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Abstract: We study two types of dynamical extensions of Lucas sequences and give elliptic solutions
for them. The first type concerns a level-dependent (or discrete time-dependent) version involving
commuting variables. We show that a nice solution for this system is given by elliptic numbers.
The second type involves a non-commutative version of Lucas sequences which defines the non-
commutative (or abstract) Fibonacci polynomials introduced by Johann Cigler. If the non-commuting
variables are specialized to be elliptic-commuting variables the abstract Fibonacci polynomials
become non-commutative elliptic Fibonacci polynomials. Some properties we derive for these
include their explicit expansion in terms of normalized monomials and a non-commutative elliptic
Euler–Cassini identity.

Keywords: Lucas sequences; theta functions; elliptic numbers; non-commutative Fibonacci polyno-
mials

1. Introduction

In a series of papers, Lucas [1–3] studied the generalized Fibonacci polynomials 〈n〉
which depend on two commuting variables P, Q and are defined by 〈0〉 = 0, 〈1〉 = 1, and

〈n〉 = P〈n− 1〉+ Q〈n− 2〉, (1)

for n ≥ 2. (The two initial conditions 〈0〉 = 0, 〈1〉 = 1 can be altered of course but we shall
stick to them here as specified.) For example, we have

〈2〉 = P, 〈3〉 = P2 + Q, 〈4〉 = P3 + 2PQ, 〈5〉 = P4 + 3P2Q + Q2.

For P = Q = 1, this sequence reduces to the Fibonacci numbers 〈n〉 = Fn. For P = 2,
Q = −1 it reduces to the nonnegative integers 〈n〉 = n. For P = q + q−1, Q = −1, it

reduces to the quantum integers 〈n〉 = 〈n〉q := qn−q−n

q−q−1 , while for P = 1 + q, Q = −q, it

reduces to the (standard) q-integers 〈n〉 = [n]q := 1−qn

1−q . More generally, for P = c(1 + q)
and Q = −c2q, it reduces to cn−1[n]q, unifying the last two cases.

A function is defined to be elliptic if it is meromorphic and doubly periodic. It is
well known (cf., e.g., [4]) that elliptic functions can be expressed in terms of quotients of
products of theta functions. Define for z 6= 0 the (modified Jacobi) theta function with nome
p by

θ(z; p) = ∏
j≥0

(
(1− pjz)(1− pj+1/z)

)
, |p| < 1.

For brevity, we write
θ(z1, . . . , zm; p) = θ(z1; p) · · · θ(zm; p)
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for products of these functions. The modified Jacobi theta functions satisfy the inversion for-
mula

θ(z; p) = −zθ(1/z; p), (2a)

the quasi-periodicity relation

θ(pz; p) = −1
z

θ(z; p), (2b)

and the addition formula

θ(uv, u/v, wz, w/z; p)− θ(uz, u/z, wv, w/v; p) =
w
v

θ(vz, v/z, uw, u/w; p) (2c)

(cf. p. 451, Example 5 in [5]).
In this paper, we study two types of dynamical extensions of Lucas sequences and

give elliptic solutions for them. The first type concerns a level-dependent (or discrete time-
dependent) version of (1) involving commuting variables. We show that a nice solution for
this system is given in terms of elliptic numbers. The second type is a non-commutative
version which defines the non-commutative (or abstract) Fibonacci polynomials introduced by
Johann Cigler [6]. We study some (known and new) properties for these. In particular, we
extend the sequence of these polynomials to negative indices and recover a formula by
Cigler (Section 3 in [7]) for the negatively indexed non-commutative Fibonacci polynomials
in terms of the non-negatively indexed ones. This allows us to establish a non-commutative
Euler–Cassini identity. In the non-commutative setting we also take a closer look at
the case when the non-commuting variables are specialized to satisfy weight-dependent
commutation relations. In this case the non-commutative Fibonacci polynomials become,
what we shall call, non-commutative weight-dependent Fibonacci polynomials. We show that
after normal ordering of the weight-dependent-commuting variables weight-dependent
binomial coefficients appear in the expansion of the normalized monomials. A further
specialization of interest concerns the introduction of elliptic weights. For elliptic-commuting
variables the non-commutative Fibonacci polynomials become, what we shall call, non-
commutative elliptic Fibonacci polynomials. In this case after normal ordering of the elliptic-
commuting variables fully factorized elliptic binomial coefficients appear in the expansion
of the normalized monomials. This extends the basic case (or q-case) for q-commuting
variables. We also establish an explicit Euler–Cassini identity for the non-commutative
elliptic Fibonacci polynomials.

We would like to point out that the results in the current paper do not appear to
directly contain the elliptic Fibonacci numbers which were introduced in [8] nor those (of a
simpler type) which were introduced in [9]. While we believe that there is a connection of
our non-commutative elliptic Fibonacci polynomials considered in Section 4 of this paper
with our earlier elliptic Fibonacci numbers in [8], the connection is not yet entirely clear
and requires further investigations.

