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Abstract: In this paper, a new parametric compound G family of continuous probability distributions
called the Poisson generalized exponential G (PGEG) family is derived and studied. Relevant
mathematical properties are derived. Some new bivariate G families using the theorems of “Farlie-
Gumbel-Morgenstern copula”, “the modified Farlie-Gumbel-Morgenstern copula”, “the Clayton
copula”, and “the Renyi’s entropy copula” are presented. Many special members are derived, and
a special attention is devoted to the exponential and the one parameter Pareto type II model. The
maximum likelihood method is used to estimate the model parameters. A graphical simulation is
performed to assess the finite sample behavior of the estimators of the maximum likelihood method.
Two real-life data applications are proposed to illustrate the importance of the new family.

Keywords: poisson distribution; generalized exponential distribution; compounding; Farlie-Gumbel-
Morgenstern; clayton copula; Ali-Mikhail-Haq copula; modeling; Lomax distribution; kernel den-
sity estimation

1. Introduction and Genesis

In statistical literature, we always assume that every real phenomenon can be modeled
by some lifetime distributions. If we know this distribution(s), we can then analyze our
phenomenon, as many lifetime distributions have been developed in this regard. The
well-known Poisson distribution is one of the famous distributions that was also defined
and studied as a new family of continuous distribution in the concept of compounding.
Using the Poisson G family, several compound lifetime G families have been proposed
and studied. In the compounding method, there are two different approaches available;
one is by using zero truncated power series (ZTPS) distribution and the other by using
zero truncated Poisson (ZTP) distribution directly with other continuous distributions. A
comprehensive survey regarding the Poisson G models was recently proposed by [1].

In this paper, we propose and study a new family of distributions using ZTP distribu-
tion with a strong physical motivation. Suppose that a system has N (a discrete random
variable) subsystems functioning independently at a given time, where N has a ZTP dis-
tribution with parameter λ and the failure time of ith component Yi|i = 1, 2, . . . (say) is
independent of N. It is the conditional probability distribution of a Poisson-distributed
random variable (RV), given that the value of the RV is not zero. The probability mass
function (PMF) of N is given by

Pλ(N = n) =
λnexp(−λ)

Γ(1 + n)Cλ
|(n=N) and Cλ=1−exp(−λ).
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Note that for ZTP RV, the expected value E(N|λ) and variance V(N|λ) are, re-
spectively, given by E(N|λ) = λ/Cλ and V(N|λ) = λ(1+λ)

Cλ
− λ2

C2
λ

. Suppose that for each

subsystem, the failure time (i.e., ith component) has the generalized exponential generator
(GE-G) defined by the cumulative distribution function (CDF)

Hθ,β,ξ(x) =
[
1− Stβ,ξ(x)

]θ
, θ, β > 0 and x ∈ R, (1)

where the function Stβ,ξ(x) = exp
[
−β∆ξ(x)

]
, ∆ξ(x) = Gξ(x)/Gξ(x) refers to the odd

ratio function (ORF), Gξ(x) refers to the base-line CDF with parameters vector ξ, Gξ(x) =
1−Gξ(x) refers to the base-line survival function (SF) of the base-line model and β > 0
is a shape parameter, Gξ(x) is the CDF of the base-line model, and d

dx Gξ(x) = gξ(x) is
the probability density function (PDF) of the base-line model. Staying in (1) and for β = 1,
the GE-G reduces to exponential G (E-G) (see [2]). Let Yi denote the failure time of the ith
subsystem, and let

X = min{Y1, Y2, · · · , YN},

Then, the conditional CDF of X given N is

F(x|N) = 1− Pr(X > x|N) = 1−
[
1−Hθ,β,ξ(x)

]N
= 1−

{
1−

[
1− Stβ,ξ(x)

]θ
}N

.

Therefore, the unconditional CDF of X, as described in [3–9], can be expressed as

FV(x) = C−1
λ

(
1− exp

{
−λ
[
1− Stβ,ξ(x)

]θ
})

, x ∈ R (2)

The CDF in (2) is called the Poisson generalized exponential G (PGEG) family, V = (λ, θ, β,ξ)
is the parameter vector of the PGE-G family. The corresponding PDF can be derived as

f (x) = λC−1
λ hθ,β,ξ(x)exp

{
−λ
[
1− Stβ,ξ(x)

]θ
}

, x, λ > 0, (3)

where the function hθ,β,ξ(x) = dHθ,β,ξ(x)/dx. Or, the PDF due to (3) can be re-expressed as

fV(x) = λβθC−1
λ

gξ(x)Stβ,ξ(x)

Gξ(x)2
[
1− Stβ,ξ(x)

]1−θ
exp
{
−λ
[
1− Stβ,ξ(x)

]θ
}

︸ ︷︷ ︸
Aλ,θ,β(x)

, x ∈ R. (4)

A RV X having PDF (4) is denoted by X ∼ PGE-G (V). Some special cases of the PGE-G
family are listed in Table 1.

Table 1. Some new members derived based on the Poisson generalized exponential G (PGEG) family.

No. Baseline Model ∆ξ(x) V = (λ,θ,β,ξ) New Model

1 Exponential (E) exp(cx)− 1 λ ∈ R− {0}, θ >
0, β > 0,ξ = (c > 0) PGEE

2 Log-logistic (LL)
( x

a
)c λ ∈ R− {0}, θ >

0, β > 0,ξ = (a, c > 0) PGELL

3 Weibull (W) exp(ax)c − 1 λ ∈ R− {0}, θ >
0, β > 0,ξ = (a, c > 0) PGEW
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Table 1. Cont.

No. Baseline Model ∆ξ(x) V = (λ,θ,β,ξ) New Model

4 Fréchet (F)
[
exp
(

x−c)− 1
]−1 λ ∈ R− {0}, θ >

0, β > 0,ξ = (c > 0) PGEF

5 Rayleigh (R) exp(cx)2 − 1
λ ∈ R− {0}, θ >

0, β > 0,ξ = (c > 0) PGER

6 Dagum
(D)

[(
1 +

( x
b
)−a
)c
− 1
]−1 λ ∈ R−{0}, θ > 0, β >

0,ξ = (a, b, c > 0) PGED

7
Pareto
type II
(PII)

(1 + x/a)c − 1 λ ∈ R− {0}, θ >
0, β > 0,ξ = (a, c > 0) PGEPII

8 Burr type XII (BXII) (1 + xa)c − 1 λ ∈ R− {0}, θ >
0, β > 0,ξ = (a, c > 0) PGEBXII

9 Lindley
(Li)

exp(cx)
[ 1+c+cx

1+c ]
− 1

λ ∈ R− {0}, θ >
0, β > 0,ξ = (c > 0) PGELi

10 Inverse Rayleigh (IR)
[
exp
(
ax−2)− 1

]−1 λ ∈ R− {0}, θ >
0, β > 0,ξ = (c > 0) PGEIR

11 Half-logistic (HL)
{[

1−exp(−cx)
1+exp(−cx)

