
 

 
 

 

 
Entropy 2021, 23, 188. https://doi.org/10.3390/e23020188 www.mdpi.com/journal/entropy 

Article 

Modeling Predictability of Traffic Counts at Signalised  

Intersections using Hurst Exponent 

Sai Chand 

Research Centre for Integrated Transport Innovation (rCITI), School of Civil and Environmental Engineering, 

University of New South Wales, Sydney, NSW 2052, Australia; saichand.chakka@unsw.edu.au 

Abstract: Predictability is important in decision-making in many fields, including transport. The ill-

predictability of time-varying processes poses severe problems for traffic and transport planners. 

The sources of ill-predictability in traffic phenomena could be due to uncertainty and incomplete-

ness of data and models and/or due to the complexity of the processes itself. Traffic counts at inter-

sections are typically consistent and repetitive on the one hand and yet can be less predictable on 

the other hand, in which on any given time, unusual circumstances such as crashes and adverse 

weather can dramatically change the traffic condition. Understanding the various causes of 

high/low predictability in traffic counts is essential for better predictions and the choice of predic-

tion methods. Here, we utilise the Hurst exponent metric from the fractal theory to quantify fluctu-

ations and evaluate the predictability of intersection approach volumes. Data collected from 37 in-

tersections in Sydney, Australia for one year are used. Further, we develop a random-effects linear 

regression model to quantify the effect of factors such as the day of the week, special event days, 

public holidays, rainfall, temperature, bus stops, and parking lanes on the predictability of traffic 

counts. We find that the theoretical predictability of traffic counts at signalised intersections is up-

wards of 0.80 (i.e., 80%) for most of the days, and the predictability is strongly associated with the 

day of the week. Public holidays, special event days, and weekends are better predictable than typ-

ical weekdays. Rainfall decreases predictability, and intersections with more parking spaces are 

highly predictable. 
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1. Introduction 

Signalised intersections play a crucial role in improving the performance of urban 

road networks. Statistical data indicate that two-thirds of urban vehicle miles travelled in 

the US are on signal-controlled roadways [1]. Ensuring the efficient operation of traffic 

signals can minimise vehicle delays, maximise vehicle throughput, and improve air qual-

ity to serve the ever-rising travel demand. To achieve these goals, understanding the tem-

porally varying patterns of demand and intersection vehicle throughput is essential. 

Most urban intersections show a predictable and smooth profile of traffic counts 

when measured at wider time-intervals (say, 5-min, 10-min, etc.). These count profiles 

typically consist of morning and evening peaks, mid-night off-peak, and afternoon inter-

peak, as shown in Figure 1. These typical profiles show a high prognostic structure, i.e., 

future values can be forecasted from past values without much effort. However, the pro-

files can sometimes be irregular, as shown in Figure 2, which could be due to abnormal 

weather conditions, intersection-specific geometry, random driver behaviour, accidents, 

or road works in the vicinity. Commuters might experience different delays and conges-

tion levels at the intersections than a typical day because of those conditions. 
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The regular occurrence of such abnormal days of traffic would result in commuters 

often deviating from their usual preferred (or perceived optimum) routes, and the histor-

ical information will be insufficient in picking their best route. This reduces the reliability 

of travel time, and only real-time information could provide significant benefits in such 

cases [2]. Since reliability is a crucial factor for the performance assessment of highway 

segments and systems, transport agencies should be able to find those irregular profiles 

in advance. This identification further enables them in devising efficient traffic manage-

ment strategies, and proper information could be passed to commuters. 

 

Figure 1. Typical intersection count profile (smooth changes). 

 

Figure 2. Atypical intersection count profile (severe fluctuations). 
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In this paper, we use the Hurst exponent method from the fractal theory to quantify 

fluctuations and evaluate the predictability of traffic count data at several signalised in-

tersections in the central business district (CBD) of Sydney, Australia. Nevertheless, 

merely evaluating the level of predictability of data does not offer intuitions on the un-

derlying factors. In this regard, we estimate a random-effects linear regression (RELR) 

model to evaluate the contributions of several factors to predictability. 

First, the paper gives an overview of studies on predictability in transportation. Then, 

it provides a brief understanding of the Hurst exponent method and the mathematical 

framework of the RELR model. It is followed by a description of the study area, the data 

collection effort, and basic descriptive statistics of the data. Then, there is a discussion of 

the model results. Finally, the paper ends with a summary of findings. 

