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Abstract: In kinetic exchange models, agents make transactions based on well-established micro-
scopic rules that give rise to macroscopic variables in analogy to statistical physics. These models
have been applied to study processes such as income and wealth distribution, economic inequality
sources, economic growth, etc., recovering well-known concepts in the economic literature. In this
work, we apply ensemble formalism to a geometric agents model to study the effect of saving
propensity in a system with money, credit, and debt. We calculate the partition function to obtain
the total money of the system, with which we give an interpretation of the economic temperature in
terms of the different payment methods available to the agents. We observe an interplay between the
fraction of money that agents can save and their maximum debt. The system’s entropy increases as a
function of the saved proportion, and increases even more when there is debt.

Keywords: econophysics; savings propensity; geometric models

1. Introduction

Econophysics brings together a set of theoretical and empirical achievements that
come from applying well-known tools and physics, particularly from thermodynamics and
statistical mechanics, to economics and financial markets. Its scope and applicability are
still being discussed [1]. On the one hand, there are strong criticisms about the veracity
of ideal hypotheses inherited from physical systems. However, recent evidence shows
that well-known concepts such as Solow’s economic growth, and economic inequality in
the sense of Piketty’s work, may arise from kinetic exchange models [2]. The truth is that
this area has influenced financial economics studies for the last twenty years and can be
considered a well-established current research branch [3].

The kinetic exchange gas-like models are inspired by molecular models of gases
formed by colliding particles [4]. As the particles of a gas exchange energy during collisions,
agents exchange a fraction of their capital under the hypothesis of the conservation of total
money [5]. With this approach, it has been possible to reproduce some patterns that are
observed in capitalist economic systems, such as the Pareto rule of wealth distribution [6].
These models’ main advantage, and the reason they have become attractive in various
disciplines, is that their mathematical formulation and numerical implementation are
very simple and straightforward [7]. They are so versatile that a wide range of practical
economic and social interest situations have been addressed with them [8].

Through exchange models, some economic inequality indices have been explained
and calculated from microscopic principles [9–11]. When studying the distribution of
income and wealth with these models, different trends have been verified, such as the
formation of classes [12,13]. Indeed, it has been seen that in the presence of labor unions,
government policies to reduce inequality, or other solidarity factors of social protection, the
corresponding wealth distribution changes to a bimodal distribution [14]. Although these

Entropy 2021, 23, 196. https://doi.org/10.3390/e23020196 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-7213-7386
https://doi.org/10.3390/e23020196
https://doi.org/10.3390/e23020196
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23020196
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/23/2/196?type=check_update&version=2


Entropy 2021, 23, 196 2 of 13

distributions are rare and seem unrealistic, they have also been found when considering
risky transactions and other stressful situations [15], such as an epidemic outbreak [16].
In order to simulate these theoretical models, it has been necessary to use different nu-
merical and computational tools such as Monte Carlo methods for open systems [17] or
classification methods for market behavior [18]. It has been shown how these exchange
models could serve as optimization algorithms [19], so it would be interesting to use other
techniques to study them [20,21].

Among the situations that can be addressed with these models, two are of interest
in the present work. The first is that agents can incur debt when requesting credit from
the bank. Credit and debt are introduced through a new variable that is different from
the money coming from income, in such a way that it could minimize negative values,
indicating the acquired debt [5]. The economic model, including credit and debt, was
first studied by Viaggiu et al., using the tools of the statistical ensembles [22]. There,
they adopt the Boltzmann–Gibbs distribution where energy is replaced by total money,
including income, credit, and debt. This method was extended to studying markets and
exchange economies through complex networks [23] and stock price formation processes
from the order book [24]. This last system has also been addressed with the Boltzmann
equation in a non-equilibrium situation [25]. The resulting aggregated economic variables
could be related to macroeconomics in the same way that the gas particles’ microscopic
energy gives rise to thermodynamics. It is worth noting that this idea of establishing a link
between classical thermodynamics and economics is not new and was first suggested by
Samuelson [26].

