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Abstract: Quantitative metagenomics is an important field that has delivered successful microbiome
biomarkers associated with host phenotypes. The current convention mainly depends on unsuper-
vised assembly of metagenomic contigs with a possibility of leaving interesting genetic material
unassembled. Additionally, biomarkers are commonly defined on the differential relative abundance
of compositional or functional units. Accumulating evidence supports that microbial genetic varia-
tions are as important as the differential abundance content, implying the need for novel methods
accounting for the genetic variations in metagenomics studies. We propose an information theoretic
metagenome assembly algorithm, discovering genomic fragments with maximal self-information,
defined by the empirical distributions of nucleotides across the phenotypes and quantified with the
help of statistical tests. Our algorithm infers fragments populating the most informative genetic
variants in a single contig, named supervariant fragments. Experiments on simulated metagenomes,
as well as on a colorectal cancer and an atherosclerotic cardiovascular disease dataset consistently
discovered sequences strongly associated with the disease phenotypes. Moreover, the discriminatory
power of these putative biomarkers was mainly attributed to the genetic variations rather than rela-
tive abundance. Our results support that a focus on metagenomics methods considering microbiome
population genetics might be useful in discovering disease biomarkers with a great potential of
translating to molecular diagnostics and biotherapeutics applications.

Keywords: microbiome; metagenomics; genome assembly; biomarker discovery

1. Introduction

Microbiome science has transformed the landscape of medicine by introducing novel
associations of commensal microorganisms with human health. Hosting trillions of mi-
crobes in a broad range of biodiversity, the human body maintains a delicate homeostasis
with its microbiota community. Certain shifts in this ecosystem have been associated
with health disorders in either causal or consequential manner. The introduction of omics
sciences accelerated these discoveries by providing a vast amount of genetic data. One such
science field is metagenomics [1], which enables culture-free investigation of environmental
samples using next-generation sequencing technologies. Data driven approaches, mastered
by bioinformatics algorithms, are adopted to test disease association hypotheses and to
discover novel biomarkers. Several disorders, not limited to but including inflammatory
bowel disease [2], atherosclerotic cardiovascular disease [3], type 2 diabetes [4], colorectal
cancer [5], obesity [6], rheumatoid arthritis [7], liver cirrhosis [8], nonalcoholic fatty liver
disease [9], asthma [10], Parkinson’s disease [11], Alzheimer’s disease [12], autism [13],
schizophrenia [14] have been associated with gut microbiome in the last decade. More-
over, it was recently shown that tumor and circulating blood microbiomes can distinguish
33 types of cancers as well as different stages of cancer types [15]. Translational metage-
nomics is expected to promise molecular diagnostics and biotherapeutics solutions to a
wide spectrum of chronic diseases [16,17].
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Although metagenomics is an active area of research and a great number of bioinfor-
matics tools to explore compositional and functional properties of microbiomes exists, it
remains difficult to disentangle the sheer amount of complex metagenomics data. A con-
ventional framework for metagenomics studies involves assembling the genomic content
or employing comparative metagenomics over the reference material assembled previously.
Metagenome assembly is a challenging problem due to the uneven coverage and mosaic
structure caused by the coexistence of close organisms [18]. While great portions of genetic
material might fail to assemble into contigs, the generated sequences might also contain
a significant fraction of chimeric fragments [19]. Consequently, even though an ample
volume of metagenomics data has been sequenced to date, a good amount of these is left
as “microbial dark matter” [20,21]. Novel approaches of metagenomic contig generation
not following the lead of this convention are potentially important for biomarker discovery
tasks.

Quantitative metagenomics, also known as comparative metagenomics, more im-
portantly relies on the abundance structure of compositional and functional elements
discovered. That is, binning sequencing reads in taxonomic groups or in genes/metabolic
pathways, subsequently using the representation ratio of each unit as a sole feature is the
quantification method followed. It is undeniable that this technique has been extremely
useful. In fact, almost all microbiome associations reported in the literature are based
on relative abundance quantification. However, it is obvious that the relative abundance
quantification of a representative unit does not take care of the information contained in
different alleles and genetic variants. Accumulating evidence shows that microbial genetic
variants might be significantly associated with host phenotypes and they should not be
overlooked. Zeevi et al. studied the large structural variants in two geographically distant
cohorts. They showed consistent correlations between multiple traits of host health and
the existence of the structural variants [22]. Chen et al. discovered characteristic single
nucleotide polymorphisms of Bacteroides coprocola in type 2 diabetes patients [23]. Genetic
variants in microbiota were also associated with various phenotypical aspects of the host
such as modulation of immune responses [24], bioconversion of compounds associated
with atherosclerosis pathogenesis [25], drug metabolism [26], and dietary habits [27].