2. Literature Review 

Predictability or forecastability is considered important in decision-making in many 

fields, including transport. In particular, the uncertainty (or ill-predictability) of time-var-

ying and short-term processes such as non-recurrent congestion poses severe problems 

for traffic authorities. Van Zuylen et al. [3] characterised the sources of ill-predictability in 

traffic phenomena into two categories: one due to uncertainty and incompleteness of data 

and models and the other due to the complexity of the processes itself [3]. 

There are numerous methodologies (for example, neural networks, Seasonal Auto-

regressive Integrated Moving Average {SARIMA}, Autoregressive Integrated Moving Av-

erage {ARIMA}, etc.) to forecast time series. However, the success of these methods relies 

on the structure of the particular phenomenon, whether it is easily predictable or not [4]. 

For instance, if the prediction obtained from a specific method is weak, but the time series 

contains an excellent predictive structure, one can practically conclude that the employed 

prediction technique is unsuitable to the task and that one should try a different technique 

[5]. Therefore, it is paramount to determine whether the structure of a time series is com-

plex or easily predictable before resorting to advanced prediction techniques [6]. Never-

theless, there are only a handful of studies in the literature that evaluate the predictability 

of traffic entities. 

Song et al. [7] used the entropy method to quantify predictability in human mobility 

patterns. They analysed mobile phone call data (frequency and sequence of location visits) 

of 50,000 individuals and found a 93% potential theoretical predictability in user mobility. 

Similarly, Lu et al. [8] evaluated mobile phone records of 1.9 million users in Haiti after 

an earthquake and quantified mobility patterns using the entropy method. They found 

that the upper-bound predictability is still high, at 85%. Later, Lu et al. [9] found similarly 

high predictability of 88% using data from mobile phone users in Ivory Coast of West 

Africa. Further, they used Markov chain (MC) models and found that the theoretical limit 

of predictability can be approached. All these studies proved that regardless of the loca-

tions travelled by users, there is high predictability in their mobility patterns. 

However, mobile phone data are typically of sparse spatiotemporal resolution. Ad-

dressing this issue, Lin et al. [10] used high-resolution GPS data and still found 90% pre-

dictability in mobility sequences at an hourly sampling rate. Li et al. [11] used taxi GPS 

data from Shanghai and Beijing in China and found, using the entropy method, that the 

theoretical predictability of the location of the taxis ranges from 78 to 99%. Similarly, 

Wang et al. [12] used GPS data from 12,000 taxis in Beijing and found that the predictabil-

ity of their movements is more than 80%. Moreover, they found that the daily traffic pat-

terns on weekdays are of very similar predictability, despite the differences in commuter 

demand, and are only slightly less predictable than the weekends. Recently, Xu et al. [13] 

also analysed taxi data from Shanghai and found very high predictability (> 90%) of daily 

“travel time” time series along an expressway section at a 5-min resolution. 

Lin et al. [14] used techniques including approximate entropy and the Hurst expo-

nent to quantify the predictability of traffic volume time series of different highways in 

China and the USA. Further, they applied three prediction techniques (SARIMA, Support 
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Vector Regression {SVR}, and k-nearest neighbours {k-NN}) and correlated their perfor-

mance with the results from the predictability quantification methods. They found that 

the SVR method was suitable for non-linear datasets and SARIMA and k-NN were suita-

ble for linear datasets. The predictability quantification methods helped them in selecting 

the parameters of the different prediction methods. Thus, they showed the benefits of 

evaluating the predictability of datasets before resorting to different prediction tech-

niques. 

The evaluation of predictability is essential for the design and improvement of pre-

diction algorithms. All the above studies found that predictability is very high, in the 

range of 80–95%, in human and vehicle mobility. However, most of the studies reviewed 

above used the entropy method to quantify predictability, without much attention given 

to the other methods. The current study uses the Hurst exponent metric from the fractal 

theory to evaluate the predictability of intersection traffic volumes. The advantage of the 

Hurst exponent is that it is a numerical representation of the randomness through the 

history of a dynamical process. In contrast, the entropy method is independent of the tem-

poral evolution of the dynamic process [15]. 