]−1
− 1
}−1 λ ∈ R− {0}, θ >

0, β > 0,ξ = (c > 0) PGEHL

12 Inverse Exponential (IE)
[
exp
(
ax−1)− 1

]−1 λ ∈ R− {0}, θ >
0, β > 0,ξ = (c > 0) PGEIE

13 Inverse PII
[(

1 + ax−1)c − 1
]−1 λ ∈ R− {0}, θ >

0, β > 0,ξ = (a, c > 0) PGEIPII

14 Gumbel (Gu)
(
exp
{

exp
[
− x−c

a
]}
− 1
)−1 λ ∈ R−{0}, θ > 0, β >

0,ξ = (a > 0, c ∈ R) PGEGu

15 Burr type XII (BXII)
[(

1 + (x/λ)a)c − 1
]−1 λ ∈ R− {0}, θ >

0, β > 0,ξ = (a, c > 0) PGEBXII

16 Fréchet (F)
[
exp
(
acx−c)− 1

]−1 λ ∈ R− {0}, θ >
0, β > 0,ξ = (a, c > 0) PGEF

17
Burr

type X
(BX)

({1− exp[−(ax)2]}
−c
− 1)

−1 λ ∈ R− {0}, θ >
0, β > 0,ξ = (a, c > 0) PGEBX

18 Standard Gumbel (Gu) (exp{exp[−(ax)]} − 1)−1 λ ∈ R− {0}, θ >
0, β > 0,ξ = (a > 0) PGESGu

19 Nadarajah-Haghighi (NH) exp
[
(1 + ax)c − 1

]
− 1 λ ∈ R− {0}, θ >

0, β > 0,ξ = (a, c > 0) PGENH

20 Gompertz exp{a[exp(cx)− 1]} − 1 λ ∈ R− {0}, θ >
0, β > 0,ξ = (a, c > 0) PGEGz

21
Inverse Flexible

Weibull
(IFW)

(exp{exp[a/y− cx]} − 1)−1 λ ∈ R− {0}, θ >
0, β > 0,ξ = (a, c > 0) PGEIFW

22 Inverse Gompertz (IGz)
{

exp
[
− exp(cx)−1

c

]
− 1
}−1 λ ∈ R− {0}, θ >

0, β > 0,ξ = (c > 0) PGEIGz

23 Normal (N) ϕ( x−c
a )

1−ϕ( x−c
a )

λ ∈ R−{0}, θ > 0, β >
0,ξ = (a > 0, c ∈ R) PGEN

24 Gamma (Ga) 1
Γ−1(a)γ−1(a, x

c
)
− 1

λ ∈ R− {0}, θ >
0, β > 0,ξ = (a, c > 0) PGEGa

Note that Γ(.) refers to the gamma function and γγγ(., .) refers to the incomplete gamma
function. Figure 1 gives some plots of the Poisson generalized exponential-Pareto type II
(PGEPII) PDF (a) and PGEPII hazard rate function (HRF) (b) for some carefully selected
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parameters value. Figure 2 presents some plots of the Poisson generalized exponential-
exponential (PGEE) PDF (a) and PGEE HRF (b) for some carefully selected parameters
value. Based on Figure 1a, it is noted that the PDF of the PGEPII can be “asymmetric
right-skewed function” and “symmetric” with different shapes. Based on Figure 2a, it is
seen that the PDF of the PGEE can be “asymmetric right-skewed function”, “asymmet-
ric left-skewed function”, “bimodal”, and “symmetric” with different shapes. Based
on Figure 1b, it is noted that the HRF of the PGEPII can be “upside down bathtub
(λ = 4, θ = 2, β = 1, c = 1.55)”, “bathtub (λ = 6, θ = 1, β = 1, c = 1.75)”, “decreasing-
constant (λ = θ = β = c = 1)”, “increasing-constant (λ = −1, θ = β = c = 1)”, and
“increasing (λ = −1, θ = 2, β = 1, c = 1.5)”. Based on Figure 2b, it is noted that the HRF
of the PGEE can be “bathtub (λ = 0.5, θ = 0.5, β = 0.75, c = 0.25)”, “decreasing-constant
(λ = 5, θ = 0.25, β = c = 0.1)”, “upside down bathtub (λ = 10, θ = 1, β = c = 0.25)”,
“constant (λ = 10, θ = 2, β = c = 0.05)”, and “increasing (J-shape) (λ = 0.5, θ = 0.5,
β = 0.0007, c = 1)”.
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The new family could be useful in modeling
1-The real datasets with “asymmetric monotonically increasing HRF”, as illustrated in

Section 6.
2-The real datasets that have no extreme values, as shown in Section 6.
3-The real datasets whose nonparametric Kernel density is symmetric, as given in

Section 6 (Figure 11).
The PGE-G family proved its superiority against many well-known families as shown

below:
1-In modeling the failure times of the aircraft windshield, the PGE-G family is better

than the special generalized mixture G family, the odd log-logistic G family, the Burr-Hatke
G family, the transmuted Topp-Leone G family, the Gamma G family, the Kumaraswamy G
family, the McDonald G family, the exponentiated G family, and the proportional reversed
hazard rate G family under the Akaike information criteria, consistent information criteria,
Bayesian information criteria, and Hannan–Quinn information criteria.

2-In modeling the service times of the aircraft windshield, the PGE-G family is better
than the special generalized mixture G family, the odd log-logistic G family, the Burr-Hatke
G family, the transmuted Topp-Leone G family, the Gamma G family, the Kumaraswamy G
family, the McDonald G family, the exponentiated G family, and the proportional reversed
hazard rate G family under the Akaike information criteria, consistent information criteria,
Bayesian information criteria, and Hannan-Quinn information criteria.

2. Copula

For facilitating the mathematical modeling of the bivariate RVs, we derived some
new bivariate PGE-G (Bv-PGE-G)-type systems of distributions using “Farlie-Gumbel-
Morgenstern copula” (FGMCp for short) copula ([10–15]), modified FGMCp (see [16] for
details) that contains for internal types, ” Clayton copula (CCp)” (see [17] for details),
“Renyi’s entropy copula (RECp)” [18], and Ali-Mikhail-Haq copula [19]. The multivariate
PGE-G (Mv PGE-G) type can be easily derived based on the Clayton copula. However,
future works may be allocated to study these new models.

2.1. BvPGE-G Type via CCp

Let us assume that X1 ∼ PGE-G(V1) and X2 ∼ PGE-G(V2). The CCp depending on
the continuous marginal functions w = 1− w and v = 1−v can be considered as

CΩ

(
w, v

)
=
[
max

(
w−Ω + v

−Ω − 1
)

; 0
]− 1

Ω
, Ω ∈ [−1, ∞)− {0}, w ∈ (0, 1) and v ∈ (0, 1) (5)

Let w = 1− FV1(x1)
∣∣
V1

, v = 1− FV2(x2)|V2 and

FVi (xi)|i=1,2 = C−1
λi

(
1− exp

{
−λi

[
1− Stβi ,ξi

(xi)
]θi
})

.