Our paper is organized as follows. In Section 2 we study the level-dependent Lucas
system with commutative variables and give an elliptic solution for it. In Section 3 we
describe the algebras of weight-dependent-commuting and elliptic-commuting variables
we are working with in the final section, and also define corresponding weighted and
elliptic binomial coefficients. Finally, Section 4 is devoted to the non-commutative Lucas
equation and the noncommutative weight-dependent and elliptic Fibonacci polynomials.

2. Elliptic Solution of a Level-Dependent Lucas System

In this section, we consider the following level-dependent extension of Lucas’ gen-
eralized Fibonacci polynomials 〈n〉 defined by the recurrence relation (1). We consider
sequences of variables (P`)`≥0 and (Q`)`≥0 (where the index ` could be thought of be-
ing the level or discrete time). Now define the doubly-indexed sequence

(
〈n〉`

)
n,`≥0 by

〈0〉` = 0, 〈1〉` = 1, for all ` ≥ 0 and, instead of (1), assume the following dynamical
recurrence relation:

〈n〉` = P`〈n− 1〉`+1 + Q`〈n− 2〉`+2, (3)
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for n ≥ 2 and all ` ≥ 0. Here we have

〈2〉` = P`
〈3〉` = P`P`+1 + Q`,

〈4〉` = P`P`+1P`+2 + P`Q`+1 + P`+2Q`,

〈5〉` = P`P`+1P`+2P`+3 + P`P`+1Q`+2 + P`P`+3Q`+1 + P`+2P`+3Q` + Q`Q`+2,

for all l ≥ 0.
We now show that the system in (3) admits a nice solution involving elliptic functions.
Let a and b be two independent variables, and q ∈ C be the base. It readily follows by

the addition formula (2c) that for

P` =
θ(q2, aq`+2, bq2`+2, aq−`/b; p)
θ(q, aq`+1, bq2`+3, aq1−`/b; p)

, Q` = −
θ(aq`+3, bq2`+1, aq−1−`/b; p)
θ(aq`+1, bq2`+3, aq1−`/b; p)

q (4)

the sequence defined by the system in (3) reduces to the elliptic integers

〈n〉` = 〈n〉aq`,bq2`;q,p :=
θ(qn, aq`+n, bq2`+n, aq2−`−n/b; p)
θ(q, aq`+1, bq2`+2n−1, aq1−`/b; p)

. (5)

Indeed, if we insert P` and Q` from (4) in (3), we obtain

P`〈n− 1〉`+1 + Q`〈n− 2〉`+2

=
θ(q2, aq`+2, bq2`+2, aq−`/b; p)
θ(q, aq`+1, bq2`+3, aq1−`/b; p)

θ(qn−1, aq`+n, bq2`+n+1, aq2−`−n/b; p)
θ(q, aq`+2, bq2`+2n−1, aq−`/b; p)

− θ(aq`+3, bq2`+1, aq−1−`/b; p)
θ(aq`+1, bq2`+3, aq1−`/b; p)

q
θ(qn−2, aq`+n, bq2`+n+2, aq2−`−n/b; p)

θ(q, aq`+3, bq2`+2n−1, aq−1−`/b; p)

=
θ(q2, bq2`+2, qn−1, aq`+n, bq2`+n+1, aq2−`−n/b; p)

θ(q, aq`+1, bq2`+3, aq1−`/b, q, bq2`+2n−1; p)

− q
θ(bq2`+1, qn−2, aq`+n, bq2`+n+2, aq2−`−n/b; p)

θ(aq`+1, bq2`+3, aq1−`/b, q, bq2`+2n−1; p)

=
θ(aq`+n, aq2−`−n/b; p)

θ(q, aq`+1, bq2`+3, aq1−`/b, q, bq2`+2n−1; p)

×
[
θ(q2, bq2`+2, qn−1, bq2`+n+1; p)− q θ(q, bq2`+1, qn−2, bq2`+n+2; p)

]
=

θ(aq`+n, aq2−`−n/b; p)
θ(q, aq`+1, bq2`+3, aq1−`/b, q, bq2`+2n−1; p)

θ(qn, bq2`+n, q, bq2`+3; p)

=
θ(qn, aq`+n, bq2`+n, aq2−`−n/b; p)
θ(q, aq`+1, bq2`+2n−1, aq1−`/b; p)

= 〈n〉`,

where the difference of the two products of theta functions in the pair of brackets in the
fourth equality was simplified with respect to the

