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Abstract: A common concern with Bayesian methodology in scientific contexts is that inferences can
be heavily influenced by subjective biases. As presented here, there are two types of bias for some
quantity of interest: bias against and bias in favor. Based upon the principle of evidence, it is shown
how to measure and control these biases for both hypothesis assessment and estimation problems.
Optimality results are established for the principle of evidence as the basis of the approach to these
problems. A close relationship is established between measuring bias in Bayesian inferences and
frequentist properties that hold for any proper prior. This leads to a possible resolution to an apparent
conflict between these approaches to statistical reasoning. Frequentism is seen as establishing figures
of merit for a statistical study, while Bayes determines the inferences based upon statistical evidence.
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1. Introduction

A serious concern with Bayesian methodology is that the choice of the prior could
result in conclusions that to some degree are predetermined before seeing the data. In
certain circumstances, this is correct. This can be seen by considering the problem associated
with what is known as the Jeffreys–Lindley paradox where posterior probabilities of
hypotheses, as well as associated Bayes factors, will produce increasing support for the
hypothesis as the prior becomes more diffuse. Thus, while one may feel that a very diffuse
prior is putting in very little information, it is in fact biasing the results in favor of the
hypothesis in the sense that that there is a significant prior probability that evidence will be
found in favor of the hypothesized value when it is false. It has been argued, see [1,2], that
the measurement and control of bias is a key element of a Bayesian analysis as, without it,
and the assurance that bias is minimal, the validity of any inference is suspect.

While attempts have been made to avoid the Jeffreys–Lindley paradox through the
choice of the prior, modifying the prior to avoid bias is contrary to the ideals of a Bayesian
analysis which requires the elicitation of a prior based upon knowledge of the phenomenon
under study. Why should one change such a prior because of bias? Indeed, there is bias
in favor and bias against and typically choosing a prior to minimize one type of bias
simply increases the other. Roughly speaking, in a hypothesis assessment problem, bias
against means that there is a significant prior probability of finding evidence against a
hypothesized value when it is true, and bias in favor means that there is a significant prior
probability of finding evidence in favor of a hypothesized value when it is false. The real
method for controlling bias of both types is through the amount of data collected. Bias
can be measured post-hoc, and it then provides a way to assess the weight that should be
given to the results of an analysis. For example, if a study concludes that there is evidence
in favor of a hypothesis, but it can be shown that there was a high prior probability that
such evidence would be obtained, then the results of such an analysis can’t be considered
to be reliable.
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Previous discussion concerning bias for Bayesian methodology has focused on hy-
pothesis assessment and, in many ways, this is a natural starting point. This paper is
concerned with adding some aspects to those developments and to extending the approach
to estimation and prediction problems as discussed in Section 3.3 where bias in favor and
bias against are expressed in terms of a priori coverage probabilities. Furthermore, it is
argued that measuring and controlling bias is essentially frequentist in nature. Although
not the same, it is convenient to think of bias against in a hypothesis assessment problem
as playing a role similar to the size in a frequentist hypothesis test or, in an estimation
problem, playing a role similar to 1 minus the coverage probability of a confidence region.
Bias in favor can be thought of as somewhat similar to power in a hypothesis assessment
problem and simlar to the probability of a confidence region covering a false value in an
estimation problem. Thus, consideration of bias leads to a degree of unification between
different ways of thinking about statistical reasoning.

The measurement of bias, and thus its control, is dependent upon measuring evidence.
The principle of evidence is adopted here: evidence in favor of a specific value of an unknown
occurs when the posterior probability of the value is greater than its prior probability, evidence
against occurs when the posterior probability of the value is less than its prior probability and
there is no evidence either way when these are equal. The major part of what is discussed here
depends only on this simple principle, but sometimes a numerical measure is needed and,
for this, we use the relative belief ratio defined as the ratio of the posterior to prior probability.
The relative belief ratio is related to the Bayes factor but has some nicer properties such
as providing a measure of the evidence for each value of a parameter without the need to
modify the prior.

The inferences discussed here are based on the relative belief ratio and these inferences
are invariant to any 1–1, increasing function of this quantity. For example, the logarithm
of the relative belief ratio can be used instead to derive inferences. The expected value of
the logarithm of the relative belief ratio under the posterior is the relative entropy, also
called the Kullback–Leibler divergence, between the posterior and prior. This is an object
of considerable interest in and of itself and, from the perspective of measuring evidence,
can be considered as a measure of how much evidence the observed data are providing
about the unknown parameter value in question. This aspect does not play a role here,
however, but indicates a close association between the measurement of statistical evidence
and the concept of entropy. In addition, many divergence measures involve the relative
belief ratio and play a role in [3], which is concerned with checking for prior-data conflict.

There is not much discussion in the Bayesian literature of the notion of bias in the
sense that is meant here. There is considerable discussion, however, concerning the Jeffreys–
Lindley paradox and our position is that bias plays a key role in the issues that arise.
Relevant recent papers on this include [4–9], and these contain extensive background
references. Ref. [10] is concerned with the validation of quantum theory using Bayesian
methodology applied to well-known data sets, and the principle of evidence and an
assessment of the bias play a key role in the argument.

As already noted, the approach to inference and the measurement of bias adopted
here is dependent on the principle of evidence. This principle is not well-known in the
statistical community and so Section 2 contains a discussion of this principle and why it is
felt to be an appropriate basis for the development of a theory of inference. In Section 3, the
concepts that underlie our approach to bias measurement are defined, and their properties
are considered and illustrated via a simple example where the Jeffreys–Lindley paradox is
relevant. In addition, it is seen that a well-known p-value does not satisfy the principle
of evidence but can still be used to characterize evidence for or against provided the
significance level goes to 0 with increasing sample size or increasing diffuseness of the prior.
In Section 4, the relationship with frequentism is discussed and a number of optimality
results are established for the approach taken here to measure and control bias. In Section 5,
a variety of examples are considered and analyzed from the point-of-view of bias. All
proofs of theorems are in the Appendix A.
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2. Statistical Evidence

Attempts to develop a theory of inference based upon a definition, or at least provide
a characterization, of statistical evidence exist in the statistical literature. For example,
see [2,11–17]. The treatments in [12,14] have some aspects in common with the approach
taken here, but there are also substantial differences. There is a significant amount of
discussion of statistical evidence in the philosophy of science literature and this is much
closer in spirit to the treatment here. For example, see [18] p. 6, where it is stated “for a
fact e to be evidence that a hypothesis h is true, it is both necessary and sufficient for e to
increase h’s probability over its prior probability” which is what is called the principle of
evidence here.

2.1. The Principle of Evidence

One characteristic of our, and the philosophical, treatment is that evidence is a proba-
bilistic concept and thus a proper definition only requires a single probability model as
opposed to a statistical model. This explains in part why our treatment requires a proper
prior as then there is a joint probability model for the model parameter and data. The
following two examples illustrate the relevance of characterizing evidence in such a context.
Example 1 is a simple game of chance where the probabilities in question are unambiguous.
The utility aspects of the game are ignored because these are irrelevant to the discussion
of evidence but surely are relevant if some action like betting was involved. This is char-
acteristic of the treatment here where loss functions play no role in the characterization
of evidence but do play a role in determining actions when required as discussed in the
well-known Example 2. The examples also illustrate that characterizing evidence in favor
of or against is not enough, as it is necessary to also say something about the strength of
the evidence.

Example 1. Card game.

Suppose that there are two players in a card game, labeled I and II, and each is dealt
m cards, where 2 ≤ m ≤ 26, from a randomly shuffled deck of 52 playing cards. Further
suppose that player I, after seeing their hand, is concerned, for whatever reason dependent
on the rules of the game, with the truth or falsity of the hypothesis H0: player II has exactly
two aces. It seems clear that the hand of player I will contain evidence concerning this. For
example, if player I has three or four aces in their hand, then there is categorical evidence
that H0 is false. However, what about the evidence when the event observed is Ck = “the
number of aces in the hand of player I is k” with k = 0, 1, or 2?

There are two questions to be answered: (i) is there evidence in favor of or against H0
and (ii) how strong is this evidence? The prior probability P(H0) and posterior probability
P(H0 |Ck) that H0 is true are provided in Table 1 for various (k, m). What conclusions can
be drawn from this table? In every case, other than (m, k) = (25, 2), (26, 2), the conditional
probability P(H0 |Ck) does not support H0 being true. In fact, in many cases, some would
argue that the value of this probability indicates evidence against H0. This points to a
significant problem with trying to use probabilities to determine evidence, as it is not
at all clear what the cutoff should be to determine evidence for or against H0. It seems
clear, however, that if the data, here the observation that Ck is true, has increased belief
in H0 over initial beliefs, then there is evidence in the data pointing to the truth of H0.
Whether or not the posterior probability is greater than the prior probability is indicated
by RB(H0 |Ck) = P(H0 |Ck)/P(H0 ), the relative belief ratio of H0, being greater than 1.
Certainly, it is intuitive that, when k = 0, then our belief in H0 being true, a posteriori could
increase, but, from the table and some reflection, it is clear that this cannot always be true
as the amount of data, m in this case, grows. While k = 0 is evidence in favor of H0, it is
evidence against only for m = 25, 26. The relationship between the prior probabilities and
posterior probabilities is somewhat subtle and not easy to predict, but a comparison of
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these quantities makes it clear when there is evidence in favor of H0 and when there isn’t.
This answers question (i).

The measurement of the strength of evidence is not always obvious, but, in this
case, effectively a binary event, the posterior probability of the event in question seems
like a reasonable approach as it is measuring the belief that the event in question is true.
Thus, if we get evidence in favor of H0 and P(H0 |Ck) is small, then this suggests that
the evidence can only be regarded as weak and similarly if there is evidence against H0
and P(H0 |Ck) is large, then there is only weak evidence against H0. Some might argue
that a large value of P(H0 |Ck) should always be evidence in favor of H0, but note that
the data could contradict this by resulting in a decrease from a larger initial probability.
Measuring strength in this way, the table indicates that there is strong evidence in favor of
H0 with (m, k) = (25, 2), (26, 2) and weak to moderate evidence in favor otherwise when
RB(H0 |Ck) > 1. By contrast, there is typically quite strong evidence against H0 in cases
where RB(H0 |Ck) < 1 with the exception of (m, k) = (10, 1), (25, 1). Intuitively, it couldn’t
be expected that there would be strong evidence in favor of H0 for small m, but there
can still be evidence in favor. Note that a comparison, for m = 2 and 20, of the values of
RB(H0 |C0) illustrates that the relative belief ratio itself does not provide a measure of the
strength of the evidence in favor. In general, the value of a relative belief ratio needs to be
calibrated and the posterior probability of H0 is a natural way to do this here.

Table 1. Probabilities and relative belief ratios for H0 in Example 1.

P(H0) P(H0 |Ck) RB(H0 |Ck)

m = 2 0.0045
k = 0 0.0049
k = 1 0.0024
k = 2 0.0008

1.0824
0.5412
0.1804

m = 5 0.0399
k = 0 0.0483
k = 1 0.0259
k = 2 0.0093

1.2089
0.6487
0.2317

m = 10 0.1431
k = 0 0.1994
k = 1 0.1254
k = 2 0.0522

1.3934
0.8765
0.3652

m = 20 0.3481
k = 0 0.3487
k = 1 0.4597
k = 2 0.3831

1.0018
1.3205
1.1004

m = 25 0.3890
k = 0 0.0171
k = 1 0.2051
k = 2 0.8547

0.0439
0.5274
2.1974

m = 26 0.3902
k = 0 0.0000
k = 1 0.0000
k = 2 1.0000

0.0000
0.0000
2.5630

Example 2. Prosecutor’s fallacy.

