
entropy

Article

Partial Boolean Functions with Exact Quantum Query
Complexity One

Guoliang Xu 1,2 and Daowen Qiu 1,2,*

����������
�������

Citation: Xu, G.; Qiu, D. Partial

Boolean Functions with Exact

Quantum Query Complexity One.

Entropy 2021, 23, 189. https://doi.

org/10.3390/e23020189

Academic Editor: Vitaly Kocharovsky

Received: 9 November 2020

Accepted: 28 January 2021

Published: 3 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Quantum Computing and Computer Theory, School of Computer Science and Engineering,
Sun Yat-sen University, Guangzhou 510006, China; xu1guo2liang@foxmail.com

2 Guangdong Key Laboratory of Information Security Technology, Sun Yat-sen University,
Guangzhou 510006, China

* Correspondence: issqdw@mail.sysu.edu.cn

Abstract: We provide two sufficient and necessary conditions to characterize any n-bit partial Boolean
function with exact quantum query complexity 1. Using the first characterization, we present all n-bit
partial Boolean functions that depend on n bits and can be computed exactly by a 1-query quantum
algorithm. Due to the second characterization, we construct a function F that maps any n-bit partial
Boolean function to some integer, and if an n-bit partial Boolean function f depends on k bits and
can be computed exactly by a 1-query quantum algorithm, then F(f) is non-positive. In addition,
we show that the number of all n-bit partial Boolean functions that depend on k bits and can be
computed exactly by a 1-query quantum algorithm is not bigger than an upper bound depending on
n and k. Most importantly, the upper bound is far less than the number of all n-bit partial Boolean
functions for all efficiently big n.

Keywords: quantum computation; quantum query complexity; quantum query algorithm; partial
Boolean function

1. Introduction

In the field of theoretical computer science, computational complexity aims to measure
“how much" computation is necessary and sufficient to finish some certain computational
tasks. In classical computation, a simplest model of computation is the decision tree (For
more details, we can refer to the survey paper [1]). Correspondingly, the quantum query
model (quantum black box model, or quantum decision tree model) is a generalization
of the decision tree model in quantum computation [1–5]. Most of famous quantum algo-
rithms are captured by the quantum query model [6], such as Shor’s factoring algorithm [7],
Grover’s unstructured search algorithm [8], and so on [9–11]. The quantum query model
can be investigated in the exact setting and the bounded-error setting [1]. Given an input
x ∈ D ⊆ {0, 1}n that can only be accessed through a black box by querying some bit
xi of the input, the quantum query model computes an n-bit partial Boolean function
f : D → {0, 1} exactly (or with bounded-error) [1]. An exact quantum algorithm must
always output the correct function value for all legal inputs [1]. If a quantum algorithm
outputs the function value with a probability greater than a constant (> 1

2) for all legal
inputs, then the quantum algorithm is said to compute the function with bounded error.
In the quantum query model, we care the quantum query complexity that is the decision
tree complexity for the quantum model [1–3]. Roughly speaking, the exact (or bounded-
error) quantum query complexity of a Boolean function denotes the number of queries
of an optimal quantum decision tree that computes the Boolean function exactly (or with
bounded-error) [1].

In quantum computation, the hope is to find out many problems whose computational
complexity in quantum computer is less than the computational complexity in classical
computer, i.e., finding out many problems that have the quantum advantage. For a function

Entropy 2021, 23, 189. https://doi.org/10.3390/e23020189 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-5520-667X
https://orcid.org/0000-0003-1275-7599
https://doi.org/10.3390/e23020189
https://doi.org/10.3390/e23020189
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23020189
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/23/2/189?type=check_update&version=4

Entropy 2021, 23, 189 2 of 17

f , quantum advantage can be investigated by comparing the exact quantum query com-
plexity QE(f) and the deterministic decision tree complexity D(f) [1], where D(f) denotes
the minimum number of queries used by any classical deterministic algorithm. Over the
past decade, there have been many results on the quantum query model [12–20]. In partic-
ular, Ambainis et al. [14] proved that exact quantum algorithms have advantage for almost
all Boolean functions in 2015. For total Boolean functions (i.e., partial Boolean functions
with D = {0, 1}n), the first known quantum speed-up was QE(f) = O(D(f)0.8675...) by
Ambainis [13], and then Ambainis et al. [21] presented a better separation with a quadratic
gap between the exact quantum query complexity and the deterministic decision tree
complexity, up to polylogarithmic factors.

For any partial Boolean function, the best separation is still achieved by Deutsch-Jozsa
algorithm [10,17]. And, some main related results are as follows. In 2007, Montanaro [22]
considered a problem of exact oracle identification with a single quantum query. In 2015,
Montanaro et al. [15] investigated all small total Boolean functions up to four bits and
symmetric total Boolean functions up to six bits. In 2016, Qiu et al. [17,23] generalized
Deutsch-Jozsa problem and gave its optimal exact quantum query algorithm, and in
particular, Qiu et al. [23,24] presented all symmetric partial Boolean functions (it is a special
class of partial Boolean functions) with exact quantum query complexity 1, and proved that
any symmetric partial Boolean function f can be computed exactly by a 1-query quantum
algorithm if and only if f can be computed by the Deutsch-Jozsa algorithm [10]. In the same
year, Aaronson et al. [25] showed an equivalence between 1-query quantum algorithms and
bounded quadratic polynomials in the bounded-error setting. Also in the same year, Grillo
et al. [26] investigated partial Boolean functions which are computed exactly with t queries.
However, the result in [26] (i.e., Theorem 5) for any numerical procedure is difficult to use
as an analytic tool. In 2017, Arunachalam et al. [27] proved a characterization of t-query
quantum algorithms in terms of the unit ball of a space of degree-(2t) polynomials. Using
the same method as the proof of Theorem 11 given by Qiu et al. [23,24], Chen et al. [28]
showed that the total Boolean functions with exact quantum query complexity 1 are the
one-bit function f (x) = x1 and the two-bit function x1 ⊕ x2, and Mukherjee et al. [29]
noticed that this result of [28] is the same as a result by Montanaro et al. [15].

As above, the exact 1-query quantum model for all partial Boolean functions is ex-
pected to be investigated further. On one hand, similar to Refs. [23–27], establishing an
equivalence between quantum query algorithms and some other theories will inspire more
new algorithms and related results on the complexity theory. On the other hand, with the
development of quantum computer, the problems solved by 1-query quantum algorithms
may be the first to be used widely in the future, as the 1-query quantum algorithm costs
the least unitary operators. Specifically, we investigate the following two problems.

• The partial Boolean functions can be regarded as a generalization of the total Boolean
functions. Actually, Deutsch’s algorithm [9] computes a two-bit partial (also total)
Boolean function using one query. Both the extension of Deutsch’s problem (computed
by Deutsch-Jozsa algorithm [10]) and a generalized Deutsch-Jozsa problem in Ref. [17]
are described by even n-bit partial (not total) Boolean functions. Naturally, what is the
characterization of partial Boolean functions with exact quantum query complexity 1?

• In the field of quantum computation, it is a fundamental and interesting subject to
evaluate the computational power of the 1-query quantum model, and is also critical
for discovering quantum advantage. Specifically, the number of partial Boolean
functions with exact quantum query complexity 1 shows the power and advantage of
the exact 1-query quantum model. So, how many partial Boolean functions can be
computed exactly by 1-query quantum algorithms?

The rest of the paper is organized as follows. In Section 2, we introduce some basis
notations and the related knowledge. Then, we state and prove the first characterization
and a related result in Section 3. Next, we state and prove the second characterization
and two related results in Section 4. Finally, the conclusion is presented in Section 5.

Entropy 2021, 23, 189 3 of 17

For the sake of brevity and readability, all proofs of lemmas in this paper are showed in
Appendices A–D.

2. Preliminaries

In this section, we introduce some basic notations and recall some basic knowledge of
partial Boolean functions and the exact quantum query model. For the details, we can refer
to Refs. [1,6,20,23,30,31].