Lack of computational methods focusing on variant loci of metagenomes drive re-
searchers to conduct investigations in a projected space of references generated by generic
analysis tools. Wang et al. addressed this problem by proposing subtractive assembly meth-
ods. In this approach, only the reads containing k-mers varying between host phenotypes
are used for metagenome assembly [28,29]. They showed that subtractive assembly scheme
results in novel host phenotype associated contigs and genes undiscovered by the conven-
tional metagenome assembly methods. Subtractive assembly provides relevant contigs
ignored by conventional assemblers. The adopted assembly algorithm is canonical which
prefers consensus sequences over interesting variants. Additionally, they preferred relative
abundance-based quantification for disease classification. This inherently suppresses the
information that could be exploited from differential genetic variants.

We propose an information theoretic methodology for discovering metagenomic
biomarkers associated with a given host phenotype, taking genetic variations carefully
into consideration. Our approach scores each building unit (i.e., k-mers) of metagenome
assembly by their self-information content associated with the target phenotype. The
self-information content is calculated using the probability of each site inferred from sta-
tistical tests of phenotype differentiation. These scores supervise the assembly process
to infer maximally informed (i.e., maximum average self-information across the pheno-
type, implying a certain differentiation power) metagenomic fragments. The resulting
sequences are expected to artificially contain the available discriminative variants, that
we coin as supervariant fragments. We tested our methodology on a set of simulated
metagenomes and on two different disease-healthy control cohorts of colorectal cancer
(CRC) and atherosclerotic cardiovascular disease (ACVD) and showed that it effectively
discovers novel disease biomarkers.
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2. Results

We evaluate the disease classification ability of supervariant metagenomic fragments
on a set of simulated and two real-life microbiome studies. Simulated datasets were
artificially populated from the genomes of 5 known species with varying compositions.
A gut microbiome cohort of CRC patients [30] with 74 patient samples and 53 healthy
control samples was considered as the first study case (ENA project number: PRJEB24748).
The patients were gathered from all stages of cancer according to using the tumor, node,
metastasis staging system. Secondly an ACVD cohort [3] with 218 patients (defined as
≥50% stenosis in one or more vessels) and 187 healthy controls was included in the analyses
(ENA project number: PRJEB21528).

2.1. Simulated Datasets

In order to observe the genetic variant exploitation capability of the proposed method,
we created two-class datasets to be discriminated against. For each dataset, a pair of param-
eters decided the difference of the classes: compositional unbalance and strain-level unbalance.
Two known strains represented each of the five species in the simulated metagenomes.
Compositional unbalance represents the prior distribution odd ratio of the species in both
classes (e.g., if the value is 0.5, the species are distributed identically in both classes and
if this ratio is closer to 1, each class is likely to be composed of from different species.).
Strain-level unbalance is similar to compositional unbalance but it is the odd ratio of strain
priors within a species (e.g., if the value is 0.5, both strains of a species are equally likely to
be observed in the samples of both classes and if this ratio is closer to 1, completely different
strains of a species are likely to be observed in different classes.). Ferroplasma acidiphilum
strain Y (RefSeq accession no: GCF_002078355.1) and strain DSM 28986 (RefSeq acces-
sion no: GCF_013133875.1), Lactobacillus gasseri strain ATCC 33323 (RefSeq accession no:
GCF_000014425.1) and strain 4M13 (RefSeq accession no: GCF_002158885.1), Pediococcus
pentosaceus strain ATCC 25745 (RefSeq accession no: GCF_000014505.1) and strain SL001
(RefSeq accession no: GCF_007923185.1), Prochlorococcus marinus strain NATL1A (RefSeq ac-
cession no: GCF_000015685.1) and strain MIT9313 (RefSeq accession no: GCF_000011485.1),
Streptococcus thermophilus strain LMD-9 (RefSeq accession no: GCF_000014485.1) and strain
ATCC 19258 (RefSeq accession no: GCF_010120595.1) were used for the simulated datasets.
MetaSim (version 0.9.1) [31] was used to simulate reads from the genomes and to generate
the metagenomes. For each class, 50 metagenome samples with 5 million simulated reads
were generated.

For the simulation experiments, metagenomes with compositional unbalance values
(r) 0.5, 0.6, and 0.8 were generated. In order to introduce varying genetic diversity at
different compositional levels, each setting was also sampled at varying strain-level unbal-
ance parameters ranging between 0.5 and 1. The discovery of supervariant fragments and
the classification of the samples were conducted as described in the methods. In parallel,
each metagenome was assembled and the ORFs are detected using MEGAHIT assembler
and Prodigal gene finder [32]. After evaluating the gene relative abundance values using
BWA mapper, sample classification with XGBoost classifier was performed as described in
Section 4.6. The performance of each simulated metagenome set in terms of receiver oper-
ating characteristics (ROC) area under curve (auc) values is shown in Figure 1. According
to this setting, the variation information exploited by supervariant contigs provides an
incremental discriminative power as the genetic variance between different metagenome
classes are more differential (i.e., with an increasing regime of strain-level). This trend can
be clearly observed when the compositional differences are low (r = 0.6) or lacking (r = 0.5).
The supervariant fragments did not bring any additional discriminative power when the
metagenome classes were already distinct enough regarding composition (r = 0.8). This is
an implication that the SFs are especially valuable when the genetic variants, that are not
able to be detected by the conventional metagenomic analysis approaches, are the main
driver of the microbiome differences. Yet, if phylogenetically distant compositional differ-
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ences are dominant factor of microbiome differences, SF might not bring any additional
power to the analysis.
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Figure 1. Disease classification performance on simulated datasets with varying compositional unbalance (r). For each r
value of 0.5, 0.6, and 0.8, metagenome sets with strain-level unbalance differing between 0.5 and 1 was generated.