Just as in thermodynamics, where different microscopic interactions lead to measur-
able macroscopic effects, in agent models, it is possible to consider different transactions
between agents and see their effect in analogous thermodynamic quantities. One of the
interactions that can be modeled in this way, and we are interested in, is agent savings. In
this model, saving propensity is defined as the fraction of an agent’s money λ that will not
be spent during the transaction given by the corresponding exchange rule [27]. It is well
known that saving agents’ income distribution follows the so-called Gamma distribution
when the system reaches equilibrium. If the agents do not save, the Boltzmann–Gibbs
distribution, which usually models the lower-middle class, is recovered. Indeed, Pareto’s
law can be recovered for random savings within these models [28]. Furthermore, by con-
sidering that some agents have fixed savings and another sector has a random saving
propensity, this leads to a distribution that has an exponential zone and another zone
modeled by a power law, as observed in real economies [29]. The system of agents with
saving propensity has also been studied through other approaches. In [30], López-Ruíz et al.
introduce an analytical geometric model where agents’ money obeys an additive constraint
that defines an N-dimensional equiprobability surface. The corresponding analog of the
Hamiltonian contains the saving propensity as an exponent of a geometrical variable that
can be identified with the monetary variable.

In this thermodynamic-like approach, the aggregate variables can tell us about the
economic system’s behavior. For instance, the temperature of an economic system can be
used as an index that indicates, on average, how the total money available is distributed
among agents. For systems where agents can only pay with their given income, T turns
out to be simply the average money per agent [5]. However, when debt is introduced
or alternative means of payment are considered, this changes correspondingly [22]. On
the other hand, by considering saving propensity, the economic temperature reduces by a
factor that is a function of λ, analogous to the equipartition theorem of energy [30].

In this work, we study the thermostatistical properties of a kinetic exchange model that
describes a simple closed economy with income, savings, credit, and debt. We analytically
calculate the canonical partition function with the ensemble formalism, introducing the
agents’ saving propensity through the geometric approach. From the partition function,
we calculate the economic quantities that are analogous to the thermodynamic variables.
In general, we observe an interaction between the fraction of money that agents can save
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and the debt that they can acquire. Specifically, we obtain the economic temperature and
entropy. The economic temperature that we find can be read as the arithmetic means of two
terms, the first is the average money per agent reduced by the saving propensity, and the
second is related to the maximum overdraft. This second term reduces to d if no savings are
present. Nevertheless, when λ 6= 0, it turns out to be non-trivially coupled with average
money and the saving propensity. For a fixed temperature, debt induces an upper bound
for the percentage that agents can save, such that, as the value of debt increases, agents
save less. For entropy, we find that it has an increases in both temperature and savings.
However, a minimum temperature appears for which the model is valid, which depends
on the savings. Furthermore, these minimum temperatures and the entropy values change
depending on the maximum debt.

This paper is structured as follows. In Section 2, we review the fundamental concepts
of the geometric model for the distribution of the income for saving agents, and in Section 3,
we review the ensemble theory for money, credit, and debt. In Section 4, we present the
statistical ensemble for saving agents. We study the cases with and without debt and the
corresponding limit for when the agents do not save money in their transactions, recovering
the case studied by Viaggiu et al. [22], and Patriarca et al. [27], respectively. Finally, in the
last section, we present a summary and discussion of the obtained results and possible
future work routes.

2. Microscopic and Geometric Models for a System of Saving Agents

Let us consider a simple, discrete, closed economy model in which N agents can
exchange money in pairs. In the beginning, each agent has the same amount of money,
say M/N, where M is the total money in the system, so the initial distribution of capital is
uniform. Then, at each time step, a pair of agents (i, j) randomly chosen begin to interact
with each other, where i 6= j, and i, j = 1, 2, ..., N.