Then, the BvPGE-G-type distribution can be obtained from (5). A straightforward multi-
variate PGE-G (m-dimensional extension) via CCp can be easily derived analogously. The
m-dimensional extension via CCp is a function operating in [0, 1]m, and in that case, xi is
not a value in [0, 1] necessarily.

2.2. BvPGE-G Type via RECp

Following [18], the RECp can be derived as C(w, v) = x2w + x1v − x1x2, with the
continuous marginal functions w = 1− w = FV1(x1) ∈ (0, 1) and v = 1−v = FV1(x2) ∈
(0, 1), where the values x1 and x2 are in order to guarantee that C(w, v) is of a copula.
Then, the associated CDF of the BvPGE-G will be

F(x1, x2) = C
(

FV1(x1), FV1(x2)
)
,
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where FVi (xi) is defined above. It is worth mentioning that in [18], the authors emphasize
that this copula does not show a closed shape and numerical approaches become necessary.

2.3. BvPGE-G Type via FGMCp

Considering the FGMCp (see [10–15]), the joint CDF can be written as

CΩ(w, v) = wv
(

1 + Ωw v
)

,

where the continuous marginal function is w ∈ (0, 1), v ∈ (0, 1) and Ω ∈ [−1, 1]
where CΩ(w, 0) = CΩ(0, v) = 0

∣∣∣(w,v∈(0,1)), which is “grounded minimum condition” and
C∆(w, 1) = w and C∆(1, v) = v, which is “grounded maximum condition”. The grounded
minimum/maximum conditions are valid for any copula. Setting w = wV1

∣∣
V1>0 and

v = vV2

∣∣∣
V2>0

, then we have

F(x1, x2) = C
(

FV1(x1), FV2(x2)
)
= wv

(
1 + Ωw v

)
.

The joint PDF can be derived from

cΩ(w, v) = 1 + Ωw∗v∗, (w∗ = 1− 2w and v∗ = 1− 2v)

or from
fΩ(x1, x2) = fV1(x1) fV2(x2)c

(
FV1(x1), FV2(x2)

)
,

where the two function cΩ(w, v) and fΩ(x1, x2) are densities corresponding to the joint
CDFs CΩ(w, v) and FΩ(x1, x2).

2.4. BvPGE-G Type via Modified FGMCp

The modified formula of the modified FGMCp due to [17] can written as

CΩ(w, v) = wv + ΩO(w)•ψ(v)•,

with O(w)• = wO(w) and ψ(v)• = vψ(v), where O(w) ∈ (0, 1) and ψ(v) ∈ (0, 1) are
two continuous functions where O(w = 0) = O(w = 1) = ψ(v = 0) = ψ(v = 1) = 0.
Let

α = in f {O(w)• : ∂O(w)•, ∀∆1(w)/∂w} < 0, β = sup{O(w)• : ∂O(w)•, ∀∆1(w)/∂w} < 0,

ξ = in f {ψ(v)• : ∂ψ(v)•, ∀∆2(v)/∂v} > 0, η = sup{ψ(v)• : ∂ψ(v)•, ∀∆2(v)/∂v} > 0.

Then, for 1 ≤ min(βα, ηξ), we have

0 =
∂

∂w
O(w)• − w

∂w
∂O(w)−O(w),

where

∆1(w) =

{
∂

∂w
O(w)• exists

}
,

and

∆2(v) =

{
∂

∂v
ψ(v)• exists

}
.

The following four types can be derived and considered:

• Type I
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Let H1(w) = λ1Hθ1,β1,ξ(w) and H2(v) = λ2Hθ2,β2,ξ(v). Then, the new bivariate
version via modified FGMCp type I can be written as

CΩ(w, v) = Ω[O(w)•ψ(v)• ] +

 {
C−1

λ1
− C−1

λ1
exp[−H1(w)]

}
×
{
C−1

λ2
− C−1

λ2
exp[−H2(v)]

} ,

where
O(w)• = w{1− C−1

λ1
[1− exp(−H1(w) )]}|V1>0

and
ψ(v)• = v{1− C−1

λ2
[1− exp(−H2(v))]}|V2>0.

• Type II

Consider A(w; Ω1) and Z(v; Ω2) that satisfy the above conditions where
A(w; Ω1)|(Ω1>0) = wΩ1(1− w)1−Ω1 and Z(v; Ω2)|(Ω2>0) = vΩ2(1−v)1−Ω2 . Then, the
corresponding bivariate version (modified FGMCp Type II) can be derived from

CΩ0,Ω1,Ω2(w, v) = wv[1 + Ω0A(w; Ω1)Z(v; Ω2)].

• Type III

Let Ã(w) = w[log(1 + w)]|(w=1−w) and Z̃(v) = v
[
log
(

1 + v
)]
|(v=1−v). Then, the

associated CDF of the BvPGE-G-FGM (modified FGMCp Type III) can be written as

CΩ(w, v) = wv
[
1 + ΩÃ(w)Z̃(v)

]
.

• Type IV

Using the quantile concept, the CDF of the BvPGE-G-FGM (modified FGMCp Type
IV) model can be obtained using

C(w, v) = wF−1(w) + vF−1(v)− F−1(w)F−1(v)

where F−1(w) = Q(w) and F−1(v) = Q(v).

2.5. BvPGE-G Type via Ali-Mikhail-Haq Copula

Under the “stronger Lipschitz condition” and following [19], the joint CDF of the
Archimedean Ali-Mikhail-Haq copula can written as

CΩ(υ, ν) =
υν

1−Ωυν
|Ω∈(−1,1),

and the corresponding joint PDF of the Archimedean Ali-Mikhail-Haq copula can be
expressed as

cΩ(υ, ν) =
1−Ω + 2Ω υν

1−Ωυν

[1−Ωυν]2
|Ω∈(−1,1),

Then, for any υ = 1− FV1(x1) = |[υ=(1−υ)∈(0,1)] and ν = 1− FV2(x2)|[ν=(1−ν)∈(0,1)],
we have

CΩ(x1, x2) =
FV1(x1)FV2(x2)

1−Ω
[
1− FV1(x1)

][
1− FV2(x2)

] |Ω∈(−1,1)

cΩ(x1, x2) =

1−Ω + 2Ω
{

FV1 (x1)FV2 (x2)

1−Ω[1−FV1 (x1)][1−FV2 (x2)]

}
{

1−Ω
[
1− FV1(x1)

][
1− FV2(x2)

]}2 |Ω∈(−1,1)
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3. Properties
3.1. Expanding the Univariate PDF