(u, v, w, z) 7→
(
b

1
2 q`+n, b

1
2 q`+1, b

1
2 q`+2, b

1
2 q`
)

case of (2c). This proves the claim about the elliptic solution.
The elliptic integers in (5) can actually be identified as specialized elliptic binomial

coefficients

〈n〉` =
[

n
n− 1

]
aq`,bq2`;q,p,

the general case of the elliptic binomial coefficients being defined in (16).
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Finally, we point out a simple way to obtain a new dynamical Lucas sequence from a
given one by a suitable “scaling" of the variables with respect to an additional sequence
(c`)`≥0. In particular, given three sequences(

〈n〉`
)

n,`≥0, (P`)`≥0, (Q`)`≥0,

satisfying (3) with the initial conditions 〈0〉` = 0 and 〈1〉` = 1, for all ` ≥ 0, the three se-
quences (

〈̃n〉`
)

n,`≥0
,

(
P̃`
)
`≥0,

(
Q̃`

)
`≥0,

with the initial conditions 〈̃0〉` = 0 and 〈̃1〉` = 1, for all ` ≥ 0, also satisfy (3), where

〈̃n〉` = c`c`+1 · · · c`+n−2〈n〉`, P̃` = c`P`, Q̃` = c`c`+1Q`,

for all n ≥ 2 and ` ≥ 0. It is straightforward to confirm this assertion by multiplying both
sides of (3) with the product c`c`+1 · · · c`+n−2.

3. Weight-Dependent Commutation Relations and Elliptic Weights
3.1. Noncommutative Weight-Dependent Binomial Theorem

The material in this subsection, up to Lemma 1, is taken from the first author’s
paper [10], while the material afterwards is new.

Let N and N0 denote the sets of positive and nonnegative integers, respectively.

Definition 1. For a doubly-indexed sequence of indeterminates (w(s, t))s,t∈N, let Cw[x, y] be the
associative unital algebra over C generated by x and y, satisfying the following three relations:

yx = w(1, 1)xy, (6a)

xw(s, t) = w(s + 1, t)x, (6b)

yw(s, t) = w(s, t + 1)y, (6c)

for all s, t ∈ N.

For s ∈ N and t ∈ N0, we define

W(s, t) :=
t

∏
j=1

w(s, j), (7)

the empty product being defined to be 1. Note that for s, t ∈ N, we have w(s, t) =
W(s, t)/W(s, t− 1). We refer to the w(s, t) as small weights, whereas to the W(s, t) as big
weights (or column weights).

Let the weight-dependent binomial coefficients be defined by

w

[
0
0

]
= 1,

w

[
n
k

]
= 0 for n ∈ N0, and k ∈ −N or k > n, (8a)

and

w

[
n + 1

k

]
=

w

[
n
k

]
+

w

[
n

k− 1

]
W(k, n + 1− k) for n, k ∈ N0. (8b)

These weight-dependent binomial coefficients have a combinatorial interpretation
in terms of weighted lattice paths, see [11]. Here, a lattice path is a sequence of north (or
vertical) and east (or horizontal) steps in the first quadrant of the xy-plane, starting at the
origin (0, 0) and ending at say (n, m). We give weights to such paths by assigning the big
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weight W(s, t) to each east step (s− 1, t)→ (s, t) and 1 to each north step. Then define the
weight of a path P, w(P), to be the product of the weight of all its steps.

Given two points A, B ∈ N2
0, let P(A→ B) be the set of all lattice paths from A to B,

and define
w(P(A→ B)) := ∑

P∈P(A→B)
w(P).

Then we have

w(P((0, 0)→ (k, n− k))) =
w

[
n
k

]
(9)

as both sides of the equation satisfy the same recursion and initial condition as in (8).
Interpreting the x-variable as an east step and the y-variable as a north step, we get

the following weight dependent binomial Theorem 1.

Theorem 1 ([10]). Let n ∈ N0. Then, as an identity in Cw[x, y],

(x + y)n =
n

∑
k=0 w

[
n
k

]
xkyn−k. (10)

The following rule for interchanging powers of x and y is easy to prove by induction
(and it is also easy to interpret combinatorially by considering weighted lattice paths); we
therefore omit the proof.

Lemma 1 ([10]). We have

ykx` =

(
`

∏
i=1

k

∏
j=1

w(i, j)

)
x`yk =

(
`

∏
i=1

W(i, k)

)
x`yk.

We now extend the algebra Cw[x, y] from Definition 1 to the algebra Cw[x, x−1, y]:

Definition 2. For a doubly-indexed sequence of invertible indeterminates (w(s, t))s∈Z,t∈N, let
Cw[x, x−1, y] be the associative unital algebra over C generated by x, x−1 and y, satisfying the
following relations:

x−1x = xx−1 = 1 (11a)

yx = w(1, 1)xy, (11b)

x−1y = w(0, 1)yx−1, (11c)

xw(s, t) = w(s + 1, t)x, (11d)

x−1w(s, t) = w(s− 1, t)x−1, (11e)

yw(s, t) = w(s, t + 1)y, (11f)

for all s ∈ Z and t ∈ N.