2.2. Comparison of Supervariant Contigs with Metagenome Assembly

After splitting each dataset with 80%–training-20% test partitioning, both training
datasets were subject to supervariant metagenomic fragment assembly on scored de Bruijn
graphs constructed from filtered k-mers of length 50. The colorectal cancer dataset con-
sisted of 2,347,986,480 distinct k-mers, where the number of total distinct k-mers was
1,958,756,163 for the cardiovascular disease dataset. After quality filtering and removing the
low abundance and low prevalence k-mers, the number of k-mers reduced to 355,145,775
for colorectal cancer and to 305,587,338 for cardiovascular disease metagenomes. Since
our objective is to discover strong and compact biomarkers of the related phenotypes, we
concentrated on the highest scoring supervariant contigs and included the top 10% score
range percentile in the analyses.

An investigation of how the current methods are capable of discovering the supervari-
ant regions requires searching for the detected markers in the assembled metagenomes.
We used different assembly approaches to observe this in a spectrum. Two of them were
popular metagenome assembly tools MEGAHIT [33] and IDBA-UD [34]. Concurrent Sub-
tractive Assembly (CoSA) [29] and Subtractive Assembly (SA) [28] are supervised assembly
tools that filter the reads significantly varying between the phenotypes. All assemblies
were performed with the same k-mer length of 50. Default values were used for the other
parameters of each assembler. We attempted to align the supervariant contigs against the
metagenome assemblies using Blastn tool. A minimum alignment coverage of 75% and
minimum Blastn similarity score of 90% were considered as the detection criteria. Table 1
shows the ratios of detected supervariant regions out of 336 CRC and 221 ACVD contigs.
Conventional metagenome assembly appears to leave more than half of the discovered
supervariant regions unassembled or constructed them without interesting variants. Sub-
tractive assembly approaches were observed to assemble most of the supervariant regions.
This could be attributed to their supervised approach that reduces the read sets to the
subset containing k-mers significantly varying between the phenotypes. However, they are
yet not able to discover the entire set of supervariant contigs.
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Table 1. The supervariant fragments (SF) discovered by the proposed method are searched within the
contigs assembled by CoSA, SA, MEGAHIT, and IDBA-UD assemblers. The ratio of SFs discovered
by each assembly for colorectal cancer (CRC) and atherosclerotic cardiovascular disease (ACVD) are
provided.

SF CoSA SA MEGAHIT IDBA-UD

CRC 336 87.5%
(294/336)

63.3%
(213/336)

48.2%
(162/336)

34.8%
(117/336)

ACVD 211 80.5%
(170/211)

72.5%
(153/211)

34.6%
(73/211)

38.4%
(81/211)

2.3. Evaluation of the Biomarkers for Disease Classification

Since the discovered supervariant contigs are fragments of clustered genetic variants
or differential abundance regions, they are expected to be associated biomarkers of disease.
Validating this hypothesis requires building predictive models on the biomarker candidates
and testing the classification performances. A microbiome sample was represented by the
k-mer abundance profile along a supervariant fragment. The resulting coverage vector
is expected to constitute the features of differential variance, thus classify the samples.
The representative vectors in the test set were used to train a machine learning model
following 5-fold cross validation on this set. A stochastic gradient boosting classification
model (XGBoost, version 0.90 [35]) was used in dropouts meet multiple additive regression
trees (DART) booster with binary logistic regressor. Each supervariant contig was tested
on the validation set of disease cohorts using a separately trained model.

Figure 2 represents the validation performance of disease classification for each su-
pervariant contig in accuracy-descending order. It was observed that the most accurate
19 biomarkers were all achieving an average accuracy over 0.85 with the top accuracy being
0.875 for CRC validation set. The area under ROC curve scores were attaining all over an
average of 0.84 auc, with the top one being 0.883 for the same disease set. The top-15 most
accurate biomarkers for ACVD had all average 0.85 accuracy, also attaining an average
over 0.833 auc with the maximum one reaching 0.896.
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Figure 2. Disease classification performance on the test datasets for CRC and ACVD cohorts are given. Each SF is evaluated
independently with a separate model. Disease classification performances in terms of accuracy and ROC auc are presented
in descending order of test classification accuracies. (a) Classification performance for CRC cohort; (b) Classification
performance for ACVD cohort.