3. Methodology 

3.1. Hurst Exponent 

Fractal theory, introduced by Benoit Mandelbrot, is useful for studying irregularities 

in a time series [16]. Fractal theory deals with objects of non-integer dimension, called 

“Fractal Dimension” (FD), which depends on the complexity of the shape, i.e., a shape 

with a higher FD is more complicated or rougher than one with a lower dimension and 

fills more space [17]. There are various methods to estimate the FD of a time series, such 

as the box-counting method, Hurst exponent, and Higuchi method. However, a widely 

used practice for researchers is to calculate the Hurst exponent using rescaled range (or 

R/S) analysis [18–20]. The step-wise procedure of the standard R/S analysis is shown in 

[19–21]. 

The Hurst exponent was used by researchers to develop a predictability index (PI), 

which has the same range of 0 to 1 as the Hurst exponent. They are related, as shown in 

Equation (1) [22]. 

PI = 2|H − 0.5|) (1) 

For a time series, 

I. A value of H in the range [0.5–1] is indicative of long-term positive autocor-

relation in the time series. In such cases, a high value in the series will likely 

be followed by another high value, i.e., the future trend is more likely to fol-

low an established trend. For example, a very high H value (say H = 0.9) 

means a higher level of determinism, i.e., good predictability (PI = 0.8), 

II. H values close to 0.5 indicate an entirely uncorrelated series. It means that 

the values in the time series are random and potentially indicating Brownian 

motion. The PI, in this case, gets closer to 0 because it becomes challenging 

to “precisely” predict the stochastic variations. 

III. H value of 0 to 0.5 suggests the long-term fluctuation between high and low 

values in adjacent pairs of observations in the time series. A low H value (say 

H = 0.1) indicates a strong determinism. It is because a single high value will 

likely be succeeded by a low value or vice versa. Small magnitude H values 

in flow can be observed on downstream links at signalised intersections, 

mainly when the measurement interval is smaller than the cycle time of the 

signal. Due to strong determinism, the PI of the time series is high, even 

though H is low (PI = 0.8). Therefore, the PI for a time series is the same if the 

value of H is either 0.9 or 0.1. Furthermore, the PI increases when H ap-

proaches either 1 or 0 and decreases when it approaches 0.5. 
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There are many studies on the application of the Hurst exponent technique to evalu-

ate trends in financial markets [23–25]. Most economics and financial time series data are 

“trend- reinforcing” or persistent, with H higher than 0.5. This technique has been used 

extensively in medicine [26,27], ecology [28], seismology [29], climatology [30], and hy-

drology [31]. In the transport domain, there have been only a few applications of the frac-

tal theory and the Hurst exponent on real data. 

Despite having several applications in many scientific fields, applications of fractal 

analysis of time series data have been scarcely explored in the transportation domain. In 

the past, researchers have applied the fractal dimension and the Hurst exponent for inci-

dent detection, short-term flow prediction, and accident warning models. Lin et al. [14] 

used techniques such as approximate entropy and the Hurst exponent to assess the pre-

dictability of traffic volume time series of different highways. In another study, several 

metrics, including the Hurst exponent and the Lyapunov exponent, were utilised to quan-

tify the turbulence of traffic flow data of a freeway in the USA [32]. In a more recent study, 

it was demonstrated that high H values of speed could be used as a congestion indicator 

[21]. Moreover, the Hurst exponent has been used recently in a few studies to evaluate 

safety [33–35]. Some studies showed that for backpropagation neural networks and 

SARIMA models, time series with high H values can be predicted more accurately than 

those series with H close to 0.50 [14,19]. Further, it was observed that a smaller number of 

data points were required for training in SARIMA for a time series with high H than the 

ones with low H. 

3.2. Random-Effects Model 

Panel datasets are widely used to study the effect of spatiotemporal variations of the 

explanatory variables on dependent variables. In such datasets, the unobserved effects 

associated with a specific region will remain the same over time, thus resulting in the 

dependent variable being correlated over time. Similarly, there can be correlation over 

space because regions that are nearby may share unobserved effects. These correlations 

violate the assumptions of ordinary least squares (OLS) regression and misestimate the 

errors on the model coefficients. The random-effects (RE) and random parameters (RP) 

models are typically considered to account for these correlations [36–39]. In the case of the 

RE model, the common unobserved effects are assumed to be distributed across the spatial 

and temporal units according to some distribution, and shared unobserved effects are as-

sumed to be uncorrelated with explanatory variables [40]. Therefore, the intercept term is 

represented by a distribution in RE models. In the case of RP models, each estimable pa-

rameter (including the intercept) of the model can vary across observations in the dataset. 