It is easy to see that the above relations are compatible with each other and naturally
extend (6).

The following Lemma 2 which is easy to verify will be used in Section 4.

Lemma 2. Let (w(s, t))s∈Z,t∈N be a doubly-indexed sequence of invertible indeterminates, and x
and y variables with x being invertible, together forming the associative algebra A = Cw[x, x−1, y].
Then there is an involutive algebra isomorphism

φ : A→ Ã
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where
Ã = Cw̃[x

−1, x, x−1y]

with
w̃(s, t) = w(1− s− t, t)−1. (12)

It is indeed straightforward to check that the simultaneous replacement of w(s, t)
(s ∈ Z, t ∈ N), x and y in (11) by w(1 − s − t, t)−1, x−1 and x−1y, respectively, again
satisfies the conditions in (11).

As a consequence, given an identity in w(s, t) (s ∈ Z, t ∈ N), x and y, a new valid
identity can be obtained by applying the isomorphism φ to each of the occurring variables,
where in both identities the variables satisfy the same commutation relations (11).

3.2. Elliptic Weights

For nome p ∈ C with |p| < 1, base q ∈ C, two independent variables a and b, and
(s, t) ∈ Z2, we define the small elliptic weights to be

wa,b;q,p(s, t) =
θ(aqs+2t, bq2s+t−2, aqt−s−1/b; p)
θ(aqs+2t−2, bq2s+t, aqt−s+1/b; p)

q, (13a)

and the big elliptic weights to be

Wa,b;q,p(s, t) =
θ(aqs+2t, bq2s, bq2s−1, aq1−s/b, aq−s/b; p)

θ(aqs, bq2s+t, bq2s+t−1, aqt−s+1/b, aqt−s/b; p)
qt. (13b)

Notice that for t ≥ 0 we have

Wa,b;q,p(s, t) =
t

∏
k=1

wa,b;q,p(s, k).

Observe that
wa,b;q,p(s + i, t + j) = waqi+2j ,bq2i+j ;q,p(s, t), (14a)

and
Wa,b;q,p(s, t + j) = Wa,b;q,p(s, j)Waq2j ,bqj ;q,p(s, t), (14b)

for all s, t, i and j, which are elementary identities we will make use of.
Further, using (2a), we see directly from (13a) that

wa,b;q,p(1− s− t, t)−1 = wa/b,1/b;q,p(s, t), (15)

which can be conveniently applied when using Lemma 2.
The terminology “elliptic” for the above small and big weights is indeed justified, as

the small weight wa,b;q,p(s, k) (and also the big weight) is elliptic in each of its parameters
(i.e., these weights are even “totally elliptic”). Writing q = e2πiσ, p = e2πiτ , a = qα and
b = qβ with complex σ, τ, α, β, s and k, then the small weight wa,b;q,p(s, k) is clearly periodic
in α with period σ−1. Also, using (2b), we can see that wa,b;q,p(s, k) is also periodic in α with
period τσ−1. The same applies to wa,b;q,p(s, k) as a function in β (or s or k) with the same
two periods σ−1 and τσ−1.
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Next, we define (cf. Chapter 11 in [12]) the theta shifted factorial (or q, p-shifted facto-
rial), by

(a; q, p)n =



n−1

∏
j=0

θ(aqj; p), n = 1, 2, . . . ,

1, n = 0,

1/
−n−1

∏
j=0

θ(aqn+j; p), n = −1,−2, . . . ,

and write
(a1, . . . , am; q, p)n = (a1; q, p)n . . . (am; q, p)n,

for their products. For p = 0 we have θ(x; 0) = 1− x and, hence, (a; q, 0)n = (a; q)n =
(1− a)(1− aq) . . . (1− aqn−1) is a q-shifted factorial in base q.

Now, the elliptic binomial coefficients [10][
n
k

]
a,b;q,p

:=
(q1+k, aq1+k, bq1+k, aq1−k/b; q, p)n−k

(q, aq, bq1+2k, aq/b; q, p)n−k
, (16)

together with the big elliptic weights defined in (13b), can be seen to satisfy the recursion (8),
as a consequence of the addition formula (2c).

