., 5.6956, is reduced to 2.8583 after ensemble
shows the most improvement. The result shows that the Two-Models and Three-Models
ensemble produce a better result than the single model in most cases.

Table 6. IoU standard deviation comparison.

Model
Without

Ensemble (%)
Two-Models Ensemble Three-Models Ensemble

Simple Soft Voting (%) Weighted Soft Voting (%) Simple Soft Voting (%) Weighted Soft Voting (%)

CEDN 5.7240 4.5824 3.9970 3.1148 3.1321
FCN 5.6956 3.6737 3.6368 2.8830 2.8583

MNV2 3.9133 3.9610 3.6294 2.9387 2.9455
PN 3.7915 3.9144 3.5911 3.0542 3.0581
SN 4.4658 4.3569 3.8744 2.9772 2.9702

Note: The best results are highlighted in bold.

4.6. False Prediction Rate Comparison

Table 7 shows the experiment result of false prediction rate for the single model, Two-
Models ensemble and Three-Models ensemble using the weighted soft voting method. In
the table, the lower FDR + FNR value means the lower bias error as the bias error indicates
the amount of difference between prediction and true values. The result shows that MNV2
has the lowest FDR + FNR value in the single model and Two-Models ensemble. MNV2,
which is the lowest before ensemble, i.e., 3.8657, is reduced to 3.0057 after ensemble. The
FCN model shows the most improvement after ensemble. The average of FDR + FNR
shows that the Two-Models ensemble and Three-Models ensemble produce a lower bias
error than the single model. It is also observed that the average of FDR + FNR is decreased
as the number of single models combined for the ensemble is increased. In the table,
|FDR-FNR| means the absolute value of FDR-FNR. This value indicates the amount of
difference between FDR and FNR values. If this value is close to 0, then the model produces
a well-balanced result in terms of falsely predicted regions. If the value is increased, then it
means that falsely predicted positive regions are increased, while falsely predicted negative
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regions are decreased, or vice versa. From the average value in the table, it is observed
that |FDR-FNR| values decrease significantly, as the number of models for the ensemble
increases.

Table 7. False Prediction Rate comparison.

Model
No Ensemble Two-Models Ensemble Three-Models Ensemble

FDR + FNR (%) |FDR-FNR| (%) FDR + FNR (%) |FDR-FNR| (%) FDR + FNR (%) |FDR-FNR| (%)

CEDN 4.7676 1.0502 3.9064 0.8293 3.1251 0.0074
FCN 4.8425 2.5349 3.6824 0.6087 2.8519 0.5696

MNV2 3.8657 0.1847 3.5851 0.4701 3.0057 0.0913
PN 4.3871 0.8559 3.8158 0.9000 3.1205 0.0530
SN 4.6722 1.5612 3.9574 0.8845 3.1049 0.0167

Average 4.5070 1.2374 3.7894 0.7385 3.0416 0.1476

Note: The best results are highlighted in bold.

4.7. Examples of FNR Reduction

Figures 6 and 7 show the comparison of reduction in the FNR. The first picture shows
ground truth image, the middle pictures show the segmented image masks of single models
and the last picture shows the segmented image mask of the ensemble model. As the FNR
indicates the error rate of missing regions compared to ground truth image, the result
shows that the missing regions of single models were recovered after ensemble. In Figure 6,
the examples show the reduction of FNR after the ensemble of FCN + MNV2. Figure 7
shows the reduction of FNR after the ensemble of FCN + MNV2 + SN.

Entropy 2021, 23, x FOR PEER REVIEW 14 of 21 
 

 

    
(a) (b) (c) (d) 

    
(a’) (b’) (c’) (d’) 

Figure 6. False Negative Rate (FNR) Reduction after Two-Models ensemble: (a) Ground Truth; (b) Fully Convolution 
Network (FCN) model (FNR = 3.4133); (c) MNV2 model (FNR = 2.9808); (d) FCN + MNV2 ensemble (FNR = 2.509); (a’) 
Ground Truth; (b’) FCN model (FNR = 2.0703); (c’) MNV2 model (FNR = 1.3135); (d’) FCN + MNV2 ensemble (FNR = 
0.8886). 