In this regard, the RP model can be considered as a more flexible extension of the RE 

model. 

The RP models account for unobserved heterogeneity and offer a better fit than fixed-

parameters models, yet they are time-consuming and complicated to estimate, due to the 

simulation-based likelihood estimation. Furthermore, the analyst must select the random 

parameters and their appropriate distribution. The RP approach may not necessarily im-

prove the model, and for studies with several data points (13,468 in this study) and ex-

planatory variables, using an RP approach can be computationally intensive due to simu-

lation-based Halton sequences; subject to errors in specification because the modeller 

needs to select the variables with distributed parameters; and non-parsimonious because 

of the many parameters to be estimated [41–44]. Therefore, in the current study, we esti-

mate a random-effects linear regression model (RELR) to model the theoretical predicta-

bility of traffic counts. The RELR model has the following form: 

��� = � + �|��� + ��� + �� (2) 

where 

��� = the dependent variable, where i = entity and t = time; 

α = the intercept term; 
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��� = value of the independent variable for group i at time t; 

�| = coefficient of independent variables; 

��� = within entity error term, and 

�� = between entity error term. 

Furthermore, the RE model assumes that the error term of the entity is not correlated 

with the predictors so that the time-invariant variables can also be treated as independent 

variables in the regression model [45]. 

Cov(��, ���) = � ��� ��� �, (3) 

Exp[��|���] = 0,  (4) 

Var[��|���] = σu2, and  (5) 

Cov[�����|���] = 0. (6) 

The random-effects model is a generalised regression model. It is homoscedastic, as 

all disturbances have variance, which is: 

 ���[���+��] = �� = ��
�+��

� (7) 

However, for given i, the disturbances in different periods are correlated because of 

their common part, ui, which is: 

 ����[���+��, ���+��] =
��

�

��
 (8) 

Although there is an ML-based estimation method for the RELR model, the estimates 

based on generalised least squares (GLS) are efficient [45]. This study uses the GLS esti-

mator. 

4. Study Area and Data Collection 

4.1. Study Area 

The CBD area of Sydney, Australia is the focus area for this study. Sydney is the 

largest city in Australia and the eighth largest in the southern hemisphere, with an esti-

mated population of 5 million. The city is famous for its sporting events, New Year fire-

works, three-week lighting festival in May and June, and several other special events that 

run throughout the year. Further, the busy, modern, and vibrant lifestyle attracts millions 

of tourists from across the world. The CBD of Sydney employs 13% of the Sydney region’s 

workforce and generates a quarter of the Sydney economy [46]. Public transport is the 

primary mode for commuters during weekdays. Traffic congestion is a major problem in 

the city, being ranked 1st among the cities in Australia and Oceania [47]. The morning and 

evening peak hours are especially notorious for congestion, increasing travel times by 

around 67% compared to the free-flow conditions. 

4.2. Data 

The data for this study were obtained from Sydney Coordinated Adaptive Traffic 

System (SCATS) intersection counts in the Sydney CBD. SCATS is a fully adaptive urban 

traffic control system that optimises traffic flow at intersections. It gathers traffic count 

data in real time at each intersection and then makes incremental adjustments to traffic 

signal timings based on the variations of traffic counts at the intersections [48]. Therefore, 

SCATS is an ‘‘on-line’’ algorithm, in which the designed control strategy ‘‘matches’’ the 

current traffic conditions to the ‘‘best’’ pre-calculated off-line timing plan [49]. Its self-

calibrating software minimises manual intervention, which can result in substantial oper-

ational cost savings. Loop detectors are located on all the lanes at the stop line, which 

record the counts of vehicles for every pre-specified time interval. 

We collected traffic count data at a 5-min resolution at around 180 signalised inter-

sections in and around the Sydney CBD, from 15th October 2014 to 13th October 2015, 
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translating to 364 days of observations. However, after careful examination for missing 

and erroneous data, we selected 37 intersections for the analysis. Figure 3 shows the layout 

of these 37 intersections along with their average annual daily traffic (AADT). Although 

the SCATS interface outputs count data at each detector, we considered the aggregated 

data for the analysis. The geometric features of the intersections vary with respect to the 

number of approaches, number of bus stops in the vicinity, number of lanes, and number 

of parking lanes. We estimated the Hurst exponent and the predictability index (using 

Equation (1)) for every day at each intersection. In total, there are 13,468 (37 signals × 364 

days) observations of H and PI. 