As usual, notations N, R, and C denote the sets of natural numbers, real numbers,
and complex numbers, respectively. In particular, we will always use the notation D
(or promised set) to denote a subset of {0, 1}n. For any input x = x1x2 · · · xn ∈ D, the
Hamming weight (number of 1s) of x is denoted by |x|. Given a real number set S, the
notation max S denotes the maximum in S and the notation min S denotes the minimum in
S. For any finite set S, the notation |S| denotes the number of elements in S. For a complex
matrix A, AT is the transpose of the matrix A, and A† = (AT)∗ is the conjugate transpose
of the matrix A. Obviously, A† = AT for any real matrix A. Furthermore, the notation |a〉
is usually used to denote a quantum state which is a unit vector in a Hilbert space and
labeled by the notation a. In particular, 〈a| = (|a〉)† is a row vector.

In this paper, we mainly concern partial functions f : D → C, f : D → R and f :
D → {0, 1}. In general, these functions can be given by a 2n-dimensional vector (f (0), f (1),
· · · , f (x), · · · , f (2n − 1))T whose entry f (x) is denoted by ∗ for any undefined input
x ∈ {0, 1}n\D. For example, the Boolean function f computed by Deutsch’s algorithm [9]
can be given by (f (00), f (01), f (10), f (11)) = (1, 0, 0, 1). Sometimes, we also use a two-
tuple ({x : f (x) = 0}, {y : f (y) = 1}) to give a certain partial Boolean function f : D →
{0, 1}. For example, the even n-bit partial Boolean function f computed by Deutsch-Jozsa
algorithm [10] can be given by ({x ∈ {0, 1}n : |x| = 0, n}, {y ∈ {0, 1}n : |y| = n

2 }).
In order to represent these functions, we need to use two monomials XS = ∏i∈S xi

and (−1)S·x = ∏i∈S(−1)xi [1,20,30]. In particular, X∅ = (−1)∅·x = 1. And, the set
{XS : S ⊆ {1, 2, · · · , n}} is usually called the polynomial basis and the set {(−1)S·x : S ⊆
{1, 2, · · · , n}} is usually called Fourier basis [1,20,30]. If a function p : Rn → C can be
written as ΣSαSXS for some complex numbers αS, then the function p is called a multilinear
polynomial [1]. Meanwhile, the degree of the multilinear polynomial p is defined by
deg(p) = max{|S| : αS 6= 0}. For any partial function f : D → C, a multilinear polynomial
p(x) represents f if and only if p(x) = f (x) for all x ∈ D [1,32]. Unlike total functions
f : {0, 1}n → C, the multilinear representation of a partial (not total) function f : D → C is
usually not unique. Naturally, the degree of a partial (or total) function f : D → C can be
defined by deg(f) = min{deg(p) : p represents f }.

In the quantum query model, for every input x ∈ D, the quantum black box Ox can
be described as a unitary operator which is defined by

Ox|i, j〉 =
{

(−1)xi |i, j〉, if i ∈ {1, 2, · · · , n},
|0, j〉, if i = 0.

(1)

Here, the integer number i ∈ {0, 1, 2, · · · , n} is the query-part and the label j is the aux-
iliary space. As a result, a t-query quantum algorithm can be determined by an initial
state |ψ0〉 and a sequence of unitary transformations U0, Ox, U1, Ox, · · · , Ox, Ut followed
by a measurement, where t + 1 unitary operators U0, U1, · · · , Ut are independent of the
input [1,6].

3. The First Characterization

This section introduces and proves the first characterization and a related result.

3.1. A Characterization by the Linear System of Equations

Inspired by proofs of Theorem 8 in Ref. [23], the first characterization is presented in
the following. In fact, the characterization can also be got by Theorem 5 in [26].

Entropy 2021, 23, 189 4 of 17

Theorem 1. An n-bit non-constant partial Boolean function f : D → {0, 1} can be computed
exactly by a 1-query quantum algorithm, if and only if there exist at least one non-negative
solution z =(z0,z1,z2,· · · ,zn)T of equations z0+z1+z2+· · ·+zn=1 and FT(a ⊕ b)z = 0 for
all a ∈ {x : f (x) = 0} and b ∈ {x : f (x) = 1} where the function vector F(x) =
(1, (−1)x1 , (−1)x2 , · · · , (−1)xn)T for any x = x1x2 · · · xn ∈ {0, 1}n.

Proof. ⇒). Since the algorithm is exact, the quantum state U1OaU0|ψ0〉 for all a ∈ {x :
f (x) = 0} must be orthogonal to the quantum state U1ObU0|ψ0〉 for all b ∈ {x : f (x) = 1}.
Meanwhile, since the unitary operator U1 preserves the inner product of any two complex
vectors, the quantum state OaU0|ψ0〉 for all a ∈ {x : f (x) = 0} must be orthogonal
to the quantum state ObU0|ψ0〉 for all b ∈ {x : f (x) = 1}. For any quantum state
U0|ψ0〉 = ∑i,j αi,j|i, j〉, note that

OaU0|ψ0〉 = ∑
j

α0,j|0, j〉+ ∑
i,j

αi,j(−1)ai |i, j〉 (2)

and the inner product

(OaU0|ψ0〉)†ObU0|ψ0〉 = ∑
j
|α0,j|2 + ∑

i,j
(−1)ai⊕bi |αi,j|2

=(∑
j
|α0,j|2, ∑

j
|α1,j|2, · · · , ∑

j
|αn,j|2)(1, (−1)a1⊕b1 , · · · , (−1)an⊕bn)T

=(z0, z1, · · · , zn)F(a⊕ b) = zTF(a⊕ b)

(3)

where the notation zi = ∑j |αi,j|2 for all i ∈ {0, 1, 2, · · · , n} is introduced in the last
equality. Thus, there exists at least one non-negative solution z =(z0,z1,z2,· · · ,zn)T of
equations z0+z1+z2+· · ·+zn=1 and zTF(a ⊕ b) = 0 for all a ∈ {x : f (x) = 0} and
b ∈ {x : f (x) = 1}.

⇐). For a non-negative solution z =(z0, z1, z2, · · · , zn)T of equations
z0+z1+z2+· · ·+zn=1 and zTF(a⊕ b) = 0 for all a ∈ {x : f (x) = 0} and b ∈ {x : f (x) = 1},
if we set ∑j |αi,j|2 = zi for all i ∈ {0, 1, 2, · · · , n} in the state U0|ψ0〉 = ∑i,j αi,j|i, j〉 of an
undetermined 1-query quantum algorithm, then the inner product

(U1OaU0|ψ0〉)†U1ObU0|ψ0〉 = 0 (4)

for all a ∈ {x : f (x) = 0} and b ∈ {x : f (x) = 1}. By Gram-Schmidt orthogonalization, we
can find an orthonormal basis {U1OaU0|ψ0〉 : f (a) = 0, a ∈ D} and an orthonormal basis
{U1ObU0|ψ0〉 : f (b) = 1, b ∈ D}, respectively. By the measurement consisting of the two
orthonormal bases, the 1-query quantum algorithm (with the state U0|ψ0〉 = ∑i,j αi,j|i, j〉)
computes f exactly. Thus, Theorem 1 has been proved.

Discussions on Theorem 1

Theorem 1 transforms the problem of deciding the partial Boolean function with exact
quantum query complexity 1 into the problem of solving a linear system of equations.
Specifically, the number of variables in the linear system is n + 1 and the number of
equations is 1 + |{a⊕ b : f (a) = 0, f (b) = 1}| ≤ 2n.

Considering the definition of the exact quantum query complexity, the task of proving
QE(f) = k must be finished by presenting an exact k-query quantum algorithm. For a small
n, presenting an optimal exact quantum query algorithm is still quite hard in some cases.
For k = 1, Theorem 1 transforms this task to the problem of solving a linear system which
is a computable task. For any non-constant n-bit partial Boolean function f : D → {0, 1}, if
|D| is not big, then this task can be done efficiently in a classical computer. This is the most
important contribution of Theorem 1.

In fact, Theorem 1 is also a practical tool in some cases. In the worst case, the number of
equations in the linear system is 1 + |{a⊕ b : f (a) = 0, f (b) = 1}| which is an exponential

Entropy 2021, 23, 189 5 of 17

number. Note that the number of variables in the linear system is n + 1. So, the following
two results can be got.