In this subsection, we present a useful representation for the new PDF in (4). Based on
the new representation, we can easily and directly derive the main statistical properties
of the new family due to the exponentiated G (exp-G) family. Using the power series, we
expand the quantity Aλ,θ,β(x). Then, the PDF in (4) can be expressed as

fV(x) = C−1
λ βθ

+∞

∑
hhh=0

(−1)hhhλ1+hhhgξ(x)

hhh!Gξ(x)2ςβ,ξ(x)

[
1− Stβ,ξ(x)

]θ(hhh+1)−1

︸ ︷︷ ︸
Bθ(hhh+1),β(x)

(6)

Considering the power series(
1− z1

z2

)z3+1
=

+∞

∑
i=0

(−1)iΓ(z3 + 2)
i!Γ(z3 − i + 2)

(
z1

z2

)i

,
∣∣∣∣ z1

z2

∣∣∣∣〈1 and z3〉0, (7)

and applying (7) to the quantity Bθ(hhh+1),β(x) in (6), we get

fV(x) = C−1
λ βθ

gξ(x)

Gξ(x)2

+∞

∑
hhh,i=0

λ1+hhh (−1)hhh+iΓ(θ(hhh+ 1))
i!hhh!Γ(θ(hhh+ 1)− i)

exp
[
−(i + 1)β∆ξ(x)

]
︸ ︷︷ ︸

Cβ(St+1)(x)

(8)

Expanding Cβ(i+1)(x), we can write

Cβ(i+1)(x) =
+∞

∑
s=0

(−1)s(i + 1)s Gξ(x)s

Γ(s + 1)Gξ(x)s .

Inserting the above expression of Cβ(i+1)(x) in (8), the PGE-G density reduces to

fV(x) = θβC−1
λ

+∞

∑
hhh,i,κ=0

λ1+hhh(−1)hhh+κ+i Γ(θ(hhh+ 1))(i + 1)κ

hhh!i!κ!Γ(θ(hhh+ 1)− i)

gξ(x)Gξ(x)κ

Gξ(x)κ+2 . (9)

Expanding
[
1−Gξ(x)

]−κ−2
via generalized binomial expansion, we get

[
1−Gξ(x)

]−κ−2
=

+∞

∑
j=0

Γ(1 + κ∗)
j!Γ(κ+ 2)

Gξ(x)j,κ∗ = κ+ j + 1. (10)

Inserting (10) in (9), the PGE-G density can be expressed as

fV(x) =
+∞

∑
κ,j=0

υκ,jgκ∗(x), (11)

which is an infinite linear combination of exp-G PDFs where gκ∗(x) = dGκ∗(x)/dx =

κ∗π(x)Gξ(x)κ+j is the PDF of the exp-G family with power k∗ and υκ,j is a constant where

υκ,j =
+∞

∑
hhh,i=0

λ1+hhhθβC−1
λ

(−1)hhh+κ+i(i + 1)κΓ(θ(hhh+ 1))Γ(1 + κ∗)
hhh!i!κ!j!κ∗Γ(θ(hhh+ 1)− i)Γ(κ+ 2)

.

Similarly, the CDF of the PGE-G family can also be expressed as

FV(x) =
+∞

∑
κ,j=0

υκ,j Gk∗(x), (12)
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where Gk∗(x) is the CDF of the exp-G family with power k∗.

3.2. Convex-Concave Analysis

Convex PDFs play a very important role in many areas of mathematics. They are
important especially in study of the “optimization problems” where they are distinguished
by several convenient properties. In mathematical analysis, a certain PDF defined on a
certain n-dimensional interval is called “convex PDF” if the line between any two points
on the graph of the PDF lies above the graph between the two points.

The PDF in (4) and based on any base-line model (see Table 1) is said to be “concave
PDF” if for any X1 ∼ PGE−G (V1) and X2 ∼ PGE−G (V2) the PDF satisfies

f
(
∆x1 + ∆x2

)
≥ ∆ fV1(x1) + ∆ fV2(x2)

∣∣∣0≤∆≤1 and ∆=1−∆.

If the function f
(
∆x1 + ∆x2

)
is twice differentiable, then if f //(∆x1 + ∆x2

)
< 0, ∀ x ∈

R , f
(
∆x1 + ∆x2

)
is “strictly convex”. If f //(∆x1 + ∆x2

)
≤ 0, ∀ x ∈ R, then f

(
∆x1 + ∆x2

)
is “convex”.

The PDF in (4) is said to be “convex PDF” if for any X1 ∼ PGE−G (V1) and X2 ∼
PGE−G (V1) the PDF satisfies

f
(
∆x1 + ∆x2

)
≤ ∆ fV1(x1) + ∆ fV2(x2)

∣∣∣0≤∆≤1 and ∆=1−∆.

If the function f
(
∆x1 + ∆x2

)
is twice differentiable, then if f //(∆x1 + ∆x2

)
> 0, ∀ x ∈

R , f
(
∆x1 + ∆x2

)
is “strictly convex”.

If f //(∆x1 + ∆x2
)
≥ 0, ∀ x ∈ R, then f

(
∆x1 + ∆x2

)
is “convex”. If f

(
∆x1 + ∆x2

)
is

“convex” and c is a constant, then the function c f
(
∆x1 + ∆x2

)
is “convex”. If f

(
∆x1 + ∆x2

)
is “convex PDF”, then

[
c f
(
∆x1 + ∆x2

)]
is convex for every c > 0. If f

(
∆x1 + ∆x2

)
and

g
(
∆x1 + ∆x2

)
are “convex PDF”, then

[
f
(
∆x1 + ∆x2

)
+ g
(
∆x1 + ∆x2

)]
is also “convex

PDF”. If f
(
∆x1 + ∆x2

)
and g

(
∆x1 + ∆x2

)
are “convex PDF”, then[

f
(
∆x1 + ∆x2

)
.g
(
∆x1 + ∆x2

)]
is also “convex PDF”.

If the function − f
(
∆x1 + ∆x2

)
is “convex PDF”, then the function f

(
∆x1 + ∆x2

)
is

“convex PDF”. If f
(
∆x1 + ∆x2

)
is “concave PDF”, then 1

f (∆x1+ ∆x2)
is “convex PDF” if

f (x) > 0. If f
(
∆x1 + ∆x2

)
is “concave PDF”, 1

f (∆x1+ ∆x2)
is “convex PDF” if f (x) < 0. If

f
(
∆x1 + ∆x2

)
is “concave PDF”, f−1(∆x1 + ∆x2

)
is “convex PDF”.

3.3. Moments

Let Yκ∗ be an RV having the exp-G family power with k∗ and X be an RV having

the PGE-G family. Then, the rth moment of the RV X is µ′r = E(Xr) =
n
∑

k,j=0
υk,jE

(
Yr

k∗
)
.

Analogously, the nth moment around the arithmetic mean (µ′1) of X is

Mn = E
(
X− µ′1

)n
=

n

∑
r=0

+∞

∑
κ,j=0

υκ,j

(
n
r

)(
−µ′1

)n−rE(Yr
κ∗).