Note that the elliptic binomial coefficients in (16) generalize the familiar q-binomial
coefficients, which can be obtained by letting p→ 0, a→ 0, then b→ 0, in this order. These
are defined by [

n
k

]
q

:=
(q1+k; q)n−k
(q; q)n−k

,

where

(a; q)n =



n−1

∏
j=0

(1− aqj), n = 1, 2, . . . ,

1, n = 0,

1/
−n−1

∏
j=0

(1− aqn+j), n = −1,−2, . . .

are the q-shifted factorials.
As the q-binomial coefficients satisfy two recurrence relations[

n + 1
k

]
q
=

[
n
k

]
q
+

[
n

k− 1

]
q
qn+1−k,

[
n + 1

k

]
q
=

[
n
k

]
q
qk +

[
n

k− 1

]
q
,

and the recurrence relation (8) corresponds to the first identity, the elliptic binomial coef-
ficients satisfy a second recurrence relation as well. While the relation (8) is established
by considering the generating function of all weighted paths from the origin to the point
(k, n + 1− k) and separating them into two subsets depending on whether the last step is
vertical or horizontal, the following result can be similarly verified by separating the same
set of paths into two subsets depending on whether the first step is vertical or horizontal.

Proposition 1. We have[
n + 1

k

]
a,b;q,p

=

[
n
k

]
aq2,bq;q,p

k

∏
j=1

Wa,b;q,p(j, 1) +
[

n
k− 1

]
aq,bq2;q,p

.
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Definition 3. Let x, y, a, b be four variables with ab = ba and q, p be two complex numbers with
|p| < 1. We define Ca,b;q,p[x, y] to be the unital associative algebra over C, generated by x and y,
satisfying the following commutation relations

yx =
θ(aq3, bq, a/bq; p)
θ(aq, bq3, aq/b; p)

qxy, (17a)

x f (a, b) = f (aq, bq2)x, (17b)

y f (a, b) = f (aq2, bq)y, (17c)

where f (a, b) is any function that is multiplicatively p-periodic in a and b, i.e., which satisfies
f (pa, b) = f (a, pb) = f (a, b).

The relations in (17) are essentially an elliptic realization of the relations in (6). In
particular, (17a) can be written as yx = w(1, 1)xy with w(s, t) = wa,b;q,p(s, t) being the small
elliptic weight in (13a).

We refer to the variables x, y, a, b forming Ca,b;q,p[x, y] as elliptic-commuting variables.
The algebra Ca,b;q,p[x, y] formally reduces to Cq[x, y] if one lets p → 0, a → 0, then b →
0 (in this order), while, having eliminated the nome p, relaxing the two conditions of
multiplicative p-periodicity.

In Ca,b;q,p[x, y] the following binomial theorem holds as a consequence of Theorem 1
(cf. [10]):

(x + y)n =
n

∑
k=0

[
n
k

]
a,b;q,p

xkyn−k. (18)

It is now straightforward to extend Ca,b;q,p[x, y] in the spirit of Definition 2 to an algebra
we name Ca,b;q,p[x, x−1, y] (and keep referring to as algebra of elliptic-commuting variables).

Definition 4. Let x, y, a, b be four variables, x invertible, with ab = ba and q, p be two complex
numbers with |p| < 1. We define Ca,b;q,p[x, x−1, y] to be the unital associative algebra over C,
generated by x, x−1, and y, satisfying the following commutation relations

x−1x = xx−1 = 1 (19a)

yx =
θ(aq3, bq, a/bq; p)
θ(aq, bq3, aq/b; p)

qxy, (19b)

x−1y =
θ(aq2, b/q, a/b; p)
θ(a, bq, aq2/b; p)

qyx−1, (19c)

x f (a, b) = f (aq, bq2)x, (19d)

x−1 f (a, b) = f (aq−1, bq−2)x−1, (19e)

y f (a, b) = f (aq2, bq)y, (19f)

where f (a, b) is any function that is multiplicatively p-periodic in a and b.

Again, it is not difficult to see that the conditions in (19) are compatible with each
other and naturally extend those in (17) by adding relations involving x−1.

4. Noncommutative Fibonacci Polynomials

In the following, we shall first assume x and y (which in Section 3 were prescribed
to satisfy specific commutation relations) to be non-commutative variables without any
relation connecting them; we shall only later specialize x and y when explicitly stated.

The material in this section, up to (23), is essentially a review of work done by Johann
Cigler and is included here for convenience and self-containedness.
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The noncommutative (or abstract) Fibonacci polynomials of Cigler [6,7] are defined by
F0(x, y) = 1, F1(x, y) = y and

Fn+2(x, y) = Fn(x, y)x + Fn+1(x, y)y, (20a)

or equivalently

Fn+2(x, y) = x Fn(x, y) + y Fn+1(x, y), (20b)

for all n ≥ 0.
The equivalence of (20a) and (20b) will be shown later. (See the explanation right

after (21).) Combinatorially, Fn(x, y) represents the sum of the weights of all possible
ordered tilings of a 1× n board in 1× 2 dominoes weighted with x and 1× 1 squares
weighted with y. (This also explains why the two recurrences in (20) are equivalent.)

Example 1.