(1) Given any n-bit partial Boolean function f , if some equations (By basic linear algebra,
n + 1 equations are enough in the best case) lead to an empty (non-negative real)
solution of the linear system, then by Theorem 1 these equations are enough to prove
that the exact quantum query complexity of f is bigger than 1. Thus, for the best case,
other |{a⊕ b : f (a) = 0, f (b) = 1}| − n equations can be ignored and things become
quite easy.

(2) If the exact quantum query complexity of an n-bit partial Boolean function f : D →
{0, 1} is bigger than 1, then the exact quantum query complexity of any n-bit partial
Boolean function g defined by{

g(x) = f (x), ∀x ∈ D,

g(x) ∈ {0, 1, ∗}, otherwise
(5)

is also bigger than 1. The number of partial Boolean functions in this form is 32n−|D|

which is also an exponential number.

3.2. Partial Boolean Functions Depending on All Bits

This subsection considers a special class of all partial Boolean functions using Theorem 1.
First, we introduce the following definition [14,31] (A background of this definition is

introduced briefly in Appendix A).

Definition 1. [14,31]. An n-bit partial Boolean function f : D → {0, 1} is said to depend on k
(≤ n) bits, if k is the minimum number of variables in all multilinear polynomials representing f .

By Definition 1, the two-bit total Boolean function computed by Deutsch’s algo-
rithm [9] depends on two bits, and, for even n, the n-bit partial Boolean function computed
by Deutsch-Jozsa algorithm [10] depends on n

2 + 1 bits.
For partial Boolean functions depending on all bits, the result is stated in the following.

Theorem 2. For any n-bit partial Boolean function f : D → {0, 1} depending on all n bits, f
can be computed exactly by a 1-query quantum algorithm, if and only if f (x) = x1 or 1⊕ x1 with
D = {0, 1}, or f (x) = x1 ⊕ x2 or 1⊕ x1 ⊕ x2 with D ∈ {E ⊆ {0, 1}2 : |E| ∈ {3, 4}}. �

Proof. ⇒). For any n-bit partial Boolean function f : D → {0, 1} and k ∈ {1, 2, · · · , n},
any multilinear polynomial representation of f can be written as

f (x) = xkq1(x1, x2, · · · , xk−1, xk+1, · · · , xn) + q2(x1, x2, · · · , xk−1, xk+1, · · · , xn) (6)

where q1(x1, x2, · · · , xk−1, xk+1, · · · , xn) and q2(x1, x2, · · · , xk−1, xk+1, · · · , xn) are two mul-
tilinear polynomials on variables x1, x2, · · · , xk−1, xk+1, · · · , xn (i.e., not on the variable
xk). Let the input X{k}k be the same as the input Xk except for the k-th bit being flipped.
With an argument, if f depends on n bits (By Definition 1, this means that the number
of variables in all multilinear polynomials representing f is at least n), then there must
exist at least n input pairs (X1, X{1}1), (X2, X{2}2), · · · , (Xn, X{n}n) such that 1⊕ f (Xk) =

f (X{k}k) ∈ {0, 1} for all k ∈ {1, 2, · · · , n} (In fact, for a certain k, if f (X) = f (X{k}) al-
ways hold for any X ∈ D, then the polynomial q1(x1, x2, · · · , xk−1, xk+1, · · · , xn) = 0
and f (x) = q2(x1, x2, · · · , xk−1, xk+1, · · · , xn) depends on at most n− 1 bits. This result
contradicts the assumption that f depends on n bits).

Entropy 2021, 23, 189 6 of 17

By Theorem 1, there exists a non-negative vector z =(z0, z1, z2, · · · , zn)T such that the
equations z0+z1+z2+· · ·+zn=1 and

zTF(Xk ⊕ X{k}k) = 0 = z0 + ∑
i 6=k

zi − zk, k ∈ {1, 2, · · · , n} (7)

hold. Combining with z0 + z1 + z2 + · · ·+ zn = 1 = z0 + ∑i 6=k zi + zk, we have 2zk = 1 for
all k ∈ {1, 2, · · · , n} which implies that n = 1 with z = (1

2 , 1
2)

T or n = 2 with z = (0, 1
2 , 1

2)
T .

The case n = 1 is trivial, and f can be given by (f (0), f (1)) = (0, 1) or (1, 0). For the
case n = 2, the unique non-negative solution z = (0, 1

2 , 1
2)

T implies that

1
2
(−1)a1⊕b1 +

1
2
(−1)a2⊕b2 = 0 (8)

for all a ∈ {x : f (x) = 0} and b ∈ {x : f (x) = 1}. Then, a1 ⊕ a2 6= b1 ⊕ b2 for all
a ∈ {x : f (x) = 0} and b ∈ {x : f (x) = 1}. This result implies that f (x) = x1 ⊕ x2
or 1⊕ x1 ⊕ x2. Meanwhile, since f : D → {0, 1} is a two-bit partial Boolean function
depending on two bits, |D| ∈ {3, 4}.

⇐). This direction is trivial. Thus, Theorem 2 has been proved.

Discussions on Theorem 2

Since there are many partial Boolean functions with exact quantum query complexity
1, it is necessary to divide them into some classes. In 2015, Montanaro et al. [15] investigated
all small total Boolean functions up to four bits and symmetric total Boolean functions
up to six bits. In 2016, Qiu et al. [23,24] studied all symmetric partial Boolean functions
and remained others open. By Definition 1, it is natural to divide all n-bit partial Boolean
functions into n + 1 classes.

For all n-bit partial Boolean functions depending on 1 and 2 bits, the problem is trivial.
For n-bit partial Boolean functions depending on n bits, the result is put into Theorem 2.
By a trivial (not direct) argument, the statement that a partial Boolean function f depends
on all n bits is consistent with previous definition. This is a key hint in the proof. Intuitively,
this implication seems obvious. However, since the implication does not hold for n

2 , we
remark that a proof is necessary.

Theorem 2 clarifies all partial Boolean functions that depend on all bits and can be
computed exactly by a 1-query quantum algorithm. Observing the unique multilinear
polynomial of any total Boolean function, any n-bit total Boolean function depending on k
(≤ n) bits can be identified with a k-bit total Boolean function depending on k bits. There-
fore, Theorem 2 generalizes the result on total Boolean functions [15] to partial Boolean
functions. Surprisingly, the number of all n-bit partial Boolean functions depending on n
bits is quite big. This fact is implied by the following lemma.

Lemma 1. Let N(n) (n ≥ 1) denote the number of all n-bit partial Boolean functions depending
on n bits. Then, N(n) ≥ 2× 32n−n−1.

In contrast, the number of all n-bit total Boolean functions (investigated by Monta-
naro et al. [15]) is 22n

and the number of all n-bit symmetric partial Boolean functions
(investigated by Qiu et al. [23,24]) is 3n+1.

As a result, many n-bit partial Boolean functions depending on k ∈ {3, · · · , n− 1}
bits is sitll unclear. This motivate us to investigate partial Boolean functions further.

4. The Second Characterization

This section introduces and proves the second characterization and two related results.

Entropy 2021, 23, 189 7 of 17

4.1. A Characterization by the Sum-of-Squares Representation

Following the discussions of Lemma 7 and Theorem 17 in [1], if f : D → {0, 1}
can be computed by an exact 1-query quantum algorithm, then there exist degree-1 SOS
complex representations of f and 1− f . Thus, this subsection introduces and proves a
characterization using the SOS representation.

First, the following lemma follows the discussions of Lemma 7 and Theorem 17 in [1].
This lemma is proved and also used in our recent paper [33].

Lemma 2. [1]. If there exists an exact 1-query quantum algorithm computing an n-bit partial
Boolean function f : D → {0, 1}, then there must exist degree-1 SOS complex (multilinear
polynomials) representations of f and 1− f .

In order to give the second characterization, we introduce the following definition.
This definition is also used in [33]. More related definitions can be seen in Refs. [34–39].