3.4. Moment-Generating Function (MGF)

We present two formulas for the obtaining the MGF. Clearly, the first formula can be
derived from Equation (11) as

MX(t) =
+∞

∑
κ,j=0

υκ,j Mκ∗(t),
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where Mκ∗(t) is the MGF of the RV Yκ∗ . However, the second formula is based on the
concept of the quantile function (QF) as

MX(t) =
+∞

∑
κ,j=0

υκ,jτ(t, 1 + κ∗),

where the integral

τ(t, p) =
∫ 1

0
exp[tQG(u)]updu

can be numerically evaluated using the baseline QF, i.e., QG(u) = G−1(u).

3.5. Incomplete Moments (IM)

The sth IM, sayφs,X(t), of the RV X can be derived from (11) asφs,X(t) =
n
∑

k,j=0
υκ,jI

−∞,t
s,κ∗ (t)

where I−∞,t
s,κ∗ (t) =

∫ t
−∞ xsgκ∗(x)dx. One of the main mathematical end economical appli-

cations of the first IM concerns “mean deviations (MD)” and “Bonferroni and Lorenz
curves”, which are very useful in economics, insurance, demography, reliability, and
medicine. The MD about the µ′1 of E

(∣∣X− µ′1
∣∣) = a1, and the MD about the median

(M) of E(|X−M|) = a2 of the RV X are given by a1 = 2µ′1F
(
µ′1
)
− 2φ1,X

(
µ′1
)

and
a2 = µ′1 − 2φ1,X(M), respectively, where µ′1 = E(X) is the arithmetic mean of the RV X,
M = Q(0.5) is the median of the RV X, and φ1,X(t) is the first IM given by φs=1,X(t).

Now, we provide two ways to determine a1 and a2. First,φ1,X(t) =
n
∑
κ,j=0

υκ,jI1,κ∗(t) where

I−∞,t
1,κ∗ (t) is the first IM of the exp-G family. Second, φ1,X(t) = ∑n

κ,j=0 υκ,jωκ∗(t) where

ωκ∗(t) = κ∗
∫ G(t)

0 QG(u)uκ
∗
du can be evaluated numerically.

These results for φ1,X(t) can be directly applied for calculating the Bonferroni and
Lorenz curves defined, for a certain given probability P , by B(P) = φ1,X(Q(P))/

(
Pµ′1

)
and L(P) = φ1,X(Q(P))/µ′1, respectively.

3.6. Residual Life (RL) and Reversed Residual Life (RRL)

The qth moment of the RL of the RV X can be obtained from
mq,X(t) = E[(X− t)q ]

∣∣
X>t and q∈N or from

mq,X(t) =
1

1− FV(t)

∫ ∞

t
(−t + x)q fV(x)dx,

which can also be written as

mq,X(t) =
1

1− FV(t)

+∞

∑
κ,j=0

q

∑
h=0

υκ,j(
q
h
)(−t)q−hI−∞,t

q,κ∗ (t).

For q = 1, we obtain the mean of the residual life (MRL) also called the life expectation (LE),
which can be drived from m1,X(t) = E[(X− t)]|X>t and q∈N and represents the additional
expected life for a certin system or component that is already alive at the age t. On the
other hand, the qth moment of the RRL is Mq,X(t) = E

[
(t− X)q]∣∣

X≤t, t>0 and q∈N or

Mq,X(t) =
1

FV(t)

∫ t

0
(−x + t)q fV(x)dx,

which can also be expressed as

Mq,X(t) =
1

FV(t)

+∞

∑
κ,j=0

q

∑
h=0

υκ,j(−1)h
(

q
h

)
tq−hI−∞,t

q,κ∗ (t).
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For q = 1, we obtain the mean waiting time (MWT), which is also called the mean inactivity
time (MIT), which can be derived from M1,X(t) = E[(t− X)]|X≤t, t>0 and q=1.

3.7. Mathematical Results and Numerical Analysis for Two Special Models

We present some mathematical results for two special models chosen from Table 1.
All results listed in Table 2 were derived based on the mathematical results previously
obtained in Sections 1–6. Table 2 (part I) gives mathematical results for the PGEPII model.
Table 2 (part II) gives the mathematical results for the PGEE model. The calculations of this
Subsection involve several special functions, including the complete beta function

B(v1, v2) =
∫ 1

0
uv1−1(1− u)v2−1du;

the incomplete beta function

By(v1, v2) =
∫ y

0
uv1−1(1− u)v2−1du,

the complete gamma function

Γ(1 + v1) =
∫ +∞

0 tv1 exp(−t)dt = v1!
= ∏v1−1

m=0 (v1 −m),

the lower incomplete gamma function

γ(v1, v2)|(v1 6=0,−1,−2,...) =
∫ v2

0 tv1−1exp(−t)dt

=
+∞
∑

v3=0

(−1)v3

v3!(v1+v3)
vv1+v3

2 ,

and the upper incomplete gamma function

Γ(v1, v2) = Γ(v1)− γ(v1, v2).

Table 2. Mathematical results for the PGEPII model.

Part I

Property Result Support

E(Xr)
+∞
∑

k,j=0

r
∑

ν=0
υk,jk∗ar(−1)ν

(
r
ν

)
B
(
k∗, ν−r

c + 1
) c > r

MX(t)
+∞
∑

k,j,r=0

r
∑

ν=0

tr

r! υk,jk∗ar(−1)ν
(

r
ν

)
B
(
k∗, ν−r

c + 1
) c > r

φs,X(t)
+∞
∑

k,j=0

s
∑

ν=0
υk,jk∗as(−1)ν

(
s
ν

)
Bt
(
k∗, ν−s

c + 1
) c > s

φ1,X(t)
+∞
∑

k,j=0

1
∑

ν=0
υk,jk∗a(−1)ν

(
1
ν

)
Bt

(
k∗, ν−1

c + 1
)

c > 1

mq,X(t)

1
1−FV (t)

+∞
∑

k,j=0

q
∑

ν=0
υk,j,v(m, q) k∗aq(−1)ν

(
q
ν

)
Bt

(
k∗, ν−q

c + 1
)

,

where

υk,j,v(m, q) = υk,j ∑
q
h=0

(
q
h

)
(−t)q−h

t > 0,
q ∈ N,
c > q
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Table 2. Cont.

