

Article

Version January 11, 2021 submitted to Entropy

1 The discriminatory variants associated with disease phenotypes might be local features existing in

² small loci, such as SNPs in the extreme case or they might be clusters of variants observed in genomic

³ fragments pervasively (e.g. large structural variants, islands of mutations, sections of differential

⁴ relative abundance, etc.). Throughout the supervariant fragment assembly phase, the self-information

- ⁵ scoring scheme can intrinsically prefer and emphasize these two different categories, according to the
- ⁶ scoring definition.

We have defined two such scoring metrics:

i) Average Self-information (L_2): This metric measures the information content of a genome fragment as the average self-information of the k-mers contained in the fragment. For an achievable path t_j in the de Bruijn graph, the information content of the path is defined as

$$I(t_j) = \frac{1}{|t_j|} \sum_{k=1}^{|t_j|} i(o_{l_j}) = \frac{1}{|t_j|} \sum_{k=1}^{|t_j|} \log(p_{o_{l_j}}(H_0)).$$
(1)

⁷ The Average Self-information (L_2) is expected to emphasize clusters of variants with an accumulating

8 score.

q

ii) Maximum Self-İnformation (L_{∞}): This measure defines the information of a fragments with the most discriminatory k-mer harboured in it as follows:

$$I(t_j) = \arg\max_{l_j} i(o_{l_j}) = \arg\max_{l_j} \log(p_{o_{l_j}}(H_0)).$$
(2)

It is expected that L_{∞} measure picks the genomic fragments with significant k-mers, emphasizing local features.

Table 1 provides the top discriminatory supervariant fragments assembled by the maximum-self

¹⁵ information scheme. We have compared the disease discrimination performance of these two metrics,

and observed that scoring based on average self-information significantly outperforms the (L_{∞}) scoring

17 (Table 2). According to our experiments, strongly discriminatory local variants were not as powerful as

regions of variable fragments associated with the diseases. Therefore, we adopted the former scoring

19 scheme in our method.

	CRC						
Contig #	Function	Taxonomy	ROC auc				
contig_108	nucleoside phosphorylase	Lachnospiraceae	0.783∓0.012				
contig_79	PLP-dependent aminotransferase family protein	Lachnospiraceae	0.731∓0.009				
contig_289	- (KEGG: K06921)	Ruminococcaceae	0.742 ∓ 0.007				
contig_238	-	-	$0.79{\mp}0.014$				
contig_41	- (detected EC number: 2.7.7.27, KEGG module: M00565)	unclassified Lachnospiraceae	0.734∓0.009				
contig_212	family 16 glycosylhydrolase	Clostridiales	$0.711 {\mp} 0.004$				
contig_306	response regulator transcription factor	Erysipelotrichaceae	$0.77 {\mp} 0.008$				
contig_292	- (detected EC number: 2.4.1.21,2.7.7.27)	_	0.706 ∓ 0.015				
contig_23	HAD hydrolase-like protein	Lachnospiraceae	0.722∓0.029				
contig_335	hypothetical protein	Faecalibacterium	$0.69{\mp}0.01$				
ACVD							
contig_120	-	Clostridia	0.817∓0.009				
contig_182	holo-ACP synthase	Clostridiales	0.822 ∓ 0.011				
contig_78	-	-	0.793∓0.004				
contig_116	phosphoenolpyruvate-protein phosphotransferase	Blautia spp.	$0.805 {\mp} 0.006$				
contig_14	-	-	$0.8{\mp}0.018$				
contig_128	16S rRNA (uracil(1498)-N(3))-methyltransferase	Blautia	$0.791 {\mp} 0.008$				
contig_162	hypothetical protein	Eubacterium	$0.817{\mp}0.07$				
contig_54	glycoside hydrolase family 32 protein	Coprobacillus	0.802 ∓ 0.006				
contig_31	-	-	$0.78 {\mp} 0.011$				
contig_67	cellulase family glycosylhydrolase	Eubacterium ventriosum	0.776 ∓ 0.002				

Table 1. Top-10 supervariant fragments assembled using L_{∞} scoring were selected according to their disease classification performances were selected and annotated. The functional and taxonomic assignments are provided.

Table 2. Partial and full set of supervariant contigs are used as combinatorial biomarkers and the overall disease classification performances were compared with differential relative abundance features detected over iGC database for CRC and ACVD datasets.

		Average Self-information (L ₂)		$ $ Maximum Self-İnformation (L_{∞})	
		SF (Full)	SF (Top-10)	SF (Full)	SF (Top-10)
CRC	Accuracy ROC auc	0.895 ± 0.014 0.911 ± 0.009	0.811 ± 0.03 0.82 ± 0.027	$ \begin{vmatrix} 0.765 \mp 0.009 \\ 0.792 \mp 0.009 \end{vmatrix} $	0.684∓0.013 0.701∓0.017
ACVD	Accuracy ROC auc	0.875 ± 0.008 0.9 ± 0.006	0.79 ± 0.004 0.795 ± 0.024	$ \begin{vmatrix} 0.81 \mp 0.01 \\ 0.827 \mp 0.008 \end{vmatrix} $	$0.684{\mp}0.1$ $0.724{\mp}0.09$

20 © 2021 by the authors. Submitted to *Entropy* for possible open access publication under the terms and conditions

of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).