During the exchange, the capital of each agent changes following the next exchange
rule constrained to the fact that the total money is conserved.

u′i = ui + ∆u, u′j = uj − ∆u, (1)

where ui and u′i is the money of agent i before and after a transaction, respectively. The
amount exchanged ∆u is taken randomly and depends on the details of the transaction, for
instance, for constant saving propensity λ is

∆u = (1− λ)
[
εuj − (1− ε)ui

]
, (2)

where ε is a uniformly distributed random variable. In this case, during the transaction
between agents i and j, the money that can be reallocated is reduced by 1−λ, corresponding
to the fraction of the initial capital each agent has decided to use in the exchange. For
this model, the agents’ equilibrium distribution has been studied both analytically and
numerically, and it depends on the value of the saving propensity parameter. Specifically,
simulations point to a Gamma distribution for the money [27]

f (z)dz =
zn−1

Γ(n)
e−zdz, (3)

where z = nu
〈u〉 , 〈u〉 is the average money and

n(λ) =
1 + 2λ

1− λ
, (4)

is the shape factor of the Gamma distribution, which, in this context, is a function of the
saving propensity. For λ = 0, where there is no saving criterion, Equation (3) reduces to
the Boltzmann–Gibbs distribution [5]. Distribution (3) for increasing values of the saving
propensity can be seen in Figure 1.
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Figure 1. Gamma distribution function for distribution of money Equation (3) for different values of
the saving propensity λ. The green curve corresponds to λ = 0, the saving factor increases as it tends
to the blue, so the darker blue curve corresponds to λ = 0.9.

The same distribution can be obtained from a geometric perspective [30]. Let be a set
of positive variables {xi}i=1,...,N satisfy the constraint

xb
1 + xb

2 + . . . + xb
N =

N

∑
i=1

xb
i ≤ M, (5)

with b a positive real constant and M the total money. The equality in (5) defines a
symmetrical surface, it also defines a transaction between agents. Here, x is an internal
geometrical variable related to the capital per agent through the probability density [30].
The probability f (x)dx of finding an agent with generic coordinate x is proportional to
the volume VN−1

(
(M− xb)1/b

)
of all the points contained into the (N − 1)—dimensional

symmetrical region limited by the constraint (M− xb). A visualization of these surfaces
for the case of three agents is shown in Figure 2. Thus, by considering the normalization

condition, the distribution function is f (x) =
VN−1((M−xb)1/b)

VN(M1/b)
. By assuming that the volume

is proportional to the radius of the region, and for large N, it is possible to find the same
Gamma distribution (3) for the desired probability, with z = xb

b 〈xb〉 . Thus, by comparing
both expressions, we find

u
〈u〉 =

xb

〈xb〉
. (6)

where b = b(λ) = n(λ)−1. Note that in the particular case when b = 1, corresponding to
no savings, x is exactly the money of the agents. In this way, saving propensity appears
in the constriction through the power of the geometric variables. This model will allow
for a Hamiltonian formulation proposal that we will use when defining the saving agents’
ensemble.
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Figure 2. Constriction surfaces Equation (5) for three agents with M = 1, for different values of
b = 1, 3/4, 1/4, 1/28, which correspond to a saving propensity of λ = 0, 0.1, 0.5, 0.9, respectively.

3. Statistical Ensembles for Agents with Credit and Debt

As noted by Viaggiu et al. [22], to build an ensemble, it is only necessary to have a
conservation law. In their case, they introduce the total money in the system as a conserved
quantity, which depends on two possible variables—u the money of each agent coming
from income and v, which is a monetary variable whose positive values correspond to the
credit obtained by the agent, and its negative values to the acquired debt. Therefore, in
general

m(u, v) =
N

∑
i=1

(ui + vi). (7)

The canonical partition function is introduced as follows [22]

Z =
∫ ∫

dNu dNv e−
m(u,v)

T , (8)

where T is the economic temperature related to the average money per agent but depends
on agents’ interactions. With this definition of the partition function, it is possible to find
the thermodynamic variables in the same way as in equilibrium statistical mechanics.
In particular, entropy has the same interpretation, being proportional to the number of
microscopic configurations of the system; therefore, the equilibrium state corresponds to
the configuration that maximizes the entropy.