     
(a) (b) (c) (d) (e) 

     
(a’) (b’) (c’) (d’) (e’) 

Figure 7. FNR Reduction after Three-Models ensemble: (a) Ground Truth; (b) FCN model (FNR = 4.1949); (c) MNV2 model 
(FNR = 3.1227); (d) SINet (SN) model (FNR = 1.9007); (e) FCN + MNV2 + SN ensemble (FNR = 1.2246); (a’) Ground Truth; 
(b’) FCN model (FNR = 2.0484); (c’) MNV2 model (FNR = 1.1793); (d’) SN model (FNR = 2.0181); (e’) FCN + MNV2 + SN 
ensemble (FNR = 0.8792). 

4.8. Examples of FDR Reduction 
Figures 8 and 9 show the comparison of reduction in the FDR. The first picture shows 

the ground truth image, while the middle pictures show the segmented image masks of 
single models and the last picture shows the segmented image mask of ensemble model. 
As the FDR indicates the error rate of extra regions compared to the ground truth image, 
the result shows that the extra regions of single models were removed after the ensemble. 
In Figure 8, the examples show the reduction of FDR after ensemble of FCN + MNV2. 
Figure 9 shows the reduction of FDR after ensemble of FCN + MNV2 + SN. The results 
show that the proposed ensemble approaches produces a lesser error rate than single 

Figure 6. False Negative Rate (FNR) Reduction after Two-Models ensemble: (a) Ground Truth; (b) Fully Convolution
Network (FCN) model (FNR = 3.4133); (c) MNV2 model (FNR = 2.9808); (d) FCN + MNV2 ensemble (FNR = 2.509); (a’)
Ground Truth; (b’) FCN model (FNR = 2.0703); (c’) MNV2 model (FNR = 1.3135); (d’) FCN + MNV2 ensemble (FNR = 0.8886).
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Figure 7. FNR Reduction after Three-Models ensemble: (a) Ground Truth; (b) FCN model (FNR = 4.1949); (c) MNV2 model
(FNR = 3.1227); (d) SINet (SN) model (FNR = 1.9007); (e) FCN + MNV2 + SN ensemble (FNR = 1.2246); (a’) Ground Truth;
(b’) FCN model (FNR = 2.0484); (c’) MNV2 model (FNR = 1.1793); (d’) SN model (FNR = 2.0181); (e’) FCN + MNV2 + SN
ensemble (FNR = 0.8792).

4.8. Examples of FDR Reduction

Figures 8 and 9 show the comparison of reduction in the FDR. The first picture shows
the ground truth image, while the middle pictures show the segmented image masks of
single models and the last picture shows the segmented image mask of ensemble model.
As the FDR indicates the error rate of extra regions compared to the ground truth image,
the result shows that the extra regions of single models were removed after the ensemble.
In Figure 8, the examples show the reduction of FDR after ensemble of FCN + MNV2.
Figure 9 shows the reduction of FDR after ensemble of FCN + MNV2 + SN. The results
show that the proposed ensemble approaches produces a lesser error rate than single
models. This means that the proposed ensemble approaches produce better results than
original single models.
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Entropy 2021, 23, 197 15 of 20

Entropy 2021, 23, x FOR PEER REVIEW 15 of 21 
 

 

models. This means that the proposed ensemble approaches produce better results than 
original single models. 

    
(a) (b) (c) (d) 

    
(a’) (b’) (c’) (d’) 

Figure 8. FDR Reduction after Two-Models ensemble: (a) Ground Truth; (b) FCN model (FDR = 4.1350); (c) MNV2 model 
(FDR = 4.7834); (d) FCN + MNV2 ensemble (FDR = 3.2252); (a’) Ground Truth; (b’) FCN model (FDR = 3.5817); (c’) MNV2 
model (FDR = 3.007); (d’) FCN + MNV2 ensemble (FDR = 2.7056). 

     
(a) (b) (c) (d) (e) 

     
(a’) (b’) (c’) (d’) (e’) 

Figure 9. FDR Reduction after Three-Models ensemble: (a) Ground Truth; (b) FCN model (FNR = 10.3002); (c) MNV2 
model (FDR = 3.4146); (d) SN model (FDR = 5.9966); (e) FCN + MNV2 + SN ensemble (FDR = 2.5271); (a’) Ground Truth; 
(b’) FCN model (FNR = 21.6792); (c’) MNV2 model (FDR = 2.4938); (d’) SN model (FDR = 5.2547); (e’) FCN + MNV2 + SN 
ensemble (FDR = 2.1429). 