 

Figure 3. Layout of the analysed intersections in the Sydney Central Business District. 

Figure 4 shows the Probability Density Function (PDF) and kernel density plots of 

PI. A highly sizeable portion of the PI observations are close to 1, indicating a highly pre-

dictable trend at most intersections on most days. However, a non-trivial proportion of 

observations exist with slightly lower predictability (PI < 0.8). Furthermore, the kernel 

density estimation shows three modes of the PI. This paper investigates the influence of 

various factors behind such low/high predictability. 
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Figure 4. Probability density function and kernel density plots of predictability index (PI). 

5. Data Analysis 

5.1. Preliminary Analysis 

It is surmised that the day of the week will have a profound impact on predictability. 

Figure 5 shows the variation in the average PI of all the intersections with the day of the 

week. The weekends (Saturdays and Sundays) tend to have higher predictability, com-

pared to the regular weekdays. Moreover, the variation of PI is low on weekends. It is also 

seen that the predictability is low on Mondays and gradually increases as the week goes 

on. 



Entropy 2021, 23, 188 9 of 15 
 

 

 

Figure 5. Variation in average PI (of all intersections) with the day of the week. 

We performed a one-way ANOVA test for the average PI of the day of the week. This 

test showed that the differences are statistically significant (F (6, 13461) = 1246.53, p-value 

< 0.001). Further, Tukey’s posthoc Honest Significant Difference (HSD) test showed that 

the mean PI of each day of the week is statically different to every other day, implying a 

strong influence of the day of the week on intersection count predictability. However, 

there are several special event days (There were several special events during the data 

collection period that could have significantly affected the traffic movement in the CBD. 

Cricket matches (World Cup and Big Bash League), football league games, New Year 

Eve’s fireworks, marathon runs, Vivid lights festival, and Mardi Gras parade are some of 

these events. As may be seen in Table 1, there were 33 of them during the study period. 

Because of the varying nature of individual events, it is difficult to classify which event is 

special. In this study, all the events that had attendance of at least 10,000 people were 

considered “special events”.), public holidays, days with heavy rain, during the analysis 

period, which should be accounted for while modelling predictability. Additionally, the 

role of intersection geometry and the presence of bus stops and parking cannot be ignored. 

The following section presents the results of the RELR model, which considers the above-

specified factors. 

5.2. Model Results 

Table 1 shows the descriptive statistics of all the potential variables considered in the 

model estimation. We arranged the dataset in a panel data format, consisting of daily es-

timated theoretical predictability indices of traffic counts at 37 signalised intersections. 

Thus, the dataset is a strongly balanced panel with 13,468 observations, including 37 pan-

els (all of them have the same number of observations, i.e., 364). We collated data of the 

weather, public holidays, special events, and other relevant variables from various 

sources for the model estimation. Then, we classified the variables into two types, namely 

space-varying and time-varying, that vary across the intersections and days, respectively. 
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Table 1. Descriptive statistics of all the considered variables. 

Type of Day Count 
Type of 

Variable 

% of Observa-

tions (Categori-

cal Variables)  

For Continuous Variables 

Mean Std. Dev. Max Min 

Day of week   

Monday 52 TV 14.29     

Tuesday 52 TV 14.29     

Wednesday 52 TV 14.29     

Thursday 52 TV 14.29     

Friday 52 TV 14.29     

Saturday 52 TV 14.29     

Sunday 52 TV 14.29     

Type of day   

Public holiday 11 TV 3.02     

Special event day 33 TV 9.07     

Season        

Spring 90 TV 24.73     

Autumn 92 TV 25.27     

Winter 92 TV 25.27     

Summer 90 TV 24.73     

Rainfall (mm) 364 TV  3.65 10.27 116.02 0 

Temperature (°C) 364 TV  19.03 4.44 29.2 9.6 

Average Annual 

Daily Traffic 

(AADT) 