Definition 2. [34–39]. Let the function vector F(x) = (1, (−1)x1 , (−1)x2 , · · · , (−1)xn)T . For
an n-bit partial Boolean function f : D → {0, 1}, if there exist two real (1 + n)-dimensional
column vector sets {a1, a2, · · · , ap} and {ap+1, ap+2, · · · , ap+q} such that the equations

f (x) =
p

∑
l=1
|aT

l F(x)|2, x ∈ D,

1− f (x)=
p+q

∑
l=p+1

|aT
l F(x)|2, x ∈ D,

p+q

∑
l=p+1

|aT
l F(x)|2=1−

p

∑
l=1
|aT

l F(x)|2, x ∈ {0, 1}n,

(9)

hold, then the (p + q)× (1 + n) complex coefficient matrix [α f] in the form of

[α f] =

aT
1
...

aT
p

aT
p+1

...
aT

p+q

(10)

is called a degree-1 SOS complex representation matrix of f and 1− f . Here, every row vector aT
p is

the coefficient vector of the degree-1 Fourier polynomial aT
l F(x) in Equation (9).

As we know, for the state U1OxU0|ψ0〉 = ∑i,j(∑S αS
i,j(−1)S·x)|i, j〉 in a 1-query quan-

tum algorithm, the amplitude ∑S αS
i,j(−1)S·x of any basis state |i, j〉 is a polynomial of degree

≤ 1. Therefore, ∑S αS
i,j(−1)S·x = (α∅

i,j, α
{1}
i,j , α

{2}
i,j , · · · , α

{n}
i,j)(1, (−1)x1 , (−1)x2 , · · · , (−1)xn)T .

Then, the coefficient matrix
[
αS

i,j

]
(here, the number pair i, j is the row index and the number

set S the column index. In a 1-query quantum algorithm, the number pair i, j traverses all
basis states and the set S traverses ∅, {1}, {2}, · · · , {n}) with n + 1 columns in the form of

[a∅, a{1}, a{2}, · · · , a{n}] (11)

can be used to represent the state U1OxU0|ψ0〉. Without loss of generality, assume
that the basis states in a 1-query quantum algorithm are the computational
basis {|0〉, |1〉, |2〉, · · · }. Next, the equation U1OxU0|ψ0〉 =

[
αS

i,j

]
F(x) holds (here,

F(x) = (1, (−1)x1 , (−1)x2 , · · · , (−1)xn)T). In order to distinguish the coefficient matrix of

Entropy 2021, 23, 189 8 of 17

the state OxU0|ψ0〉 from the coefficient matrix of the state U1OxU0|ψ0〉, the notation
[

βS
i,j

]
denotes the coefficient matrix U−1

1

[
αS

i,j

]
of the state OxU0|ψ0〉.

By Definition 2 and the coefficient matrix, the second characterization is presented in
the following.

Theorem 3. Any n-bit non-constant partial Boolean function f : D → {0, 1} can be computed
exactly by a 1-query quantum algorithm, if and only if there exists a degree-1 SOS complex
representation matrix [α f] of f and 1− f such that

[α f]
†[α f] = diag(u0, u1, u2, · · · , un). (12)

Proof. ⇒). On one hand, the coefficient matrices of the states U1OxU0|ψ0〉 and OxU0|ψ0〉
are in the form of [

αS
i,j

]
= [a∅, a{1}, a{2}, · · · , a{n}] (13)

and [
βS

i,j

]
= U−1

1

[
αS

i,j

]
, (14)

respectively. On the other hand, for any quantum state

U0|ψ0〉 = ∑
j

α∅
0,j|0, j〉+ ∑

i 6=0
∑

j
α∅

i,j|i, j〉, (15)

the state
OxU0|ψ0〉 = ∑

j
α∅

0,j|0, j〉+ ∑
i 6=0

∑
j

α∅
i,j(−1)xi |i, j〉. (16)

Thus, the coefficient matrix of the state OxU0|ψ0〉 is in the form of a block diagonal matrix[
βS

i,j

]
= diag(B0, B1, · · · , Bn) (17)

where the i-th block matrix

Bi =

α∅

i,0

α∅
i,1

...
α∅

i,j

...

 (18)

for every fixed i ∈ {0, 1, 2, · · · , n}. Thus, U−1
1

[
αS

i,j

]
=
[

βS
i,j

]
= diag(B0, B1, · · · , Bn).

According to Lemma 2 and Definition 2, the coefficient matrix
[
αS

i,j

]
of the state

U1OxU0|ψ0〉 is an SOS complex representation matrix [α f] of the partial Boolean function
f and 1− f . Meanwhile, since all columns of any block-diagonal matrix diag(B0, B1, · · · ,
Bn) are pairwise orthogonal and the unitary operator U−1

1 preserves the inner product of
any two complex vectors, all columns of the matrix [α f] are also pairwise orthogonal. Thus,
Equation (12) holds.

⇐). For a degree-1 SOS complex representation matrix [α f] of f and 1− f satisfying
[α f]

†[α f] = diag(u0, u1, u2, · · · , un), all columns of the matrix [α f] = [a∅, a{1}, a{2}, · · · , a{n}]
are pairwise orthogonal. Note that we can always get a sequence of proper vectors B0, B1,
· · · , Bn satisfying ||B0||=||a∅|| =

√
u0 and ||Bi||=||a{i}|| =

√
ui for all i ∈ {1, 2, · · · , n} (for

example, Bi = (
√

ui, 0, 0, · · ·)T). Since all columns of [α f] and diag(B0, B1, · · · , Bn) are
pairwise orthogonal, there always exists a unitary operator U−1

1 such that U−1
1 [α f]=diag(B0,

B1, · · · , Bn).

Entropy 2021, 23, 189 9 of 17

As a result, the three states U1OxU0|ψ0〉, OxU0|ψ0〉 and U0|ψ0〉 of an exact 1-query
quantum algorithm computing f can be determined by [α f], diag(B0, B1, · · · , Bn) and B0

B1
...

Bn

, (19)

respectively. Thus, Theorem 3 has been proved.

Discussions on Theorem 3

In order to use Theorem 3, we need to find a pair of SOS real representations of f
and 1− f first, and then transform it into a proper SOS complex representation matrix.
Since it is feasible to get a pair of SOS real representations for very small (partial) Boolean
functions [34–39], Theorem 3 can be tested on very small partial Boolean functions.

To some extent, Theorem 3 provides a different style for the characterization of partial
Boolean function with exact quantum query complexity 1. On one hand, similar to Ref. [25]
(showed an equivalence between 1-query quantum algorithms and bounded quadratic
polynomials in the bounded-error setting) and [27] (proved a characterization of t-query
quantum algorithms in terms of the unit ball of a space of degree-(2t) polynomials), Theo-
rem 3 shows an equivalence between the sum-of-squares polynomial representations and
the exact 1-query quantum algorithm. In fact, Theorem 3 transforms the problem of proving
QE(f) = 1 to the problem of solving a system of multivariate quadratic equations which is
a difficult problem in practical applications. On the other hand, combining Theorem 3 with
Theorem 1, we can see that the problem of solving the system of multivariate quadratic
equations in Theorem 3 can be reduced to the problem of solving the linear system of
equations in Theorem 1. This result is a quantum-inspired result which is an interesting
application of the quantum theory.

4.2. Partial Boolean Functions Depending on k Bits

This subsection considers partial Boolean functions depending on k bits.
Inspired by Theorem 3, we get the following result.

Theorem 4. Let the function vector P(x) = (1, x1, x2, · · · , xn)T where x = x1x2 · · · xn ∈
{0, 1}n. For any n-bit non-constant partial Boolean function f : D → {0, 1}, if f depends on k
bits and can be computed exactly by a 1-query quantum algorithm, then

rank((· · · , P(x), · · ·) f (x)=0), rank((· · · , P(x), · · ·) f (x)=1) ∈ {1, 2, · · · , n} (20)

and

rank((· · · , P(x), · · ·) f (x)=0) + rank((· · · , P(x), · · ·) f (x)=1)− (2n + 2− k) ≤ 0 (21)

where all columns P(x) in the matrix (· · · , P(x), · · ·) f (x)=b traverse all legal inputs x ∈ D
satisfying f (x) = b for b ∈ {0, 1}.