Part I

Property Result Support

m1,X(t)

1
1−FV (t)

+∞
∑

k,j=0

1
∑

ν=0
υk,j,v(m, 1) k∗a(−1)ν

(
1
ν

)
Bt

(
k∗, ν−1

c + 1
)

where

υk,j,v(m, 1) = υk,j ∑1
h=0

(
1
h

)
(−t)1−h

t > 0,
q = 1
c > 1

Mq,X(t)

1
FV (t)

+∞
∑

k,j=0

q
∑

ν=0
υk,j,v(M, q) k∗aq(−1)ν

(
q
ν

)
Bt

(
k∗, ν−q

c + 1
)

,

where

υk,j,v(M, q) = υk,j ∑
q
h=0(−1)h

(
q
r

)
tq−h

t > 0,
q ∈ N,
c > q

M1,X(t)

1
FV (t)

+∞
∑

k,j=0

1
∑

ν=0
υk,j,v(M, 1) k∗a(−1)ν

(
1
ν

)
Bt

(
k∗, ν−1

c + 1
)

where

υk,j,v(M, 1) = υk,j ∑1
h=0(−1)h

(
1
r

)
t1−h

t > 0,
q = 1
c > 1

Part II

Property Result Support

E(Xr) 1
cr Γ(r + 1)

+∞
∑

k,j,h=0
υk,j

k∗(−1)h

(h+1)−(r+1)

(
k∗ − 1

h

)
r > −1

MX(t) 1
cr

+∞
∑

k,j,r,h=0
υk,j

trk∗(−1)h

(h+1)−(r+1)

(
k∗ − 1

h

)
r > −1

φs,X(t) 1
cs γ(r + 1, ct)

+∞
∑

k,j,h=0
υk,j

k∗(−1)h

(h+1)−(r+1)

(
k∗ − 1

h

)
s > −1

φ1,X(t) 1
c γ(2, ct)

+∞
∑

k,j,h=0
υk,j

k∗(−1)h

(h+1)−2

(
k∗ − 1

h

)
s = 1

mq,X(t) 1
cq [1−FV (t)]

Γ(q + 1, ct)
+∞
∑

k,j,h=0
υk,j,h(m, q) k∗(−1)h

(h+1)−(q+1)

(
k∗ − 1

h

) t > 0,
q ∈ N.

m1,X(t) 1
c[1−FV (t)]

Γ(2, ct)
+∞
∑

k,j,h=0
υk,j,h(m, 1) k∗(−1)h

(h+1)−2

(
k∗ − 1

h

) t > 0,
q = 1.

Mq,X(t) 1
cq FV (t)

γ(q + 1, ct)
+∞
∑

k,j,h=0
υk,j,h(M, q) k∗(−1)h

(h+1)−(q+1)

(
k∗ − 1

h

) t > 0,
q ∈ N.

M1,X(t) 1
cFV (t)

γ(2, ct)
+∞
∑

k,j,h=0
υk,j,h(M, 1) k∗(−1)h

(h+1)−2

(
k∗ − 1

h

) t > 0,
q = 1

4. Numerical Analysis for Some Measures

Table 3 below gives numerical analysis for the mean (E(X)), variance (V(X)), skewness
(S(X)), and kurtosis (K(X)) for PGEPII model based on special case number 7 of Table 1
with a = 1. Based on results listed in Table 3, it is noted that E(X) decreases as λ increases,
S(X) ∈ (0.647392, ∞) and K(X) ranging from 5.07 to ∞.
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Table 3. E(X), V(X), S(X), and kurtosis K(X) for PGEPII model.

λ θ β c E(X) V(X) S(X) K(X)

−100 10 10 0.5 2.072196 0.2201758 1.479884 7.298747
−50 1.833215 0.2047501 1.485328 7.352612

1 0.602749 0.0926237 1.947101 10.23900
10 0.3201456 0.0086203 0.922245 6.964258
20 4.5 × 10−7 4.9 × 10−7 1557.789 2427588
50 3 × 10−18 3.2 × 10−18 ∞ ∞
1 0.00001 1.5 1.5 3.8 × 10−6 1.9 × 10−6 617.3573 518800.1

0.001 0.000382 0.00019439 62.16521 5164.672
0.1 0.037952 0.01799428 6.116264 52.94105
1 0.300097 0.09320253 1.923912 8.063683

10 0.943049 0.11873920 1.095806 5.033141
200 1.796896 0.09144218 1.094972 5.171026
500 2.035741 0.08487209 1.113656 5.249637
1000 2.210426 0.08057697 1.126665 5.304018
5000 2.598923 0.07236505 1.152185 5.412047

10,000 2.759814 0.06942454 1.161333 5.451521
50,000 3.120738 0.06361832 1.179193 5.530603

105 3.271321 0.06147196 1.185689 5.559284
106 3.753629 0.05547417 1.203521 5.640401
109 5.074701 0.04376374 1.236481 5.797372

0.5 10 0.1 0.5 0.556669 45.25801 12.39501 158.3764
0.5 35.16515 534.9123 0.647392 2.897928
1 14.48305 114.1355 2.361592 11.45837

10 0.6436296 0.105070 1.824918 9.34089
50 0.1142242 0.002606 1.477433 6.578002

1.5 1.5 1.5 0.0001 0.0009722 0.052934 296.8286 97854.25
0.01 0.9289666 49.47247 9.459858 101.0864
0.5 1.9094220 7.498718 4.979968 50.15636
1 0.6041312 0.336279 2.300106 11.34566
2 0.250036 0.041541 1.588718 6.432767
3 0.1572757 0.014881 1.401211 5.473245
4 0.1146732 0.007539 1.314559 5.074107
5 0.09022103 0.004537 1.264612 49.73842

5. Estimation Method and Assessment
5.1. The Maximum Likelihood Estimation (MLE) Method

Let x1, . . . , xn be an observed random sample (RS) from the PGE-G family with V =(
λ, θ, β,ξT

)T
. The function of the log-likelihood (lV = log

[
n
∏
i=1

fV(xi)

]
) can be obtained

and maximized directly using the R software (the “optim function”) or the program of
Ox (sub-routine of MaxBFGS) or MATH-CAD software or by solving the nonlinear equations
of the likelihood derived from differentiating lV. The score vector components Uλ =
∂

∂λlV, Uθ = ∂
∂θlV, Uβ = ∂

∂βlV, and Uξk
= ∂

∂ξk
lV can be easily derived from obtaining the

nonlinear system Uλ = Uθ = Uβ = Uξk
= 0 and then simultaneously solving them for

getting the MLE of V. This system could be solved numerically for the complicated models
using iterative algorithms such as the “Newton–Raphson” algorithms. We can compute the
maximum values of the unrestricted and restricted log-likelihoods to obtain likelihood ratio
(LR) statistics for testing some sub models. Hypothesis tests of the type H0 : Ω = Ω0 versus
H1 : Ω 6= Ω0, where Ω is a vector formed with some components of V and Ω0 is a specified
vector, can be performed using LR statistics. For example, the test of H0 : λ = θ = β = 1
versus H1 : H0 is not true and is equivalent to comparing the PGE-G and G distributions,

and the LR statistic is given byWLR = 2{lV(λ̂, θ̂, β̂, ξ̂T)− l(1, 1, 1, ξ̂T)}, where λ̂, θ̂, β̂ and

ξ̂T are the MLEs under H and ξ̂T is the estimate under H0.
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5.2. Graphical Assessment

We present a graphical simulation for assessing the behavior of the finite sample of the
MLEs for the PGEPII distribution. We maximized the log-likelihood function using a wide
range of starting initial values. The starting initial values were taken in a fine scale. For the
PGEPII model, for example, they were taken corresponding to all possible combinations
of λ = 1, 2, . . . , 100, θ = 1, 2, . . . , 100, β = 1, 2, . . . , 100, and c = 1, 2, . . . , 100. The proposed
assessment is performed depending on the following assessing algorithm:

Using the QF of the PGEPII distribution, we generate 1000 samples of size n from the
PGEPII and PGEE models where

QU =

(
1− 1

β
ln

{
1−

[
− 1

λ
ln(1−UCλ)

] 1
θ

}) 1
c

− 1

Computing the standard errors (SEs) of the MLEs for the N = 1000 samples, SEs are
obtained via inverting the “observed information matrix”.