The most discriminative 10 biomarker hits and the associated taxonomic assignments
for both datasets are shown in Table 2. While these supervariant fragments perform close
to each other, their functional assignments imply essential roles in certain bacterial groups.
CRC fragments are observed to be mainly coming from Clostridia class, Lachnospiraceae and
Erysipelotrichaceae families. ACVD fragments were found to be of a more diverse origin
of taxa, yet with assignments to major functions. Some significant fragments were not
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e assigned either to taxa or protein functions. These misassignments might be because
of being located in intergenic loci or they might be divergent sequences that cannot be
detected by eggNOG mapper of BlastX.

Table 2. The top-10 supervariant fragments according to their disease classification performances
were selected and annotated. The functional and taxonomic assignments are provided.

CRC

Contig # Function Taxonomy ROC auc

contig_328 L-rhamnose mutarotase Bacteroidia bacterium 0.867 ± 0.004
contig_227 AAA family ATPase Lachnospiraceae 0.841 ± 0.005
contig_297 hypothetical protein Fusobacterium 0.841 ± 0.006

contig_222 spore germination
protein Lachnospiraceae 0.883 ± 0.005

contig_189 - - 0.867 ± 0.005

contig_164 nucleoside
phosphorylase Lachnospiraceae 0.867 ± 0.017

contig_68 phosphoglycerate
dehydrogenase Coprobacillus spp. 0.883 ± 0.013

contig_108 nucleoside
phosphorylase Lachnospiraceae 0.841 ± 0.013

contig_9 - - 0.875 ± 0.01

contig_337 DNA-binding protein
WhiA Clostridiales 0.841 ± 0.008

ACVD

Contig # Function Taxonomy ROC auc

contig_83
COG NOG13196 non

supervised orthologous
group

Dorea 0.861 ± 0.007

contig_111 Leucine rich repeats (6
copies) Eubacteriaceae 0.896 ± 0.006

contig_38 Cysteine-rich secretory
protein family Clostridia 0.861 ± 0.003

contig_51 D-alanyl-D-alanine
carboxypeptidase Blautia spp. 0.833 ± 0.003

contig_16 - - 0.861 ± 0.007

contig_57
Ig-like

domain-containing
protein

Eubacterium ventriosum 0.844 ± 0.002

contig_4 - - 0.861 ± 0.068
contig_12 hypothetical protein Faecalibacterium 0.867 ± 0.004
contig_130 - - 0.861 ± 0.002
contig_124 hypothetical protein Eubacterium ventriosum 0.867 ± 0.006

2.4. Supervariant Contigs vs. Relative Abundance Based Comparative Metagenomics

Conventional quantitative metagenomics studies rely on classifying phenotypes over
abundance profiles compiled by mapping the metagenomic sequencing data on comprehen-
sive gene catalogs. Therefore, it is not expected to utilize the discriminative features related
to small or medium scale genetic variants (e.g., SNPs, small indels, short tandem repeats
etc.). To compare the accuracy of supervariant contigs and abundance-based comparative
metagenomics, as well as to observe the discovery characteristics of these two approaches,
we extracted the abundance profiles of CRC and ACVD datasets. Around 10 million
(pan)genes from the Integrated Gene Catalog of Human Gut Microbiome (iGC) [36] were
employed for mapping the sequencing reads. Normalized abundance vectors were used
for XGBoost training using the same approach and the same train-test split datasets with
supervariant contig biomarkers. The feature vectors constructed from supervariant frag-
ments were concatenated for the top-10 markers based on their information scores, and for
the entire marker sets to join and use them as combinatorial markers. Table 3 shows the
competitive classification performance of each setting. The combination of supervariant
contigs improved the performance of single contigs with a small margin, which might
mean the discovered features are correlated.
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Relative-abundance and supervariant fragment-based disease classification approaches
performed closely for the disease cohorts considered. This does not necessarily mean both
methods discover the same markers. The feature importance utility of XGBoost library
attributed the majority of the abundance-based model performance to 4 features for CRC
dataset, that are genes specific to Fusobacterium nucleatum, Parvimonas micra, Solobacterium
moorei, and Peptostreptococcus genus. Among the supervariant markers, only one was
assigned to Fusobacterium. The frequent supervariant contig discoveries from Clostridia,
Lachnospiraceae and Erysipelotrichaceae taxa did not have a correspondence in abundance-
based feature discovery. In fact, the abundance difference between disease cases and
controls were not statistically significant (Mann–Whitney u-test, p > 0.05 for all three
groups). For the ACVD cohort, following the same methodology, co-discovery of both
approaches was observed in taxa Eubacteriaceae, Clostridia, and Faecalibacterium.

Table 3. The partial and full set of supervariant contigs are used as combinatorial biomarkers and
the overall disease classification performances were compared with differential relative abundance
features detected over iGC database and de novo assemblies for CRC and ACVD datasets.