Assume a uniform probability distribution on a population of size N of which some
member has committed a crime. DNA evidence has been left at the crime scene and
suppose that this trait is shared by m � N of the population. A prosecutor is criticized
because they conclude that, because the trait is rare and a particular member possesses
the trait, they are guilty. In fact, P(“has trait” | “guilty”) = 1 is misinterpreted as the
probability of guilt rather than P(“guilty” | “has trait”) = 1/m, which is small if m is large.
However, this probability does not reflect the evidence of guilt. If you have the trait, then
clearly this is evidence in favor of guilt and indeed RB(“guilty” | “has trait”) = N/m > 1
and P(“guilty” | “has trait”) = 1/m. Thus, there is evidence of guilt, and the prosecutor
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is correct to conclude this. However, the evidence is weak whenever m is large and a
conviction then does not seem appropriate. Since the posterior probability of “not guilty” is
large whenever m is, it may seem obvious to conclude this. However, suppose that
“guilty” corresponds to being a carrier of a highly infectious deadly disease and “has trait”
corresponds to some positive, but not definitive, test for this. The same numbers should
undoubtedly lead to a quarantine. Thus, the utilities determine the action taken and not
just the evidence.

2.2. Confirmation Theory

As noted, discussion concerning statistical evidence has a long history, although
mainly in the philosophy of science literature, where it is sometimes referred to as con-
firmation theory. An introduction to confirmation theory can be found in [19], but the
history of this topic is much older. For example, see Appendix ix in [20] where, with x and
y denoting events, the following is stated.

If we are asked to give a criterion of the fact that the evidence y supports or cor-
roborates a statement x, the most obvious reply is: that y increases the probability
of x.

The book [20] references older papers and some sources cite [21] where the relative
belief ratio RB(A | B) is called the coefficient of influence of B upon A. In the Confirmation
entry in [22], the definition of probabilistic relevance confirmation is what has been called here
the principle of evidence. The following quote is from the third paragraph of this entry
and it underlines the importance of this topic.

Confirmation theory has proven a rather difficult endeavour. In principle, it
would aim at providing understanding and guidance for tasks such as diagnosis,
prediction, and learning in virtually any area of inquiry. However, popular
accounts of confirmation have often been taken to run into trouble even when
faced with toy philosophical examples. Be that as it may, there is at least one
real-world kind of activity that has remained a prevalent target and benchmark,
i.e., scientific reasoning, and especially key episodes from the history of modern
and contemporary natural science. The motivation for this is easily figured out.
Mature sciences seem to have been uniquely effective in relying on observed
evidence to establish extremely general, powerful, and sophisticated theories.
Indeed, being capable of receiving genuine support from empirical evidence is
itself a very distinctive trait of scientific hypotheses as compared to other kinds
of statements. A philosophical characterization of what science is would then
seem to require an understanding of the logic of confirmation. In addition, thus,
traditionally, confirmation theory has come to be a central concern of philosophers
of science.

As far as we know, Ref. [2] summarizes one of the first attempts to use the principle of
evidence as a basis for a theory of statistical inference. Some of the paradoxes/puzzles that
arise in the philosophical literature, such as Hempel’s the Raven paradox, are discussed
there. Adding the measurement of the strength of evidence and the a priori measurement
of bias to the principle of evidence leads to the resolution of many difficulties, see [2].
Whether one is convinced of the value of the principle of evidence or not, this is an idea
that needs to be better known and investigated by statisticians.

2.3. Popper’s Principle of Science as Falsification

Another aspect requiring comment is that the principle of evidence allows for finding
either evidence against or evidence in favor of a hypothesis while, for example, a p-value
cannot find evidence in favor. This one-sided aspect of a p-value is often justified by
Popper’s idea that the role of science lies in falsification of hypotheses and not their
confirmation. In the context of Examples 1 and 2, this seems wrong as the hypothesis
in question is either true or false, so it is desirable to be able to find evidence either way.
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When applied to a statistical context, at least as formulated in Section 3, inferences about
a quantity of interest are dependent on the choice of a statistical model and a prior. It
is well understood that the model is typically false and it isn’t meaningful to talk of the
truth or falsity of the prior. Since there is only one chosen model, it can only be falsified
via model checking rather than confirmed, namely, determining if the observed data are
in the tails of every distribution in the model. Actually, all that is being asked in such a
procedure is whether or not the model is at least reasonably compatible with the observed
data. Similarly, the prior is checked through checking for prior-data conflict, namely, given
that the model has passed its check, is there an indication that the true value lies in the tails
of the prior. For example, see [3,23,24] for some discussion. Again, all that is being asked is
whether or not the prior is at least reasonably compatible with the data.

For checking the model or checking the prior, there is one object that is being con-
sidered. Thus, it makes sense that only an indication that the entity in question is not
appropriate is available, and a p-value can play a role in this aspect of a statistical argument.
However, when making an inference, the model is accepted as being correct and, as such,
one of the distributions in the model is true, and so it is natural to want to be able to
find evidence in favor of or against a specific value of an object dependent on the true
distribution. This situation is analogous to what arises in logic where a sound argument
is distinguished from a valid argument. A logical argument is based upon premises and
rules of inference like modus ponens. An argument is valid if the rules of logic are correctly
applied to obtain the conclusions. However, an argument is sound only if the argument
is valid and the premises are true. It is a basic rule of logical reasoning that one doesn’t
confound the correctness of the argument with the correctness of the premises. In the statis-
tical context, there may indeed be problems with the model or prior, but the inference step,
which assumes the correctness of the model and prior, needs to be able to find evidence
in favor as well as evidence against a particular value of the object of interest. As part of
the general approach as presented in [2], both model checking and checking for prior-data
conflict are advocated before inference. If there are serious problems with either, then
modifications of the ingredients are in order, but this is not the topic of this paper where it
is assumed that the model and prior are acceptable. Thus, Popper’s falsification idea plays
a role but not in the inference step.

3. Evidence and Bias

For the discussion here, there is a model { fθ : θ ∈ Θ}, given by densities fθ , for data x
and a proper prior probability distribution given by density π. It is supposed that interest
is in inferences about ψ = Ψ(θ), where Ψ : Θ → Ψ is onto and for economy the same
notation is used for the function and its range. For the most part, it is safe to assume all
the probability distributions are discrete with results for the continuous case obtained by
taking limits.

A measure of the evidence that ψ ∈ Ψ is the true value is given by the relative
belief ratio

RBΨ(ψ | x) = lim
δ→0

ΠΨ(Nδ(ψ) | x)/ΠΨ(Nδ(ψ)) = πΨ(ψ | x)/πΨ(ψ) (1)

where ΠΨ, ΠΨ(· | x) are the prior and posterior probability measures of Ψ with densities πΨ
and πΨ(· | x), respectively, and Nδ(ψ) is a sequence of sets converging nicely to {ψ}. The
last equality in (1) requires some conditions, but the prior density positive and continuous
at ψ is enough. In addition, when Ψ = IA for A ⊂ Θ, the indicator of A, then we write
RB(A | x) for RBΨ(1 | x). Thus, RBΨ(ψ | x) > 1 implies evidence for the true value being ψ,,
etc. It is also possible that a prior is dependent on previous data. In such a situation, it is
natural to replace πΨ in (1) by the initial prior, as the posterior remains the same, but now
the evidence measure is based on all of the observed data. There may be contexts, however,
where the concern is only with the evidence provided by the additional data, for example,
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as when new data arise from random sampling from the relevant population(s), but the
first dataset came from an observational study.

Any valid measure of evidence should satisfy the principle of evidence, namely, the
existence of a cut-off value that determines evidence for or against as prescribed by the
principle. Naturally, this cut-off is 1 for the relative belief ratio. The Bayes factor is also a
valid measure of evidence and with the same cut-off. When ΠΨ(A) > 0, then the Bayes
factor of A equals RB(A | x)/RB(Ac | x) and thus can be defined in terms of the relative
belief ratio, but not conversely. In addition, RB(A | x) > 1 iff RB(Ac | x) < 1 and thus the
Bayes factor is not really a comparison of the evidence for A being true with the evidence
for its negation. In the continuous case, if we define the Bayes factor for ψ as a limit as
in (1), then this limit equals RBΨ(ψ | x). Further discussion on the choice of a measure of
evidence can be found in [2] as there are other candidates beyond these two. One significant
advantage for the relative belief ratio is that all inferences derived based on it are invariant
under smooth reparameterizations. Furthermore, the relative belief ratio only serves to
order the values of ψ ∈ Ψ with respect to evidence, and the value RBΨ(ψ | x) is not to be
considered as measuring evidence on a universal scale. It is important to note that the
discussion of bias here depends only on the principle of evidence and is the same no matter
what valid measure of evidence is used.

Since the model and prior are subjectively chosen, the characterization and measure-
ment of statistical evidence has a subjective component. This creates the possibility that
these choices are biased, namely, they were chosen with some goal in mind other than
letting the data determine the conclusions. Model checking and checking for prior-data
conflict exposes these choices to criticism via the data, but these checks will not reveal
inappropriate conduct like tailoring a model or prior based on the observed data. Perhaps
a more important check on such behavior is to measure and control bias. As will now
be shown, controlling the bias through the a priori determination of the amount of data
collected can leave us with greater confidence that the data are the primary driver of
whatever inferences are drawn, and this is surely the goal in scientific applications. Thus,
while informed subjective choices are a good thing, there are also tools that can be used
to mitigate concerns about subjectivity, as these allow an analysis to at least approach the
scientific goal of an objective analysis. The lack of a precise definition of objectivity, and a
clear methodology for attaining it, is not a failure since the issue can be addressed. This is
a somewhat nuanced view of the objective/subjective concern and is perhaps more in line
with the views on this topic as expressed in [25,26].

3.1. Bias in Hypothesis Assessment Problems

Suppose the problem of interest is to assess whether or not there is evidence in favor
of or against H0 : Ψ(θ) = ψ∗, as is determined here by RBΨ(ψ∗ | x) being greater than or
less than 1. It is to be noted that no restrictions, beyond propriety, are placed on priors
here so Π could very well be a mixture of a prior on H0 ⊂ Θ and a prior on Hc

0 with H0
assigned some positive mass as is commonly done in Bayesian testing problems. Certainly,
such a prior is necessary when Ψ = IH0 and ψ∗ = 1 so the relevant relative belief ratio
is RB(H0 | x). While this formulation is accommodated, there is no reason to insist that
every hypothesis assessment be expressed this way. When Ψ(θ) is a quantity like a mean,
variance, quantile, etc., it seems natural to compare the value RBΨ(ψ∗ | x) with each of the
other possible values RBΨ(ψ | x) for ψ ∈ Ψ to calibrate, as is done subsequently via (2),
how strong the evidence is concerning ψ∗.