In order to interpret the meaning of economic temperature, let us briefly review three
cases. Firstly, let us consider the simple case M(u) = ∑i ui , so the integral of the partition
function (8) is simply

Z = VN
v TN , (9)
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where Vv is the integral over the v-variable, which is constant and depends only on the
domain of v, and can be interpreted as the maximum credit accessible in the system. From
the usual thermodynamic relationship for the internal energy, namely

M = T2 ∂

∂T
ln Z = NT, (10)

we can obtain the system’s total capital and the economic temperature as the mean capital
per agent T = M/N.

As mentioned above, in these gas-type models, debt can be modeled as negative
money; this appears when an agent does not have enough capital and borrows a certain
amount from a bank, which in this model will not charge interest, so the agent’s balance, in
the end, becomes negative [5,22]. Let us now consider the function money for credit and
debt as m(u, v) = ∑i(ui + vi) , where vi ∈ [−d, ∞) with d > 0. Thus, if vi is positive, the
agent has available credit that he can use in the same way as ui, while if vi is negative, he
has borrowed money previously, with maximum debt d, that for simplicity, we consider
the same for all agents. However, a more realistic situation would be for the bank to decide
which limit to impose on each agent based on their income and credit score. The partition
function and thermodynamic quantities can be calculated with the corresponding limits,
and the result is as follows:

Z = T2Ne
Nd
T , T =

1
2

(
M
N

+ d
)

. (11)

Let us explore a couple of features. In this case, the temperature is not simply the average
money per agent, but it is distributed among the different payment alternatives, namely,
the agent’s money and his approved credit.

Economic temperature T can be thought of as an index that relates the average money
to an agent’s debt capacity. For instance, if M/N < d then T/d < 1, which indicates that
in such an economy, the agents could not cover a debt d on average. Indeed, this ratio is
bounded when the average money is much lower than the amount of credit; then, T/d
tends to 1/2. In the case that M/N ∝ d, then T/d ≈ 1, which is the limit of the debt that
could be covered. Then, for an economy to have no problem with a credit amount d, we
should look for at least T/d > 1, which implies that, on average, M/N > d. Indeed, when
we ask for M/N � 2d, then T/d� 1, there will be enough liquidity to cover the debt in
this regime.

On the other hand, recalling the standard interpretation of the partition function Z
as the number of accessible microstates of the system for a given temperature, according
to the expression (11), the number of accessible states grows exponentially with the ratio
d/T. In fact, given those mentioned above, the more microscopic states are available for
the system, the more difficulty the agents will have to pay the debt.

We can go further, removing the credit from the agents and leaving them with the
debt d, which can be done if v ∈ [−d, 0), d > 0. In this case, the partition function and the
thermodynamic quantities are as follows:

Z = T2N(ed/T − 1)N , M = 2NT − Nd ed/T

ed/T − 1
. (12)

Although apparently in the limit d/T � 1, the expressions of the previous case are
recovered, this case is not valid in the corresponding regime, in addition to having the
aforementioned problems. However, if the debt is small, an expansion of the exponential
can be performed for d/T � 1, which implies that

Z ≈ TNdN
(

1 +O
(

d
T

))
, M ≈ N

(
T − d

2
+O

(
d2

T2

))
. (13)
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In this limit, economic temperature goes as

T ' M
N

+
d
2
+ . . . , (14)

which is consistent with M/N � d/2. The temperature of the system increases a little as
long as the debt is much less than twice the average capital.

4. Statistical Ensambles for Money, Credit and Debt with Saving Propensity

In this section, we study the effect of the saving propensity on thermodynamic quanti-
ties, particularly in terms of economic temperature, entropy, and in the partition function.
Given the Hamiltonian formulation in Section 2, we can construct different money functions
to calculate the corresponding thermodynamics and partition functions.