F0(x, y) = 1;

F1(x, y) = y ;
y

F2(x, y) = x + y2 ; x ,
y y

F3(x, y) = xy + yx + y3 ; x y
, xy

,
y y y

F4(x, y) = x2 + xy2 + yxy + y2x + y4 ; x x , x y y
,

x yy
, xyy

,
y y yy

Let

C(x, y) :=
(

0 1
x y

)
.

Then the n-th power of the matrix C(x, y) can be expressed nicely in terms of the non-
commutative Fibonacci polynomials (as was already shown by Cigler (Equation (3.2)
in [7]).

Proposition 2.

Cn(x, y) =
(

Fn−2(x, y)x Fn−1(x, y)
Fn−1(x, y)x Fn(x, y)

)
,

for n ≥ 2.

Proof. We proceed by induction.
For n = 2,

C2(x, y) =
(

0 1
x y

)(
0 1
x y

)
=

(
x y

yx x + y2

)
=

(
F0(x, y)x F1(x, y)
F1(x, y)x F2(x, y)

)
.

Suppose that

Cn−1(x, y) =
(

Fn−3(x, y)x Fn−2(x, y)
Fn−2(x, y)x Fn−1(x, y)

)
holds for some n− 1 ≥ 2. Then

Cn(x, y) = Cn−1(x, y)C(x, y)

=

(
Fn−3(x, y)x Fn−2(x, y)
Fn−2(x, y)x Fn−1(x, y)

)(
0 1
x y

)
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=

(
Fn−2(x, y)x Fn−3(x, y)x + Fn−2(x, y)y
Fn−1(x, y)x Fn−2(x, y)x + Fn−1(x, y)y

)
=

(
Fn−2(x, y)x Fn−1(x, y)
Fn−1(x, y)x Fn(x, y)

)
,

by (20a). (Similary, we could have used Cn(x, y) = C(x, y)Cn−1(x, y) instead, in combina-
tion with (20b).)

Since Cm+n(x, y) = Cm(x, y)Cn(x, y), we have

Cm+n(x, y) =
(

Fm+n−2(x, y)x Fm+n−1(x, y)
Fm+n−1(x, y)x Fm+n(x, y)

)
,

and

Cm(x, y)Cn(x, y) =
(

Fm−2(x, y)x Fm−1(x, y)
Fm−1(x, y)x Fm(x, y)

)(
Fn−2(x, y)x Fn−1(x, y)
Fn−1(x, y)x Fn(x, y)

)
.

By comparing the components, we obtain the formula

Fm+n(x, y) = Fm−1(x, y) x Fn−1(x, y) + Fm(x, y) Fn(x, y). (21)

We proved (21) using the recurrence (20a), which can be recovered from the former by
letting (m, n) 7→ (n + 1, 1). However, (21) also includes the recurrence (20b), obtained by
letting (m, n) 7→ (1, n + 1). This shows that the two recurrences in (20) are indeed equiva-
lent.

From a combinatorial view, the identity (21) is clear. A tiling of the 1× (m + n) board
can be split into two independent tilings of lengths m and n, or there is a domino in the
middle, right between two independent tilings of respective lengths m− 1 and n− 1.

We now use (21) in conjunction with negatively indexed non-commutative Fibonacci
polynomials to obtain a non-commutative (Euler–)Cassini identity. In fact, one can simply
use the recurrences in (20) to define non-commutative Fibonacci polynomials of negative
index. It turns out that these happen to be polynomials in x−1 (so we must assume x to be
invertible). In particular, application of (20) in the negative direction gives

F−1(x, y) = 0,

F−2(x, y) = x−1,

F−3(x, y) = −x−1yx−1,

F−4(x, y) = x−2 + x−1yx−1yx−1,

F−5(x, y) = −x−2yx−1 − x−1yx−2 − x−1yx−1yx−1yx−1,

F−6(x, y) = x−3 + x−2yx−1yx−1 + x−1yx−2yx−1

+ x−1yx−1yx−2 + x−1yx−1yx−1yx−1yx−1.

It is easy to use (20) and induction to prove that

F−n(x, y) = (−1)nFn−2
(
x−1, x−1y

)
x−1, (22)

for all integers n. The formula (22) was also obtained by Cigler (Equation after (3.4) in [7]).
We can also use matrices to arrive at negatively indexed noncommutative Fibonacci

polynomials, namely

C−1(x, y) =
(
−x−1y x−1

1 0

)
,
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which satisfies C−1(x, y)C(x, y) = C(x, y)C−1(x, y) = I2; Proposition 2 is easily seen to
extend to all integers n with the negatively indexed noncommutative Fibonacci polynomials
(defined recursively by (20), and which can be expressed by the non-negatively indexed
noncommutative Fibonacci polynomials by (22)). This was actually how Cigler arrived at
(22) in [7]. This shows that (21), which we originally proved for positive integers m and n,
actually holds for all integers m and n.