The following example is carried along as it illustrates a number of things.

Example 3. Location normal.

Suppose x = (x1, . . . , xn) is i.i.d. N(µ, σ2
0 ) with π a N(µ0, τ2

0 ) prior. Then, µ | x ∼
N(
(
n/σ2

0 + 1/τ2
0
)−1

(nx̄/σ2
0 + µ0/τ2

0 ),
(
n/σ2

0 + 1/τ2
0
)−1

) and so RB(µ | x) equals
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(
1 +

nτ2
0

σ2
0

)1/2

exp

−1
2

(
1 +

σ2
0

nτ2
0

)−1(√
n(x̄− µ)

σ0
+

σ0(µ0 − µ)√
nτ2

0

)2

+
(µ− µ0)

2

2τ2
0

.

Observe that, as τ2
0 → ∞, then RB(µ | x) → ∞ for every µ and in particular for a

hypothesized value H0 = {µ∗}. Thus, it would appear that overwhelming evidence is
obtained for the hypothesis when the prior is very diffuse, and this holds irrespective of
what the data says. In addition, when the standardized value

√
n|x̄− µ∗|/σ0 is fixed, then

RB(µ∗ | x) → ∞ as n → ∞. These phenomena also occur if a Bayes factor (which equals
RB(µ∗ | x) in this case) or a posterior probability based upon a discrete prior mass at µ∗, are
used to assess H0. Accordingly, all these measures lead to a sharp disagreement with the
frequentist p-value 2(1−Φ(

√
n|x̄− µ∗|/σ0)) when it is small. This is the Jeffreys–Lindley

paradox, and it arises quite generally.
The Jeffreys–Lindley paradox shows that the strength of evidence cannot be measured

strictly by the size of the measure of evidence. A logical way to assess strength is to
compare the evidence for ψ∗ with the evidence for the other values for ψ. The strength can
then be measured by

ΠΨ(RBΨ(ψ | x) ≤ RBΨ(ψ∗ | x) | x), (2)

the posterior probability that the true value has evidence no greater than the evidence for ψ∗.
Thus, if RBΨ(ψ∗ | x) < 1 and (2) is small, then there is strong evidence against ψ∗, while, if
RBΨ(ψ∗ | x) > 1 and (2) is large, then there is strong evidence in favor of ψ∗. The inequalities
ΠΨ({ψ∗} | x) ≤ ΠΨ(RBΨ(ψ | x) ≤ RBΨ(ψ∗ | x) | x) ≤ RBΨ(ψ∗ | x) hold and thus, when
RBΨ(ψ∗ | x) is small, there is strong evidence against ψ∗ and, when RBΨ(ψ∗ | x) > 1 and
ΠΨ({ψ∗} | x) is big, then there is strong evidence in favor of ψ∗. Note, however, that
ΠΨ({ψ∗} | x) ≈ 1 does not guarantee RBΨ(ψ∗ | x) > 1 and, if RBΨ(ψ∗ | x) < 1, this means
that there is weak evidence against ψ∗. In addition, there is no reason why multiple
measures of the strength of the evidence can’t be used (see the discussion in Section 3.2).
In fact, when Ψ is binary-valued, it is better to use ΠΨ({ψ∗} | x) to measure the strength,
as we did in Examples 1 and 2, and there are also some issues with (2) in the continuous
case that can require a modification. These issues are ignored here, as the strength does not
play a role when considering bias, and the reader can see [2] for further discussion. The
important point is that it is necessary to calibrate the measure of evidence using probability
to measure how strong belief in the evidence is and (2) is a reasonable way to do this in
many contexts.

1. Example 3 Location normal (continued).

A simple calculation shows that, with
√

n|x̄ − µ∗| fixed, (2) then converges to
2(1−Φ(

√
n|x̄− µ∗|/σ0)) as nτ2

0 → ∞. Thus, if the p-value is small, this indicates that a
large value of RBΨ(µ∗ | x) is only weak evidence in favor of µ∗. It is to be noted that the
p-value 2(1−Φ(

√
n|x̄− µ∗|/σ0)) is not a valid measure of evidence as described here

because there is no cut-off that corresponds to evidence for and evidence against. Thus,
its appearance as a measure of the strength of the evidence is not circular.

Simple algebra shows (see the Appendix A), however, that

2(1−Φ(
√

n|x̄− µ∗|/σ0))−

2(1−Φ([log(1 + nτ2
0 /σ2

0 ) +
(

1 + σ2
0 /nτ2

0

)−1
(x̄− µ0)

2/τ2
0 ]

1/2),

a difference of two p-values, is a valid measure of evidence via the cut-off 0. From this, it
is seen that the values of the first p-value 2(1−Φ(

√
n|x̄− µ∗|/σ0) that lead to evidence

against, generally become smaller as nτ2
0 → ∞. For example, with n = 10, σ2

0 = 1, µ∗ = 0
and
√

n|x̄− µ∗|/σ0 = 1.96, the standard p-value equals 0.05. Setting µ0 = 0 and τ2
0 = 1, the

second p-value equals 0.097 and thus there is evidence against µ∗ = 0, with τ2
0 = 10 being

the second term equal to 0.031 and, with τ2
0 = 100, it equals 0.009, so there is evidence

in favor of µ∗ = 0 in both cases. When n increases, these values become smaller, as,
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with n = 50, the first p-value equal to 0.05 is always evidence in favor. Similar results
are obtained with a uniform prior on (−m, m), reflecting perhaps a desire to treat many
values equivalently, as m → ∞ or n → ∞. For example, with m = 10 and n = 10, σ2

0 = 1,
µ∗ = 0,

√
n|x̄− µ∗|/σ0 = 1.96, then the second p-value equals 0.002, and there is evidence

in favor of µ∗ = 0. These findings are similar to those in [27,28].
It is very simple to elicit (µ0, τ2

0 ) based on prescribing an interval that contains the
true µ with some high probability such as 99.9%, taking µ0 to be the mid-point and so
τ2

0 is determined. There is no reason to take τ2
0 to be arbitrarily large. However, one still

wonders if the choice made is inducing some kind of bias into the problem as taking τ2
0 too

large clearly does.
Certainly, default choices of priors should be avoided when possible, but even when

eliciting, how can we know if the chosen prior is inducing bias? To assess this, a numerical
measure is required. The principle of evidence suggests that bias against H0 is measured by

M(RBΨ(ψ∗ |X) ≤ 1 |ψ∗) (3)

where M(· |ψ∗) is the prior predictive distribution of the data given that the hypothesis
is true. Thus, (3) is the prior probability that evidence in favor of ψ∗ will not be obtained
when ψ∗ is the true value. If (3) is large, then there is an a priori bias against H0.

For the bias in favor of H0, it is necessary to assess if evidence against H0 will not be
obtained with high prior probability even when H0 is false. One possibility is to measure
bias in favor by∫

Ψ\{ψ∗}
M(RBΨ(ψ∗ |X) ≥ 1 |ψ)ΠΨ(dψ)

= M(RBΨ(ψ∗ |X) ≥ 1)−M(RBΨ(ψ∗ |X) ≥ 1 |ψ∗)ΠΨ({ψ∗}), (4)

the prior probability of not obtaining evidence against ψ∗ when it is false. When ΠΨ({ψ∗}) = 0,
(4) equals M(RBΨ(ψ∗ |X) ≥ 1), where M is the prior predictive for the data. For continuous
parameters, it can be argued that it doesn’t make sense to consider values of ψ so close to
ψ∗ that they are practically indistinguishable. Suppose that there is a measure of distance
dΨ on Ψ and a value δ > 0 such that, if dΨ(ψ∗, ψ) < δ, then ψ∗ and ψ are indistinguishable
in the application. The bias in favor of H0 is then measured by replacing Ψ\{ψ∗} in (4) by
{ψ : dΨ(ψ∗, ψ) ≥ δ} leading to the upper bound

sup
{ψ:dΨ(ψ∗ ,ψ)≥δ}

M(RBΨ(ψ∗ |X) ≥ 1 |ψ). (5)

Typically, M(RBΨ(ψ∗ |X) ≥ 1 |ψ) decreases as ψ moves away from ψ∗ so (5) can be
computed by finding the supremum over the set {ψ : dΨ(ψ∗, ψ) = δ} and, when ψ is
real-valued and dΨ is Euclidian distance, this set equals {ψ∗ − δ, ψ∗ + δ}.

It is to be noted that the measures of bias given by (3)–(5) do not depend on using the
relative belief ratio to measure evidence. Any valid measure of evidence will determine
the same values when the relevant cut-off is substituted for 1. It is only (2) that depends on
the specific choice of the relative belief ratio as the measure of evidence.

Under general circumstances, see [2], both biases will converge to 0 as the amount of
data increases and thus they can be controlled by the amount of data collected. There is no
point in reporting the results of an analysis when there is a lot of bias unless the evidence
contradicts the bias.

2. Example 3 Location normal (continued).

Under M(· | µ), then x̄ ∼ N(µ, τ2
0 + σ2

0 /n). Thus, putting
a(µ, µ0, τ2

0 , σ2
0 , n) = σ0(µ− µ0)/

√
nτ2

0 ,

b(µ, µ0, τ2
0 , σ2

0 , n) = {(1 + σ2
0 /nτ2

0 )[log(1 + nτ2
0 /σ2

0 ) + (µ− µ0)
2/τ2

0 ]}1/2,
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then (3) is given by

M(RB(µ |X) ≤ 1 | µ) = 1−Φ
(

a(µ, µ0, τ2
0 , σ2

0 , n) + b(µ, µ0, τ2
0 , σ2

0 , n)
)
+

Φ
(

a(µ, µ0, τ2
0 , σ2

0 , n)− b(µ, µ0, τ2
0 , σ2

0 , n)
)

. (6)

This goes to 0 as n → ∞ or as τ2
0 → ∞. Thus, bias against can be controlled by sample

size n or by the diffuseness of the prior although, as subsequently shown, a diffuse prior
induces bias in favor. It is also the case that (6) converges to 0 when µ0 → ±∞ or when
σ0/
√

nτ0 is fixed and τ0 → 0. Thus, it would appear that using a prior with a location quite
different than the hypothesized value or a prior that was much more concentrated than
the sampling distribution can be used to lower bias against. These are situations, however,
where one can expect to have prior-data conflict after observing the data.

The entries in Table 2 record the bias against for a specific case and illustrate that
increasing n does indeed reduce bias. The entries also show that bias against can be greater
when the prior is centered on the hypothesis. Figure 1 contains a plot of the bias against
H0 = {µ}, as a function of µ, when using a N(0, 1) prior. Note that the maximum bias
against occurs at the mean of the prior (and equals 0.143), and this typically occurs when
σ2

0 /nτ2
0 < 1, namely, when the data are more concentrated than the prior. Figure 1 also

contains a plot of the bias against when using a prior more concentrated than the data
distribution. That the bias against is maximized, as a function of the hypothesized mean µ,
when µ equals the value associated with the strongest belief under the prior, seems odd.
This phenomenon arises quite often, and the mathematical explanation for this is that the
greater the amount of prior probability assigned to a value, the harder it is for the posterior
probability to increase and so it is quite logical when considering evidence. It will be seen
that this phenomenon is very convenient for the control of bias in estimation problems and
could be used as an argument for using a prior centered on the hypothesis, although this is
not necessary as beliefs may be different.