4.1. Case 1: Money and Savings

Let us consider directly the money function (5) and calculate the partition function
simply

Z =
∫ ∫

dN x dNy e−
1
T ∑i xb

i = VN
y

(∫
e−

xb
T dx

)N
, (15)

where b is given by the inverse of Equation (4). This integral can be easily related to the
Gamma function through a variable change, such that

Z = VN
y T

N
b Γ
(

1
b
+ 1
)N

. (16)

With the use of the definition (10), we can determine the economic temperature

M =
NT
b

, ⇒ T = b
M
N

. (17)

The expression (17) resembles the equipartition theorem of energy, which states that each
microscopic degree of freedom contributes by a term proportional to T to the total energy. In
this case, we can say that each agent contributes to the total money an amount proportional
to the economic temperature by a coefficient that is a function of the saving propensity,
Equation (4), such that 0 ≤ b ≤ 1. The ratio between temperature and the money per agent
decreases as the fraction of money saved increases, see Figure 3.

��� ��� ��� ��� ���
λ

���

���

���

���

���

� �

�

Figure 3. Plot of the ratio of economic temperature and the average money per agent as function of
the saving propensity.
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For the ideal gas, the equivalent ratio of T by the energy per particle is a constant
equal to 2/3, which depends on the functional form of the microscopic kinetic energy and
the dimension. Expression (17) was previously obtained by Patriarca et al. [27], where b−1

is interpreted as an effective dimension.
It is also possible to obtain the entropy of the system as typically done in thermody-

namic systems TS = M + T ln Z, with which the following expression is obtained:

S =
N
b

[
ln T + 1 + ln

(
1 +

1
b

)]
+ N ln Vy, (18)

where there is no emphasis on the indistinguishability of the agents. The expression (18) is
plotted in Figure 4, where, for each fixed value of λ, an increasing logarithmic behavior in
T can be seen, as occurs in thermodynamics with the well-known Sackur–Tetrode formula.
However, in this case, we see that the entropy begins to grow from a certain minimum
temperature that changes according to the agents’ saving capacity; the more they save, the
lower the minimum temperature is. Indeed, we can also observe that the more the agents
save, the more rapidly the entropy increases.

Figure 4. Plot of the ratio between the entropy and the number of agents (18) as a function of the
temperature T and the parameter b, with Vy = 1. The curves are presented for the values of b = 1
(red), 3/4 (purple), 1/4 (blue), 1/28 (cyan), which correspond to a saving propensity of λ = 0, 0.1, 0.5,
and 0.9, respectively.

4.2. Case 2: Savings, Money, Credit and Debt

To introduce credit and debt, we must add to the money constraint (5) an additional
term with monetary units in a similar way as was done in Equation (7). Let us call yb the
corresponding geometric variable, whose interpretation is similar to that of the Equation (6)
and must satisfy y ∈ [−d1/b, ∞). Here, we can identify d again as the maximum debt.
Therefore, for the money function m(x, y) = ∑i(xb

i + yb
i ), we can calculate the partition

function as follows:

Z =
∫ ∫

dN x dNy e−
1
T ∑i(xb

i +yb
i ) =

(∫ ∞

0
e−

xb
T dx

)N(∫ ∞

−d1/b
e−

yb
T dy

)N
. (19)

The first integral is, again, a gamma function, while the second one can be rewritten as the
upper incomplete gamma function Γ(b−1, zdT−1), where z = eiπb. This last term appears
due to the negative lower integration limit introduced by the debt. However, this function
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can be analytically continued to complex numbers, maintaining many of its real-valued
counterparts’ properties. In particular, it satisfies [31]:

Γ(a, rz) = zaΓ(a, r) + (1− za)Γ(a).