Computing the corresponding biases and mean squared errors (MSEs) given for
V = (λ, θ, β, c), we repeated these steps for n = 100, 200, . . . , 500.

For PGEPII model, Figures 3–6 (left panels) show how the four biases vary with
respect to n. Figures 3–6 (right panels) show how the four MSEs vary with respect to n.
From Figures 3–6, the biases for each parameter are generally negative and increase to zero
as n→ ∞ , and the MSEs for each parameter decrease to zero as n→ ∞ .
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6. Modeling Failure and Service Times

Two real-life data applications to illustrate the importance and flexibility of the family
are presented under the PII case. The fits of the PGEPII are compared with other PII models
shown in Table 4.

The first dataset (aircraft windshield, n = 84): The first real-life dataset represents the
data on failure times of 84 aircraft windshield. The second dataset (aircraft windshield,
n = 63): The second real-life dataset represents the data on service times of 63 aircraft wind-
shield. The two real-life datasets were chosen based on matching their characteristics and
the plots of the PDF in Figure 1 (the right panel). By examining Figure 1 (the right panel),
it is noted that the new PDF can be asymmetric right-skewed function” and “symmetric”
with different shapes. On the other hand, by exploring the two real datasets, it is noted that
densities are nearly symmetric functions. Additionally, the HRF of the new family includes
the asymmetric monotonically increasing shape, and the HRF of the two real datasets
are asymmetric monotonically increasing (see Figure 1(left panel)). The two real datasets
were reported by [20]. Many other symmetric and asymmetric useful real-life datasets can
be found in [21–28]. Initial density shape is explored using the nonparametric “Kernel
density estimation (KDE)” approach in Figure 7. The “normality” condition is checked via
the “quantile–quantile (Q-Q) plot” in Figure 8. The initial shape of the empirical HRFs is
discovered from the “total time in test (TTT)” plot in Figure 9. The extremes are spotted
from the “box plot” in Figure 10. Based on Figure 7, it is noted that the densities are nearly
symmetric functions. Based on Figure 8, we see that the “normality” nearly exists. Based on
Figure 9, it is noted that the HRF is “asymmetric monotonically increasing shaped” for the
two datasets. Based on Figure 10, it is showed that no extreme observations were founded.
The goodness-of-fit (GOF) statistic called “Akaike information” (AICr), consistent-AIC
(CAICr), Bayesian-IC (BICr), and Hannan–Quinn-IC (HQICr) were analyzed by comparing
the competitive PII models.

Table 4. The competitive models.

N. Model Abbreviation Author

1 Special generalized mixture-PII SGMPII [29]
2 Odd log-logistic-PII OLLPII [30]
3 Reduced OLL-PII ROLLPII [30]
4 Reduced Burr–Hatke-PII RBHPII [31]
5 Transmuted Topp–Leone-PII TTLPII [32]
6 Reduced TTL-PII RTTLPII [32]
7 Gamma-PII GamPII [33]
8 Kumaraswamy-PII KumPII [34]
9 McDonald-PII McPII [34]
10 Beta-PII BPII [34]
11 Exponentiated-PII EPII [35]
12 PII PII [36]
13 Proportional reversed hazard rate PII PRHRPII New

However, many other PII extensions could be considered in comparisons [37–45]. For
failure times real-life data, relevant numerical results are shown in Tables 5 and 6. Precisely,
Table 5 gives the MLEs and SEs. Table 6 gives the four GOF test statistics. For service times
real-life data, the results are presented in Tables 7 and 8. Precisely, Table 5 gives the MLEs
and SEs, whereas Table 8 gives the four GOFs test statistics. Figures 11 and 12 give the
probability-probability (P-P) plot, estimated PDF (EPDF), Kaplan-Meier survival (KMS)
plot and estimated HRF (EHRF) plot for the two datasets, respectively. Based on Tables 6
and 8, it is noted that the PGEPII model gives the lowest values for all test statistics, where
AICr = 264.231, CAICr = 264.737, BICr = 273.954, and HQICr = 268.139 for the first dataset,
and AICr = 205.252, CAICr = 205.941, BICr = 213.824, and HQICr = 208.623 for the second
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dataset among all fitted models. Hence, it could be chosen as the best model under these
criteria.
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Table 5. Maximum Likelihood Estimation (MLEs) and standard errors (SEs) for 1st dataset.

Model Estimates

PGEPII (λ, θ, β, c ) 2.82464 1.03661 0.002702 3.69627
(7.4304) (0.07303) (0.00046) (0.0004)

KPII (θ,β, c, α ) 2.61502 100.276 5.27710 78.6774
(0.3822) (120.49) (9.8116) (186.01)

TTLPII (θ,β, c, α ) −0.80751 2.47663 (15,608) (38,628)
(0.1396) (0.5418) (1602.4) (123.94)

BPII (θ,β, c, α ) 3.60360 33.6387 4.83070 118.837
(0.6187) (63.715) (9.2382) (428.93)

PRHRPII (β, c, α ) 3.73 × 106 4.17 × 10−1 4.51 × 106

1.01 × 106 (0.00001) 37.1468
SGMPII (θ, c, α ) −1.04 × 10−1 9.83 × 106 1.18 × 107

(0.1223) (4843.3) (501.04)
RTTLPII (θ,β, c ) −0.84732 5.52057 1.15678

(0.10011) (1.1848) (0.0959)
OLLPII (θ, c, α ) 2.32636 7.17 × 105 2.3 × 106

(2.14 × 10−1) (1.19 × 104) (2.6 × 101)
EPII (θ, c, α ) 3.62610 20,074.5 26,257.7

(0.6236) (2041.8) (99.744)
GamPII (θ, c, α ) 3.58760 52,001.4 37,029.7

(0.5133) (7955.0) (81.163)
ROLLPII (θ, c ) 3.89056 0.57316

(0.3652) (0.0195)
RBHPII (c, α ) 1,080,175 513,672

(983,309) (23,231)
PII (c, α ) 51,425.4 131,790

(5933.5) (296.12)

Table 6. Goodness-of-fit (GOF) statistics for 1st dataset.