Table 2. Bias against (3) the hypothesis H0 = {0} with a N(µ0, τ2
0 ) prior for different sample sizes n

with σ0 = 1.

n µ0 = 1, τ0 = 1 µ0 = 0, τ0 = 1

5 0.095 0.143
10 0.065 0.104
20 0.044 0.074
50 0.026 0.045

100 0.018 0.031

Now, consider (5), namely, bias in favor of H0 = {µ∗}. Putting

c(µ∗, µ, µ0, τ2
0 , σ2

0 , n) =
√

n(µ∗ − µ)/σ0 + a(µ∗, µ0, τ2
0 , σ2

0 , n),

then (5) equals max M(RB(µ∗ |X) ≥ 1 | µ∗ ± δ) where

M(RB(µ∗ |X) ≥ 1 | µ) =Φ
(

c(µ∗, µ, µ0, τ2
0 , σ2

0 , n) + b(µ∗, µ0, τ2
0 , σ2

0 , n)
)
−

Φ
(

c(µ∗, µ, µ0, τ2
0 , σ2

0 , n)− b(µ∗, µ0, τ2
0 , σ2

0 , n)
)

(7)

which converges to 0 as n → ∞ and also as µ → ±∞. However, (7) converges to 1 as
τ2

0 → ∞, so, if the prior is too diffuse, there will be bias in favor of µ∗. Thus, resolving
the Jeffreys–Lindley paradox requires choosing the sample size n, after choosing the prior,
so that (7) is suitably small. Note that choosing τ2

0 to be larger reduces bias against but
increases bias in favor and so generally bias cannot be avoided by choice of prior. Figure 2
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is a plot of M(RB(µ∗ |X) ≥ 1 | µ) for a particular case and this strictly decreases as µ moves
away from µ∗.
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Figure 1. Plot of bias against H0 = {µ} with a N(0, 1) prior (- - -) and a N(0, 0.01) prior (—) with
n = 5, σ0 = 1.
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Figure 2. Plot of M(RB(0 |X) ≥ 1 | µ) when n = 20, µ0 = 1, τ0 = 1, σ0 = 1.

In Table 3, we have recorded some specific values of the bias in favor using (4) and
using (5) where dΨ is Euclidean distance. It is seen that bias in favor can be quite serious
for small samples. When using (5), this can be mitigated by making δ larger. For example,
with (µ0, τ0) = (0, 1), δ = 1.0, n = 20, the bias in favor equals 0.004. Note, however, that
δ is not chosen to make the bias in favor small; rather, it is determined in an application
as the difference from the null that is just practically important. The virtues of a suitable
value of δ are readily apparent as (5) is much smaller than (4) for larger n.

A comparison of Tables 2 and 3 shows that a study whose purpose is to demonstrate
evidence in favor of H0 is much more demanding than one whose purpose is to determine
whether or not there is evidence against H0. As a cautionary note too, it is worth reminding
the reader that bias is not to be used in the selection of a prior. The prior is to be selected
by elicitation and the biases measured for that prior. If one or both biases are too large,
then that is telling us that more data are needed to ensure that the conclusions drawn are
primarily driven by the data and not the prior. It is tempting to look at Tables 2 and 3 and
compare the priors, but this is not the way to proceed and it can be seen that choosing a
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prior to minimize one bias simply increases the other. It is also the case that bias can be
measured when a default proper prior is chosen, see Example 3, as is often done when
considering sparsity inducing priors, but the discussion here will focus on the ideal where
elicitation can be carried out. One can argue that bias is also model dependent and that
is certainly true so, while our focus is on the prior, in reality, the biases are a measure of
the model-prior combination. The same comment applies to the model, however, that bias
measurements are not to be used to select a model.

Table 3. Bias in favor of the hypothesis H0 = {0} with a N(µ0, τ2
0 ) prior for different sample sizes n

with σ0 = 1 using (4) (and using (5) with δ = 0.5).

n (µ0, τ0) = (1, 1) (µ0, τ0) = (0, 1)

5 0.323 (0.871) 0.451 (0.631)
10 0.259 (0.747) 0.371 (0.516)
20 0.215 (0.519) 0.299 (0.327)
50 0.153 (0.125) 0.219 (0.062)
100 0.116 (0.006) 0.168 (0.002)

3.2. The Role of the Difference that Matters δ

The role and value of δ require some further discussion as some may find the need
to specify this quantity controversial. The value of δ depends on the application as well
as the characteristic of interest ψ = Ψ(θ). For the developments here, specifying δ is a
necessary part of the investigation. There may well be contexts where the precise value
of δ is unclear. That seems to suggest, however, that the investigator does not fully
understand what ψ is as a real-world object and formal inference in such a context seems
questionable, although perhaps some kind of exploratory analysis is reasonable. In a
well-designed study, a measurement process is selected which, together with sampling
from the population, determines the data. In deciding on the measurement process, and
sample size, an investigator has to decide on the accuracy required and that is where δ
enters the picture.

Consider a problem where an investigator is measuring the length of some quantity
associated with each member of a population and wants to make inferences about the mean
length ψ. If the investigator chooses to measure each length to the nearest cm, then there
is no way that the true value of the mean can be known to an accuracy beyond ±0.5 cm,
even if the entire population is measured. As another example, suppose that ψ represents
the proportion of individuals in a population infected with a virus. Surely, it is imperative
to settle on how accurately we wish to know ψ and that will play a key role in a number
of statistical activities like determining sample size for the consideration of a hypothesis
concerning the true value of ψ. For example, does the application require that ψ be known
within an absolute error of δ or within a relative error of δ? See [29] for discussion on
this point in the context of logistic regression. To simply proceed to collect data and do
a statistical analysis without taking such considerations into account does not seem like
good practice.

While discussion of δ may be limited, it has certainly not disappeared from the
statistical literature. For example, consider power studies where a δ is required. In addition,
one of the many criticisms of the p-value arises because, for a large enough sample size,
a difference may be detected that is of no importance. The general recommendation is to
then quote a confidence interval to see if that is the case, but it is difficult to see how that
is helpful unless one knows what difference δ matters. This has long been an issue when
discussing testing problems, see [30], and yet it still seems unresolved as it is not always
clear how to obtain an appropriate p-value that incorporates δ. One of the benefits of the
approach here is that it is straightforward to incorporate δ into the analysis and, in fact, it
often makes an analysis easier. Thus, specifying δ is a part of every well-designed statistical
investigation.



Entropy 2021, 23, 190 13 of 28

3.3. Bias in Estimation Problems

The relative belief estimate of ψ = Ψ(θ) is the value that maximizes the measure of
evidence, namely, ψ(x) = arg sup RBΨ(ψ | x). It is easy to show that RBΨ(ψ(x) | x) ≥ 1
with the inequality strict except in trivial contexts. The accuracy of this estimate can be
measured by the “size” of the plausible region PlΨ(x) = {ψ : RBΨ(ψ | x) > 1}, the set of
values of ψ that have evidence in their favor and note ψ(x) ∈ PlΨ(x). To say that ψ(x) is
an accurate estimate requires that PlΨ(x) be “small”, perhaps as measured by Vol(PlΨ(x)),
where Vol is some measure of volume, and also has high posterior content ΠΨ(PlΨ(x) | x),
which measures the belief that the true value is in PlΨ(x). Note that PlΨ(x) does not depend
on the specific measure of evidence chosen, in this case the relative belief ratio. Any valid
estimator must satisfy the principle of evidence and thus be in PlΨ(x). It is now argued
that, in an estimation problem, bias is measured by various coverage probabilities for the
plausible region.

Note too that, if there is evidence in favor of H0 : Ψ(θ) = ψ∗, then ψ∗ ∈ PlΨ(x) and so
represents the natural estimate of ψ provided there was a clear reason, like the assessment
of a scientific theory, for assessing the evidence for this value. This assumes too that there
isn’t substantial bias in favor of ψ∗. The strength of the evidence in favor of ψ∗ could then
also be measured by the size of PlΨ(x). Similarly, if evidence against H0 is obtained, then
ψ∗ ∈ ImΨ(x) = {ψ : RBΨ(ψ | x) < 1} the implausible region, and there is strong evidence
against H0 provided ImΨ(x) has small volume and large posterior probability. A virtue of
this approach to measuring the strength of the evidence is that it does not depend upon
using the relative belief ratio in hypothesis assessment problems.

The prior probability that the plausible region does not cover the true value measures
bias against when estimating ψ. If this probability is large, then the estimate and the
plausible region are a priori likely to be misleading as to the true value. The prior probability
that PlΨ(x) doesn’t contain ψ = Ψ(θ) when θ ∼ Π, X ∼ Pθ is

EΠΨ(M(ψ /∈ PlΨ(X) |ψ)) = EΠΨ(M(RBΨ(ψ |X) ≤ 1 |ψ)) (8)

which is also the average bias against over all hypothesis testing problems H0 : Ψ(θ) = ψ.
Note 1 − EΠΨ(M(ψ /∈ PlΨ(X) |ψ)) = EΠΨ(M(ψ ∈ PlΨ(X) |ψ)) = EM(ΠΨ(PlΨ(X) |X))
which is the prior coverage probability of PlΨ. In addition,

sup
ψ

M(ψ /∈ PlΨ(X) |ψ) = sup
ψ

M(RBΨ(ψ |X) ≤ 1 |ψ), (9)

is an upper bound on (8). Therefore, controlling (9) controls the bias against in estimation
and all hypothesis assessment problems involving ψ. In addition,

1− sup
ψ

M(ψ /∈ PlΨ(X) |ψ) = inf
ψ

M(ψ ∈ PlΨ(X) |ψ) ≤ EM(ΠΨ(PlΨ(X) |X)).

Thus, using (9) implies lower bounds for the coverage probability and for the expected
posterior content of the plausible region. In general, both (8) and (9) converge to 0 with
increasing amounts of data. Thus, it is possible to control for bias against in estimation
problems by the amount of data collected.

3. Example 3 Location normal (continued).

The value of M(RB(µ |X) ≤ 1 | µ) is given in (6) and examples are plotted in Figure 1.
When µ ∼ N(µ0, τ2

0 ), then z = (µ− µ0)/τ0 ∼ N(0, 1), so
EΠ(M(RB(µ |X) ≤ 1 | µ)) =

1− E


Φ

(
σ0√
nτ0

Z +

{(
1 + σ2

0
nτ2

0

)[
log
(

1 + nτ2
0

σ2
0

)
+ Z2

]}1/2
)
+

Φ

(
σ0√
nτ0

Z−
{(

1 + σ2
0

nτ2
0

)[
log
(

1 + nτ2
0

σ2
0

)
+ Z2

]}1/2
)
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which is notably independent of the prior mean µ0. The dominated convergence theorem
implies EΠ(M(RB(µ |X) ≤ 1 | µ))→ 0 as n→ ∞ or as τ2

0 → ∞. Thus, provided nτ2
0 /σ2

0 is
large enough, there is hardly any estimation bias against. Table 4 illustrates some values of
this bias measure. Subtracting the probabilities in Table 4 from 1 gives the prior probability
that the plausible region covers the true value and the expected posterior content of the
plausible region. Thus, when n = 20, τ0 = 1, the prior probability of Pl(x) containing the
true value is 1− 0.051 = 0.949 so Pl(x) is a 0.949 Bayesian confidence interval for µ.