With this property together with the relation γ(a, x) + Γ(a, x) = Γ(a), with γ(a, x) the
lower incomplete gamma function [31], the partition function can be written as

Z =

{
T2/b

b2 Γ
(

1
b

)[
Γ
(

1
b

)
+ γ

(
1
b

,
d
T

)]}N

. (20)

By taking the derivative of the partition function, we find the total money of the system

M =
2NT

b

[
1− b

2

(
d
T

)1/b e−d/T

Γ
(

1
b

)
+ γ

(
1
b , d

T

)]. (21)

This expression is much more involved than in the previous cases; particularly, we realize
that we need to solve a transcendent equation to obtain the temperature. This implies
that economic temperature will no longer be directly proportional to the mean capital per
agent. Nevertheless, this also occurs in other physical systems, consider, for example, the
relativistic gas [32], where the proportionality between temperature and energy can only
occur in the non-relativistic and ultra-relativistic limits, for low and high temperatures,
respectively. For intermediate values of T, from a certain critical temperature [33], it is not
possible to have a simple relationship between these variables.

In order to have a more manageable expression of Equation (21), let us consider the
same expansion as in Section 3 for d� T. In such a case, the first terms of the expansion of
the exponential can be considered, and for the incomplete gamma function, the first terms
of the following series [31]

γ(a, x) = xa
∞

∑
k=0

(−1)k xk

k!(k + a)
, for x � 1. (22)

Hence, we obtain the following:

M ' 2NT
b

{
1− b

2Γ
(

1
b

)( d
T

)1/b
1− d

T
+

1
2

(
d
T

)2
− b

Γ
(

1
b

)( d
T

)1/b(
1− d

T
b + 2
b + 1

+ . . .
)
+ . . .

},

M ' 2NT
b

{
1− b

2Γ
(

1
b

)
( d

T

) 1
b
−
(

d
T

) b+1
b

+
1
2

(
d
T

) 2b+1
b
− b

Γ
(

1
b

)( d
T

) 2
b
+ . . .

}. (23)

First, we see that in the case where the agents do not save, i.e., b = 1, Equation (23) reduces
to M ≈ 2NT− dN, which is precisely Equation (11) that was obtained by Viaggiu et al. [22].
For b 6= 1, we can consider just the first term of the previous series

M ' 2NT
b

[
1− b

2Γ
(

1
b

)( d
T

) 1
b
]

. (24)

With this expression, it is possible to obtain an approximate expression for the entropy in
the same way as in the case of the previous subsection

S
N
' 2

b

[
1− b

2Γ
(

1
b

)( d
T

) 1
b
]
+

2
b

ln T − 2 ln b + 2 ln Γ
(

1
b

)
+

b

Γ
(

1
b

)( d
T

)1/b
, (25)
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where the last term corresponds to the approximation of the incomplete gamma function
with the leading term of (22). In the case b = 1, Equation (25) reduces to S ≈ 2N ln T + 2N,
obtained in [22]. We show in Figure 5, three graphs of S for different values of d. It can be
seen that the behavior is qualitatively similar to that of Figure 4. However, we note that
when d 6= 0, entropy grows faster as b decreases, or when saving increases. Furthermore,
as d increases, the behavior of the minimum T changes in each case.

Figure 5. Plot of the ratio between the entropy and the number of agents (25) as a function of the temperature T and the
parameter b for d = 0.1, 0.5, 1. We note a change in the behavior of S as d grows. Again, the curves are for b = 1 (red), 3/4
(purple), 1/4 (blue), 1/28 (cyan), and correspondingly λ = 0, 0.1, 0.5, and 0.9.

To interpret the economic temperature, in this case, consider Equation (24) and solve
for T as follows:

T ' Mb
2N

[
1 +

b

2Γ
(

1
b

)( d
T

) 1
b
]

. (26)

Let us realize that T still appears on the right-hand side of the above expression. However,
as a first approximation, we can consider T0 ∼ Mb/2N, and replace it into Equation (26),
to have an iterated solution, as shown below.

T ≈ Mb
2N

+
d1/b

2Γ
(

1
b

) (Mb
2N

)1− 1
b
=

1
2

b
M
N

+
b d1/b

Γ
(

1 + 1
b

) (Mb
2N

)1− 1
b

. (27)

In this case, we can keep the interpretation of T as the arithmetic means of two payment
methods, the first, given by the average money per agent reduced by a factor dependent
on the savings propensity, while the second term corresponds to a non-trivial function of
the debt and average money, which reduces to d in the case of no savings.