In order to prove Theorem 4, the following lemma is necessary.

Lemma 3. If an n-bit partial Boolean function f : D → {0, 1} depends on k (≤ n) bits and there
exists a degree-1 SOS complex representation of f , then there exist at least k non-zero columns
a{i1}, a{i2}, · · · , a{ik} in the matrix [α f] where i1, i2, · · · , ik ∈ {1, 2, · · · , n}.

Then, Theorem 4 can be proved in the following.

Proof. Recall that all columns of the matrix (· · · , P(x), · · ·) f (x)=b traverse all legal inputs
x ∈ D satisfying f (x) = b where the vector function P(x) = (1, x1, x2, · · · , xn)T . Note that
the size of the matrix (· · · , P(x), · · ·) f (x)=b is (n + 1)× |{x : f (x) = b}|.

Entropy 2021, 23, 189 10 of 17

On one hand, for a non-constant n-bit partial Boolean function f , if there exists a
degree-1 SOS complex representation, then there exists a sequence of (n + 1)-dimensional
non-zero vectors a1, a2, · · · , ap satisfying

f (x) =
p

∑
l=1
|aT

l P(x)|2, ∀x ∈ D. (22)

Considering Equation (22) for x such that f (x) = 0 forces aT
l P(x) = 0. Thus, al⊥P(x)

for all P(x) with f (x) = 0. Then, al for any l is in the orthogonal complement of the
space spanned by all P(x) with f (x) = 0, we know the existence of the sequence (i.e.,
non-zero vectors a1, a2, · · · , ap) requires 1 ≤ (n + 1)− rank((· · · , P(x), · · ·) f (x)=0) ≤ n.
Similarly, considering Equation (22) for x such that f (x) = 1, we can get 1 ≤ (n + 1)
−rank((· · · , P(x), · · ·) f (x)=1) ≤ n. Thus, Equation (20) holds.

On the other hand, by Theorem 3, for an n-bit partial Boolean function f with ex-
act quantum query complexity 1, there exists an SOS complex representations matrix
[a∅, a{1}, a{2}, · · · , a{n}] = [α f] of f and 1− f such that U−1

1 [α f] = diag(B0, B1, · · · , Bn).
By Equation (10), we can see that

rank([α f]) ≤ rank([a1, · · · , ap]) + rank([ap+1, · · · , ap+q]). (23)

Moreover,
rank([a1, · · · , ap]) ≤ (1 + n)− rank((· · · , P(x), · · ·) f (x)=0) (24)

and
rank([ap+1, · · · , ap+q]) ≤ (1 + n)− rank((· · · , P(x), · · ·) f (x)=1) (25)

can be obtained by considering Equation (22) for x such that f (x) = 0 and f (x) = 1,
respectively. Using the property (i.e., preserving Euclidean norm and the rank) of the
unitary matrix and Lemma 3,

k ≤|{i ∈ {0, 1, · · · , n} : a{i} 6= 0}| (Lemma 3)

=|{i ∈ {0, 1, · · · , n} : ‖Bi‖ 6= 0}| (The unitary operator U1 preserves Euclidean norm)

=rank(diag(B0, B1, · · · , Bn)) (The characterization of the block diagonal matrix)

=rank([a∅, a{1}, a{2}, · · · , a{n}]) (The unitary operator U1 preserves the rank)

=rank([α f]) ≤ 2(1 + n)−
1

∑
b=0

rank((· · · , P(x), · · ·) f (x)=b). (Equations (23)–(25))

(26)

Thus, Theorem 4 has been proved.

Discussions on Theorem 4

The inverse direction of Theorem 4 is not always hold. For example, a three-bit
partial Boolean function f given by the two-tuple ({x ∈ {0, 1}3 : |x| = 0}, {y ∈ {0, 1}3 :
|y| = 1}). Here, it is not difficult to know that rank((· · · , P(x), · · ·) f (x)=0) = 1 and
rank((· · · , P(x), · · ·) f (x)=1) = 3. However, using Theorem 10 of Ref. [23], QE(f) ≥ 2.

Theorem 4 gives a necessary condition on the case that an n-bit partial Boolean function
depends on k bits and can be computed exactly by a 1-query quantum algorithm. That is, the
function F(f) := rank((· · · , P(x), · · ·) f (x)=0)+ rank((· · · , P(x), · · ·) f (x)=1)− (2n+ 2− k)
must be negative.

Compared with Theorem 1, Theorem 4 provides an approximate method on deciding
the exact quantum query complexity of a partial Boolean function. Most importantly,
the method in Theorem 4 is more efficient than Theorem 1. In order to construct the
linear system in Theorem 1, we should observe at most |{a : f (a) = 0}||{b : f (b) = 1}|
equations. In contrast, we only observe at most |{a : f (a) = 0}|+ |{b : f (b) = 1}| inputs
in Theorem 4. From this point, Theorem 4 is more efficient than Theorem 1. Note that the

Entropy 2021, 23, 189 11 of 17

result in Theorem 4 is one-side exact. That is, if the exact quantum query complexity of a
partial Boolean function f is bigger than 1 by Theorem 4, then the result is exact.

4.3. Estimating the Number of Partial Boolean Functions Depending on k Bits

In this subsection, let us evaluate the number N1(n, k) of n-bit partial Boolean functions
which depend on k bits and can be computed exactly by a 1-query quantum algorithm.

As a preparation, the following lemma is necessary.

Lemma 4. Let the vector function P(Xk) = (1, Xk,1, Xk,2, · · · , Xk,n)
T for a string

Xk = Xk,1Xk,2 · · ·Xk,n ∈ {0, 1}n. If n ≥ 2, for any j∈ {1, 2, · · · , n + 1} different linearly
independent vectors P(X1), P(X2), · · · , P(Xj), there exist at most Tj ≤ 2j−1 − j other different
vectors P(Xj+1), P(Xj+2), · · · , P(Xj+Tj) satisfying rank([P(X1), P(X2), · · · , P(Xj+Tj)]) = j.

By Theorem 4, the fifth result is the following.

Theorem 5. Let N1(n, k) be the number of all n-bit partial Boolean functions which depend on
k bits and can be computed exactly by a 1-query quantum algorithm. If n ≥ 3 and k ≥ 2, then
N1(n, k) ≤ n222n−1(1+22−k)+2n2

.

Proof. Recall that all columns in the matrix (· · · , P(x), · · ·) f (x)=b traverse all legal inputs
x ∈ D satisfying f (x) = b where the function vector P(x) = (1, x1, x2, · · · , xn)T . Let r0 de-
note the rank of (· · · , P(x), · · ·) f (x)=0 and r1 the rank of (· · · , P(x), · · ·) f (x)=1. According
to Theorem 4, N1(n, k) is not bigger than the number of all n-bit partial Boolean functions
satisfying r0 +r1 ≤ 2n + 2− k and 1 ≤ r0, r1 ≤ n. For every fixed (r0, r1), an n-bit partial
Boolean function can be determined using the following two steps.