Table 4. Average bias against H0 = 0 when using a N(0, τ2
0 ) prior for different sample sizes n.

n τ0 = 1 τ0 = 0.5

5 0.107 0.193
10 0.075 0.146
20 0.051 0.107
50 0.031 0.067

100 0.021 0.046

To use (9), it is necessary to maximize M(RB(µ |X) ≤ 1 | µ) as a function of µ and it is
seen that, at least when the prior is not overly concentrated, this maximum occurs at µ0.
Figure 1 shows that, when using the N(0, 1) prior, the maximum occurs at µ = 0 when
n = 5 and, from the second column of Table 2, the maximum equals 0.143. The average
bias against is given by 0.107, as recorded in Table 4. Note that the maximum also occurs at
µ = 0 for the other values of n recorded in Table 2.

Bias in favor when estimating ψ occurs when the prior probability that ImΨ does not
cover a false value is large, namely, when∫

Ψ

∫
Ψ\{ψ∗}

M(ψ∗ /∈ ImΨ(X) |ψ)ΠΨ(dψ)ΠΨ(dψ∗)

=
∫

Ψ

∫
Ψ\{ψ∗}

M(RBΨ(ψ∗ |X) ≥ 1 |ψ)ΠΨ(dψ)ΠΨ(dψ∗) (10)

is large as this would seem to imply that the plausible region will cover a randomly selected
false value from the prior with high prior probability. Note that (10) is the prior mean
of (4) and, in the continuous case, equals

∫
Ψ M(ψ∗ /∈ ImΨ(X))ΠΨ(dψ∗). As previously

discussed, however, it often doesn’t make sense to distinguish values of ψ that are close to
ψ∗. The bias in favor for estimation can then be measured by

EΠΨ

(
sup

{ψ:dΨ(ψ,ψ∗)≥δ}
M(ψ∗ /∈ ImΨ(X) |ψ)

)

=EΠΨ

(
sup

{ψ:dΨ(ψ,ψ∗)≥δ}
M(RBΨ(ψ∗ |X) ≥ 1 |ψ)

)
. (11)

An upper bound on (11) is commonly equal to 1, as illustrated in Figure 3, and thus is
not useful.

It is the size and posterior content of PlΨ(x) that provides a measure of the accuracy
of the estimate ψ(x). As previously discussed, the a priori expected posterior content of
PlΨ(x) can be controlled by bias against. The a priori expected volume of PlΨ(x) satisfies

EM(Vol(PlΨ(X))) =
∫

Ψ

∫
Ψ

M(ψ∗ ∈ PlΨ(X) |ψ)ΠΨ(dψ)Vol(dψ∗). (12)

Notice that, when ΠΨ({ψ}) = 0 for every ψ, this can be interpreted as a kind of
average of the prior probabilities of the plausible region covering a false value.
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4. Example 3 Location normal (continued).

It follows from (7) that

sup M(RB(µ∗ |X) ≥ 1 | µ∗ ± δ) =

sup
{

Φ
(
c(µ∗, µ∗ ± δ, µ0, τ2

0 , σ2
0 , n) + b(µ∗, µ0, τ2

0 , σ2
0 , n)

)
−

Φ
(
c(µ∗, µ∗ ± δ, µ0, τ2

0 , σ2
0 , n)− b(µ∗, µ0, τ2

0 , σ2
0 , n)

) }
Note that, as µ∗ → ±∞, then M(RB(µ∗ |X) ≥ 1 | µ∗ ± δ)→ 1 when nτ2

0 /σ2
0 > 1, see

Figure 3, and converges to 0 if nτ2
0 /σ2

0 < 1, so it would appear that the better circumstance
for guarding against bias in favor is when the prior is putting in more information than
the data. As previously noted, however, this is a situation where we might expect prior
data-conflict to arise and, except in exceptional circumstances, should be avoided. Table 5
contains values of (11) for this situation with different values of δ. Again, these values are
just for illustrative purposes and are not to be used to compare or choose priors.

Table 5. Average bias in favor for estimation based on (11) when using a N(0, τ2
0 ) prior for different

sample sizes n and difference δ.

n (µ0, τ0) = (0, 1), δ = 1.0 (µ0, τ0) = (0, 1), δ = 0.5

5 0.451 0.798
10 0.185 0.690
20 0.025 0.486
50 0.000 0.131

100 0.000 0.009
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Figure 3. Bias in favor of µ maximized over µ± δ based on a N(0, 1) prior and σ0 = 1, n = 20, δ = 0.5.

Some elementary calculations give Pl(x) = x̄± w(x̄, n, σ2
0 , µ0, τ2

0 ) with

w(x̄, n, σ2
0 , µ0, τ2

0 ) =
σ0√

n

(
1 +

nτ2
0

σ2
0

)− 1
2
{(

1 +
nτ2

0
σ2

0

)
log

(
1 +

nτ2
0

σ2
0

)
+

(
x̄− µ0

σ0/
√

n

)2
} 1

2

where z =
√

n(x̄− µ0)/σ0 ∼ N(0, 1) under M. It is notable that the prior distribution of
the width is independent of the prior mean. Table 6 contains some expected half-widths
together with the coverage probabilities of Pl(x).
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Table 6. Expected half-widths (coverages) of the plausible interval when using a N(µ0, τ2
0 ) prior for

different sample sizes n.

n τ0 = 1 τ0 = 0.5

5 0.625 (0.893) 0.491 (0.807)
10 0.499 (0.925) 0.389 (0.854)
20 0.393 (0.949) 0.312 (0.893)
50 0.281 (0.969) 0.231 (0.933)

100 0.215 (0.979 ) 0.181 (0.954)

While the plausible region PlΨ(x) is advocated for assessing the accuracy of estimates, it
is also possible to use a γ−relative belief credible region Cγ(x) = {ψ : RBΨ(ψ | x) ≥ cγ(x)}
where cγ(x) = inf{c : ΠΨ(RBΨ(ψ | x) ≥ c | x) ≤ γ}. There is one proviso with this, however,
as the principle of evidence requires that γ ≤ ΠΨ(PlΨ(x) | x); otherwise, Cγ(x) will contain
values of ψ for which there is evidence against. Notice that, while controlling the bias against
allows control of the coverage probability of PlΨ(x), this does not control the coverage
probability of a credible region since ΠΨ(PlΨ(x) | x) is not known until the data are observed.
For this reason, reporting the plausible region always seems necessary. All these regions
are invariant under smooth reparameterizations and in [31] various optimality results are
established for these credible regions.

4. Frequentist and Optimal Properties

Consider now the bias against H0 = {ψ∗}, namely, M(RBΨ(ψ∗ |X) ≤ 1 |ψ∗). If we
repeatedly generate θ ∼ π(· |ψ∗), X ∼ fθ , then this probability is the long-run proportion
of times that RBΨ(ψ∗ |X) ≤ 1. This frequentist interpretation depends on the conditional
prior π(· |ψ∗) and, when Ψ(θ) = θ, there are no nuisance parameters, this is a “pure”
frequentist probability. Even in the latter case, there is some dependence on the prior, how-
ever, as RB(θ∗ | x) = fθ∗(x)/m(x) so x satisfies RBΨ(θ∗ | x) ≤ 1 iff fθ∗(x) ≤ m(x), where
m(x) =

∫
Θ fθ(x)Π(dθ). Thus, in general, the region {x : RBΨ(ψ∗ | x) ≤ 1} depends on π,

but the probability M(RBΨ(ψ∗ |X) ≤ 1 |ψ∗) depends only on the conditional prior predic-
tive given Ψ(θ) = ψ∗, namely, m(x |ψ∗) =

∫
Θ fθ(x)Π(dθ |ψ∗), and not on the marginal

prior πΨ on ψ. We refer to probabilities that depend only on M(· |ψ∗) as frequentist, for
example, coverage probabilities are called confidences, and those that depend on the full
prior π as Bayesian confidences. The frequentist label is similar to use of the confidence
terminology when dealing with random effects’ models as nuisance parameters have been
integrated out.

Suppose now that some other general rule, not necessarily the principle of evidence, is
used to determine whether there is evidence in favor of or against ψ∗ and this leads to the set
D(ψ∗) ⊂ X as those data sets that do not give evidence in favor of H0 = {ψ∗}. The rules of
potential interest will satisfy M(D(ψ∗) |ψ∗) ≤ M(RBΨ(ψ∗ |X) ≤ 1 |ψ∗) since this implies
better performance a priori in terms of identifying when data has evidence in favor of H0 via
the set Dc(ψ∗) than the principle of evidence. For example, D(ψ∗) = {x : RBΨ(ψ∗ | x) ≤ q}
for some q < 1 satisfies this, but note that a value satisfying q < RBΨ(ψ∗ | x) ≤ 1 violates
the principle of evidence if it is claimed that there is evidence in favor of ψ∗. Putting
R(ψ∗) = {x : RBΨ(ψ∗ | x) ≤ 1} leads to the following result.

Theorem 1. Consider D(ψ∗) ⊂ X satisfying M(D(ψ∗) |ψ∗) ≤ M(R(ψ∗) |ψ∗). (i) The prior
probability M(D(ψ∗)) is maximized among such rules by D(ψ∗) = R(ψ∗). (ii) If ΠΨ({ψ∗}) = 0,
then R(ψ∗) maximizes the prior probability of not obtaining evidence in favor of ψ∗ when it is false and
otherwise maximizes this probability among all rules satisfying M(D(ψ∗) |ψ∗) = M(R(ψ∗) |ψ∗).

When ΠΨ({ψ∗}) 6= 0, rules may exist having greater prior probability of not getting
evidence in favor of ψ∗ when it is false, but the price paid for this is the violation of
the principle of evidence. In addition, when comparing rules based on their ability to
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distinguish falsity, it only seems fair that the rules perform the same under the truth. Thus,
Theorem 1 is a general optimality result for the principle of evidence applied to hypothesis
assessment when considering bias against.

Now, consider C(x) = {ψ : x /∈ D(ψ)}, the set of ψ values for which there is
evidence in their favor after observing x according to some alternative evidence rule.
Since M(ψ∗ /∈ C(X) |ψ) = M(D(ψ∗)) |ψ), then

EΠΨ(M(ψ ∈ C(X) ) |ψ)) = 1− EΠΨ(M(ψ /∈ C(X) |ψ)) = 1− EΠΨ(M(D(ψ) |ψ))
≥ 1− EΠΨ(M(R(ψ) |ψ)) = EΠΨ(M(ψ ∈ PlΨ(X) ) |ψ))

and so the Bayesian coverage of C is at least as large as that of PlΨ and thus represents a
viable alternative to using PlΨ. The following establishes an optimality result for PlΨ.

Theorem 2. (i) The prior probability that the region C doesn’t cover a value ψ∗ generated from the
prior, namely, EΠΨ(M(ψ∗ /∈ C(X))), is maximized among all regions satisfying

M(ψ∗ /∈ C(X) |ψ∗) ≤ M(ψ∗ /∈ PlΨ(X) |ψ∗)

for every ψ∗, by C = PlΨ. (ii) If ΠΨ({ψ∗}) = 0 for all ψ∗, then PlΨ maximizes the prior
probability of not covering a false value and otherwise maximizes this probability among all C
satisfying M(ψ∗ /∈ C(X) |ψ∗) = M(ψ∗ /∈ PlΨ(X) |ψ∗) for all ψ∗.