4.9. Portrait Segmentation Examples 
Figures 10 and 11 show the segmented results of single models and proposed ensem-

ble models. The first column is the original image, the second column is ground truth 
segmentation, followed by single models’ segmentation, and the last column is the pro-
posed ensemble model’s segmentation. 

Figure 9. FDR Reduction after Three-Models ensemble: (a) Ground Truth; (b) FCN model (FNR = 10.3002); (c) MNV2 model
(FDR = 3.4146); (d) SN model (FDR = 5.9966); (e) FCN + MNV2 + SN ensemble (FDR = 2.5271); (a’) Ground Truth; (b’) FCN
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4.9. Portrait Segmentation Examples

Figures 10 and 11 show the segmented results of single models and proposed en-
semble models. The first column is the original image, the second column is ground
truth segmentation, followed by single models’ segmentation, and the last column is the
proposed ensemble model’s segmentation.
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4.10. Cost Efficiency Analysis

In general, the ensemble of single classifiers can improve the accuracy of individual
classifiers, but it requires more memory and computing power than single classifier, as the
ensemble model has to execute all individual classifiers to combine its results. The total use
of memory and computing power of ensemble model will be the summation of individual
models included in it. The same results can be observed in our experiments. The averaged
results of single models, Two-Models ensemble and Three-Models ensemble show that
ensemble models generally improve segmentation accuracy, but also increase the use of
memory and computing power.

To measure and compare the efficiency of single models and ensemble models, MER
using Equation (10) and CER using Equation (11) were used. MER indicates the required
memory size to achieve certain accuracy, where lower MER is more efficient in memory
usage. CER indicates required computing power to achieve certain accuracy, while lower
CER is more efficient in computing power usage. For the experiment, the EG1800 + CDI
dataset was fed to the SN, PN, MNV3, MNV2 and FCN models, and the result of individual
models was combined using the Two-Models ensemble and Three-Models ensemble. The
simple soft voting method was used to make an ensemble of single models. Tables 8–10
show the efficiency rate of single models and ensemble models. The first column shows the
model name, followed by the number of parameters (Params), FLOPs, IoU values, MER
values and CER values of each models. The IoU value of ensemble models was calculated
from the result of the simple soft voting ensemble.

In Table 8, the SN model shows the lowest MER and CER values compared to other
single models. In the table, the SN, PN and MNV3 models show a lower MER and CER
value than MNV2. This means that SN, PN and MNV3 are more cost efficient than MNV2,
even though MNV2 shows the best IoU value, indicating the most accurate in segmentation.
Table 9 shows the efficiency rate of the Two-Models ensemble. In the table, Params is the
summation of Params of two individual models, FLOPs is the summation of FLOPs of
two individual models and the IoU value is the result of the ensemble model. Comparing
the FCN model in Table 8, the FCN + SN ensemble shows a lower MER and CER value,
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while the IoU value is higher than FCN single model, and it indicates that FCN + SN
combination is a cost-efficient ensemble model with better accuracy than the FCN single
model. Table 10 shows the efficiency rate of the Three-Models ensemble. In the table,
Params is the summation of Params of three individual models, FLOPs is the summation
of FLOPs of three individual models and the IoU value is the result of the ensemble model.
Comparing the MNV2, which shows the highest accuracy among experimented single
models, the MNV3 + PN + SN ensemble shows a lower MER and CER value, while the
IoU value is higher than the MNV2 single model. The summation of Params and FLOPs
of MNV3 + PN + SN are also less than the MNV2 single model. These results show that
the ensemble model can perform with the same or higher accuracy than single models in a
cost-efficient way.

Table 8. Efficiency rate of single models.

Model Params (M) FLOPs (G) IoU (%) MER CER

SN 0.087 0.15 95.4326 0.091 0.157
PN 2.115 0.209 95.6992 2.210 0.218

MNV3 1.192 2.3724 94.7597 1.258 2.504
MNV2 3.625 7.227 96.2082 3.768 7.512
FCN 134.27 62.89 95.2268 141.000 66.042

Average 28.2578 14.5697 95.4653 29.6654 15.2866

Table 9. Efficiency rate of Two-Models ensemble.