To analyze the behavior of the temperature given by Equation (27), it is convenient to
study the ratio T/d, since such an approximation is valid when this ratio is much greater
than one. In Figure 6, the ratio T/d is plotted as a function of the saving propensity for the
particular case in which the mean money per agent is equal to 1, in monetary units. For the
case in which debt d is small compared to one, the savings decrease the relation T/d as λ
increases. When T = d, the approximation is no longer valid, this defines a λmax, which
is the maximum percentage that an agent can save. As the value of debt increases, λmax
decreases, i.e., agents save less. When d = 1, the approximation is not valid for any λ. It
is interesting to see that as d increases, the ratio T/d increases for high values of λ. This
behavior has no meaning in terms of the model, although mathematically, it is consistent
with the application regime. To summarize, as d increases, the agents’ savings capacity
decreases.
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Figure 6. Graphic of the ratio T
d from Equation (27) as function of savings propensity λ for unitary

average money per agent. The values of d = 0.05, 0.1, 0.2, 0.5, 1. The approximation fails for T = d,
so the dashed branches of the graph have no interpretation in the model.

5. Conclusions

In this work, we applied the statistical ensemble formalism to a geometric model of
agents to study the effect of saving propensity on a system with money, credit, and debt.
This formalism allowed us to obtain analogous thermodynamic variables. We studied the
system’s economic temperature, which is an index that relates the average money with the
agents’ debt capacity. The exact expression is given by the solution of Equation (21). In the
case T � d, which corresponds to a system where agents can pay their debt, it was possible
to find an approximation for the economic temperature expressed as Equation (27); that is,
the arithmetic mean between the different payment methods, namely, cash from income
and the requested credit with a specific debt limit. The savings propensity modifies each
term. On the one hand, the term associated with the average money per agent follows an
analogous equipartition theorem and is reduced by a factor b(λ), while the term associated
with the debt is coupled with the average money and the savings propensity in a non-trivial
way, but reduces to d when there is no saving. We show the behavior of Equation (27) in
Figure 6, where we see that the ratio between T and d decreases as savings propensity
grows to a maximum value that depends on d. The entropy of the saver agent system
when debt is present was also calculated. In general, we can say that entropy increases as
savings increase, starting from a minimum temperature that depends on b, for which the
entropy is greater than zero. In the case of having debt, the entropy increases even more,
and the variations in the minimum temperature when changing b vary according to the
different values of d. Although these analogous thermodynamic variables are not in general
use in economics, economic temperature or entropy could certainly serve as indicators of
how agents’ decisions affect the collectivity and, therefore, suggest how economic systems
behave.

As mentioned in the introduction, there are some criticisms of these models; for
example, ideal hypotheses limit their scope. However, the models have the advantage that
their mathematical formulation is easily generalizable. Indeed, this formalism of statistical
ensembles can be extended to more complicated or realistic cases or with different kinds of
microscopic interactions. For example, in a most realistic case in which the bank establishes
the credit limit according to each agent, the integrals in Equation (19) for calculating the
partition function give a product of incomplete gamma functions with different arguments
each, and the calculation becomes more involved. The difference between having an
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individual and a collective debt limit has recently been studied in the context of exchange
agent models on a connected graph that simulates a social network, finding different
distributions in each case [34].

Interactions between agents can be directly included in the exchange rules. Besides
saving, risk or various social protection factors can be introduced [35]. With these interac-
tions, one could model increasingly realistic systems and try to explain phenomena such as
economic inequality based on the agents’ decisions and the policies that influence them.
It would be interesting to study some economic processes defined with these generalized
rules within the ensemble formalism to determine how their corresponding analogous
thermodynamic variables change and eventually compare them with real economic sys-
tems. For instance, relate them to indices that characterize inequality such as the Gini or
Kolkata [9–11]. In future works, this kind of relations will be addressed.
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