Again, when ΠΨ({ψ∗}) 6= 0, the existence of a region with better properties with
respect to not covering false values than PlΨ can’t be ruled out, but, when considering
such a property, it seems only fair to compare regions with the same coverage probability,
and, in that case, PlΨ is optimal. Thus, Theorem 2 is also a general optimality result for
the principle of evidence applied to estimation when considering bias against. In addition,
if there is a value ψ0 = arg infψ M(ψ ∈ PlΨ(X) ) |ψ), then γ0 = M(ψ0 ∈ PlΨ(X) ) |ψ0)
serves as a lower bound on the coverage probabilities, and thus PlΨ is a γ0-confidence
region for ψ and this is a pure frequentist γ0-confidence region when Ψ(θ) = θ. Since
M(ψ ∈ PlΨ(X) ) |ψ) = 1 − M(ψ /∈ PlΨ(X) ) |ψ) = 1 − M(R(ψ) |ψ), then Example 3
shows that it is reasonable to expect that such a ψ0 exists.

The principle of evidence leads to the following satisfying properties which connect
the concept of bias as discussed here with the frequentist concept.

Theorem 3. (i) Using the principle of evidence, the prior probability of getting evidence in favor of
ψ∗ when it is true is greater than or equal to the prior probability of getting evidence in favor of
ψ∗ given that ψ∗ is false. (ii) The prior probability of PlΨ covering the true value is always greater
than or equal to the prior probability of PlΨ covering a false value.

The properties stated in Theorem 3 are similar to a property called unbiasedness for
frequentist procedures. For example, a test is unbiased if the probability of rejecting a null
is always larger when it is false than when it is true and a confidence region is unbiased if
the probability of covering the true value is always greater than the probability of covering
a false value. While the inferences discussed here are “unbiased” in this generalized sense,
they could still be biased against or in favor in the sense of this paper, as it is the amount of
data that controls this.

Now, consider bias in favor and suppose there is an alternative characterization of
evidence that leads to the region E(ψ∗) consisting of all data sets that do not lead to
evidence against ψ∗. Putting A(ψ∗) = {x : RBΨ(ψ∗ | x) ≥ 1}, we restrict attention to
regions satisfying M(E(ψ∗) |ψ∗) ≥ M(A(ψ∗) |ψ∗). Using (4) to measure bias in favor leads
to the following results.

Theorem 4. (i) The prior probability M(E(ψ∗)) is minimized among all E(ψ∗) ⊂ X satisfying
M(E(ψ∗) |ψ∗) ≥ M(A(ψ∗) |ψ∗) by E(ψ∗) = A(ψ∗). (ii) If ΠΨ({ψ∗}) = 0, then the set A(ψ∗)
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minimizes the prior probability of not obtaining evidence against ψ∗ when it is false and otherwise
minimizes this probability among all rules satisfying M(E(ψ∗) |ψ∗) = M(A(ψ∗) |ψ∗).

Theorem 5. (i) The prior probability region C covers a value ψ∗ generated from the prior, namely,
EΠΨ(M(ψ∗ ∈ C(X))), is minimized among all regions satisfying M(ψ∗ ∈ C(X) |ψ∗) ≥
M(ψ∗ ∈ PlΨ(X) |ψ∗) for every ψ∗, by C = PlΨ. (ii) If ΠΨ({ψ∗}) = 0 for all ψ∗, then PlΨ
minimizes the prior probability of covering a false value and otherwise minimizes this probability
among all rules satisfying M(ψ∗ ∈ C(X) |ψ∗) = M(ψ∗ ∈ PlΨ(X) |ψ∗) for all ψ∗.

Thus, Theorems 4 and 5 are optimality results for the principle of evidence when
considering bias in favor.

Clearly, the bias against H0 is playing a role similar to size in frequentist statistics and
the bias in favor is playing a role similar to power. A study that found evidence against H0,
but had a high bias against, or a study that found evidence in favor of H0 but had a high
bias in favor, could not be considered to be of high quality. Similarly, a study concerned
with estimating a quantity of interest could not be considered of high quality if there is
high bias against or in favor. There are some circumstances, however, where some bias is
perhaps not an issue. For example, in a situation where sparsity is to be expected, then,
allowing for high bias in favor of certain hypotheses accompanied by low bias against, may
be tolerable, although this does reduce the reliability of any hypotheses where evidence is
found in favor.

The concept of a severe test is introduced in [32], and this has a similar motivation
to measuring bias. This is described now with some small modifications that allow for a
more general discussion than the special situations used in the reference. Suppose d(x)
is the test statistic for an test of size α so that H0 : Ψ(θ) = ψ0 is rejected when d(x) > cα

and accepted otherwise. A deviation γ∗ that is substantively important is specified. When
the test leads to the acceptance of H0, the severity of the test is assessed by the attained
power Pθ(d(X) > d(x) | x) for θ values satisfying dΨ(ψ0, Ψ(θ)) ≥ γ∗, where dΨ is a distance
measure on Ψ. To get a single number for the severity measure, it makes sense to use
inf{θ:dΨ(ψ0,Ψ(θ))=γ∗} Pθ(d(X) > d(x) | x) as generally Pθ(d(X) > d(x) | x) will increase as
dΨ(ψ0, Ψ(θ)) increases. The hypothesis H0 is accepted with high severity when the attained
power is high. The motivation for adding this measure of the test is that it claimed that
it is incorrect to simply accept H0 when d(x) ≤ cα unless the probability of obtaining a
value of the test statistic as least as large as that observed is high when the hypothesis
is meaningfully false. When H0 is rejected, then the severity of the test is measured by
Pθ(d(X) ≤ d(x) | x) for θ values satisfying dΨ(ψ0, Ψ(θ)) < γ∗ and, to obtain a single
number one could use sup{θ:dΨ(ψ0,Ψ(θ))≤γ∗} Pθ(d(X) ≤ d(x) | x). It is then required that this
probability be small to claim a rejection with high severity.

The use of the γ∗ quantity seems identical to the difference that matters δ and we
agree that this is an essential aspect of a statistical analysis. In hypothesis assessment, this
guards against “the large n problem” where large sample sizes will detect deviations from
H0 that are not practically meaningful. There are, however, numerous differences with
the discussion of bias here. The severity approach is expressed within the context where
either H0 or Hc

0 is accepted and the relative belief approach is more general than this binary
classification. The testing approach suffers from the lack of a clear choice of α to determine
the cut-off, and this is not the case for the principle of evidence. The bias measures are
frequentist performance characteristics, albeit somewhat dependent on the prior, but the
measures of severity are conditional on the observed x leaving one wondering about their
frequentist performance characteristics, see [33] for more discussion on this point. The
assessment of H0 via relative belief is based on the observed data and datasets not observed
are irrelevant, at least for the expression of the evidence. The relevance of unobserved data
are for us better addressed a priori where such considerations lead to an assessment of the
merits of the study, but these play no role in the actual inferences. The major difference is
that a proper prior is required here as this leads to a characterization of evidence via the
principle of evidence.
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5. Examples

A number of examples are now considered.

Example 4. Binomial proportion.

Suppose x = (x1, . . . , xn) is a sample from the Bernoulli(θ) with θ ∈ [0, 1] unknown
so nx̄ ∼ binomial(n, θ) and interest is in θ. For the prior, let θ ∼ beta(α0, β0) where the
hyperparameters are elicited as in, for example [34], so θ | nx̄ ∼ beta(α0 + nx̄, β0 + n(1− x̄)).
Then,

RB(θ | nx̄) =
Γ(α0 + β0 + n)

Γ(α0 + nx̄)Γ(β0 + n(1− x̄))
Γ(α0)Γ(β0)

Γ(α0 + β0)
θnx̄(1− θ)n(1−x̄)

is unimodal with mode at x̄, so Pl(x) is an interval containing x̄. Note that M(· | θ) is the
binomial(n, θ) probability measure and the bias against θ is given by M(RB(θ | nx̄) ≤ 1 | θ)
while the bias in favor of θ, using (5), is given by max M(RB(θ | nx̄) ≥ 1 | θ ± δ)for θ ∈
[δ, 1− δ].

Consider first the prior given by (α0, β0) = (1, 1). Figure 4a gives the plots of the
bias against for n = 10 (max. = 0.21, average = 0.11), n = 50 (max.= 0.07, average = 0.05)
and n = 100 (max. = 0.05, average = 0.03). Therefore, when n = 10, then Pl(x) is a
0.79-confidence interval for θ; when n = 50, it is a 0.93-confidence interval for θ and,
when n = 100, it is a 0.95-confidence interval for θ. For the informative prior given by
(α0, β0) = (5, 5), Figure 4b gives the plots of the bias against for n = 10 (max. = 0.36, aver-
age = 0.21), n = 50 (max. = 0.16, average = 0.10) and n = 100 (max. = 0.11, average = 0.07).
Thus, when n = 10, then Pl(x) is a 0.64-confidence interval for θ, when n = 50, it is a
0.84-confidence interval for θ and, when n = 100, it is a 0.93-confidence interval for θ. One
feature immediately stands out, namely, when using a more informative prior the bias
against increases. As previously explained, this phenomenon occurs because when the
prior probability of θ is small, it is much easier to obtain evidence in favor than when the
prior probability of θ is large.

Now, consider bias in favor using (11). When (α0, β0) = (1, 1) and δ = 0.1, Figure 5a
gives the plots of the bias in favor for n = 10 (max. = 1.00, average = 0.84), n = 50
(max. = 0.72, average = 0.51) and n = 100 (max. = 0.50, average = 0.35). Therefore, when
n = 10, the maximum probability that Pl(x) contains a false value at least δ away from
the true value is 1, when n = 50 this probability is 0.72 and, when n = 100, it is a 0.50.
When (α0, β0) = (5, 5), Figure 5b gives the plots of the bias in favor for n = 10 (max. = 1.00,
average = 0.68), for n = 50 (max. = 1.00, average = 0.71) and for n = 100 (max. = 1.00,
average = 0.49). Thus, in this case, the maximum probability that Pl(x) contains a false
value at least δ away from the true value is always 1, but, when averaged with respect to
the prior, the values are considerably less. It is necessary to either increase n or δ to decrease
bias in favor. For example, with (α0, β0) = (5, 5), δ = 0.1 and n = 400, the maximum bias
in favor is 0.02 and the average bias in favor is 0.02 and, when n = 600, these quantities
equal 0 to two decimals. When δ = 0.2 and n = 50, the maximum bias in favor is 0.29 and
the average bias in favor is 0.11 and, when n = 100, the maximum bias in favor is 0.01 and
the average bias in favor is 0.01.
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(a) Using a beta(1,1) prior.
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(b) Using a beta(5,5) prior.

Figure 4. Plots of bias against at θ for n = 10, 50, 100 in Example 4.
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(a) Using a beta(1,1) prior.
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(b) Using a beta(5,5) prior.

Figure 5. The bias in favor at θ for n = 10, 50, 100 with δ = 0.1 in Example 4.