37 SV  36,360 15,772 64,189 7237 

Lanes 37 SV  9.54 3.33 16 3 

≤8 lanes 7 SV 18.92     

8–12 lanes 23 SV 62.16     

>12 lanes 7 SV 18.92     

Approaches 37 SV  3.43 0.59 4 1 

1, 2 2 SV 5.41     

3 17 SV 45.95     

4 18 SV 48.64     

Parking lanes 37 SV  1.35 1.07 4 0 

No parking 10 SV 27.03     

 1–2 lanes 22 SV 59.46     

3–4 lanes 5 SV 13.51     

Bus stops 37 SV  1.27 1.22 5 0 

No bus stop 12 SV 32.43     

1–2 bus stops 20 SV 54.05     

3,4, and 5 bus 

stops 
5 SV 13.51     

Crashes 37 SV  18.16 14.70 72 1 

TV—time-varying. SV—space-varying. 

In determining the best model specification for the sample, we estimated several 

RELR models by changing the variables. The variables that were significant at p = 0.10 

were considered. After each model specification, we performed multicollinearity diagnos-

tics by estimating the variance-covariance matrix and correlation matrix of the estimated 

coefficients. Table 2 shows the best model in terms of goodness-of-fit out of all the RELR 

model specifications explored. The table shows the coefficients of the variables, along with 

robust standard errors and z and p values. 

Furthermore, we conducted the Breusch–Pagan Lagrange multiplier test (Breusch 

and Pagan 1980). Based on the test, we rejected the null hypothesis that variance across 

entities is zero, indicating that there are significant differences across panels units. In other 
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words, a random-effects model is better than a simple pooled OLS regression. The final 

model presented in Table 2 has only the significant variables. The model has an R-square 

value of 0.61. 

There are two categorical variables in the model, namely the day of the week and the 

parking indicator, which have “Monday” and “No parking” as base categories, respec-

tively. The coefficients of other categories are estimated with respect to these categories. 

The model has a significant constant of 0.755, suggesting that the mean PI on Mondays at 

intersections with parking restrictions is 0.755 when all the other variables are considered 

zero. 

Table 2. Results of the Random Effects Linear Regression (RELR) model. 

Variable Coefficient Robust Std. Error Z p >|z| 

Day of the week     

Monday Base    

Tuesday 0.0135 0.0027 4.98 <0.01 

Wednesday 0.0276 0.0037 7.41 <0.01 

Thursday 0.0367 0.0046 7.90 <0.01 

Friday 0.0642 0.0064 10.02 <0.01 

Saturday 0.1336 0.0086 15.52 <0.01 

Sunday 0.1035 0.0063 16.55 <0.01 

Type of day     

Special event day 0.0119 0.0018 6.47 <0.01 

Public holiday 0.0705 0.0057 12.42 <0.01 

Weather     

Rainfall (in 10 mm) −0.0049 0.0007 −6.43 <0.01 

Temperature (in 10 °C) 0.0093 0.0021 4.49 <0.01 

Parking     

No parking Base    

1–2 lanes Insignificant    

3–4 lanes 0.0680 0.0209 3.25 <0.01 

Constant 0.7675 0.0128 60.03  

Sigma_u 0.0404    

Sigma_e 0.0422    

Rho 0.4781    

6. Discussion 

The day of the week has a strong influence on the PI. The predictability of all other 

days is significantly higher than that of Mondays. Notably, the weekends are highly pre-

dictable, with mean predictability increasing by 10–14%, while the other variables are held 

constant. Moreover, congestion likely occurs on the weekdays, and so, it becomes easy to 

reroute on urban roads rather than, say, motorways, resulting in more fluctuations and, 

therefore, low predictability on weekdays. 

Earlier studies also found that the type of day can have an enormous impact on the 

highway traffic pattern. For example, Rakha and Van Aerde [2] found that traffic flows 

on core weekdays will be different from Mondays, Fridays, Saturdays, and Sundays. Sim-

ilarly, Weijermars and Berkum [50] classified working days into (1) Mondays, (2) core 

weekdays, (3) Fridays, and (4) days within the vacation period. In these studies, the core 

weekdays were found to have similar traffic flow patterns. Even in the current study, the 

predictability varies within the range of 4% from Monday to Thursdays but is significantly 

higher on other days of the week. 

Days with special events are found to have better predictability. One can theorise that 

the throughput profile rises fairly linearly before the start of the event and then drops 

similarly after the event, resulting in high PI. 
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Public holidays increase the PI of traffic counts by 0.07 when all other variables are 

held constant. The traffic profile on public holidays tends to be similar to that of Sundays 

[51], which could be a reason for the similar predictability levels. 