In the first step, we choose r0 linearly independent vectors

P(X1), P(X2), · · · , P(Xr0) (27)

and r1 linearly independent vectors

P(Y1), P(Y2), · · · , P(Yr1) (28)

for some X1, X2, · · · , Xr0 , Y1, Y2, · · · , Yr1 ∈ {0, 1}n, respectively. Here, r0 linearly indepen-
dent vectors P(X1), P(X2), · · · , P(Xr0) correspond to r0 different inputs with function
value 0, and r1 linearly independent vectors P(Y1), P(Y2), · · · , P(Yr1) correspond to r1
different inputs with function value 1. For every fixed (r0, r1), the number of different
selections (i.e., {P(X1), P(X2), · · · , P(Xr0)} and {P(Y1), P(Y2), · · · , P(Yr1)}) is not bigger
than (

2n

r0

)(
2n − r0

r1

)
≤ 2n(r0+r1) (29)

for all n ≥ 3 and k ≥ 2.
In the second step, we add some other vectors P(Xr0+1), · · · and P(Yr1+1), · · · to

the sets {P(X1), P(X2), · · · , P(Xr0)} and {P(Y1), P(Y2), · · · , P(Yr1)}, respectively. Here,
every newly added vector in the set {P(Xr0+1), · · · } should be represented linearly by the
determined r0 linearly independent vectors P(X1), P(X2), · · · , P(Xr0) and every newly
added vector in the set {P(Yr1+1), · · · } should be represented linearly by the determined r1
linearly independent vectors P(Y1), P(Y2), · · · , P(Yr1). After that, an n-bit partial Boolean
function f is determined as follows. f (x) = 0 for x in the set {X1, X2, · · · , Xr0 , · · · },
f (x) = 1 for x in the set {Y1, Y2, · · · , Yr1 , · · · }, and it is undefined for the rest cases. Using
Equation (29) and Lemma 4, for every fixed (r0, r1), there are at most

2n(r0+r1)2(2
r0−1−r0)2(2

r1−1−r1) < 22n2
2(2

n−1+2n+1−k) = 22n−1(1+22−k)+2n2 (30)

Entropy 2021, 23, 189 12 of 17

partial Boolean functions with a pair of fixed r0 and r1. Note that the number of different
(r0, r1) is not bigger than n2. Thus, Theorem 5 has been proved.

Discussions on Theorem 5

The most important contribution of Theorem 5 is to give an estimate on the num-
ber of partial Boolean functions with exact quantum 1-query complexity. This is the
first non-trivial upper bound on this problem. In contrast, 32n

is the number of all n-
bit partial Boolean functions, as each n-bit partial Boolean function corresponds to a
string f (0) f (1) · · · f (2n − 1) ∈ {0, 1, ∗}2n

. In fact, the exact quantum query complex-
ity of any n-bit partial Boolean function is in the set {0, 1, 2, · · · , n}, which implies that

max{Nj(n, k) : j, k ∈ {0, 1, 2, · · · , n}} ≥ 32n

(n+1)2 . Here, the notation Nj(n, k) is used to
denote the number of n-bit partial Boolean functions which depend on k bits and can be
computed exactly by a j-query quantum algorithm. Thus, all n-bit partial Boolean functions
with exact quantum query complexity 1 only make up a very tiny proportion of all n-bit
partial Boolean functions.

Furthermore, corresponding to Fact 1 in Ref. [23], the following Fact 2 is also applicable
to all partial Boolean functions, as a common 1-query quantum algorithm computes the
two partial Boolean functions.

Fact 2. For any two partial Boolean functions f and g satisfying {x : g(x) = 0} ⊆
{x : f (x) = 0} and {y : g(y) = 1} ⊆ {y : f (y) = 1}, if f can be computed exactly by a
1-query quantum algorithm, then g can also be computed exactly by this 1-query quantum
algorithm.

As we know, the partial Boolean function computed by Deutsch-Jozsa algorithm can
be written as

f (x) =

0, ∀|x| = n
2

,

1, |x| = 0, n.
(31)

By Fact 2, the exact quantum query complexity of any partial Boolean function g defined
by

g(x) =

0 or ∗, ∀|x| = n
2

,

1 or ∗, |x| = 0, n.
(32)

is also 1. The number of functions in this form is 3 × (2
(n

n
2
) − 1). Thus, for an even

integer n, 3× (2
(n

n
2
) − 1) is a trivial lower bound on the number of n-bit partial Boolean

functions with exact quantum query complexity 1. In general, given an n-bit partial
Boolean function with exact quantum query complexity 1, we can find out trivially at
least (2|{a: f (a)=0}| − 1)× (2|{b: f (b)=0}| − 1) different partial Boolean functions with exact
quantum query complexity 1. By Stirling’s approximation

n! ≈
√

2πn
(n

e

)n
, (33)

we have (
n
n
2

)
=

n!(n
2 !
)2 ≈

√
2πn(n

e)
n(√

2π n
2

(n
2
e

) n
2
)2 =

√
2πn
πn

2n.
(34)

Thus, the trivial lower bound

3× (2
(n

n
2
) − 1) ≈ 3× 2

√
2πn
πn 2n

. (35)

Finally, the gap between the upper bound and the lower bound comes from the
following two aspects. The first aspect is that the upper bound is obtained from a necessary

Entropy 2021, 23, 189 13 of 17

condition (i.e., Theorem 4) and an approximate counting argument. The second aspect
is that there exist many unknown partial Boolean functions with exact quantum query
complexity 1.

5. Conclusions

Motivated by this issue of exact 1-query quantum model [9,10,15,22–24], in this paper,
we have investigated the power and advantage of the exact 1-query quantum model for
partial Boolean functions. Specifically, we have contributed two sufficient and necessary
conditions for characterizing n-bit partial Boolean functions with exact quantum query
complexity 1, and one necessary condition for characterizing n-bit partial Boolean functions
that depend on k (k ≤ n) bits and can be computed exactly by a 1-query quantum algorithm.
Using these characterizations, we have clarified all n-bit partial Boolean functions that
depend on n bits and can be computed exactly by a 1-query quantum algorithm (in fact,
n ≤ 2 in this case, i.e. Theorem 2). Also, we have proved that the number of all n-bit partial
Boolean functions with exact quantum query complexity 1 is quite small. As a result, the
following two problems are worthy of further consideration.

• Find all (or some) non-trivial n-bit partial Boolean functions with exact quantum
query complexity 1. This is an interesting problem for the following two aspects. On
one hand, the upper bound (given by Theorem 5) of the actual number of partial
Boolean functions in this class is quite big. On the other hand, known non-trivial n-bit
partial Boolean functions in this class are still fairly rare [9,10,15,22–24].

• How many n-bit partial Boolean functions can be computed exactly (or with
bounded-error) by k-query quantum algorithms for all k ∈ {2, 3, · · · , n}? The solution
of this problem is a quantitative evaluation of the advantage of the k-query quantum
model. In contrast, the result of Ambainis et al. [14] is a qualitative evaluation of the
advantage of the quantum query model.

Author Contributions: Conceptualization, G.X. and D.Q.; formal analysis, G.X. and D.Q.; investi-
gation, G.X. and D.Q.; writing–original draft preparation, G.X. and D.Q.; visualization, G.X. and
D.Q.; supervision, D.Q.; funding acquisition, D.Q. All authors have read and agreed to the published
version of the manuscript.

Funding: This work is supported in part by the National Natural Science Foundation of China
(Nos. 61572532, 61876195), the Natural Science Foundation of Guangdong Province of China (No.
2017B030311011).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the anonymous referees for important sugges-
tions that help us improve the quality of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. The Background of Definition 1

First, the following definition is used widely for total Boolean functions (i.e., D =
{0, 1}n) [14,28,31].

Definition 3. [31]. Given an n-bit partial Boolean function f : {0, 1}n → {0, 1}, we say that f
depends on the k-th (k ∈ {1, 2, · · · , n}) bit if there exists a pair of inputs Xk, X{k}k ∈ {0, 1}n such

that 1⊕ f (Xk) = f (X{k}k) ∈ {0, 1}. Here, X{k}k is the same as Xk except for the k-th bit being
flipped.

Based on Definition 3, the statements “ f depends on k bits” and “ f depends on all bits
(or n bits)” is also used widely for total Boolean functions (i.e., D = {0, 1}n). Clearly, if

Entropy 2021, 23, 189 14 of 17

a total Boolean function f : {0, 1}n → {0, 1} depends on k bits, then we can always find
out a sequence i1, i2, · · · , ik such that f depends on the i1-bit, the i2-bit, · · · , and the ik-bit.
Meanwhile, the unique multilinear polynomial representation of f is on the k variables
(i.e., xi1 , xi2 , · · · , xik). However, for partial Boolean functions (i.e., D 6= {0, 1}n), things
become different. On one hand, the even n-bit partial Boolean function g computed by
Deutsch-Jozsa algorithm [10] does not depend on any bit (using Definition 3). On the
other hand, the partial Boolean function g is not a constant function. Thus, Definition 3 is
not proper for many partial Boolean functions, while the statements “ f depends on k bits”
and “ f depends on all bits (or n bits)” should also be reconsidered. This point motivates
us to use Definition 1 in this paper. Specifically, in the case of total Boolean functions,
Definition 1 is consistent with Definition 3.