Another interesting case is when the prior is taken to be Jeffreys prior which in this
case is the beta(1/2, 1/2) distribution. This reference prior, see [35], is proper and thus can
be used with the principle of evidence. The prior does represent somewhat extreme beliefs,
however, as 28.7% of the beliefs are that θ ∈ (0, 0.05) ∪ (0.95, 1). The corresponding biases
against are for n = 10 (max. = 0.24, average = 0.07), n = 50 (max. = 0.09, average = 0.03)
and n = 100 (max. = 0.07, average = 0.02). The biases in favor are, using (11) with δ = 0.1,
for n = 10 (max. = 1.00, average = 0.73), n = 50 (max. = 0.72, average = 0.59) and n = 100
(max. = 0.54, average = 0.41). Although the plots of the bias functions can be seen to be
quite different than those for the beta(1,1) prior, the summary values presented are very
similar. The beta(1/2,1/2) prior does a bit better with respect to bias against but a bit worse
with respect to bias in favor. This reinforces the point that the biases do not serve as a basis
for the choice of the prior.
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The strange oscillatory nature of the plots for the binomial is difficult to understand
but is a common feature with such calculations. For example, Ref. [36] studies the coverage
probabilities for various confidence intervals for the binomial, and the following comment
is made “The oscillation in the coverage probability is caused by the discreteness of the
binomial distribution, more precisely, the lattice structure of the binomial distribution”,
which still doesn’t fully explain the phenomenon.

Example 5. Location-scale normal quantiles.

Suppose x = (x1, . . . , xn) is a sample from N(µ, σ2) with (µ, σ2) ∈ R1 × (0, ∞) un-
known with prior µ | σ2 ∼ N(µ0, τ2

0 σ2), σ−2 ∼ gammarate(α0, β0). The hyperparameters
(µ0, τ2

0 , α0, β0) can be obtained via an elicitation as, for example, discussed in Evans and
Tomal (2018) for the more general regression model. This example is easily generalized
to the regression context. A MSS is T(x) = (x̄, ||x − x̄1||2), where 1 =(1, . . . , 1)′, with
the posterior distribution given by µ | σ2, T(x) ∼ N(µ0x,

(
n + 1/τ2

0
)−1

σ2), σ−2 | T(x) ∼
gammarate(α0 + n/2, β0x), where µ0x = (n + 1/τ2

0 )
−1(nx̄ + µ0/τ2

0 ) and

β0x = β0 + ||x− x̄1||2/2 + n(x̄− µ0)
2/2(nτ2

0 + 1).

Suppose interest is in the γ-th quantile ψ = Ψ(µ, σ2) = µ + σzγ, where zγ = Φ−1(γ).
To determine the bias for or against ψ, we need the prior and posterior densities of ψ for
which there is not a closed form. It is easy, however, to work with the discretized ψ by sim-
ply generating from the prior and posterior of (µ, σ2), estimate the contents of the relevant
intervals and then approximate the relative belief ratio using these. Thus, we are essentially
approximating the densities by density histograms here, although alternative density esti-
mates could be used. A natural approach to the discretization is to base it on the prior mean
E(ψ) = µ0 + β1/2

0 (Γ(α0 − 1/2)/Γ(α0))zγ and variance Var(ψ) = E(ψ2)− (E(ψ))2 where
E(ψ2) = (z2

γ + τ2
0 )β0/(α0 − 1). Thus, for a given δ, we discretize using 2k + 1 intervals

(E(ψ) + iδ, E(ψ) + (i + 1)δ] where k = cSD(ψ)/δ and c is chosen so that the collection of
intervals covers the effective support of ψ which is easily assessed as part of the simulation.
For example, with the prior given by hyperparameters µ0 = 0, τ2

0 = 1, α0 = 2, β0 = 1 and
γ = 0.5, δ = 0.1, c = 5, then k = 50 and, on generating 105 values from the prior, these
intervals contained 99,699 of the values and with c = 6, then k = 60, and these intervals
contained 99,901 of the generated values. Similar results are obtained for more extreme
quantiles because the intervals shift.

For the bias against for estimation, the value of M(RBΨ(ψ |X) ≤ 1 |ψ) is needed for a
range of ψ values. For this, we need to generate from the conditional prior distribution of
T given Ψ(µ, σ2) = ψ, and an algorithm for generating from the conditional prior of (µ, σ2)
given ψ is needed. Putting ν = 1/σ2, the transformation (µ, ν)→ (ψ, ν) = (µ + ν−1/2zγ, ν)
has Jacobian equal to 1, so the conditional prior distribution of ν |ψ has density proportional
to να0−1/2 exp{−β0ν} exp{−ν(ψ− µ0 − ν−1/2zγ)2/2τ2

0 }. The following gives a rejection
algorithm for generating from this distribution:

1. generate ν ∼ gamma(α0 + 1/2, β0),
2. generate u ∼ unif(0, 1) independent of ν,
3. if u ≤ exp{−ν(ψ− µ0 − ν−1/2zγ)2/2τ2

0 } return ν, else go to 1.

As ψ moves away from the prior expected value E(ψ), this algorithm becomes less
efficient, but, even when the expected number of iterations is 86 (when γ = 0.95, ψ = 12),
generating a sample of 104 is almost instantaneous. Figure 6 is a plot of the conditional prior
of ν given that ψ = 2. After generating ν, then generate ||x− x̄1||2 ∼ ν−1chi-squared(n− 1)
and x̄ ∼ N(ψ− ν−1/2zγ, ν−1/n) to complete the generation of a value from MT(· |ψ).
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Figure 6. Conditional prior density of ν = 1/σ2 given ψ = 2 when γ = 0.95 and µ0 = 0, τ2
0 = 1,

α0 = 2, β0 = 1 in Example 5.

The bias against as a function of ψ = µ + σz0.95, has maximum value 0.151 when
n = 10 and so PlΨ(x) is a 0.849-confidence region for ψ while the average bias against is
0.104 implying that the Bayesian coverage is 0.896. Table 7 gives the coverages for other
values of n as well. Figure 7 is a plot of the bias in favor as a function of ψ with δ = ±0.5
and n = 10. The jitter in the right tail is a result of Monte Carlo sampling error, but this
error is not of significance as bias measurements are not required to be known to high
accuracy. The average bias in favor is 0.629. When n = 50, the average bias in favor is 0.335.

Table 7. Coverage probabilities for Plψ(x) for the 0.95 quantile in Example 5.

n Frequentist Coverage Bayesian Coverage

10 0.849 0.896
20 0.895 0.927
50 0.934 0.958

100 0.955 0.973
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Figure 7. The bias in favor as a function of ψ when γ = 0.95, n = 10, δ = 0.5 and using a prior with
hyperparameters µ0 = 0, τ2

0 = 1, α0 = 2, β0 = 1 in Example 5.

The case γ = 0.50, so ψ = Ψ(µ, σ2) = µ is also of interest. For n = 10, then PlΨ(x) has
0.878 frequentist coverage and 0.926 Bayesian coverage; when n = 20, the coverages are
0.916 and 0.952 while, when n = 50, the coverages are 0.950 and 0.973. When n = 10, δ = 0.5,
the average bias in favor is 0.619; when n = 20, this is 0.4206 and, for n = 100, the average
bias in favor is 0.091.
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Example 6. Normal Regression—Prediction.

Prediction problems have some unique aspects when compared to inferences about
parameters. To see this, consider first the location normal model of Example 3, and the
problem is to make an inference about a future value y ∼ N(µ, σ2

0 ). The prior predictive
distribution is y ∼ N(µ0, τ2

0 + σ2
0 ) and the posterior predictive is y ∼ N(µx, σ2

n + σ2
0 ) where

µx = σ2
n(nx̄/σ2

0 + µ0/τ2
0 ), σ2

n =
(
n/σ2

0 + 1/τ2
0
)−1 so

RB(y | x̄) =
(

τ2
0 + σ2

0
σ2

n + σ2
0

)1/2

exp

{
−1

2

[
(y− µx)2

σ2
n + σ2

0
− (y− µ0)

2

τ2
0 + σ2

0

]}
.

For a given y, the bias against is M(RB(y | x̄) ≤ 1 | y) and, for this, we need the condi-
tional prior predictive of x̄ | y. The joint prior predictive is (x̄, y) ∼ N2(µ012, Σ0), where

Σ0 =

(
τ2

0 + σ2
0 /n τ2

0
τ2

0 τ2
0 + σ2

0

)
and so x̄ | y ∼ N(µ0 + τ2

0 (y− µ0)/(τ2
0 + σ2

0 ), σ2
0
(
τ2

0 /(τ2
0 + σ2

0 ) + 1/n
)
). From this, we see

that, as n→ ∞, the conditional prior distribution of µx | y converges to the

N
(

µ0 + τ2
0 (y− µ0)/(τ2

0 + σ2
0 ), σ2

0 τ2
0 /(τ2

0 + σ2
0 )
)

distribution. Thus, with Z ∼ N(0, 1), r = τ2
0 /σ2

0 , and

d((y− µ0)/σ0, r) = (1 + 1/r) log(1 + r) + r−1(y− µ0)
2/σ2

0 ),

then

M(RB(y | x̄) ≤ 1 | y)→ 1− P(Z ∈ [r−1/2(1 + r)−1/2(y− µ0)/σ0 ± d1/2((y− µ0)/σ0, r)])

as n→ ∞. Thus, the bias against does not go to 0 as n→ ∞, and there is a limiting lower
bound to the prior probability that evidence in favor of a specific y will not be obtained.
This baseline is dependent on both (y− µ0)/σ0 and r. As r = τ2

0 /σ2
0 → ∞, this baseline

bias against goes to 0 and so it is necessary to ensure that the prior variance is not too small.
Table 8 gives some values for the bias against, and it is seen that, if τ2

0 /σ2
0 is too small, then

there is substantial bias against even when y is a reasonable value from the distribution.
When τ2

0 /σ2
0 = 1, (y− µ0)/σ0 = 0 and n = 10, the bias against is computed to be 0.248,

which is quite close to the baseline, so increasing sample size will not reduce bias against
by much and similar results are obtained for the other cases.

Table 8. Baseline bias against values for prediction for location normal in Example 6.

τ2
0 /σ2

0 Bias against (y− µ0)/σ0 = 0 BIAS against (y− µ0)/σ0 = 1

1 0.239 0.213
10 0.104 0.100

100 0.031 0.031
1/2 0.270 0.263

1/100 0.316 0.460

Now consider bias in favor of y, namely, M(RB(y | x̄) ≥ 1 | y± δ) for some choice of δ.
False values for y correspond to values in the tails so we consider, for example, y + δ as a
value in the central region of the prior and then a large value of δ puts y in the tails. Again,
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the bias in favor has a baseline value as n → ∞. A similar argument leads to the bias in
favor of y satisfying

M(RB(y | x̄) ≥ 1 | y± δ)→

P
(

Z ∈
[

r−1/2(1 + r)−1/2
(

y− µ0

σ0
± r

δ

σ0

)
± d1/2

(
y− µ0

σ0
, r
)])

.