We now let m = −n in (21) and multiply both sides of the identity by (−1)n and
arrive, after two applications of (22) at the non-commutative Cassini identity (cf. Section 3
in [7])

(−1)n = Fn−2
(
x−1, x−1y

)
x−1 Fn(x, y)− Fn−1

(
x−1, x−1y

)
Fn−1(x, y), (23)

which is valid for all integers n.
More generally, we may take (m, n) 7→ (−n, n + k) in (21) and multiply both sides

of the identity by (−1)n and arrive, after two applications of (22), at the non-commutative
Euler–Cassini identity

(−1)nFk(x, y) = Fn−2
(

x−1, x−1y
)

x−1 Fn+k(x, y)− Fn−1
(
x−1, x−1y

)
Fn+k−1(x, y), (24)

which is valid for all integers n and k.

Remark 1. We would like to mention that in the classical case the Cassini identity is usually

obtained by taking the determinants of the n-th power of the Fibonacci matrix
(

0 1
1 1

)
and using

the property that the determinant of matrices with commuting entries is multiplicative. This method
to obtain a Cassini identity requires adaptation in the non-commutative setting since the determinant
is in general not multiplicative if the matrices contain entries that do not commute. In some special
cases (in particular when considering quantum matrix representations of quantum groups) this
can be remedied by suitably modifying the definition of determinant and by considering quantum
determinants instead where the entries of the matrices obey certain commutation relations.

We can apply this construction with the necessary adaptions here as well. For four polynomials
a
(

x, x−1, y
)
, b
(

x, x−1, y
)

c
(
x, x−1, y

)
d
(

x, x−1, y
)

in the non-commuting variables x, x−1 and
y (with x−1x = xx−1 = 1), over some ground field K (say K = C), define the noncommutative
determinant

−→
det by

−→
det
(

a
(

x, x−1, y
)

b
(
x, x−1, y

)
c
(
x, x−1, y

)
d
(
x, x−1, y

))
:= a

(
x−1, x, x−1y

)
d
(
x, x−1, y

)
− c
(
x−1, x, x−1y

)
x b
(
x, x−1, y

)
. (25)

Now
−→
det is in general not multiplicative but for suitable choices of the matrices it is. This in

particular applies to matrices given by any integer power of C(x, y), as one can easily verify. Now
taking the noncommutative determinant

−→
det of Cn(x, y) and comparing it with the n-th power of

−→
det C(x, y) = −1, we readily obtain the non-commutative Cassini identity (23).

4.1. Noncommutative Weight-Dependent Fibonacci Polynomials

We consider the noncommutative Fibonacci polynomials Fn(x, y) with additional
weight-dependent commutation relations imposed to involve a doubly indexed sequence
of invertible weights (w(s, t))s∈Z,t∈N. More precisely we shall work in the algebra of
weight-dependent variables Cw[x, x−1, y] defined in Definition 2. We write Fn(x, y |w) for
the respective noncommutative weight-dependent Fibonacci polynomials in this case.

Any expression X in Cw[x, x−1, y] can be normalized and written uniquely as a formal
sum (with finitely many non-vanishing terms)

X =
∞

∑
k=−∞

∞

∑
`=0

cX(k, `)xky`,
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with cX(k, `) a polynomial expression over C in the w(s, t)±1, s ∈ Z, t ∈ N. We say that
the variables occurring in an expression in Cw[x, x−1, y] have been normally ordered if, as
above, in each of the monomials all the occurrences of y have been moved (with the help of
commutation relations, if necessary) to the most right, followed by the occurrences of x or
x−1 to the left (again with the help of commutation relations, if necessary) and if only to the
most left polynomials of the respective monomials the various weights w(s, t)±1 appear.

From the first recurrence relation in (20) and the recurrence for the weighted binomial
coefficients in (8) (where the “big weight” W(s, k) that appears there is a product of small
weights w(s, t), according to (7)) we can easily prove the following result for the normally
ordered noncommutative weight-dependent Fibonacci polynomials.

Proposition 3. As elements of Cw[x, x−1, y], the noncommutative weight-dependent Fibonacci
polynomials Fn(x, y |w) (which are recursively defined by the two intial values F0(x, y |w) =
1, F1(x, y |w) = y, and either one of the two recurrence relations in (20)) take the following
normalized form:

Fn(x, y |w) =
n

∑
k=0 w

[
n− k

k

]
xkyn−2k, (26)

where
w

[
n
k

]
is the weight-dependent binomial coefficient recursively defined in (8), for any non-

negative integer n.