Appendix B. Proof of Lemma 1

Proof. Recall that N(n) (n ≥ 1) denotes the number of all n-bit partial Boolean functions
depending on n bits. For any k-bit (k ≥ 1) partial Boolean function f : D → {0, 1}
(D ⊆ {0, 1}k) depending on k bits (Note that D is not an empty set for k ≥ 1), we construct
at least 32k−1 (k + 1)-bit partial Boolean function g depending on k + 1 bits by f . In fact,
for any fixed y = y1y2 · · · yk ∈ D ⊆ {0, 1}k, any (k + 1)-bit partial Boolean function g
defined by

g(x0) = f (x), ∀x ∈ D,

g(x0) = ∗, ∀x ∈ {0, 1}k\D,

g(x1) = 1⊕ f (y), x = y,

g(x1) ∈ {0, 1, ∗}, ∀x ∈ {0, 1}k\{y}

(A1)

is a (k + 1)-bit partial Boolean function depending on (k + 1) bits. For any k ≥ 1, the last
line in Equation (A1) implies that

N(k + 1)
N(k)

≥ 32k−1. (A2)

Since N(1) = 2 (i.e., (f (0), f (1)) = (0, 1) and (f (0), f (1)) = (1, 0)), we have

N(n) ≥ 2
n−1

∏
k=1

32k−1 = 2× 32n−n−1. (A3)

The lemma has been proved.

Appendix C. Proof of Lemma 3

Proof. Assume that there exist at most k − 1 non-zero vectors in all vectors a∅, a{1},
a{2}, · · · , a{n}. Then, there exist at least n − k + 1 zero vectors a{ik}, a{ik+1}, · · · , a{in}
where ik, ik+1, · · · , in ∈ {1, 2, · · · , n}. Note that all entries al

{ir} in a{ir} are zeros for all
l ∈ {1, 2, · · · , p + q} and r ∈ {k, k + 1, · · · , n}. Therefore,

f (x) =| f1(x)|2 + · · ·+ | fp(x)|2

=
p

∑
l=1

∣∣∣∣∣∣al
∅ + ∑

i∈{1,2,··· ,n}
al
{i}(−1)xi

∣∣∣∣∣∣
2

=
p

∑
l=1

∣∣∣∣∣∣al
∅ + ∑

r∈{1,2,··· ,k−1}
al
{ir}(−1)xir

∣∣∣∣∣∣
2

.

(A4)

Obviously, the number of variables in this representation of f is at most k − 1. Since f
depends on k bits, this is a contradiction. Thus, the lemma has been proved.

Entropy 2021, 23, 189 15 of 17

Appendix D. Proof of Lemma 4

Proof. For every k ≥ j + 1 and every fixed input Xr = Xr,1Xr,2 · · · Xr,n ∈ {0, 1}n where
r ∈ {1, 2, · · · , j, k}, let P(Xk) = s1P(X1) + s2P(X2) + · · · + sjP(Xj) which is a linear system
of equations on j undetermined variables s1, s2, · · · , sj. Note that this linear system of
equations

j

∑
r=1

sr = 1,

j

∑
r=1

srXr,i = Xk,i, i ∈ {1, 2, · · · , n}.

(A5)

consists of n + 1 equations. Since vectors P(X1), P(X2), · · · , P(Xj) is a base, the rank of
the matrix (P(X1), P(X2), · · · , P(Xj)) is j. In other word, for all rows of the matrix (P(X1),
P(X2), · · · , P(Xj)), we can find out a base which consists of j row vectors. After that, the
augmented matrix of the linear system Equation (A5)

1 1 · · · 1 1
X1,1 X2,1 · · · Xj,1 Xk,1
X1,2 X2,2 · · · Xj,2 Xk,2

...
...

...
...

X1,n X2,n · · · Xj,n Xk,n

 (A6)

can be transformed into

1 1 · · · 1 1
X1,i1 X2,i1 · · · Xj,i1 Xk,i1
X1,i2 X2,i2 · · · Xj,i2 Xk,i2

...
...

...
...

X1,ij−1 X2,ij−1 · · · Xj,ij−1 Xk,ij−1

0 0 · · · 0 X′k,ij

0 0 · · · 0 X′k,ij+1
...

...
...

...
0 0 · · · 0 X′k,in

(A7)

where {i1, i2, · · · , in} = {1, 2, · · · , n}. According to the solution theory of linear system of
equations, if any of X′k,ij

, X′k,ij+1
, · · · , and X′k,in is non-zero, then there exists no solution of

the linear system Equation (A5) and the vector P(Xk) is not what we want. Otherwise, we
can always get a solution

s1
s2
s3
...
sj

 =

1 1 · · · 1

X1,i1 X2,i1 · · · Xj,i1
X1,i2 X2,i2 · · · Xj,i2

...
...

...
X1,ij−1 X2,ij−1 · · · Xj,ij−1

−1
1

Xk,i1
Xk,i2

...
Xk,ij−1

. (A8)

As a result, for every Xk,i1 Xk,i2 · · ·Xk,ij−1
∈ {0, 1}j−1, we either can get a unique string

Xk = Xk,1Xk,2 · · ·Xk,n ∈ {0, 1}n satisfying X′k,ij
= X′k,ij+1

= · · · =X′k,in = 0 in Equation (A7)

or can not get a string Xr,1Xr,2 · · ·Xr,n ∈ {0, 1}n satisfying X′k,ij
= X′k,ij+1

= · · · =X′k,in = 0 in
Equation (A7). The lemma has been proved.

Entropy 2021, 23, 189 16 of 17

References
1. Buhrman, H.; de Wolf, R. Complexity measures and decision tree complexity: A survey. Theor. Comput. Sci. 2002, 288, 21–43.

[CrossRef]
2. Beals, R.; Buhrman, H.; Cleve, R.; Mosca, M.; de Wolf, R. Quantum lower bounds by polynomials. J. ACM 2001, 48, 778–797.

[CrossRef]
3. Ambainis, A. Quantum lower bounds by quantum arguments. J. Comput. Syst. Sci. 2002, 64, 750–767. [CrossRef]
4. Childs, A.M.; Landahl, A.J.; Parrilo, P.A. Quantum algorithms for the ordered search problem via semidefinite programming.

Phys. Rev. A 2007, 75, 032335. [CrossRef]
5. Hyer, P.; Ŝpalek, R. Lower Bounds on Quantum Query Complexity. Bull. Eur. Assoc. Theor. Comput. Sci. 2005, 87, 78–103.
6. Nielson, M.A.; Chuang, I.L. Quantum Computation and Quantum Information, 10th ed.; Cambridge University Press: Cambridge,

MA, USA, 2012.
7. Shor, P.W. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35th Annual

Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; Goldwasser, S., Ed.; IEEE
Computer Society Press: Los Alamitos, CA, USA, 1994.

8. Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the 28th Annual ACM Symposium on
the Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996; ACM: New York, NY, USA, 1996.

9. Deutsch, D. Quantum theory, the Church-Turing Principle and the universal quantum computer. Proc. R. Soc. Lond. Ser. A 1985,
400, 97–117.

10. Deutsch, D.; Jozsa, R. Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. Ser. A 1992, 439, 553–558.
11. Harrow, A.W.; Hassidim, A.; Lloyd, S. Quantum Algorithm for Linear Systems of Equations. Phys. Rev. Lett. 2009, 103, 150502.

[CrossRef]
12. Ambainis, A.; Iraids, J.; Smotrovs, J. Exact quantum query complexity of EXACT and THRESHOLD. In Proceedings of the 8th

Conference on the Theory of Quantum Computation, Communication and Cryptography, Guelph, ON, Canada, 21–23 May 2013;
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik: Dagstuhl, Germany, 2013.

13. Ambainis, A. Superlinear advantage for exact quantum algorithms. In Proceedings of the 45th Annual ACM Symposium on
Theory of Computing, Palo Alto, CA, USA, 1–4 June 2013; ACM: New York, NY, USA, 2013.

14. Ambainis, A.; Gruska J.; Zheng, S.G. Exact quantum algorithms have advantage for almost all Boolean functions. Quantum Inf.
Comput. 2015, 15, 435–452.