Figure 8 is a plot of sup M(RB(y | x̄) ≥ 1 | y± δ). Thus, the bias in favor is low for
central values of y, but, once again, there is a trade-off as when r increases the bias in favor
goes to 1.
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Figure 8. Plot of the baseline bias in favor for values of (y− µ0)/σ0 when τ2
0 /σ2

0 = 1 when δ = 5 in
Example 6.

Prediction plays a bigger role in regression problems, but we can expect the same
issues to apply as in the location problem. Suppose y ∼ Nn(Xβ, σ2 I), where X ∈ Rn×k

is of rank k, (β, σ2) ∈ Rk × (0, ∞) is unknown, our interest is in predicting a future value
ynew ∼ N(wtβ, σ2) for some fixed known w and, putting ν = 1/σ2, the conjugate prior
β | ν ∼ Nk(β0, ν−1Σ0) ν ∼ gammarate(α0, η0) is used. Specifying the hyperparameters
(β0, Σ0, α0, η0) can be carried out using elicitation as discussed in [37].

For the bias calculations, it is necessary to generate values of the MSS (b, s2) =
((XtX)−1Xty, ||y − Xb||2) from the conditional prior predictive M(· | ynew). This is ac-
complished by generating from the conditional prior of (β, ν) | ynew and then generating
b ∼ Nk(β, ν−1(XtX)−1) independent of s2 ∼ ν−1 chi-squared(n− k). The conditional prior
of (β, ν) | ynew is proportional to

να0−1/2 exp{−η0(ynew)ν}×

νk/2 exp

{
−ν

2

(
β−

(
Σ−1

0 + wwt
)−1

(Σ−1
0 β0 + yneww)

)t(
Σ−1

0 + wwt
)
(·)
}

where

(Σ−1
0 + wwt)−1 = Σ0 − (1 + wtΣ0w)−1Σ0wwtΣ0, η0(ynew)

= η0 + (1 + wtΣ0w)−1(wtβ− ynew)
2/2.

Thus, generating (β, ν) | ynew is accomplished via ν ∼ gammarate(α0 + 1/2, η0(ynew)),

β | ν ∼ Nk

((
I − Σ0wwt

1 + wtΣ0w

)
(β0 + ynewΣ0w), ν−1

(
Σ0 −

Σ0wwtΣ0

1 + wtΣ0w

))
.
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For each generated (b, s2), it is necessary to compute the relative belief ratio RB(ynew | b, s2)
and determine if it is less than or equal to 1. There are closed forms for the prior and con-
ditional densities of ynew since ynew ∼ wtβ0 +

{
η0(1 + wtΣ0w)/α0

}1/2t2α0 , ynew | (b, s2) ∼
wtβ0(b, s2) + {η0(b, s2)(1 + wt(Σ−1

0 + XtX)−1w)/(α0 + n/2)}1/2t2α0+n where tλ denotes
a Student(λ) random variable and β0(b, s2) = (Σ−1

0 + XtX)−1(Σ−1
0 β0 + XtXb), η0(b, s2) =

η0 + [s2 + ||Xb||2 + ||Σ−1
0 β0||2 − β0(b, s2)t(Σ−1

0 + XtX)β0(b, s2)]/2. These results permit
the calculation of the biases as in the location problem.

6. Conclusions

There are several conclusions that can be drawn from the discussion here. First, it is
necessary to take bias into account when considering Bayesian procedures and currently
this is generally not being done. Depending on the purpose of the study, some values
concerning both bias against and bias in favor need to be quoted as these are figures of
merit for the study. The approach to Bayesian inferences via a characterization of evidence
makes this relatively straight-forward conceptually. Second, frequentism can play a role in
the approach to Bayesian statistical reasoning via relative belief, not through the inferences,
but rather through determining the biases and then controlling these through the amount
of data collected. Overall, this makes sense because, before the data are seen, it is natural
to be concerned about what inferences can be reliably drawn. Once the data are observed,
however, it is the evidence in this data set that matters and not the evidence in the data
sets not seen. Still, if we ignore the latter, it may be that the existence of bias makes the
inferences drawn of very low quality. Third, the results concerning the standard p-value
in Example 3 can be seen to apply quite generally, and this makes any discussion about
how to characterize and measure evidence of considerable importance. The principle
of evidence makes a substantial contribution in this regard as was shown in a variety of
results. The major purpose of this paper, however, is to deal with a key criticism of Bayesian
methodology, namely that inferences can be biased because of their dependence on the
subjective beliefs of the analyst. This criticism is accepted, but we also assert that this can
be dealt with in a logical and scientific fashion as has been demonstrated in this paper.
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Appendix A

Proof that the difference of p-values in Example 3 is a valid measure of evidence.
The Savage–Dickey ratio result implies that RBΨ(ψ | x) = mψ(x)/m(x), where m denotes
the prior predictive density of x, and mψ denotes the conditional prior predictive density
of x given that Ψ(θ) = ψ. Furthermore, the data can be reduced to the minimal sufficient
statistic. In Example 1, the prior predictive of x̄ is N(µ0, τ2

0 + σ2
0 /n), and the prior predictive

given µ is N(µ, σ2
0 /n). Therefore,

RB(µ | x) = (1 + nτ2
0 /σ2

0 )
1/2 exp{−n(x̄− µ)2/2σ2

0 + (x̄− µ0)
2/2(τ2

0 + σ2
0 /n)}
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so RB(µ∗ | x) ≤ 1 iff

n(x̄− µ∗)2

σ2
0

≥ log

(
1 +

nτ2
0

σ2
0

)
+

(x̄− µ0)
2

2(τ2
0 + σ2

0 /n)
iff Φ

(√
n|x̄− µ∗|

σ0

)
≥

Φ


log

(
1 +

nτ2
0

σ2
0

)
+

(
1 +

σ2
0

nτ2
0

)−1
(x̄− µ0)

2

τ2
0


1/2
 iff

2
(

1−Φ
(√

n|x̄− µ∗|
σ0

))
−

2

1−Φ


log

(
1 +

nτ2
0

σ2
0

)
+

(
1 +

σ2
0

nτ2
0

)−1
(x̄− µ0)

2

τ2
0


1/2

 ≤ 0.

Proof of Theorem 1. The Savage–Dickey ratio result implies RBΨ(ψ∗ | x) = mψ∗(x)/m(x)
and note R(ψ∗) = {x : mψ∗(x) ≤ m(x)}. Now, put

X1 = {x : IR(ψ∗)(x)− ID(ψ∗)(x) < 0}
= {x : IR(ψ∗)(x)− ID(ψ∗)(x) < 0, mψ∗(x) > m(x)}

X2 = {x : IR(ψ∗)(x)− ID(ψ∗)(x) > 0}
= {x : IR(ψ∗)(x)− ID(ψ∗)(x) ≥ 0, mψ∗(x) ≤ m(x)}.

Then,

M(R(ψ∗))−M(D(ψ∗)) =
∫
X1

(IR(ψ∗)(x)− ID(ψ∗)(x)) M(dx)+∫
X2

(IR(ψ∗)(x)− ID(ψ∗)(x)) M(dx)

≥ M(R(ψ∗) |ψ∗)−M(D(ψ∗) |ψ∗) ≥ 0

establishing (i). In addition,

M(D(ψ∗)) = M(D(ψ∗) |ψ∗)ΠΨ({ψ∗}) +
∫

Ψ\{ψ∗}
M(D(ψ∗) |ψ)ΠΨ(dψ)

and the integral is the prior probability of not getting evidence in favor of ψ∗ when it is
false, and this establishes (ii).

Proof of Theorem 2. Now,

EΠΨ(M(ψ∗ /∈ C(X))) = EΠ2
Ψ
(M(ψ∗ /∈ C(X) |ψ))

= EΠ2
Ψ
(M(D(ψ∗)) |ψ)) =

∫
Ψ

M(D(ψ∗))ΠΨ(dψ∗)

and (i) follows from Theorem 1. In addition,∫
Ψ

M(D(ψ∗))ΠΨ(dψ∗) = EΠΨ(
∫

Ψ
M(D(ψ∗) |ψ)ΠΨ(dψ))

= EΠΨ(M(D(ψ∗) |ψ∗)ΠΨ({ψ∗})) + EΠΨ(
∫

Ψ\{ψ∗}
M(D(ψ∗) |ψ)ΠΨ(dψ))

= EΠΨ(M(ψ∗ /∈ C(X) |ψ∗)ΠΨ({ψ∗}))+

EΠΨ(
∫

Ψ\{ψ∗}
M(ψ∗ /∈ C(X) |ψ)ΠΨ(dψ))

establishing (ii).
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Proof of Theorem 3. Now,

M(R(ψ∗) |ψ∗) =
∫

IR(ψ∗)(x) Mψ∗(dx) ≤
∫

IR(ψ∗)(x) M(dx) = M(R(ψ∗))

=
∫

Ψ
M(R(ψ∗) |ψ)Π(dψ) = M(R(ψ∗) |ψ∗)ΠΨ({ψ∗})

+
∫

Ψ\{ψ∗}
M(R(ψ∗) |ψ)ΠΨ(dψ)

so ΠΨ({ψ∗}c)M(R(ψ∗) |ψ∗) ≤
∫

Ψ\{ψ∗} M(R(ψ∗) |ψ)ΠΨ(dψ) which implies (i). Further-
more, (ii) is implied by

EΠΨ(M(ψ∗ /∈ PlΨ(X) |ψ∗)) = EΠΨ(M(R(ψ∗) |ψ∗))

≤ EΠΨ(
∫

Ψ\{ψ∗}
M(R(ψ∗) |ψ)ΠΨ(dψ)/ΠΨ({ψ∗}c))

= EΠΨ(
∫

Ψ\{ψ∗}
M(ψ∗ /∈ PlΨ(X) |ψ)ΠΨ(dψ)/ΠΨ({ψ∗}c).

Proof of Theorem 4. It is easy to see that the proof of Theorem 1 can be modified to show that,
among all regions, Dint(ψ∗) ⊂ X satisfying M(Dint(ψ∗) |ψ∗) ≤ M(RBΨ(ψ∗ |X) < 1 |ψ∗)
the prior probability M(Dint(ψ∗)) is maximized by Dint(ψ∗) = {x : RBΨ(ψ∗ | x) < 1}. This
implies that (i) and (ii) are similar.

Proof of Theorem 5. Now,

EΠΨ(M(ψ∗ ∈ C(X))) = EΠ2
Ψ
(M(ψ∗ ∈ C(X) |ψ))

= EΠ2
Ψ
(M(Dc(ψ∗)) |ψ)) = EΠΨ(M(Dc(ψ∗))

and (i) follows from Theorem 1 (i). In addition, (ii) is implied by

EΠΨ(M(Dc(ψ∗)) =
∫

Ψ
M(Dc(ψ∗) |ψ∗)ΠΨ({ψ∗})ΠΨ(dψ∗)+∫

Ψ

∫
Ψ\{ψ∗}

M(Dc(ψ∗) |ψ)ΠΨ(dψ)ΠΨ(dψ∗)

=
∫

Ψ
M(ψ∗ ∈ C(X) |ψ∗)ΠΨ({ψ∗})ΠΨ(dψ∗)+∫

Ψ

∫
Ψ\{ψ∗}

M(ψ∗ ∈ C(X) |ψ)ΠΨ(dψ)ΠΨ(dψ∗).
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