SF (Full) SF (Top-10) iGC De Novo
Assembly

CRC Accuracy
ROC auc

0.895 ± 0.014
0.911 ± 0.009

0.811 ± 0.03
0.82 ± 0.027

0.865 ± 0.009
0.841 ± 0.004

0.857 ± 0.012
0.862 ± 0.008

ACVD Accuracy
ROC auc

0.875 ± 0.008
0.9 ± 0.006

0.79 ± 0.04
0.795 ± 0.024

0.89 ± 0.012
0.92 ± 0.01

0.872 ± 0.006
0.89 ± 0.004

For a closer investigation of whether the phenotype discrimination ability of super-
variant fragments is informed by differential relative abundance or by genetic variants,
we performed abundance-based classification tests on the supervariant contigs. In order
to map the metagenomic reads to the supervariant sequences, we used a k-mer based
mapper. According to this, a read is mapped onto a reference if more than mapping threshold
% k-mers of the read exist in the reference. Mapping ratio threshold was varied between
30% to 80% to observe the difference in a range of sensitivities. The reason for employing
k-mer based mapping was that short-read mappers such as BWA are tuned for highly
specific mappings and frequent variants inserted in supervariant regions might result in
missing the alignments. Supporting this view, the majority of the taxa corresponding to
supervariant contigs were not differentially abundant in the disease cohorts in general.
Classification based on those supervariant contigs turned out to perform poorly on average.
The populations of classification accuracy scores for relative abundance and genetic varia-
tion features were compared using Kolmogorov–Smirnov test. For the range of mapping
sensitivities, the variants were observed to be sampled from distributions denser in higher
accuracies (Figure 3).
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3. Discussion

The proposed methodology for the discovery of metagenomic regions exhibiting
differential variation between different host phenotypes is motivated by the rationale that
current abundance-based coarse discovery paradigm in quantitative metagenomics is inher-
ently unable to resolve detailed information. Not only the quantity/existence of a taxon or
a functional element is associated with the host phenotype, but the genomic landscape and
the genetic variations are also likely to contribute to the associated mechanisms. Here, we
attempt to emphasize such structures by assembling potentially artificial metagenomic frag-
ments with an assembly algorithm guided by the phenotype information. Our observation
on the fragments generated from the examined datasets revealed that supervariant contigs
emphasize three main different types of differential events. A first class of fragments
included short genetic variants such as SNPs and short indels, resulting in short contig
assemblies. Typically, the position-wise self-information scores consist of narrow spikes sur-
rounded by non-informative (i.e., conserved throughout host phenotypes) regions (Figure
4a). Low, or almost zero self-information content around the self-information peaks implies
that the average abundance of these contigs is not differentially significant, whereas the
short variants are significantly different for different phenotypes. These short variants are
discriminative features contributing to the classification using the proposed classification
scheme. On the other hand, these variants are ignored, and the self-information content
cannot be exploited by the conventional comparative metagenomics methods. The second
type of fragments typically contain high-information islands throughout a contig, with
plateaus of high scores on the position-wise self-information score graphs (Figure 4b).
These islands can either stem from differential abundance of genomic content or they might
harbor large structural variants differing between host phenotypes. Unfortunately, it is
hard to distinguish these two phenomena unless non-chimeric long contigs or reference
genomes are available. A third common class of supervariant fragments consists of short
periodic variances associated with host phenotypes, that translate to periodic spike trains
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in position-wise self-information score graphs (Figure 4c). Such cases indicate that tandem
repeats or short oligonucleotide repeat regions are genomic features associated with related
host phenotype functions.
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We reported that for the majority of the supervariant fragments, the differential
abundances between the disease phenotypes are not discriminative. Therefore, their
disease associations can be mainly attributed to the genetic variations. In fact, a good
portion of the inferred contigs are not generated by conventional metagenome assembly.
Even if that was achieved, supervariant fragments would not be emphasized as biomarkers
due to lack of significant differential abundance. Current convention on comparative
metagenomics, on the contrary, considerably depends on abundance of taxonomic and
functional units [37]. We believe that it might be fruitful to integrate genetic variation factors
in comparative metagenomics studies. Novel and stronger microbiome–host phenotype
associations are likely to be achievable with such a perspective. It is straightforward to
incorporate the relative abundance vectors and the supervariant contig representations
as additional features to disease classification algorithms. Downstream analysis such as
feature selection might be useful to assign importance to genetic variance and abundance
difference combinations.

Our analysis on real-life data revealed that the proposed method promises a better
improvement for the CRC dataset while the improvement for the ACDV data seems
insignificant. The underlying reason for this might be differing genotypical drivers for the
disease phenotypes. CRC microbiome might have significant genetic variants associated
with the disease, while the variants in ACVD context might be insignificant or correlated
with the composition. Further rigorous studies on characterizing such phenomena can be
especially important to illuminate the microbiome structure in different disease phenotypes.
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Annotation studies on the discovered fragments left some fragments uncharacterized
without a functional or a phylogenetic assignment with both homology search methods
employed. An uncharacterized sequence might be of intergenic regions, since eggNOG
Mapper, BlastX, and Kaiju all use protein sequences as the search databases and noncoding
regions are not available to be hit. Another possibility is the unavailability of the discovered
markers in the molecular databases, as a great amount of metagenomic dark matter remains
to be undiscovered [38]. In addition, it should be noted that the assembled sequences are
artificial contigs with enriched variations, which might not be harbored all in a certain
strain. Thus, resulting supervariations might not be detectable with the close-homology
search tools mentioned.