Model AICr BICr CAICr HQICr

PGEPII 264.231 273.954 264.737 268.139
OLLPII 274.847 282.139 275.147 277.779
TTLPII 279.140 288.863 279.646 283.049
GamPII 282.808 290.136 283.105 285.756

BPII 285.435 295.206 285.935 289.365
EPII 288.799 296.127 289.096 291.747

ROLLPII 289.690 294.552 289.839 291.645
SGMPII 292.175 299.467 292.475 295.106
RTTLPII 313.962 321.254 314.262 316.893
PRHRPII 331.754 339.046 332.054 334.686

PII 333.977 338.862 334.123 335.942
RBHPII 341.208 346.070 341.356 343.162
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Table 7. MLEs and SEs for 2nd dataset.

Model Estimates

PGEPII (λ, θ, β, c ) −4.38494 0.34355 0.10422 2.11596
(10.4313) (0.0009) (0.1068) (0.6017)

BPII (θ,β, c, α ) 1.921842 31.2594 4.9684 169.572
(0.3184) (316.84) (50.528) (339.21)

KPII (θ,β, c, α ) 1.66912 60.5673 2.56490 65.0640
(0.2571) (86.013) (4.7589) (177.59)

TTLPII (θ,β, c, α ) (−0.607) 1.78578 2123.39 4822.79
(0.2137) (0.4152) (163.92) (200.01)

RTTLPII (θ,β, c ) −0.67151 2.74496 1.01238
(0.18746) (0.6696) (0.1141)

PRHRPII (β, c, α ) 1.59 × 106 3.93 × 10−1 1.30 × 106

2.01 × 103 0.0004 × 10−1 0.95 × 106

SGMPII (θ, c, α ) −1.04 × 10−1 6.45 × 106 6.33 × 106

(4.1 × 10−10) (3.21 × 106) (3.8573)
GamPII (θ, c, α ) 1.9073232 35,842.433 39,197.57

(0.32132) (6945.074) (151.653)
OLLPII (θ, c, α ) 1.66419 6.340 × 105 2.01 × 106

(1.8 × 10−1) (1.68 × 104) 7.22 × 106

EPII (θ, c, α ) 1.914532 22,971.15 32,882.0
(0.34801) (3209.53) (162.22)

RBHPII (c, α ) 14,055,522 53,203,423
(422.01) (28.5232)

ROLLPII (θ, c ) 2.372331 0.69109
(0.26834) (0.0449)

PII (c, α ) 99,269.83 207,019.4
(11864.3) (301.237)
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Table 8. GOF statistics for 2nd dataset.

Model AICr BICr CAICr HQICr

PGEPII 205.252 213.824 205.941 208.623
KPII 209.735 218.308 210.425 213.107

TTLPII 212.900 221.472 213.589 216.271
GamPII 211.666 218.096 212.073 214.195
SGMPII 211.788 218.218 212.195 214.317

BPII 213.922 222.495 214.612 217.294
EPII 213.099 219.529 213.506 215.628

OLLPII 215.808 222.238 216.215 218.337
PRHRPII 224.597 231.027 225.004 227.126

PII 222.598 226.884 222.798 224.283
ROLLPII 225.457 229.744 225.657 227.143
RTTLPII 230.371 236.800 230.778 232.900
RBHPII 229.201 233.487 229.401 230.887

Further, the results of the LR statistics of the PGEPII model against the quasi-Poisson
generalized exponential Pareto type II (QPGEPII), Poisson exponential Pareto type II
(PEPII), and quasi-Poisson Pareto type II (QPPII) models under the first dataset are in
Table 9. Based on the results of this table,

I-We reject the null hypotheses of the LR tests in favor of the PGEPII model.
II-We can confirm the significance of the parameters λ and θ withWLR = 17.09761,

WLR = 14.27654, andWLR = 9.00651, respectively.

Table 9. The likelihood ratio (LR) statistics for the 1st dataset.

Model Hypothesis WLR p-Value

PGEPII vs. QPGEPII H0: λ = 1, H1: H0 false 17.09761 0.0015
PGEPII vs. PEPII H0: θ = 1, H1: H0 false 14.27654 0.0122
PGEPII vs. QPPII H0: λ = θ = 1, H1: H0 false 9.00651 0.0953

The results of the LR statistics of the PGEPII model against the QPGEPII, PEPII, and
QPPII models under the second dataset are in Table 10. Based on the results of this table,

I-We reject the null hypotheses of the LR tests in favor of the PGEPII model.
II-We can confirm the significance of the parameters λ and θ withWLR = 33.01982,

WLR = 4.710811, andWLR = 3.476109, respectively.

Table 10. The LR statistics for the 2nd data.

Model Hypothesis WLR p-Value

PGEPII vs. QPGEPII H0: λ = 1, H1: H0 false 33.01982 0.0011
PGEPII vs. PEPII H0: θ = 1, H1: H0 false 4.710811 0.0033
PGEPII vs. QPPII H0: λ = θ = 1, H1: H0 false 3.476109 0.07782
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7. Conclusions

In this article, a new parametric lifetime compound G family of continuous probability
distributions called the Poisson generalized exponential G (PGEG) family is derived and
studied. The PGEG family is defined based on the Poisson and the generalized expo-
nential G families’ concept of compounding. The new density can be “asymmetric right-
skewed function”, “asymmetric left-skewed”, “bimodal”, and “symmetric” with different
shapes. The new HRF can be “upside down bathtub”, “bathtub”, “decreasing-constant”,
“increasing-constant”, “increasing”, “constant“, and “increasing”. Relevant mathematical
properties including moments, incomplete moments, and mean deviation are derived.
Some new bivariate-type PGEG families using the “copula of Farlie-Gumbel-Morgenstern”,
“copula of the modified Farlie-Gumbel-Morgenstern”, “the Clayton copula”, and “copula
Renyi’s entropy” are presented. Many special members are derived, and special attention
is devoted to the exponential (E) and the one parameter Pareto type II (PII) model. A
simulation study is presented to assess the finite sample behavior of the estimators. The
simulations are based on a certain given algorithm under the baseline PII model. Finally,
two different real-life applications are proposed to illustrate the importance of the PGEG
family. For all real data, for exploring the “initial shape”, the nonparametric Kernel density
estimation is presented. For checking the “normality” condition, the “Quantile–Quantile
plot” is presented. For discovering the shape of the HRFs, the “total time in test” plot
is provided. To explore the extremes, the “box plot” is sketched. Based on PII base-line
model, the PEWPII model gives the lowest values for all test statistics, where AICr =
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264.231, CAICr = 264.737, BICr = 273.954, and HQICr = 268.139 for the failure times data;
AICr = 205.252, CAICr = 205.941, BICr = 213.824, and HQICr = 208.623 for the service
times data.
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