Rainfall is found to have a negative impact on the PI. While a light shower may not 

significantly reduce the predictability index, rainfall of more than 20 mm per day could 

reduce it by 0.01 when other factors are held constant. Travel behaviour could signifi-

cantly change when there is significant rainfall. Heavy rains could persuade the otherwise 

public transit commuters to travel by car or even cancel their trips and work from home. 

Past research suggested the importance of accounting for rainfall in short-term traffic pre-

dictions [52] as rainfall was found to reduce travel demand and average speeds, particu-

larly on weekends [53]. Recreational trips were found to have more sensitivity to weather 

changes [54]. Therefore, even the theoretical predictability index of traffic count reduces 

due to heavy rainfall. 

The temperature has a small yet positive and significant effect on the PI. A 10 °C 

increase in temperature could increase PI by 0.01, given that all other variables are held 

constant. 

Table 2 shows that the intersection geometry also has some role in predictability. The 

intersections with at least three parking lanes (i.e., on at least three approaches) are found 

to have higher PI than the ones with either no parking or up to two lanes. On-street park-

ing is limited in the CBD, and therefore, the intersections near the roads with more park-

ing spaces receive a continuous stream of vehicles throughout the day. Therefore, such 

intersections tend to have less fluctuations and thus higher PI of traffic counts. 

7. Conclusions 

Traffic counts at intersections are consistent and repetitive, on the one hand, and yet 

can be variable and less predictable on the other hand, in which, at any given time, unu-

sual circumstances such as crashes and adverse weather, erratic driver behaviour, etc., can 

dramatically change the conditions of road traffic. These anomalies can create congestion 

and uncertainty in the transport networks and, therefore, from an operational standpoint, 

it is crucial to detect as early as possible potential irregular traffic patterns. 

We used the Hurst exponent method to quantify fluctuations in traffic count data at 

several intersections in the Sydney CBD. PI is typically upwards of 0.80 (i.e., 80%) for most 

of the days at most signals. This finding is in line with the earlier studies that found that 

human mobility is highly predictable, with the upper range of 80 to 95%. 

Although techniques such as entropy, fractal dimension, and Hurst exponent are use-

ful in quantifying the predictability of time series, they do not offer intuitions on what 

makes a time series hard to predict. Understanding the various aspects leading to 

high/low complexity in the dataset is critical for better prediction results and the choice of 

prediction methods. In this regard, we estimated a random-effects linear regression model 

to identify the variables that significantly influence the predictability of traffic counts. The 

statistical analysis revealed that the count predictability is strongly associated with the 

day of the week, with lowest on Mondays and highest on Saturdays. Public holidays and 

special event days are found to have a positive impact on the PI. Rainfall has an adverse 

effect, but the temperature has a small yet significant positive effect. Finally, the intersec-

tions with parking on more than two approaches are more predictable than the ones with 

no parking or parking on up to two approaches. 

The predictability index calculated in this study is only a theoretical one and inde-

pendent of the prediction method, which can be slightly higher or lower. However, it can 

aid in the development of prediction methods in choosing the right parameters. It is inap-

propriate to claim superiority of a prediction technique over other techniques without 

evaluating the complexity of the time series data. The proposed technique would be gen-

uinely superior if the PI of the time series data is low, but still, the predictions are correct. 

On the other hand, good predictions for a dataset with already high PI by “sophisticated” 

methods may not be of much help. 
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Predictability of traffic counts could be evaluated to identify the intersections that are 

more reliable than others. Thus, predictability could be used as one of the performance 

measures of intersections such as vehicle throughput, delays, queues, and fuel emissions. 

Intersection count predictability could be affected by the geographical location of the 

intersection. For example, intersections in a suburb may have an intermittent throughput 

of vehicles than, say, CBD, where a continuous stream of vehicles exists. The driving hab-

its of the populace, the number of parking manoeuvres, the percentage of heavy vehicles, 

pedestrian movement, and side friction could influence the predictability. These aspects 

should be considered in future studies. Furthermore, there could be spatial autocorrela-

tion present in the dataset because of the close proximity of the intersections. Statistical 

techniques accounting for unobserved heterogeneity, such as a random parameter model 

or latent class model, could be used in the future. 
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