The proposed algorithm populates the most relevant metagenomic sequences of spe-
cific loci in a one-dimensional data structure (i.e., a sequence). This approach is biologically
relevant, and physical entities of biomarkers can be synthesized into DNA fragments to be
utilized as biotechnological products such as diagnostic/therapeutic kits. However, the
nature of fragment assembly forces the inferred product to pick a winner (i.e., most relevant
variant) for each locus, eliminating the other minor variants carrying less self-information.
For this reason, it might be interesting to propose more informative and complex data
structures, such as profile hidden Markov models, to represent the metagenomic entities
associated with host phenotypes. We believe the supervariant metagenomic loci concept is
open to investigation of useful bioinformatics tools.

The supervariant contig assembly algorithm is based on a naïve Viterbi decoder,
without any constraints for chimera control, or read guided traversal or scaffolding of
de Bruijn graphs. For this reason, the generated contigs might be vulnerable to chimera.
In case of transforming the biomarkers to the subjects of targeted sequencing agents,
validation of the fragments is needed. PCR-based positivity tests should be downstream
steps of biomarker discovery using the methodology proposed in this work. Nevertheless,
in silico investigations might still be utilizable even though the contigs were chimeric, as
they solely serve as computational models.

According to our results, combinatorial use of supervariant fragments only brings a
marginal improvement to disease classification performance. Moreover, the discovered
contigs appear to cluster in certain taxonomic groups rather than ranging in a diverse
phylogenetic tree. Unfortunately, it was not possible to assign the fragments to lower taxo-
nomic ranks to decide if they are of the same origin, because they were mainly observed
in multiple species. Taking these observations into consideration, it is likely that these
variations are coexisting/correlating. Whether specific stains of certain microorganisms are
associated or not is a natural question to be raised at this point. Pioneering studies report ge-
netic events at microbiome level such as recombination, oligocolonization, and adaptations
are associated with host genotypes [39]. Metagenomic studies regarding the population
genetics of microbiome communities might be considered as further investigation of the
variants in metagenomes in human disease context.

Another branch of further investigations motivated by the results of this work might be
the study on functional consequences of the variants associated with the host phenotypes.
Observational studies on the regulatory effects on gene expression or taxa abundance or
structural studies investigating the changes in protein structure/function on the related
variants might be conducted. Similarly, interventional experiments introducing variant
microbiomes in vivo are potentially valuable.

The discovered biomarkers could be employed in developing next-generation sequenc-
ing based laboratory procedures for microbiome-based diagnostics of related diseases. A
further investigation of variant sequences distinguishing the patients from the healthy
controls could help disease etiology or prognosis studies via designing interventional
in vivo experiments.
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4. Materials and Methods

We introduce an ab initio approach, diverging from the top-down perspective of quan-
titative metagenomics, where pipelines of metagenome assembly, functional and taxonomic
assignment, and biostatistics/ML-based host phenotype association are adopted. We start
by determining the associations on raw data and follow the assembly step guided with
this information in order to direct attention on the biomarker candidates by construction.
Below, the underlying idea and the steps of this procedure are provided.

4.1. Supervariant Contigs: Genomic Sequences Containing Maximum Average Self-Information

In order to define an information theoretic framework for inferring DNA sequences
descriptive of a related phenotype, we introduce a few practical definitions here. To assess
quantitative measures, firstly we need standard units of metagenomics data. We choose
quantities of short oligonucleotides of fixed-length k (i.e., k-mers) defined as:

Oi ∈ K = {AAA..AA, AAA..AC, . . . TTT..TG, TTT..TT}, ‖K‖ = 4k. (1)

Assume that a k-mer harbors a genotypical motif associated with a phenotype. In
case, given two different phenotypes F1 and F2 e.g., disease vs healthy) is expected to
result in differing distributions f (gi|F1) and f (gi|F2). Here, gi represents the relative
frequency of k-mer Oi in a metagenome. As this phenotype association gets stronger, the
uncertainty of Oi ’s relative frequency given a phenotype would be lower. That is to say,
a self-information metric can quantify the genotype-phenotype association strength. Let
us define the self-information of a k-mer oi as I(Oi) which measures how certain it is to
describe the phenotype from the relative frequency of Oi.

As an approximation of this self-information measure, we can utilize the statistical
difference in the probability distributions of f (gi|F1) and f (gi|F2) determined from a
hypothesis test:

I(Oi) ∝ − log
(

pOi (H0)
)
. (2)

where given a statistical hypothesis test and empirical data, pOi (H0) is the probability that
oi kmer follows similar distribution parameters across phenotypes. As the distribution
between the phenotype conditions differ, the defined metric will have a larger value, in
accordance with self-information. The probability, pOi (H0) is calculated by a statistical test
on the empirical data where the relative frequency of Oi for a phenotype F is considered
as a sampling instance of f (gi|F). A hypothesis test for the similarity of f (gi|F1) and
f (gi|F2) distributions are evaluated over the corresponding k-mer relative frequencies,
and pOi (H0) is determined by the p-value of this testing. We adopted Mann–Whitney U
test for our experiments, since a non-parametric test would be more appropriate for the
uncharacterized distributions of metagenomics data.