Proof. We proceed by induction. For n = 0 and n = 1 (26) is clear. Now assume that the
formula is true for all non-negative integers up to n + 1. To show it for the next value, n + 2,
apply the first identity in (20) to split Fn+2(x, y |w) in two lower-indexed noncommutative
weight-dependent Fibonacci polynomials and apply the induction hypothesis. Concretely,
we have

Fn+2(x, y |w) = Fn+1(x, y |w) y + Fn(x, y |w) x

=
n+1

∑
k=0 w

[
n + 1− k

k

]
xkyn+1−2k · y +

n+1

∑
k=1 w

[
n− (k− 1)

k− 1

]
xk−1yn+2−2k · x

=
n+1

∑
k=0 w

[
n + 1− k

k

]
xkyn+1−2k · y

+
n+1

∑
k=1 w

[
n− (k− 1)

k− 1

]
xk−1 W(1, n + 2− 2k) x yn+2−2k

=
n+2

∑
k=0

(
w

[
n + 1− k

k

]
+

w

[
n + 1− k

k− 1

]
W(k, n + 2− 2k)

)
xkyn+2−2k

=
n+2

∑
k=0 w

[
n + 2− k

k

]
xkyn+2−2k,

where we have applied an instance of Lemma 1 in the third equality and the recursion for
the weight-dependent binomial coefficients (8) in the last equality.

A great deal of the analysis from the beginning of this section which concerned the
noncommutative Fibonacci polynomials extends to the noncommutative weight-dependent
case without much changes. This in particular concerns the formula (21) which now
obviously takes the form

Fm+n(x, y |w) = Fm−1(x, y |w) x Fn−1(x, y |w) + Fm(x, y |w) Fn(x, y |w). (27)

Again, this formula holds for all integers m and n but we still have to specify the exact
form of the negatively indexed noncommutative weight-dependent Fibonacci polynomials.
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By carrying out the same analysis that led to (22) (i.e., application of the recurrence (20) in
the negative direction, and induction) adapted to the weight-dependent setting, we obtain

F−n(x, y |w) = (−1)nFn−2
(

x−1, x−1y | w̃
)

x−1, (28)

where the dual weight function w̃ is defined in (12).
The noncommutative weight-dependent Euler–Cassini identity thus takes the follow-

ing form:

(−1)nFk(x, y |w) = Fn−2
(
x−1, x−1y | w̃

)
x−1 Fn+k(x, y |w)

− Fn−1
(
x−1, x−1y | w̃

)
Fn+k−1(x, y |w), (29)

which is valid for all integers n and k.

4.2. Noncommutative Elliptic Fibonacci Polynomials

We now specialize the weights w(s, t) := wa,b;q,p(s, t) (for s ∈ Z and t ∈ N) to be
the elliptic weights defined in (13a), where a, b are two independent parameters and
p, q are complex numbers with |p| < 1. We are thus working in the algebra of elliptic-
commuting variables Ca,b;q,p[x, x−1, y] defined in Definition 4. We write Fn(x, y | a, b; q, p)
for the respective noncommutative elliptic Fibonacci polynomials in this case.

Specialization of Proposition 3 readily gives the following result.

Corollary 1. As elements of Ca,b;q,p[x, x−1, y], the noncommutative elliptic Fibonacci polyno-
mials Fn(x, y | a, b; q, p) take the following normalized form:

Fn(x, y | a, b; q, p) =
n

∑
k=0

[
n− k

k

]
a,b;q,p

xkyn−2k, (30)

where
[
n
k

]
a,b;q,p is the elliptic binomial coefficient given in (16), for any non-negative integer n.

Now, the specialization of (27) is straightforward and gives

Fm+n(x, y | a, b; q, p) = Fm−1(x, y | a, b; q, p) x Fn−1(x, y | a, b; q, p)

+ Fm(x, y | a, b; q, p) Fn(x, y | a, b; q, p), (31)

which again holds for all integers m and n.
Finally, we determine the exact form of the negatively indexed noncommutative

elliptic Fibonacci polynomials. Combination of (12) and (15) gives the following formula
for the dual weights

w̃a,b;q,p(s, t) = wa/b,1/b;q,p(s, t), (32)

which shows that the negatively indexed noncommutative elliptic Fibonacci polynomials
can be conveniently written in terms of the non-negatively indexed ones. We thus have

F−n(x, y | a, b; q, p) = (−1)nFn−2
(

x−1, x−1y | a/b, 1/b; q, p
)

x−1. (33)

The noncommutative elliptic Euler–Cassini identity thus takes the following form:

(−1)nFk(x, y | a, b; q, p) = Fn−2
(

x−1, x−1y | a/b, 1/b; q, p
)

x−1 Fn+k(x, y | a, b; q, p)

− Fn−1
(
x−1, x−1y | a/b, 1/b; q, p

)
Fn+k−1(x, y | a, b; q, p), (34)

which is valid for all integers n and k.
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