15. Montanaro, A.; Jozsa, R.; Mitchison, G. On exact quantum query complexity. Algorithmica 2015, 71, 775–796. [CrossRef]
16. Ambainis, A.; Iraids, J.; Nagaj, D. Exact Quantum Query Complexity of EXACTnk,l. In SOFSEM 2017: Theory and Practice of

Computer Science, Proceedings of the 43rd International Conference on Current Trends in Theory and Practice of Computer Science, Limerick,
Ireland, 16–20 January 2017; Steffen, B., Baier, C., Eds.; Springer: Cham, Switzerland, 2017.

17. Qiu, D.W.; Zheng, S.G. Generalized Deutsch-Jozsa problem and the optimal quantum algorithm. Phys. Rev. A 2018, 97, 062331.
[CrossRef]

18. He, X.Y.; Sun, X.M.; Yang, G.; Yuan, P. Exact Quantum Query Complexity of Weight Decision Problems via Chebyshev Polynomials.
Available online: https://arxiv.org/abs/1801.05717. (accessed on 22 December 2020).

19. Kaniewski, J.; Lee, T.; de Wolf, R. Query Complexity in Expectation. In Proceedings of the 42nd International Colloquium on
Automata, Languages and Programming, Kyoto, Japan, 6–10 July 2015; Springer: Berlin, Germany, 2016.

20. Montanaro, A.; Nishimura, H.; Raymond, R. Unbounded error quantum query complexity. Theor. Comput. Sci. 2011, 412,
4619–4628. [CrossRef]

21. Ambainis, A.; Balodis, K.; Belovs, A.; Lee, T.; Santha, M.; Smotrovs, J. Separations in query complexity based on pointer functions.
In Proceedings of the 48th ACM Symposium on Theory of Computing, Cambridge, MA, USA, 19–21 June 2016; pp. 800–813.
Available online: https://arxiv.org/abs/1506.04719 (accessed on 22 December 2020).

22. Montanaro, A. Structure, Randomness and Complexity in Quantum Computation. Available online: https://people.maths.bris.
ac.uk/csxam/papers/thesis.pdf (accessed on 22 December 2020).

23. Qiu, D.W.; Zheng, S.G. Characterizations of Symmetrically Partial Boolean Functions with Exact Quantum Query Complexity.
Available online: https://arxiv.org/abs/1603.06505 (accessed on 22 December 2020).

24. Qiu, D.W.; Zheng, S.G. Revisiting Deutsch-Jozsa Algorithm. Inform. Comput. 2020, 275, 104605. [CrossRef]
25. Aaronson, S.; Ambainis, A.; Iraids, J.; Kokainis, M.; Smotrovs, J. Polynomials, Quantum Query Complexity, and Grothendieck’s

Inequality. In Proceedings of the 31st Conference on Computational Complexity, Tokyo, Japan, 29 May–1 June 2016; Raz, R., Ed.;
Schloss Dagstuhl: Wadern, Germany, 2016.

26. Grillo, S.A.; Marquezino, F.L. Quantum query as a state decomposition. Theor. Comput. Sci. 2018, 736, 62–75. Available online:
https://arxiv.org/abs/1602.07716 (accessed on 22 December 2020).

27. Arunachalam, S.; Briet, J.; Palazuelos, C. Quantum Query Algorithms Are Completely Bounded Forms. SIAM J. Comput. 2019, 48,
903–925. Available online: https://arXiv:1711.07285 (accessed on 22 December 2020).

28. Chen, W.J.; Ye, Z.K.; Li, L.Z. Characterization of exact one-query quantum algorithms. Phys. Rev. A 2020, 101, 022325. [CrossRef]
29. Mukherjee, C.S.; Maitra, S. Classical-Quantum Separations in Certain Classes of Boolean Functions-Analysis Using the Parity

Decision Trees. Available online: https://arxiv.org/abs/2004.12942 (accessed on 22 December 2020).
30. De Wolf, R. Nondeterministic quantum query and communication complexities. SIAM J. Comput. 2003, 32, 681–699. [CrossRef]

http://dx.doi.org/10.1016/S0304-3975(01)00144-X
http://dx.doi.org/10.1145/502090.502097
http://dx.doi.org/10.1006/jcss.2002.1826
http://dx.doi.org/10.1103/PhysRevA.75.032335
http://dx.doi.org/10.1103/PhysRevLett.103.150502
http://dx.doi.org/10.1007/s00453-013-9826-8
http://dx.doi.org/10.1103/PhysRevA.97.062331
https://arxiv.org/abs/1801.05717
http://dx.doi.org/10.1016/j.tcs.2011.04.043
https://arxiv.org/abs/1506.04719
https://people.maths.bris.ac.uk/csxam/papers/thesis.pdf
https://people.maths.bris.ac.uk/csxam/papers/thesis.pdf
https://arxiv.org/abs/1603.06505
http://dx.doi.org/10.1016/j.ic.2020.104605
https://arxiv.org/abs/1602.07716
https://arXiv:1711.07285
http://dx.doi.org/10.1103/PhysRevA.101.022325
https://arxiv.org/abs/2004.12942
http://dx.doi.org/10.1137/S0097539702407345

Entropy 2021, 23, 189 17 of 17

31. Simon, H.U. A tight ω(log log n)-bound on the time for parallel RAM’s to compute non-degenerated boolean functions. Inf.
Control. 1982, 55, 102–107. [CrossRef]

32. Nisan, N.; Szegedy, M. On the degree of Boolean functions as real polynomials. Comput. Complex. 1994, 4, 301–313. [CrossRef]
33. Xu, G.L., Qiu, D.W. From the sum-of-squares representation of a Boolean function to an optimal exact quantum query algorithm.

Quantum Inf. Process 2021, 20, 33. [CrossRef]
34. Lee, T.; Prakash, A.; de Wolf, R.; Yuen, H. On the sum-of-squares degree of symmetric quadratic functions. In Proceedings of

the 31st Conference on Computational Complexity, Tokyo, Japan, 29 May–1 June 2016; Raz, R., Ed.; Schloss Dagstuhl: Wadern,
Germany, 2016.

35. Powers, V.; Wörmann, T. An algorithm for sums of squares of real polynomials. J. Pure. Appl. Algebra 1998, 127, 99–104. [CrossRef]
36. Lasserre, J.B. A sum of squares approximation of nonnegative polynomials. SIAM J. Optimiz. 2006, 16, 751–765. [CrossRef]
37. Lasserre, J.B. Sufficient conditions for a real polynomial to be a sum of squares. Arch. Math. 2006, 89, 390–398. [CrossRef]
38. Papachristodoulou, A.; Anderson, J.; Valmorbida, G.; Prajna, S.; Seiler, P.; Parrilo, P. SOSTOOLS Version 3.00 Sum of Squares

Optimization Toolbox for MATLAB. Available online: https://arxiv.org/abs/1310.4716 (accessed on 22 December 2020).
39. Blekherman, G.; Gouveia, J.; Pfeiffer, J. Sums of squares on the hypercube. Math. Z. 2016, 284, 41–54. [CrossRef]

http://dx.doi.org/10.1016/S0019-9958(82)90477-6
http://dx.doi.org/10.1007/BF01263419
http://dx.doi.org/10.1007/s11128-020-02975-0
http://dx.doi.org/10.1016/S0022-4049(97)83827-3
http://dx.doi.org/10.1137/04061413X
http://dx.doi.org/10.1007/s00013-007-2251-y
https://arxiv.org/abs/1310.4716
http://dx.doi.org/10.1007/s00209-016-1644-7

	Introduction
	Preliminaries
	The First Characterization
	A Characterization by the Linear System of Equations
	Partial Boolean Functions Depending on All Bits

	The Second Characterization
	A Characterization by the Sum-of-Squares Representation
	Partial Boolean Functions Depending on k Bits
	Estimating the Number of Partial Boolean Functions Depending on k Bits

	Conclusions
	The Background of Definition 1
	Proof of Lemma 1
	Proof of Lemma 3
	Proof of Lemma 4
	References