According to metagenome assembly problem, an achievable path in the de Bruijn
graph constructed from the k-mers of the sequencing data is considered as a metagenomic
contig candidate,

tj ∈ {∀achievablepathso f G}, tj = o1i o2i . . . omi . (3)

annotated with m k-mers tj traverses. Among all achievable paths, we define the ones
containing maximum average self-information tmasi = tj such that:

ĵ = argmax
j

1∣∣tj
∣∣ |tj |

∑
l=1

I
(

Olj

)
= argmin

j

1∣∣tj
∣∣ |tj |

∑
l=1

log
(

pOlj
(H0)

)
. (4)

Clearly, tmasi will contain maximal number of interesting genetic variants carrying
information about the corresponding phenotype, thus forming a supervariant contig. Equa-
tion (4) evaluates a genome fragment based on its average self-information content. Here,
the motivation is that contigs harboring discriminatory sections of variants associated
with the phenotype should be assembled. It is possible to define other self-information
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metrics concentrating on single/local variants other than the average of a contig. Our ex-
periments showed that the average self-information scoring is more successful in detecting
discriminatory supervariant contigs (Supplementary Materials). Therefore, we adopted
this scheme. We address this optimization problem and introduce a feasible solution of
inferring supervariant contigs next.

4.2. Selecting a Discriminative Subset of k-Mers

In order to focus on differential metagenomic fragments that emphasize a targeted
phenotypical difference within a cohort, the first step is determining the significant k-mers
within the raw sequencing reads. k-mers are the spectrum of all short oligonucleotides of a
fixed size, observed in a set of genomic sequences. The record of fixed size oligonucleotides
is preferred in a range of sequence analysis tasks for practical purposes, as efficient data
structures allow their lightweight processing. Given the preferred oligonucleotide length
(i.e., the parameter k) is long enough to specifically point a certain genomic location, each
k-mer harbors useful information reflecting the characteristics of the corresponding re-
gion. The insertion-deletion of large genomic regions are detectable by the existence of
k-mers mapping onto that region. Other variants, such as single nucleotide polymor-
phisms and short insertions/deletions also result in alternating k-mers. Moreover, when
the quantity/copy number of a genomic region is indicative of a condition, k-mer count
records inherit the abundance profile of the corresponding regions. Therefore, representing
genomics data with specific k-mer count profiles has significant power to capture charac-
teristics in both genetic variance and differential abundance of metagenomic samples.

We represented the metagenomic samples with k-mers of length 50. Due to the
sheer size of metagenomic datasets, a highly efficient k-mer count program, KMC 3 [40]
was employed. As the default bit allocation for a single k-mer count (255) saturated
quickly, we set the count flag cs as 65,535. Due to instrumental imperfections in next-
generation sequencing, several base miscalls are observed in a sequencing dataset. This
noise, resulting in tremendous amount of singleton k-mers were removed by quality
filtering option of KMC 3 by trimming/filtering sequencing regions under Phred quality
score of 30. Downstream filtering of k-mers in abundance and prevalence also applied.
Any k-mer observed less than 10 times in a metagenome sample were removed, in order
to filter out low-abundance/rare genetic material, as well as focusing on genomic regions
with lower probability of sequencing errors. k-mers observed in less than 10% of the
entire samples were also removed as low prevalence material, to avoid nongeneralizable
biomarkers. The regarding stages of filters also serve for practical purposes minimizing
the memory and processing burden significantly to the feasible ranges.

Differential k-mers, varying significantly in relative quantity between disease and
healthy control phenotypes were quantified in a univariate fashion performing Mann–
Whitney U-test on each k-mer independently. Each k-mer obtained a self-information of
phenotype association score ik = − log pk where pk is the p-value of k-mer k calculated
from the statistical tests.

An 80%–20% train-test set split was used to avoid information leakage, and the k-mers
were scored on the training set.

4.3. Constructing the Supervariant Metagenomic Fragments

The self-information of phenotype association scores for each k-mer implies a differen-
tial abundance or genetic variant between the disease and healthy phenotypes in the locus
of that k-mer. Although the scores are calculated by univariate statistics assuming inde-
pendence, a discriminative metagenomic fragment should contain clusters of k-mers with
high scores. Our approach to discover these informative regions is employing fragment
assembly informed by the scores.

Current approach to (meta)genome assembly is based on constructing de-Bruijn
graphs from the k-mers observed in the sequencing data, and traversing Eulerian paths
on these graphs [41,42]. However, metagenomic assembly is challenging due to uneven
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coverage issues. It has been reported that sequences that might harbor importance as
biomarkers might remain unassembled in canonical approach [43]. Furthermore, genome
assemblers tend to prefer high coverage content to construct a consensus sequence. In case,
non-dominant variants that are associated with interesting phenotypes are overlooked and
the related information is lost.