Model Params (M) FLOPs (G) IoU (%) MER CER

PN + SN 2.202 0.359 95.6686 2.302 0.375
MNV3 + SN 1.279 2.5224 95.6836 1.337 2.636
MNV3 + PN 3.307 2.5814 95.9492 3.447 2.690
MNV2 + SN 3.712 7.377 96.0737 3.864 7.678
MNV2 + PN 5.74 7.436 96.3509 5.957 7.718

MNV3 + MNV2 4.817 9.5994 96.0535 5.015 9.994
FCN + PN 136.385 63.099 96.5817 141.212 65.332
FCN + SN 134.357 63.04 96.1484 139.739 65.565

MNV3 + FCN 135.462 65.2624 96.016 141.083 67.970
FCN + MNV2 137.895 70.117 96.5291 142.853 72.638

Average 56.516 29.1394 96.1055 58.681 30.260

Table 10. Efficiency rate of Three-Models ensemble.

Model Params (M) FLOPs (G) IoU (%) MER CER

MNV3 + PN + SN 3.394 2.7314 96.5053 3.517 2.830
MNV2 + PN + SN 5.827 7.586 96.7476 6.023 7.841

MNV3 + MNV2 + SN 4.904 9.7494 96.6016 5.077 10.092
MNV3 + MNV2 + PN 6.932 9.8084 96.5125 7.182 10.163

FCN + PN + SN 136.472 63.249 96.9507 140.764 65.238
MNV3 + FCN + SN 135.549 65.4124 96.9736 139.779 67.454
MNV3 + FCN + PN 137.577 65.4714 96.8928 141.989 67.571
FCN + MNV2 + SN 137.982 70.267 97.3061 141.802 72.212
FCN + MNV2 + PN 140.01 70.326 97.2357 143.990 72.325

MNV3 + FCN + MNV2 139.087 72.4894 96.7122 143.815 74.954

Average 84.773 43.7090 96.8438 87.394 45.068

5. Discussion

The analysis of experiment results shows that IoU, IoU standard deviation and false
prediction rate of DL-based portrait segmentation models can be improved through an
ensemble. This indicates that the accuracy of segmentation can be enhanced, and variance
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and bias errors can be reduced using an ensemble of DL-based portrait segmentation
models. By increasing the number of single models participating in the ensemble from
two to three, higher accuracy and lower prediction errors can be produced. The weighted
soft voting method can be used to improve the accuracy of ensemble models that used the
simple soft voting method.

The analysis of cost efficiency shows that the ensemble of DL-based models typically
increases the use of memory and computing power, but also shows that the ensemble of
DL-based models that perform more efficiently than a single DL-based model with higher
accuracy using less memory and less computing power is possible.

6. Conclusions

In this paper, simple and efficient ensemble approaches for portrait segmentation
using six state-of-the-art DL-based portrait segmentation models were proposed, and the
experiment results of the Two-Models and Three-Models ensemble were presented and
analyzed. The simple soft voting method and weighted soft voting methods as a Meta-
Classifier in a stacking ensemble were used to combine the individual portrait segmentation
models. The images from validation set of EG1800 and CDI dataset were used for the
experiment. The IoU metric was used to evaluate the accuracy of single models and
the proposed ensemble approach. The IoU standard deviation and false prediction rate
were analyzed to evaluate the improvement in variance and bias errors. The efficiency
rate was analyzed to evaluate the efficiency of single models and the proposed ensemble
approach. The experiment result showed that the IoU value, IoU standard deviation and
false prediction rate of single models were significantly improved after ensemble. The result
of the ensemble using the weighted soft voting method showed better accuracy than the
simple soft voting method. It was also observed that the Three-Models ensemble showed
better results than the Two-Models ensemble in terms of accuracy, variance and bias errors.
The analysis of cost efficiency showed that the ensemble of DL-based portrait segmentation
models typically increased the use of memory and computing power. However, it has also
shown that the ensemble of DL-based portrait segmentation models can perform more
efficiently than a single DL-based portrait segmentation model with higher accuracy, using
less memory and less computing power.

In this paper, we evaluated six state-of-the-art DL-based portrait segmentation models
and compared them with the proposed ensemble approach. We also introduced meth-
ods to improve the performance of DL-based portrait segmentation models using the
ensemble approach, as well as methods to evaluate the performance of DL-based portrait
segmentation models and its ensemble models. We hope these findings will benefit other
researchers.
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