This phenomenon can be clearly seen in Figure 5. A subset harboring an insertion
region (2/5 samples with TCGC insert) and a substitution (2/5 samples with C > G
substitution) of disease phenotypes, as well as a substitution (2/5 samples with A > T
substitution) of healthy controls are typical to the phenotype. This knowledge would
enable evaluating a sample and classifying the correct phenotype with a relatively accurate
decision. However, a (meta)genome assembler would prefer the most frequent k-mers
and construct a consensus fragment lacking the biomarker variants. Note that, even a
metagenome assembler considering multiple strains is likely to ignore such variants to
prevent chimeric assemblies. On the contrary, without avoiding chimera, and attempting
to populate maximal number of discriminative genomic features in a chimeric fragment
might be a fruitful approach to construct artificial metagenomic markers with a greater
ability to capture phenotypes from microbiome samples. We call such artificial contigs
as supervariant contigs. Our fragment assembly algorithm attempts to discover the most
informative supervariant contigs by inferring the fragments with maximal average self-
information of phenotype association.
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Figure 5. A toy example showing the genomic loci with genetic variances associated with host phenotypes (a). The resulting
metagenomic contig obtained by conventional metagenomic assembly and a supervariant contig which populates the
genetic variants that are informative with respect to the targeted phenotypes (b).

Since discriminative k-mers with high scores correspond to marker variants of a super-
variant contig, the problem of discovering a supervariant contigs is equivalent to inferring
a path within the de Bruijn graph with maximal average score of k-mers traversed. An
optimal and feasible solution to this graph problem is dynamic programming. For the ease
of representation, we can consider the achievable paths (i.e., possible assemblies) as a trellis
such in the simplified example in Figure 6. This toy example represents the construction of
AAGCT section of the supervariant contig shown in Figure 5. A conventional assembler
prefers the achievable path with the highest coverage edges in a greedy fashion. This would
correspond to AACCG preferring abundant k-mer path through C over phenotypically
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discriminating path through G. However, embedding the corresponding k-mer scores in
the edges of the trellis, it is possible to traverse the highest scoring (i.e., most discriminative)
supervariant path. Basically, employing Viterbi decoding algorithm [44] provides a simple
solution for that. However, unlike the toy example, the choice of k-mer size (could be
considered as a 49th order Markov Model) would result in a large trellis. Note that, trellis
representation is to show the equivalence of the problem. In fact, the de Bruijn graph with
score-weighted edges serves the same purpose with a feasible data-structure in practice.
Each node in the de Bruijn graph structure points to the node corresponding to the optimal
subsolution. This enables backtracking through the optimal Viterbi path and decoding the
supervariant contig accordingly.
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The supervariant fragment assembly algorithm generates contigs with fixed sizes of
10 Kbp starting from the maximum scoring seeds, without replacement. The average scores
of the supervariant fragments are used for picking the top candidates as biomarkers.

4.4. Annotating the Supervariant Metagenomic Fragments

Each supervariant fragment was searched for its origin of taxa and functional prop-
erties. A consensus of BlastX search over the entire nt database of NCBI and eggNOG
mapper [45] was used to annotate the genes the supervariant fragments are placed in.
Both programs are used with the default parameters. Extracted open reading frames were
classified in taxa using Kaiju metagenomic classifier [46]. The most plausible assignments
were determined by the lowest common ancestor of the BlastX and Kaiju assignments.

4.5. Classifying Metagenomic Samples Using the Supervariant Fragments

Constructed set of supervariant contigs are expected to contain discriminative ge-
nomic variants or differential abundance regions to be tested with mapping actual test
metagenomes for validity. Each sample is characterized for its supervariant contig features
in a vectorized representation. For each k-mer of a supervariant contig, the corresponding
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relative abundance in a sample constitutes the entries of a vector in an orderly manner. For
multiple contigs, the vectors are simply concatenated. These vectors are fed to classifier
models as inputs. XGBoost classifiers are trained and tested on the same held-out dataset
used for k-mer scoring previously. 5-fold cross validation was applied for the classification
process.

4.6. Quantitative Metagenomics Analysis Using De Novo and Previously Assembled References

For comparison, investigated metagenomes were profiled using two commonly used
conventional metagenome analysis approaches [37]. Firstly, each metagenome was mapped
onto the integrated reference gene catalog (iGC) of human gut microbiome [36] using BWA
short read mapper [45]. Second approach involved de novo assembly and annotation of
the metagenome sets. Each metagenome set was assembled using MEGAHIT assembler
and the ORFs were detected using Prodigal gene finder [32]. Resulting gene catalogs were
used as the reference similar to iGC. Normalized abundances of each gene for iGC and
the vector representations explained in Section 4.5 for the de novo assembly catalogue
were used as features and the same XGBoost classifier setup with supervariant fragment
representations is adopted for training and testing.
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CRC Colorectal Cancer
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ROC Receiver Operating Characteristics
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PCR Polymerase Chain Reaction
ML Machine Learning
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